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A survey on integral equations for bioelectric modeling

Many problems in bioelectric modeling can be approached through the formulation, and numerical resolution, of integral equations of the boundary element method. There has been a resurgence of interest in these surface integral methods due to the introduction of fast algorithms such as fast multipole methods (FMMs) in the context of bioelectricity problems.

This survey aims to give a self-contained, detailed and rigorous account of several of the existing equations in the literature. With a particular focus on integral equations given in terms of the surface charge density between interfaces of different conductivity. These integral equations have received less attention in the literature, but recently it was shown that they are more suitable to the application of FMM acceleration. This has led in turn to impressive improvements in the quality of simulations of M/EEG and brain stimulation.

We survey the major integral equations currently used, and showcase that the chargebased formulations are dual to the surface potential formulations, which have been so far more common in applications to bioelectricity. Some application examples are discussed, and we provide a summary of available software for electromagnetic modeling of the brain.

Introduction

Bioelectric modeling is concerned with determining the total electric field produced by the human body, in interaction with different instruments producing electric or magnetic fields. This problem has a wide range of applications, including electroencephalography (EEG) [START_REF] Knösche | EEG/MEG Source Reconstruction, Textbook for Electro-and Magnetoencephalography[END_REF], [START_REF] Nunez | Electric Fields of the Brain: The neurophysics of EEG[END_REF], [START_REF] Schomer | Niedermeyer's Electroencephalography: Basic Principles, Clinical Applications, and Related Fields[END_REF], magnetoencephalography (MEG) [START_REF] Knösche | EEG/MEG Source Reconstruction, Textbook for Electro-and Magnetoencephalography[END_REF], [START_REF] Supek | Magnetoencephalography, From Signals to Dynamic Cortical Networks[END_REF], electrocardiology (ECG) [START_REF] Macfarlane | Comprehensive Electrocardiology[END_REF], transcranial magnetic stimulation (TMS) [START_REF] Higgins | Brain Stimulation Therapies for Clinicians[END_REF], [START_REF]Transcranial Magnetic Stimulation[END_REF], transcranial electrical stimulation (TES) [START_REF] Higgins | Brain Stimulation Therapies for Clinicians[END_REF], and deep brain stimulation (DBS) [START_REF] Chitnis | Deep Brain Stimulation: A Casebased Approach[END_REF], [START_REF] Higgins | Brain Stimulation Therapies for Clinicians[END_REF], among many others. Although the techniques of EEG/MEG and TMS/TES are quite different in their implementation, there is a common theoretical ground to all of them provided by the principle of Helmholtz reciprocity, see [START_REF] Gross | Bioelectromagnetism in Human Brain Research: New Applications, New Questions[END_REF] When the boundary element method (BEM) is involved, the solution to these problems is typically obtained in terms of an integral equation. These integral equations involve surface integrals over the interfaces between regions (also called compartments) of different conductivity or permittivity (studies on the conductivity of living tissues can be found for example in [START_REF] Faes | The electric resistivity of human tissues (100 Hz-10 MHz): a meta-analysis of review studies[END_REF] or [START_REF] Latikka | Conductivity of living intracranial tissues[END_REF]). Two main types of integral equations can be found in the literature: i. Integral equations for the surface potential u(x), or its normal derivative (∂u/∂n) (x)

-the most common at present, and;

ii. Integral equations for the surface charge density ρ(x) between interfaces of regions of different conductivity or permittivity.

From these quantities, one can obtain the full electric potential over the space R 3 . In the case of surface charge density the electric potential is found as a single-layer potential with density ρ; in the case of surface potential, or its normal derivative, the full electric potential is obtained by means of Green's formulas. For a single-compartment medium, both formulations have long been known in the potential theory literature, cf. for example Kress [START_REF] Kress | Linear Integral Equations[END_REF]. Both of them are applicable to conductive, dielectric, and magnetic media, cf. [START_REF] Jackson | Classical electrodynamics[END_REF].

As to a multi-compartment conductive medium, historically the surface charge density formulation was the first one to be found: it first appeared in a discretized form in the paper by Gelernter and Swihart [START_REF] Gelernter | A Mathematical-Physical Genesis of the Electrocardiogram[END_REF]. A subsequent continuous form, including timedependent and dielectric effects, appeared in the paper by Barnard, Duck, and Lynn [START_REF] Barnard | The application of electromagnetic theory to electrocardiology. I. Derivation of the integral equations[END_REF].

The first formulation in a multi-compartment medium expressed in terms of the surface potential can be found in the paper by Barr et. al. [START_REF] Barr | Determining surface potentials from current dipoles, with application to electrocardiography[END_REF]. In this paper, the authors obtain integral equations for both homogeneous and non-homogeneous conductive media via a generalisation of Green's formula due to Smythe (see §3.06. in [START_REF] Smythe | Static and Dynamic Electricity[END_REF]). Thereafter, Geselowitz [START_REF] Geselowitz | On Bioelectric Potentials in an Inhomogeneous Volume Conductor[END_REF] used the same methods to find an additional integral equation in terms of the normal derivative of the potential, or equivalently in terms of the normal component of the electric field, see also Geselowitz's derivation for the magnetic field [START_REF] Geselowitz | On the magnetic field generated outside an inhomogeneous volume conductor by internal current sources[END_REF]. These equations involve double-and single-layer potentials respectively, in [START_REF] Kybic | A common formalism for the integral formulations of the forward eeg problem[END_REF] a symmetric formulation (i.e. jointly considering single-and double-layer potentials) for nested domains is derived. The symmetric formulation has the advantage providing more accurate numerical results, an implementation of this method can be found in [START_REF] Gramfort | OpenMEEG: opensource software for quasistatic bioelectromagnetics[END_REF]. There was an early attempt to employ the fast multipole method (FMM) (see [START_REF] Beatson | A short course on fast multipole methods[END_REF], [START_REF] Carrier | A fast adaptive multipole algorithm for particle simulations[END_REF], [START_REF] Greengard | A fast algorithm for particle simulations[END_REF], [START_REF] Greengard | A new version of the Fast Multipole Method for the Laplace equation in three dimensions[END_REF], [START_REF] Greengard | A new version of the fast multipole method for screened coulomb interactions in three dimensions[END_REF], [START_REF] Nabors | FastCap: A Multipole Accelerated 3-D Capacitance Extraction Program[END_REF], [START_REF] Shushnikova | FMM-LU: A fast direct solver for multicale boundary integral equations in three dimensions[END_REF]) to accelerate the symmetric formulation [START_REF] Kybic | Fast multipole acceleration of the MEG/EEG boundary element method[END_REF], which unfortunately did not generate convincing results. Two possible explanations are an insufficient performance of the FMM implementation or sub-optimality of the BEM formulation. This is in contrast to the application of FMM to the charge-based equations [START_REF] Daneshzand | Rapid computation of tmsinduced e-fields using a dipole-based magnetic stimulation profile approach[END_REF], [START_REF] Makarov | A fast direct solver for surface-based wholehead modeling of transcranial magnetic stimulation[END_REF]- [START_REF] Makarov | Boundary Element Fast Multipole Method for Enhanced Modeling of Neurophysiological Recordings[END_REF], [START_REF] Noetscher | Estimations of charge deposition onto convoluted axon surfaces within extracellular electric fields[END_REF], [START_REF] Weise | The effect of meninges on the electric fields in TES and TMS. Numerical modeling with adaptive mesh refinement[END_REF] which has produced impressive results in large-scale models.

The potential-based formulations have the advantage of yielding the values of the potential at the surface directly, which is the relevant quantity in applications such as EEG. Their main drawback, however, is that these formulations assume the total electric field to be conservative, preventing its direct application to the non-conservative (solenoidal) fields of TMS. Nevertheless, we point out that this issue could be overcome using the methods of Nummenmaa et. al. in [START_REF] Nummenmaa | Targeting of white matter tracts with transcranial magnetic stimulation[END_REF].

For many years, the charge-based equations seem to have received less attention than the surface potential equations [START_REF] Kybic | A common formalism for the integral formulations of the forward eeg problem[END_REF], in part due to the fact that the charge-based equations require an additional integration step to retrieve the value of the potential at the boundaries. Recently, Makaroff et. al. [START_REF] Makarov | A Quasi-Static Boundary Element Approach With Fast Multipole Acceleration for High-Resolution Bioelectromagnetic Models[END_REF]- [START_REF] Makarov | Boundary Element Fast Multipole Method for Enhanced Modeling of Neurophysiological Recordings[END_REF] showed that the FMM, which provides accelerated means to compute the field of many charges at many observation points, is particularly well-suited for this formulation. FMM allows the computations to be carried more efficiently and make competition to the finite element method (FEM), this is mainly because FMM accelerated algorithms do not require the construction and storage of the matrix of the system. This enables us to solve much larger problems involving millions of facets in the segmentation of the conductivity interfaces.

The existing surface charge density descriptions do not impose any restrictions on the nature of the sources. The fundamental idea behind the charge-based integral equations seems to have first appeared, in the context of bioelectricity, in [START_REF] Gelernter | A Mathematical-Physical Genesis of the Electrocardiogram[END_REF]. However, this idea has been used previously in high-frequency applications [START_REF] Bateman | The Mathematical Analysis of Electrical and Optical Wave-Motion[END_REF], [START_REF] Harrington | Time-harmonic electromagnetic fields[END_REF], and also has found applications in acoustics [START_REF] Chen | A formulation of the fast multipole boundary element method (FMBEM) for acoustic radiation and scattering from three-dimensional structures[END_REF]. We follow closely the exposition of Gelernter and Swihart:

1. When electric sources are activated, they produce an instantaneous impressed electric field E i (not necessarily conservative), which is the field created by the sources in an infinite conducting medium, with boundary conditions unsatisfied.

2. Electric charge begins to flow immediately, subject to the impressed electric field, and accumulates at the interfaces between regions of different conductivity. In other words, the free flowing charges induce a surface charge density ρ(x) at every interface.

3. The surface charge density gives rise to a secondary electric field E s which is conservative, and is expressed explicitely in terms of ρ(x) using Coulomb's law.

4.

A steady-state condition is reached when the when the total electric field E(x), given as E(x) = E i (x) + E s (x), satifies all the boundary conditions.

The time required to achieve the steady-state condition in the human body is at least one order of magnitude smaller than 10 -4 seconds, c.f. [START_REF] Gelernter | A Mathematical-Physical Genesis of the Electrocardiogram[END_REF]. Thus, in practice we may model the problem using the quasi-static formulation of Maxwell's equations, by a sequence of "snapshots" of steady-state conditions. A detailed and rigorous analysis of the quasi-static assumption in bioelectric problems can be found in the paper by Plonsey and Heppner [START_REF] Plonsey | Considerations of quasi-stationarity in electrophysiological systems[END_REF]. We mention that the method of separating the electric field into an impressed/primary and secondary components has

In this paper we aim to survey the derivation of the majority of the aforementioned integral equations, providing the reader with the necessary mathematical preliminaries in a self-contained way. We have attempted to present the theory and derivations in a detailed and rigorous manner, so as to facilitate the reader to carry his or her own investigations and computer models. We pay special attention to the charge-based formulation, which has received less attention in the literature, despite the fact that it has a wider range of applicability. We present this charge-based formulation for a general non-nested geometry, see Figure 1. These geometries are necessary in several realistic modeling scenarios, such as those involving holes in the skull, fontanels in infants, or in cardiological applications.

We remark that for applications such to MEG or EEG one is typically interested in the inverse problem of locating the source of electrical activity within the brain. We will not discuss inverse problems here. We mention however that, due to the ill-posed nature of this problem, it is necessary to solve many forward problems (where the sources are assumed to be known) efficiently in order to obtain a solution to the inverse problem. The integral equations that we present here are used to solve the forward step in M/EEG. First, we will present the main mathematical prerequisites. Then, we will give a full derivation of the surface charge density integral equations. Once this is done we will present the classic integral equations for surface potentials in the single and multiple compartment case. Whenever is appropriate, we establish the connections of these equations to the charge density equations. Finally, we discuss available software, where these methods are implemented, and their applications. The paper is organized into sections as follows: V Software and Applications.

I-A

I-A. Mathematical Preliminaries: The Laplacian and its Green function

There are three main mathematical facts that we will require throughout our analyses: i. The Laplacian operator ∆ has a Green function, G(x, y) which is a solution to the equation ∆G(x, y) = δ(x -y), where δ(x) is the Dirac delta:

δ(x) = +∞ if x = 0 0 if x ̸ = 0 .
ii. Green's representation formula allows us to obtain the values of a harmonic function u(x) away from the boundary ∂D of a bounded domain D in terms of its boundary values -the values of u(x) and of its normal derivative on ∂D.

iii. The jump relations of the potential theory provide us with a way to compute limits and normal derivatives of a particular family of harmonic functions as we approach the boundary ∂D.

In this section, we will present results concerning the Laplacian and its green function. To be completely rigorous, one should work with the Dirac delta using the theory of distributions. The Dirac delta will only make an act of presence in a handful of situations, in particular in the proof of the jump relations of the potential theory -which is the deepest mathematical result we use. However, once we have these results at our disposal, the remaining arguments are rather elementary and easy-to-follow. For the sake of clarity in the exposition, we will use the deeper results as a "black-box" and refer to reference texts such as [START_REF] Bonnet | Equations intégrales et éléments de frontière[END_REF], or [START_REF] Nédélec | Integral representations for harmonic problems[END_REF] for the harder technical results.

Recall that the Laplacian operator is defined for a function u : R n → R as

∆u(x) = n i=1 ∂ 2 u(x) ∂x 2 i . (1) 
For a function u(x, y) depending on two variables x, y ∈ R n , we denote by ∇ x u and ∇ y u the gradient of u with respect to the variables x and y respectively. Similarly ∇ x • u and ∇ y • u denote the divergence of u with respect to the variables x and y. With this, we denote the Laplacian operators with respect to x and y as ∆ x u = ∇ x • ∇ x u and ∆ y u = ∇ y • ∇ y u. Whenever u depends only on one variable, or when the variable of differentiation is understood from context, we simply write ∇u and ∆u. Unless stated otherwise, all integrals we consider will be on the variable y. In the context of integration, we denote a surface element by ds(y) and a volume element by dv(y).

We will say that D is a bounded domain, whenever D is a bounded set with a boundary ∂D which is piece-wise of class C 2 . This boundary may have corners or edges, and it is not necessarily connected. Let n(x) be the outward unit normal vector to the surface ∂D at a point x ∈ ∂D. Each connected component of D is assumed to have positive measure (volume). Associated to the Laplacian, there is a Green function G(x, y) satisfying the equation

∆ y G(x, y) = δ(x -y), for any given x ∈ R n , ( 2 
)
where δ is the Dirac delta distribution. This distribution is defined by the following (see Equation (1.3) in §1.1. of [START_REF] Bonnet | Equations intégrales et éléments de frontière[END_REF]),

¢ D δ(x -y)u(y)dv(y) = u(x)δ D (x), where δ D (x) = 1 if x ∈ D 0 if x ̸ ∈ D . (3) 
The Green function of the Laplacian depends on the dimension n that we consider. We have the following result, Theorem 1 (cf. Annexe 2.2., [START_REF] Bonnet | Equations intégrales et éléments de frontière[END_REF]). The Green function for the Laplacian on R 3 is given by

G(x, y) = - 1 4π 1 |x -y| . (4) 
We will only consider equations on 3D-space, so we fix once and for all G(x, y) := -1/(4π|x -y|). We remark that in [START_REF] Bonnet | Equations intégrales et éléments de frontière[END_REF] the definition of the Green function is given by ∆ y G(x, y) + δ(x -y) = 0 instead. In this case the solution is

Φ(x, y) := -G(x, y) = 1 4π 1 |x -y| , for all x ̸ = y in R 3 . (5) 
The function Φ(x, y), also known as the fundamental solution to the Laplace equation, is more common in the potential theory and electromagnetism literature (e.g. in [START_REF] Kress | Linear Integral Equations[END_REF], [START_REF] Mikhlin | Mathematical physics; an advanced course[END_REF], [START_REF] Smythe | Static and Dynamic Electricity[END_REF]).

So, in what follows we will completely forget about G(x, y) and work with Φ(x, y) instead.

From the definition of Green's function (Equation ( 2)), we have the following Corollary 1. Let D be an open domain of R 3 , and let u :

D → R. If x ∈ D, then -u(x) = ¢ D u(y)∆ y Φ(x, y)dv(y) = ¢ D u(y)∆ y 1 4π|x -y| dv(y). (6) 
The Green function for the Laplacian will play a fundamental role in the study of boundary value problems. It is worth noting that, more generally, whenever we have a general linear differential operator L admitting a Green function much of the following theory holds verbatim, for more see §1.1. in [START_REF] Bonnet | Equations intégrales et éléments de frontière[END_REF].

I-B. Mathematical Preliminaries: Jump relations of the potential theory

Now we introduce several types of potentials given by integral operators. The use of the term potential is motivated by the fact that such functions arise naturally as scalar potentials for vector fields in several situations, such as electromagnetism. The single-and double-layer potentials play a particularly important role, since they appear in Green's representation formulas for C 2 functions on bounded and unbounded domains. Using the jump relations of the potential theory, we will be able to understand their behaviour over the entirety of R 3 , and this knowledge can then be used to extract integral equations for more general functions.

Definition 1 (cf. Chapter 3 of [START_REF] Nédélec | Integral representations for harmonic problems[END_REF]). Let D be a bounded domain, and let φ : ∂D → R be a continuous function on ∂D. The single-layer potential with continuous density φ is defined as (S(φ)) (x) = ¢ ∂D φ(y)Φ(x, y)ds(y), for all x ∈ R 3 \∂D.

The double-layer potential with continuous density φ is defined as

(D(φ)) (x) = ¢ ∂D φ(y) ∂Φ(x, y) ∂n(y) ds(y), for all x ∈ R 3 \∂D. (8) 
Given a continuous function f : D → R, we define the Newtonian potential with density f as

(V(f )) (x) := ¢ D f (y)Φ(x, y)dv(y). (9) 
There is a dual to the double-layer potential, in the sense of the standard dot product in L 2 , and it is given by

(D * (φ)) (x) = ¢ ∂D φ(y) ∂Φ(x, y) ∂n(x) ds(y), for all x ∈ R 3 \∂D. ( 10 
)
We also define the following operator:

(N (φ)) (x) = ¢ ∂D φ(y) ∂ 2 Φ(x, y) ∂n(x)∂n(y) ds(y), for all x ∈ R 3 \∂D. ( 11 
)
Remark 1. Our notation for the Newtonian potential is not standard, we have chosen the symbol V, because this is the only operator we introduce which is given by a volume integral.

By definition, the single-and double-layer potential are harmonic functions at every point x ∈ R 3 \∂D. This is because we can take derivatives at x under the integral sign, whenever x ̸ ∈ ∂D. The jump relations of the potential theory govern the behaviour of the single-and double-layer potential at the boundary ∂D.

Theorem 2 (Jump relations, cf. Theorems 6.14, 6.17, 6.18, and 6.19 in [START_REF] Kress | Linear Integral Equations[END_REF]). Let D be a bounded domain. For a point x ∈ ∂D and a function f defined on R 3 \∂D, let

f ± (x) = lim h→0 f (x ± hn(x)), (12) 
be the limiting values of f at the point x along the direction of the outward unit normal n(x) to ∂D at x. Then, (i) The single-layer potential v(x) with continuous density φ is continuous throughout R 3 , and its values at a boundary point x ∈ ∂D are given by the following convergent improper integral:

v(x) = ¢ ∂D φ(y)Φ(x, y)ds(y), x ∈ ∂D, (13) 
The normal derivative of the single-layer potential v has a jump at every point x of the boundary ∂D -its limiting values from the interior and exterior of D are given by the following formula:

∂u ± ∂n (x) = ¢ ∂D φ(y) ∂Φ(x, y) ∂n(x) ds(y) ∓ 1 2 φ(x), x ∈ ∂D. (14) 
(ii) The double-layer potential v(x) with continuous density ψ has a jump at every point of the boundary ∂D -its limiting values from the interior and exterior of D are given by the following formula:

v ± (x) = ¢ ∂D ψ(y) ∂Φ(x, y) ∂n(y) ds(y) ± 1 2 ψ(x), x ∈ ∂D. ( 15 
)
The normal derivative of the double-layer potential v is continuous across ∂D.

II. Derivation of a surface charge based integral equation via the jump relations of the potential theory

We derive a continuous version of the Gelernter-Swihart equations [START_REF] Gelernter | A Mathematical-Physical Genesis of the Electrocardiogram[END_REF], which recently appeared in [START_REF] Makarov | A Quasi-Static Boundary Element Approach With Fast Multipole Acceleration for High-Resolution Bioelectromagnetic Models[END_REF] and is equivalent to the charge-based equations in [START_REF] Barnard | The application of electromagnetic theory to electrocardiology. I. Derivation of the integral equations[END_REF], after ignoring the time-dependent effects. We will only require the jump relations of the potential theory, and a few physical arguments. However, to be absolutely precise, it is necessary to describe very carefully our domains of integrations and notational conventions: Let D ⊆ R 3 be an inhomogeneous conductive volume. By this, we mean a bounded region of space which can be partitioned into several regions of constant electric conductivity:

D = D 1 ∪ D 2 ∪ • • • ∪ D N . (16) 
Let D 0 = R 3 \D be the exterior of D. We denote by S j = ∂D j , the boundary (or surface) of the region D j ; for j = 0, 1 . . . , N -notice that S 0 = ∂D. The electrical conductivity of the region D j is denoted by σ j ; for j = 0, 1 . . . , N . The exterior region is assumed to have the conductivity of vacuum σ 0 = 0 -although in our applications the exterior medium will be air, σ 0 = 0 is a sufficient approximation. The surfaces S j are called surfaces of discontinuity, or interfaces. We denote the union of these interfaces by

S = S 0 ∪ S 1 ∪ • • • ∪ S N . (17) 
We assume that each interface S j is piece-wise C 2 (so that there may be corners). There is a unit normal vector n j (x), pointing toward the exterior of D j , defined almost everywhere on x ∈ S j . It is important to note that the regions D j may be non-nested, i.e. there may be two regions D i and D j none of them completely surrounding the other.

Remark 2. For now, we will consider general topologies and adhere to the notation set above. Later, when we consider nested compartments, it will be more convenient to enumerate the compartments from the innermost to the outermost as D 1 , D 2 , . . . , D N , and to let D N +1 = R 3 \D instead of D 0 , (see Figure 1(a)). This ensures that n j always points to the exterior of D j in the nested topologies.

For notational convenience, we would like to define a normal vector n(x) on every point of S. Suppose that x ∈ S belongs only to one surface of discontinuity S j , then we simply denote n(x) := n j (x). Whenever x belongs to the interesection of two surfaces of discontinuity, say S i and S j , we may choose n(x) to be either the normal vector n i (x) or n j (x). In a non-nested geometry we may have n i (x) = -n j (x), so our choice of n(x) is not always unique. Our results will hold true for an arbitrary choice of normal vectors. Hence, in what follows, fix a choice of n(x) once and for all. Remark 3. Whenever x belongs to a corner of S j , there is no well-defined normal vector n j to the surface S j . For now, we will restrict our analysis to those points where n j is well defined. Later, we will explain how to complete the analysis at the corner points.

We will make use of the following notation: For a point x belonging to an interface S j and a function f , we denote 

f ± (x) = lim h→0 f (x ± h • n(x)). (18) 
Finally, we set our notation for surface integrals: Let X be a finite union of (not necessarily closed) surfaces. Whenever we write a surface integral ¡ X f (y)ds(y) over X, we will count overlapping regions of different surfaces in X only once. In particular, this will hold true for surface integrals over S = S 0 ∪ • • • ∪ S N , and surface integrals involving the normal components of the surfaces S j will be taken according our choice of n(x).

We consider the following forward problem: given the knowledge of electrical sources within the volume D (or on its exterior D 0 ) at a given time t, find the total electric field E(x; t) at every point x of the space R 3 at time t. Consider the instant t to be fixed, we will drop the dependence of all functions on the time variable. Our physical assumptions are listed below: i. The behaviour of the total electric field is governed by the quasi-static Maxwell equations, see [START_REF] Smythe | Static and Dynamic Electricity[END_REF].

ii. The normal component of the total current through the volume D is continuous across each interface S j , i.e. for x ∈ S j , we have that

J + (x) • n j (x) = J -(x) • n j (x).
In terms of the total electric field:

σ + (x)E(x) • n(x) = σ -(x)E(x) • n(x),
where σ ± (x) denotes the conductivity on each side of S at the point x.

As in [START_REF] Gelernter | A Mathematical-Physical Genesis of the Electrocardiogram[END_REF] and [START_REF] Makarov | A Quasi-Static Boundary Element Approach With Fast Multipole Acceleration for High-Resolution Bioelectromagnetic Models[END_REF], we carry our derivation by splitting the total electric field into two components:

i. An impressed (or primary) electric field E i -continuous everywhere in R 3 and which exists independently of the domain D;

ii. A steady-state secondary electric field E s , which is a response to the primary electric field. It is generated by surface charges ρ(x) on S induced by the primary electric field, and characterized by the fact that the total electric field

E(x) = E s (x) + E i (x),
satisfies all boundary conditions.

The existence of surface charges at the interfaces is a straightforward physical fact: the free charges within the volume D are displaced when subject to the electric field E i , and accumulate at the interfaces of regions of different conductivity.

The primary electric field can be of several different types. For example, in the forward problem of electroenchephalography (EEG) the field E i is given by the current dipole model of neuron activation, see [START_REF] Hämäläinen | Magnetoencephalography-theory, instrumentation, and applications to noninvasive studies of the working human brain[END_REF]. Namely, E i is a conservative field obtained from an impressed current density J i via the formula σE i (x) = J i (x) for x ∈ R 3 , where (everywhere on R 3 ) σ is the conductivity of gray matter. In the problem of transcranial magnetic stimulation (TMS) we consider a solenoidal vector field E i given by Faraday's law of induction.

Recall that for S = S 0 ∪ S 1 ∪ • • • ∪ S N , we define a surface integral on S as the sum of surface integrals on each S j , counting each intersection between interfaces S i and S j exactly once. By Coulomb's law, we have that the secondary field is given by,

E s (x) = ¢ S ρ(y) 4πε 0 x -y |x -y| 3 ds(y), for every x ∈ R 3 , (19) 
where the constant ε 0 is the vacuum permittivity. Define

u(x) = ¢ S ρ(y) ε 0 Φ(x, y)ds(y), (20) 
where Φ(x, y) = 1 4π 1 |x-y| is the fundamental solution of the Laplace equation. We can take the gradient with respect to the variable x inside of the integral to find

∇ x u(x) = ∇ x ¢ S ρ(y) ε 0 Φ(x, y)ds(y) = ¢ S ρ(y) ε 0 ∇ x Φ(x, y)ds(y) = ¢ S ρ(y) ε 0 ∇ x 1 4π|x -y| ds(y) = ¢ S ρ(y) ε 0 - 1 4π
x -y |x -y| 3 ds(y). Hence, E s (x) = -∇u(x), and the field E s is conservative with scalar potential u(x) given by Equation [START_REF] Greengard | A fast algorithm for particle simulations[END_REF]. The normal component of E s is then given by the negative of the normal derivative ∂u/∂n of the potential u, i.e.

- ∂u ∂n (x) = -∇u(x) • n(x) = E s (x) • n(x). (22) 
We will derive a Fredholm integral equation of the second kind for the surface charge density ρ on S. We will do so by studying the values of the normal derivative of the potential u(x) defined in Equation [START_REF] Greengard | A fast algorithm for particle simulations[END_REF], and applying the jump relations. These relations cannot be applied to u directly, so we will require the following auxiliary potentials: We define the j-th auxiliary potential u j (x) to be the single-layer potential with density ρ(x)/ε 0 on the interface S j , i.e.

u j (x) = ¢ S j ρ(y) ε 0 Φ(x, y)ds(y), for x ∈ D j . (23) 
Now, let x ∈ S be a given surface point for which n(x) is well-defined. Then x belongs to at least one interface, let S j be one such interface for which n(x) = n j (x). By definition, a surface integral on S consists of the sum of surface integrals on each interface S i , counting each intersection between multiple interfaces exactly once. Let S ′ = N i=0 (S i \ S j ) be the union of all interfaces, excluding their common portion with S j . Then,

u(x) := ¢ S ρ(y) ε 0 Φ(x, y)ds(y) = u j (x) + ¢ S ′ ρ(y) ε 0 Φ(x, y)ds(y). (24) 
The jump relations of applied to the single-layer potential u j imply that

∂(u j ) ± ∂n j (x) = ¢ S j ρ(y) ε 0 ∂Φ(x, y) ∂n j (x) ds(y) ∓ ρ(x) 2ε 0 = n j (x) • ¢ S j ρ(y) 4πε 0 x -y |x -y| 3 ds(y) ∓ ρ(x) 2ε 0 . (25) 
Given that x ̸ ∈ S ′ , the integral ¡ S ′ ρ(y)Φ(x, y)/ε 0 ds(y) has no singularities. Therefore, we can take normal derivatives with respect to x under the integral sign. We obtain:

∂ ∂n(x) ¢ S ′ ρ(y) ε 0 Φ(x, y)ds(y) = ¢ S ′ ρ(y) ε 0 Φ(x, y)ds(y), (26) 
approaching from either the positive or negative direction of n(x). Notice that these equations are independent of the surface of discontinuity S j chosen -they only depend on our initial choice of orientation for the normal vectors. Hence, combining Equations ( 24), [START_REF] Gross | Bioelectromagnetism in Human Brain Research: New Applications, New Questions[END_REF], and (26), we find:

∂u ± ∂n (x) = ¢ S ρ(y) ε 0 ∂Φ(x, y) ∂n(x) ds(y) ∓ ρ(x) 2ε 0 = n(x) • ¢ S ρ(y) 4πε 0 x -y |x -y| 3 ds(y) ∓ ρ(x) 2ε 0 , for x ∈ S. (27) 
Now, use the fact that the normal component of the total current is continuous through the interfaces together with the fact that E(x) = E s (x) + E i (x), and E s (x) = -∇u(x):

σ + (x)E i (x) • n(x) -σ + (x)n(x) • ¢ S ρ(y) 4πε 0 x -y |x -y| 3 ds(y) + σ + (x) ρ(x) 2ε 0 = σ -(x)E i (x) • n(x) -σ -(x)n(x) • ¢ S ρ(y) 4πε 0 x -y |x -y| 3 ds(y) -σ -(x) ρ(x) 2ε 0 . (28) 
From here, we conclude that

ρ(x) 2ε 0 -K(x) • n(x) ¢ S ρ(y) 4πε 0 x -y |x -y| 3 ds(y) = K(x)E i (x) • n(x), for all x ∈ S, (29) 
where

K(x) = σ -(x) -σ + (x) σ -(x) + σ + (x) , (30) 
is the electric conductivity contrast at the point x ∈ S. A mathematically identical equation can be derived for dielectric interface problems in bioelectromagnetic modeling, see [START_REF] Greengard | Fast direct solvers for integral equations in complex three-dimensional domains[END_REF].

Remark 4. Observe that if we reverse the orientation of the normal vector n(x), then σ -(x) and σ + (x) are interchanged, causing a change in sign of the electric conductivity constant K(x). Therefore, Equation ( 29) is independent of our choice of orientation for n(x).

Remark 5. In the paper by Barnard, Duck, and Lynn [START_REF] Barnard | The application of electromagnetic theory to electrocardiology. I. Derivation of the integral equations[END_REF], the authors describe a more general equation which takes into account time-dependent and dielectric effects. Their derivation shows that if time-dependent effects (Maxwell displacement currents) can be ignored, i.e. if the surface charge distribution is constant in time, then the dielectric effects only appear in the source term, see Equation ( 35) in [START_REF] Barnard | The application of electromagnetic theory to electrocardiology. I. Derivation of the integral equations[END_REF]. Our source term (impressed electric field) is more general, in the sense that it is given in terms of the electric field instead of an electric potential using the dipole source model. Since we consider our impressed electric field as given, the argument in [START_REF] Barnard | The application of electromagnetic theory to electrocardiology. I. Derivation of the integral equations[END_REF] justifies the omission of dielectric effects in our derivation.

Remark 6. We have ignored those points where n(x) may not be well-defined. For such points, there is a generalization of the jump relations that addresses this issue, see §6.5. of [START_REF] Kress | Linear Integral Equations[END_REF]. This generalization introduces a correction term which is given by the angle between the normal vector at the junction of two regular pieces of a surface. We note however that, from the point of view of numerical computations, there is typically no need to consider the junction points. Assuming that ρ(x) is constant on each of the pieces of a triangulation of the surface S, the numerical approximation takes only the contribution of the centroid of each piece.

III-A. Integral equations for interior Poisson problems over a single-compartment medium in terms of the surface electric potential or its normal derivative

Before giving a formulation of integral equations based on surface potentials for multicompartment media, we will consider the simpler single-compartment case. This will achieve two additional goals: to relate the surface charge density integral equations to the classical theory of boundary value problems (BVPs), and to introduce Green's formulas, which are the basis for the subsequent integral equations we will present. So for now, we exclude the presence of surfaces of discontinuity aside from ∂D. We will now discuss Poisson problems, see Chapter 2 of [START_REF] Bonnet | Equations intégrales et éléments de frontière[END_REF] and Chapter 6 of [START_REF] Kress | Linear Integral Equations[END_REF]. Large part of this material is of course well-known, but we include it here for the convenience of the reader.

We first consider problems with a source term in the interior of a bounded domain D. For given functions f (x) ∈ C 2 (D) and g(x) ∈ C(∂D), we pose the following problems:

Interior Dirichlet Problem: Find a function u(x) ∈ C 2 (D) satisfying ∆u(x) = f (x) for all x ∈ D u(x) = g(x)
for all x ∈ ∂D .

Interior Neumann Problem: 

The quantity q(x) := ∂u(x)/∂n = n(x) • ∇ x u(x) is known as the flux of u through the surface ∂D.

The so-called exterior Dirichlet and Neumann problems are analogous to the interior ones, but we consider instead an unbounded domain R 3 \D in place of D everywhere. Additionally, the exterior problems typically require assumptions on the asymptotic behaviour of u and f . We will consider the exterior problems separately in the following section.

Theorem 3 (Uniqueness of solutions for interior Poisson problems).

There is at most one solution to the interior Dirichlet problem. Any two solutions to the interior Neumann problem differ by an additive constant.

Proof. The claim holds true for solutions to the Laplace equation ∆u = 0 by Theorems 6.11 and 6.12 in [START_REF] Kress | Linear Integral Equations[END_REF]. If u 1 and u 2 are two solutions to the Dirichlet problem ∆u = f on D with u = g on ∂D, then ∆(u 1 -u 2 ) = 0, and u 1 -u 2 = 0 on ∂D. By the maximumminimum principle (Theorem 6.8 [START_REF] Kress | Linear Integral Equations[END_REF]) any function satisfying ∆u = 0 on a domain D attains its minimum and maximum on the boundary ∂D, hence u 1 (x)-u 2 (x) = 0 for every

x ∈ D. Similarly, if (∂u i /∂n)(x) = g(x) on ∂D for i = 1, 2, then (∂(u 1 -u 2 )/∂n)(x) = 0 on ∂D, so u 1 -u 2 is a constant.
There is a reciprocity formula associated to the Poisson problems, also known as Green's second formula: Theorem 4 (Green's second formula, cf. §2.1. Identité de Réciprocité [START_REF] Bonnet | Equations intégrales et éléments de frontière[END_REF]). Let D be a bounded domain with boundary ∂D. Let u 1 and u 2 be two C 2 functions, then

¢ ∂D u 1 ∂u 2 ∂n -u 2 ∂u 1 ∂n ds = ¢ D [u 1 ∆u 2 -u 2 ∆u 1 ] dv. (33) 
Proof. Recall that Gauss' divergence theorem states that for a function ϕ,

¢ D ∇ • ϕ dv = ¢ ∂D ϕ • n ds. (34) 
Now, apply Equation [START_REF] Kybic | A common formalism for the integral formulations of the forward eeg problem[END_REF] to the function ϕ = u 2 ∇u 1 , to obtain Green's first formula:

¢ D ∇u 1 ∇u 2 dv + ¢ D u 2 ∆u 1 dv = ¢ ∂D u 2 ∂u 1 ∂n ds. ( 35 
)
Exchange the roles of u 1 and u 2 to obtain

¢ D ∇u 1 ∇u 2 dv + ¢ D u 1 ∆u 2 dv = ¢ ∂D u 1 ∂u 2 ∂n ds. (36) 
Finally, subtract Equation [START_REF] Kybic | Fast multipole acceleration of the MEG/EEG boundary element method[END_REF] from Equation ( 36) to obtain Equation [START_REF] Kress | Linear Integral Equations[END_REF].

The reciprocity formula in Equation ( 33) can be used to obtain the following representation theorem for solutions to the Poisson equation: Theorem 5 (Green's representation formula, cf. Ch. 11, §4, Eq. ( 5) in [START_REF] Mikhlin | Mathematical physics; an advanced course[END_REF]). Let D be a bounded domain and u a C 

where the rightmost integral exists as an improper integral.

Proof. Apply Equation [START_REF] Kress | Linear Integral Equations[END_REF] to the functions u 1 (y) := Φ(x, y) and u 2 (y) := u(x) to obtain

¢ ∂D ∂u(y) ∂n Φ(x, y) -u(y) ∂Φ(x, y) ∂n(y) ds(y) = ¢ D [Φ(x, y)∆u(y) -u(y)∆ y Φ(x, y)] dv(y). (38) 
Use the fact that ∆ y Φ(x, y) = -∆ y G(x, y) = -δ(x -y) to conclude that u(x) = ¡ D -u(y)∆ y Φ(x, y)dv(y). From here, Equation (37) follows.

Recall that a C 2 function u defined over an open subset D of R 3 is called harmonic whenever ∆u(x) = 0 for every x ∈ D.

Corollary 2 (Green's representation for harmonic functions, cf. Theorem 6.5 in [START_REF] Kress | Linear Integral Equations[END_REF]). Let D be a bounded domain and u a harmonic function on D, continuous on ∂D, then for every x in the interior of D:

u(x) = ¢ ∂D ∂u ∂n (y)Φ(x, y) -u(y) ∂Φ(x, y) ∂n(y) ds(y). (39) 
Now that we have a representation formula for the values of u in the interior of D, we turn to find a formula for its values at its boundary. Assume that u is continuous along the boundary ∂D, and that its normal derivative ∂u/∂n is defined and continuous everywhere on ∂D. We can easily extend Green's representation formula for u(x) to the boundary ∂D using the jump relations of the potential theory.

Since u and ∂u/∂n are continuous in the boundary, we may identify the first two integrals in Green's representation formula (Equation ( 37)) as single-and double-layer potentials, namely:

¢ ∂D ∂u ∂n
(y)Φ(x, y)ds(y) = (S(∂u/∂n)) (x), and

¢ ∂D u(y) ∂Φ(x, y) ∂n(y) ds(y) = (D(u)) (x). (40) 
Thus, Equation ( 37) can be rewritten as:

u(x) = (S(∂u/∂n)) (x) -(D(u)) (x) -(V(∆u)) (x), for every x ∈ D. (41) 
Now, let x ∈ ∂D be a point of the boundary. We consider the limit of the function u in Equation ( 41) as we approach x from the interior, term by term. From the jump relations (Theorem 2), we have that the single-layer potential S(∂u/∂n) is continuous at x, so lim

h→0 (S(∂u/∂n)) (x -hn(x)) = ¢ ∂D ∂u ∂n (y)Φ(x, y)ds(y), (42) 
where the integral in the right-hand-side is a convergent improper integral. On the other hand, the double-layer potential D(u) has a jump at x, and the limiting value from the interior is given by Equation ( 15 

Finally, the limit of the Newtonian potential exists as an improper integral,

lim h→0 (V(∆u)) (x -hn(x)) = ¢ D ∆u(y)Φ(x, y)dv(y). (44) 
See Section 2.2. in [START_REF] Bonnet | Equations intégrales et éléments de frontière[END_REF] for more details. Combining these limit equations, we find that 

u -(x) = 1 2 u(x) - ¢ ∂D u ( 
We can use this equation to obtain integral equations to solve the interior Poisson problems. Proof. Suppose that u(x) is a solution to the interior Poisson problem, and apply Equation [START_REF] Noetscher | Estimations of charge deposition onto convoluted axon surfaces within extracellular electric fields[END_REF] to the solution u(x). Substituting ∂u/∂n = g on ∂D, and ∆u = f on D, the result follows.

Remark 7. Notice that by Gauss's divergence theorem applied to ∇u, we have that

¡ D ∆udv = ¡ ∂D ∇u • nds = ¡ ∂D (∂u/∂n)ds.
Therefore, a necessary condition to the solvability of the interior Neumann problem is:

¢ D f (y)dv(y) = ¢ ∂D g(y)ds(y). ( 48 
)
By Theorem 3, any two solutions of the interior Neumann problem differ by an additive constant. Therefore, up to a constant, a solution u(x) to the interior Neumann problem can be found by solving for the boundary values of u with Equation (47) (which is a Fredholm equation of the second kind) and then retrieving the interior values of u using Equation [START_REF] Macfarlane | Comprehensive Electrocardiology[END_REF]. This lack of uniqueness is not important in bioelectric applications, since in that case u will represent an electric potential, and the electric field E = -∇u is unaffected by the addition of a constant to u.

To obtain an integral equation for the interior Dirichlet problem we will need to compute the normal derivative of Equation ( 46). This normal derivative can be computed using the jump relations.

Theorem 7 (Interior Dirichlet integral equation). Suppose that u(x) is a solution to the interior Dirichlet problem ∆u(x) = f (x) on D, and u(x) = g(x) on ∂D. Then, the normal derivative q(x) := (∂u/∂n)(x) of u satisfies the following (Fredholm type I) integral equation for every x on the boundary ∂D:

¢ ∂D q(y) ∂Φ(x, y) ∂n(x) ds(y) = ¢ ∂D g(y) ∂ 2 Φ(x, y) ∂n(x)∂n(y) ds(y) - ¢ D f (y) ∂Φ(x, y) ∂n(x) dv(y). (49) 
Proof. Take normal derivatives with respect to the variable x in Equation ( 46) and use the fact that ∆u(x) = f (x) on D, and u(x) = g(x) on ∂D. Writing q(x) := (∂u/∂n)(x), we arrive at the following equation: 

q(x) + 2 ∂ ∂n(x)
On the other hand, the single-layer potential with density q(y) has a discontinuous normal derivative and the limiting value from the interior of D is given by Equation ( 14). So we have, ∂ ∂n(x)

¢ ∂D q(y)Φ(x, y)ds(y) = ¢ ∂D q(y) ∂Φ(x, y) ∂n(x) ds(y) + 1 2 q(x). (52) 
Combining Equations ( 50), [START_REF]Transcranial Magnetic Stimulation[END_REF], and ( 52), we find the sought Equation ( 49).

We conclude this section with the observation that we can retrieve Equation ( 29) in the single-compartment case by the resolution of an interior Neumann boundary value problem. We will require the following, Theorem 8 (cf. Theorem 6.25 in [START_REF] Kress | Linear Integral Equations[END_REF]). The single-layer potential u(x) = (S(ψ)) on D with continuous density ψ is a solution to the interior Neumann Laplace problem (∆u(x) = 0 on D, and (∂u/∂n)(x) = g(x) on ∂D), provided that ψ is a solution to the (Fredhilm type II) integral equation:

ψ(x) + 2 ¢ ∂D ψ(y) ∂Φ(x, y) n(x) ds(y) = 2g(x), for all x ∈ ∂D. (53) 
Recall that the steady-state secondary field E s (x) is conservative, with potential given by u(x) = (S(ρ/ε 0 )) (x). We can extract a Neumann-type boundary condition from the assumption on continuity of the normal component of the total electric current. On a single-compartment conducting medium of electric conductivity σ ̸ = 0 and exterior of electric conductivity σ 0 = 0, this translates to

σ(E s (x) + E i (x)) • n(x) = 0, for all x ∈ ∂D. (54) 
Thus, the boundary condition for the potential u(x) is g(x) = E i (x) • n(x), since E • n = -∂u/∂n. Now, applying Theorem 8 to u(x) we find the integral equation

ρ(x) 2ε 0 -n(x) • ¢ ∂D ρ(y) 4πε 0 x -y |x -y| 3 ds(y) = E i (x) • n(x), for all x ∈ ∂D. ( 55 
)
Note that since the electric conductivity contrast is K(x) = σ-0 σ+0 = 1 everywhere, the equation above agrees with Equation (29).

III-B. Integral equations for exterior Laplace problems over a single-compartment medium in terms of the surface electric potential or its normal derivative

The exterior Poisson problems are considered over R 3 \D, where D is a bounded domain. For simplicity, we only consider the Laplace equation, i.e. the Poisson equation with no sources, so that f = 0. The added complication for exterior problems resides in the fact that we must impose restrictions on the asymptotic behaviour of our sources and solutions. The Laplace equation suffices for many applications, and we will later develop a general multicompartment formulation, so we refer the reader to §2.3 in [START_REF] Bonnet | Equations intégrales et éléments de frontière[END_REF] for a general treatment.

Exterior Dirichlet Problem Given a bounded domain D and a continuous function

g : ∂D → R, find a C 2 function u such that ∆u = 0 on R 3 \D u = g on ∂D , (56) 
furthermore, we require that u(x) = o(1) as |x| → ∞.

Exterior Neumann Problem Given a bounded domain D and a continuous function

g : ∂D → R, find a C 2 function u such that ∆u = 0 on R 3 \D ∂u ∂n = g on ∂D , (57) 
furthermore, we require that u(x) = o(1) as |x| → ∞.

Theorem 9 (cf. Theorems 6.11 and 6.12 in [START_REF] Kress | Linear Integral Equations[END_REF]). The exterior Dirichlet and Neumann Laplace problems have a unique solution.

Theorem 10 (Exterior Green representation theorem, cf. Theorem 6.10 [START_REF] Kress | Linear Integral Equations[END_REF]). Let D be a bounded domain, and let n(x) be the outward unit normal to x ∈ ∂D directed toward the exterior of D. Suppose that u is a C 2 function in D c := R 3 \D, with ∆u(x) = 0 everywhere in R 3 \D, and that u(x) = o(1) as |x| → ∞. Then, for every x in the interior of

D c u(x) = ¢ ∂D u(y) ∂Φ(x, y) ∂n(y) - ∂u ∂n (y)Φ(x, y) ds(y). ( 58 
)
Remark 8. Notice that Equation ( 58) is identical to Equation [START_REF] Makarov | A Quasi-Static Boundary Element Approach With Fast Multipole Acceleration for High-Resolution Bioelectromagnetic Models[END_REF]. The change of sign is accounted by the fact that an outward normal to D is an inward normal to R 3 \D.

Using the jump relations we can also obtain integral equations to solve the exterior problems. Let u(x) be harmonic on R 3 \D, and suppose that u(x) is continuous on ∂D and has a continuous normal derivative (∂u/∂n)(x) on ∂D. Then, we can identify the integrals in Equation ( 58) as single-and double-layer potentials, and write

u(x) = D(u)(x) -S(∂u/∂n)(x), for all x ∈ R 3 \D. ( 59 
)
Now, let x ∈ ∂D be given -we will compute the limit of u in the above expression at x approaching from the exterior. From the jump relations (Theorem 2), we have that the double-layer potential with continuous density u(x) can be extended continuously from R 3 \D to ∂D, with limiting values given by Equation [START_REF] Geselowitz | On the magnetic field generated outside an inhomogeneous volume conductor by internal current sources[END_REF]. This implies that approaching from the exterior,

lim h→0 D(u)(x + hn(x)) = ¢ ∂D u(y) ∂Φ(x, y) ∂n(y) ds(y) + 1 2 u(x) (60) 
On the other hand, the jump relations imply that the single-layer potential with continuous density φ(x) = (∂u/∂n)(x) is continuous throughout R 3 . Hence,

lim h→0 S(∂u/∂n)(x + hn(x)) = ¢ ∂D ∂u ∂n (y)Φ(x, y)ds(y). ( 61 
)
Combining these limit equations, we find

u + (x) = 1 2 u(x) + ¢ ∂D u(y) ∂Φ(x, y) ∂n(y) ds(y) - ¢ ∂D ∂u ∂n (y)Φ(x, y)ds(y). ( 62 
)
If u can be extended continuously from R 3 \D to R 3 \D, then u + (x) = lim h→0 u(x + hn(x)) = u(x), in which case we find

u(x) + 2 ¢ ∂D ∂u ∂n (y)Φ(x, y) -u(y) ∂Φ(x, y) ∂n(y) ds(y) = 0. ( 63 
)
Theorem 11 (Exterior Dirichlet integral equation). Let u(x) be a solution to the exterior Dirichlet problem with boundary condition u = g on ∂D. Then, its normal derivative q(x) := (∂u/∂n)(x) at the boundary ∂D satisfies the (Fredholm type I) integral equation:

¢ ∂D q(y) ∂Φ(x, y) n(x) ds(y) = ¢ ∂D g(y) ∂ 2 Φ(x, y) ∂n(x)∂n(y) ds(y), for all x ∈ ∂D. ( 64 
)
Proof. Take the normal derivatives (with respect to x) in Equation ( 63), and substitute u(x) = g(x) on ∂D to find

∂u ∂n (x) + 2 ∂ ∂n(x) ¢ ∂D ∂u ∂n (y)Φ(x, y)ds(y) -2 ∂ ∂n(x) ¢ ∂D g(y)
∂Φ(x, y) ∂n(y) ds(y) = 0. ( 65)

By the jump relations (Theorem 2), the normal derivative of the single-layer potential with continuous density q(x) := (∂u/∂n)(x) can be extended continuously to the boundary from either the inside or outside of D, with limiting values given by Equation ( 14). This implies that the normal derivative from the exterior is:

∂ ∂n(x) ¢ ∂D ∂u ∂n (y)Φ(x, y)ds(y) = ¢ ∂D ∂u ∂n (y) ∂Φ(x, y) ∂n(x) ds(y) - 1 2 ∂u ∂n (x). ( 66 
)
Combining Equation ( 65) and ( 66), we find (67)

The last equality follows from the continuity of the normal derivative of the double-layer potential. Substituting q(x) = (∂u/∂n)(x) yields Equation [START_REF]TMSCoreLab Project Github Site[END_REF]. Proof. This follows directly from Equation ( 63) by noticing that (∂u/∂n)(x) = g(x) on the boundary ∂D.

III-C

. Summary of surface-potential integral equations for single-compartment media, and their relation to the Representation Theorem in [START_REF] Kybic | A common formalism for the integral formulations of the forward eeg problem[END_REF] We give a summary of the integral equations obtained in Section III-A and Section III-B. We will express these using the operator notation S, D, D * , N , and V. Recall that, following Bonnet [START_REF] Bonnet | Equations intégrales et éléments de frontière[END_REF], we denote the normal derivative of u(x) by q(x) = (∂u/∂n) (x). The equations in the table below assume that u is C 2 on D or R 3 \D for interior or exterior problems respectively. Furthermore, we assume that u can be extended continuously to ∂D, and that q(x) = (∂u/∂n) exists and is continuous on ∂D.

Type PDE Boundary condition

Integral Equation Type Equation number

Interior ∆u = f u = g D * (q) = N (g) -V(f ) I Eq. (49) Interior ∆u = f q = g u + 2D(u) = 2S(g) -2V(f ) II Eq. (47) Exterior ∆u = 0 u = g D * (q) = N (g) I Eq. (64) Exterior ∆u = 0 q = g u -2D(u) = -2S(g) II Eq. ( 68 
)
Table 1: Integral equations in terms of the potential or its normal derivative

The following theorem, which we reproduce from [START_REF] Kybic | A common formalism for the integral formulations of the forward eeg problem[END_REF], is a variation of the equations above. It expresses a harmonic function u, or its normal derivative, in terms of their jumps at the boundary ∂D.

Theorem 13 (Representation Theorem, cf. Theorem 1 [START_REF] Kybic | A common formalism for the integral formulations of the forward eeg problem[END_REF]). Let D ⊆ R 3 be a bounded domain with regular boundary ∂D. Let u : R 3 \∂D → R be a harmonic function. Then, letting q := ∂u/∂n we have

-q = + N ([u]) -D * ([q]), u = -D([u]) + S([q]
), away from ∂D.

-q ± = + N ([u]) + ± I 2 -D * ([q]), u ± = ∓ I 2 -D ([u]) + S([q]), on ∂D, (69) 
where I denotes the identity operator, and [f ] denotes the jump of f at the boundary ∂D.

To prove Theorem 13, one can use an extension of Green's identities to the boundary and Gauss's integral, see Equation (2.20) in [START_REF] Bonnet | Equations intégrales et éléments de frontière[END_REF] and Chapter 18, §4 of [START_REF] Mikhlin | Mathematical physics; an advanced course[END_REF] for the details. Using the limiting values from the interior, we find

¢ ∂D ∂u - ∂n (y)Φ(x, y) -u -(y) ∂Φ(x, y) ∂n(y) ds(y) =      u(x) if x ∈ D 1 2 u -(x) if x ∈ ∂D 0 if x ∈ R 3 \D . ( 70 
)
Likewise, using the exterior limiting values

- ¢ ∂D ∂u + ∂n (y)Φ(x, y) -u + (y) ∂Φ(x, y) ∂n(y) ds(y) =      u(x) if x ∈ R 3 \D 1 2 u + (x) if x ∈ ∂D 0 if x ∈ D . (71) 
We combine the last two equations to obtain

u(x) = ¢ ∂D ∂u - ∂n (y) - ∂u + ∂n (y) Φ(x, y) -(u -(y) -u + (y)) ∂Φ(x, y) ∂n(y) ds(y), (72) 
for every x ∈ R 3 \∂D. This equation is expressed in operator notation as,

u = -D([u]) + S([q]), away from ∂D. (73) 
Taking normal derivatives in the expression above, we find

q = -N ([u]) + D * ([q]), away from ∂D. (74) 
For a point x ∈ ∂D, we may compute the limiting values u ± of u at x by using the jump relations of the potential theory. On the one hand, we have that

lim h→0 S([q])(x ± hn(x)) = S([q])(x), (75) 
by the continuity of single-layer potentials. And on the other hand, Equation ( 15) implies,

lim h→0 D([u])(x ± hn(x)) = ± 1 2 [u](x) + D([u])(x). (76) 
This in turn implies

u ± = ∓ I 2 -D ([u]) + S([q]). (77) 
The identity

-q ± = N ([u]) + ± I 2 -D * ([q]), (78) 
can be shown analogously from Equation 74.

IV-A. Derivation of surface-potential equations for multicompartment media

We now turn to integral equations for the surface potential or its normal derivative in a multicompartment medium. Similar to the single-compartment case, we have formulations using single-and double-layer potentials respectively. The double-layer potential formulation follows naturally from the direct application of Smythe's generalisation of Green's representation formula due to Smythe [START_REF] Smythe | Static and Dynamic Electricity[END_REF], and it was first derived by Barr et. al. in [START_REF] Barr | Determining surface potentials from current dipoles, with application to electrocardiography[END_REF]. The single-layer formulation, due to Geselowitz [START_REF] Geselowitz | On Bioelectric Potentials in an Inhomogeneous Volume Conductor[END_REF], follows also directly from Smythe's formula, but we apply it instead to the electric potential modified by the resistivity of the compartments. Both these formulations were obtained during the 1960s. In 2005, Kybic et. al. [START_REF] Kybic | A common formalism for the integral formulations of the forward eeg problem[END_REF], motivated by the use of a common theoretical framework for the past integral equations, found a symmetric formulation that combines both single-and double-layer potentials. This symmetric formulation produces more accurate numerical results.

Smythe's formula as it was proven in [START_REF] Smythe | Static and Dynamic Electricity[END_REF] is only valid for nested domains, so all these formulations only apply to nested multicompartment media. It was claimed in [START_REF] Kybic | A common formalism for the integral formulations of the forward eeg problem[END_REF] that said equations hold also true for non-nested geometries, but details were omitted. The non-nested generalization was subsequently developed in detail by Stenroos in [START_REF] Stenroos | Integral equations and boundary-element solution for static potential in a general piece-wise homogeneous volume conductor[END_REF]. In what follows, we will present the single-and double-layer formulations mentioned above, and sketch the proof of the symmetric formulation in [START_REF] Kybic | A common formalism for the integral formulations of the forward eeg problem[END_REF]. We also show that from the single-layer equation of Geselowitz one can retrieve a particular case of the charge-based formulation in Equation [START_REF] Herault | Space or time adaptive signal processing by neural network models[END_REF].

Consider a volume D containing biolectric sources in its interior, and which is partitioned into disjoint nested regions (or compartments) D 1 , D 2 , . . . , D N of uniform conductivity (see Figure 1(a)). Let D N +1 = R 3 \D, and let S i = ∂D i \ ∂D i-1 be the interface between the compartment D i-1 and the compartment D i . Finally, let n j (x) be the unit normal vector to the surface S j directed towards D i at the point x ∈ S j . Denote n(x) := n j (x), whenever x ∈ S 1 ∪ S 2 ∪ • • • ∪ S N ∪ S N +1 belongs to the interface S j . Recall that f ± (x) = lim h→0 f (x ± hn(x)) for x in a surface S, where n is the outward unit normal to S. Following Geselowitz [START_REF] Geselowitz | On Bioelectric Potentials in an Inhomogeneous Volume Conductor[END_REF] and Sarvas [START_REF] Sarvas | Basic mathematical and electromagnetic concepts of the biomagnetic inverse problem[END_REF], we make the following physical assumptions:

(i) There is a uniform bulk conductivity σ, which is constant on each compartment D j . Bioelectric sources are given by a distribution of impressed current density J i -the total current is then given by the formula:

J(x) = σ(x)E(x) + J i (x), for all x ∈ R 3 (79) 
The exterior compartment is assumed to have zero conductivity, i.e. σ(x) = 0 for all x ∈ D N +1 .

(ii) Electromagnetic waves can be neglected, so

E(x) = -∇u(x), for all x ∈ R 3 , (80) 
for some scalar potential u : R 3 → R.

(iii) We may assume that there is no tissue capacitance, hence

∇ • J(x) = 0, for all x ∈ R 3 . (81) 
(iv) The normal component of the total current is continuous across each boundary:

J -(x) • n j (x) = J + (x)
• n j (x) for all x ∈ S j . Using (i) and (ii) we can rewrite this as,

σ -(x) ∂u - ∂n j (x) = σ + (x) ∂u + ∂n j (x), for all x ∈ S j . ( 82 
) (v)
The potential is continuous on each boundary S j :

u -(x) = u + (x), for all x ∈ S j . (83) 
The assumptions (i), (ii), and (iii) combined give

0 = ∇ • J(x) = -σ(x)∆u(x) + ∇ • J i (x), for all x ∈ R 3 . (84) Denoting [f ] j (x) = f -(x) -f + (x)
for x ∈ S j , for the jump of the function f at the surface S j , we see that all the assumptions above are equivalent to the following problem, cf. Kybic et. al. [START_REF] Kybic | A common formalism for the integral formulations of the forward eeg problem[END_REF] Connected Poisson Problems. Find a C 2 function u defined on R 3 and satisfying

u(x) = o(1) as |x| → ∞, such that      σ∆u = ∇ • J i in D j , for all j = 1, . . . , N ∆u = 0 in D N +1 = R 3 \D [u] j = [σ ∂u
∂n j ] j = 0 on S j , for all j = 0, . . . , N -1

. ( 85 
)
We now present Smythe's generalization of Green's formula to nested multicompartment media, which will be the main theoretical tool in this section.

Theorem 14 (Green's Multicompartment Formula, see Chapter III §3.06 in [START_REF] Smythe | Static and Dynamic Electricity[END_REF]). Let D be a multicompartment bounded volume as above, and let S 1 , . . . , S N , S N +1 = ∂D be the interfaces between the nested regions of D. Let ψ, φ : D → R be C 2 functions, which are continuous on S N +1 = ∂D, and let σ : D → R be a function which is C 1 on D except for possible discontinuities on the surfaces S j . Then,

N +1 j=1 ¢ S j σ -ψ - ∂φ - ∂n j -φ - ∂ψ - ∂n j -σ + ψ + ∂φ + ∂n j -φ + ∂ψ + ∂n j dS j = ¢ D [ψ∇ • (σ∇φ) -φ∇ • (σ∇ψ)]dv.
(86)

IV-B. A double-layer multicompartment integral equation

The multi-compartment integral equation in [START_REF] Barr | Determining surface potentials from current dipoles, with application to electrocardiography[END_REF] gives an integral equation for the multicompartment problem which is of the Dirichlet type, i.e. where we have knowledge of the boundary values of the potential u at the discontinuity surfaces.

Fix a point x of D away from the interfaces, and substitute ψ(y) = Φ(x, y) = 1/(4π|x -y|), and φ(y) = u(y) (the electric potential) in Green's multicompartment formula, (Equation ( 86)). Using the fact that the potential u, and the fundamental solution Φ are continuous along the interfaces (so that u + (y) = u -(y) = u(y) and Φ + (x, y) = Φ -(x, y) = Φ(x, y) for y ̸ = x), we find the following equation:

N +1 j=1 ¢ S j σ -(y)
∂u - ∂n j (y) -σ + (y) ∂u + ∂n j (y) Φ(x, y)ds(y)

- N +1 j=1 ¢ S j (σ -(y) -σ + (y))u(y) ∂Φ(x, y) ∂n j (y) ds(y) = ¢ D [Φ(x, y)∇ y • (σ(y)∇ y u(y)) -u(y)∇ y • (σ(y)∇ y Φ(x, y))] dv(y). (87) 
We can further simplify this equation: Using the continuity of current (Equation ( 82)), the term (σ -(y)∂u -/∂n j (y) -σ + (y)∂u + /∂n j (y)) vanishes. The term on the right-handside of the equal sign is simplified as follows: Consider a sufficiently small neighbourhood B of x so that σ(x) is constant on B. Then, by Corollary 1 we have On the other hand, from Equation (79), Equation (80), and Equation (81) we have that ∇ • σ∇u = ∇J i . Combining all of the above remarks, we find the following integral equation:

σ(x)u(x) = - N +1 j=1 ¢ S j u(y)(σ -(y) -σ + (y)) ∂Φ(x, y) ∂n j (y) ds(y) - ¢ D ∇ y • J i (y) 4π|x -y| dv(y), (89) 
which can also be written in operator notation as:

σu + N +1 j=1 D([σ] j u) = -V(∇ • J i ). ( 90 
)
Notice that the great advantage of the equation above is that it provides the electric potential at each surface directly, assuming that we have knowledge of all the conductivity values and sources in the volume.

IV-C. A dual integral equation based on single-layer potentials, and its relationship to surface charge based integral equations

This time, we let ψ(y) = Φ(x, y) = 1/(4π|x -y|) and σ(x)ϕ(x) = u(x), in Green's multicompartment formula (Equation ( 86)). This yields,

N +1 j=1 ¢ S j ∂u - ∂n j (y) - ∂u + ∂n j (y) Φ(x, y) -(u --u + ) ∂Φ(x, y) ∂n j (y) ds(y) = ¢ D Φ(x, y)∇ • ∇u(y) - u(y) σ(y) ∇ y • σ(y)∇ y Φ(x, y) dv(y). (91) 
We simplify the equation above: By the continuity of the potential u, we have u -(y)u + (y) = 0. On the other hand, Equations ( 79), (80), and (81) imply that ∇ • ∇u = (1/σ)∇ • J i , which gives,

N +1 j=1 ¢ S j ∂u - ∂n j (y) - ∂u + ∂n j (y) Φ(x, y) ds(y) = ¢ D Φ(x, y) ∇J i (y) σ(y) - u(y) σ(y) ∇ y • σ(y)∇ y Φ(x, y) dv(y). (92) 
Using Equation Corollary 1 again, we find

¢ D u(y) σ(y) ∇ • σ∇ y Φ(x, y)dv(y) = -u(x). (93) 
Therefore, we obtain the equation:

N +1 j=1 ¢ S j ∂u - ∂n j (y) - ∂u + ∂n j (y) Φ(x, y)ds(y) = u(x) + ¢ D Φ(x, y) ∇ • J i (y) σ(y) dv(y). (94) 
Recall that for a function f , we denote the jump of f across the boundary S j as [f ] j = f --f + . In operator notation, the above equation can be rewritten as:

u(x) - N +1 j=1 S([∂u/∂n] j ) = V(-(∇ • J i )/σ). (95) 
In [START_REF] Geselowitz | On Bioelectric Potentials in an Inhomogeneous Volume Conductor[END_REF], once he obtains the equation above Geselowitz proceeds to rewrite it with a term involving the electric conductivity contrast. However, we note that Geselowitz's equation involving single-layer potentials does not constitute a true dual to Equation (89), since it involves two unknowns: u and its jump [∂u/∂n] j at each interface. To obtain a dual, we proceed in a similar fashion as in the derivation of our Equation [START_REF] Herault | Space or time adaptive signal processing by neural network models[END_REF], and Equation [START_REF] Geselowitz | On the magnetic field generated outside an inhomogeneous volume conductor by internal current sources[END_REF] in the paper [START_REF] Kybic | A common formalism for the integral formulations of the forward eeg problem[END_REF]. First, note that the jump relations for the single-layer potential (Equation ( 14)) take the following form in operator notation:

∂S[φ] ± ∂n (x) = D * [φ](x) ∓ 1 2 φ(x). (96) 
Apply the jump relations to find the normal derivative of Equation (95) from either side of S j , and multiply the equation by σ -and σ + respectively to find,

σ ± (x) ∂u ± ∂n i (x) ± σ ± 2 [∂u/∂n] i (x) - N +1 j=1 σ ± (x)D * ([∂u/∂n] j )(x) = σ ± ∂ ∂n i V[-(∇ • J i )/σ](x), (97) 
whenever x ∈ S i . Subtracting the version of the equation above with a positive sign from the one with a negative sign, and using the continuity of the normal component of the current (Equation ( 82)), we obtain:

σ -+ σ + 2 [∂u/∂n] i -(σ --σ + ) N +1 j=1 D * ([∂u/∂n] j ) = (σ --σ + ) ∂ ∂n i V[-(∇ • J i )/σ]. ( 98 
)
Dividing by the value (σ -+ σ + ), we can express this in terms of the electric conductivity contrast K (cf. Equation ( 30)) as follows:

1 2 [∂u/∂n] i -K N +1 j=1 D * ([∂u/∂n] j ) = K ∂ ∂n i V[-(∇ • J i )/σ] (99) 
Denoting ξ(x) := [∂u/∂n] i (x) for x ∈ S i , we obtain

1 2 ξ(x) -K(x) N +1 j=1 n i (x) • ¢ S j ξ(y) 4π x -y |x -y| 3 ds(y) = K(x) ∂ ∂n i ¢ D -∇ • J i (y) σ(y) dv(y), (100) 
Which is dual to Equation (89). The resemblance between Equation (100) and Equation [START_REF] Herault | Space or time adaptive signal processing by neural network models[END_REF] is not just a coincidence, in fact Equation (100) is only a particular case of Equation ( 29). This becomes apparent after considering units of measurement: the jump ξ(x) = [∂u/∂n] i (x) of the normal derivative of the potential is measured in volts per meter (V • m -1 ), whereas the surface charge density is measured in Coulombs per meter-square (C • m -2 ). The vacuum permittivity ε 0 is measured in farads per meter (F•m -1 = C•V -1 •m -1 ), therefore ρ(x)/ε 0 and ξ(x) have the same units of measurement. In fact using Gauss's law it can be shown that both quantities coincide, see §2.3.5. in Griffiths's Electrodynamics [START_REF] Griffiths | Introduction to Electrodynamics[END_REF].

IV-D. A symmetric formulation

We conclude this section with a sketch of the derivation of the symmetric integral equations of Kybic et. al. [START_REF] Kybic | A common formalism for the integral formulations of the forward eeg problem[END_REF], which involve a combination of single-and double-layer potentials in two unknown variables.

Again, consider a sequence of nested compartments D 1 , D 2 , . . . , D N , with D = N i=1 D i and D N +1 = R 3 \D (see Figure 1(a)). Recall that S i = ∂D i \ ∂D i-1 is the interface between the compartment D i-1 and the compartment D i , with n i the unit normal vector at S i directed towards D i . A sequence of Newtonian potentials v i , which solve the Poisson problem restricted to the domain D i , and which take value 0 everywhere else; and A sequence of harmonic functions w i , whose jumps at the interfaces are given by the values of the potential u and its normal derivative.

The Newtonian potentials v i are defined as:

v i (x) := V[-f • 1 D i ](x) = ¢ D [-f • 1 D i ](y)Φ(x, y)dv(y), (101) 
where

1 D i (x) = 1 if x ∈ D i and 1 D i (x) = 0 otherwise. Since ∆ x Φ(x, y) = ∆ y Φ(x, y) = -δ(x, y); Corollary 1 implies that ∆v i (x) = ¢ D -f (y) • 1 D i (y)∆ x Φ(x, y)dv(y) = f (x) • 1 D i (x). (102) 
So, as we claimed above, the v i solve the Poisson problem on D i and vanish everywhere else. If u is a potential solving the connected Poisson problems of Equation ( 85), then we define

w i (x) := u -v i σ i if x ∈ D i -v i σ i if x ̸ ∈ R 3 \D i . (103) 
Recall that we denote the jump of f across the surface S j as [f ] j (x) = f -(x) -f + (x) for x ∈ S j . Using the fact that u and v i are continuous throughout R 3 , we have that

[w i ] i = u -- (v i ) - σ i + (v i ) + σ i = u -= u, (104) 
and,

[w i ] i-1 = - (v i ) - σ i -u + - (v i ) + σ i = u + = u. (105) 
Likewise, using the fact that v i has a continuous normal derivative throughout R 3 , we find:

[∂w i /∂n] i = ∂u - ∂n , and 
[∂w i /∂n] i-1 = ∂u + ∂n . (106) 
Notice that each w i is harmonic on the domain R 3 \∂D i , since on the one hand,

∆w i (x) = ∆u(x) - ∆v i (x) σ i = f (x) σ i - f (x) • 1 D i (x) σ i = 0, for all x ∈ D i , (107) 
and on the other hand, ∆v i

(x) = f (x) • 1 D i (x) = 0 for x ∈ R 3 \D i .
Hence, we can apply Theorem 13 to express the limiting values of w i at the surface S i from both sides in terms of its jumps, which we saw were given by u and its normal derivative. Using also the boundary equation [σ∂u/∂n] i = 0, one arrives at the symmetric integral equation (cf. Equation ( 21) in [START_REF] Kybic | A common formalism for the integral formulations of the forward eeg problem[END_REF]),

(∂v i+1 /∂n) -(∂v i /∂n) = σ i N S i-1 (u) -(σ i + σ i+1 )N S i (u) + σ i+1 N S i+1 (u) -D * S i-1 (p) + 2D * S i (p) -D * S i+1 (p), on the surface S i , (108) 
where p(x) = σ i [∂w i /∂n] i (x) for every x ∈ S i , and where N S and D * S denote the potentials of Definition 1, where we specify that the domain of integration is taken over the surface S.

Remark 9. The values (∂v i+1 /∂n)(x) and (∂v i /∂n)(x) for x ∈ S i can be obtained by integrating the source term f according to Equation (101). Therefore, Equation 108 involves exactly two unknowns: the values of the potential u, and of the auxiliary function p(x) = σ i [∂w i /∂n] i (x) at the interface S i . So, as in the case of the double-layer formulation (Equation (90)), we retrieve the values of u at the interfaces directly.

V. Software and Applications

We conclude this paper with a brief summary of available software and current applications. We distinguish two types of software which rely on boundary element method (BEM) solvers: those which incorporate fast multipole method (FMM) acceleration, and those which do not.

The traditional BEM without FMM acceleration is widely used for exploring, visualizing, and analyzing human neurophysiological data stemming from MEG, EEG, stereoelectroencephalography (sEEG) [START_REF] Schuele | A Practical Approach to Stereo EEG[END_REF], and electrocorticography (ECoG) [START_REF] Tatum | Handbook of EEG Interpretation[END_REF], among other techniques. Figure 3 shows some low-resultion BEM models with three head compartments (skin, skull, and brain) which are presently used in BEM computations for M/EEG. Figure 3: a) BEM for three nested compartments, routinely used in EEG source reconstruction packages [START_REF] Gramfort | MEG and EEG data analysis with MNE-Python[END_REF], [START_REF] Oostenveld | FieldTrip: Open Source Software for Advanced Analysis of MEG, EEG, and Invasive Electrophysiological Data[END_REF], [START_REF] Tadel | Brainstorm: a user-friendly application for MEG/EEG analysis[END_REF] (image taken from FieldTrip documentation [START_REF]Solving the EEG forward problem using BEM and FEM[END_REF]). b) After the source reconstruction with temporal EEG data from a butterfly plot is done, the result may be projected back onto a detailed white matter surface as shown in c).

Below we list major open-source BEM software packages which are widely used: MNE [START_REF] Gramfort | MNE software for processing MEG and EEG data[END_REF] is an academic software package providing a complete data analysis pipeline for M/EEG. It consists of three core subpackages, MNE-C, MNE-MATLAB, and MNE-Python [START_REF] Gramfort | MEG and EEG data analysis with MNE-Python[END_REF]. It computes forward solutions over a spherical head model, or with a nested BEM model of one or three compartments. It provides several functionalities including reading and processing data from different recording systems, forward and inverse modeling, statistical analysis, and machine learning models of neural activity. The package can be used alongside FreeSurfer [START_REF] Destrieux | Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature[END_REF] which creates 3D image segmentations of the head from MRI data.

Brainstorm [START_REF] Medani | Brainstorm-DUNEuro: An integrated and user-friendly Finite Element Method for modeling electromagnetic brain activity[END_REF], [START_REF] Tadel | Brainstorm: a user-friendly application for MEG/EEG analysis[END_REF] is a user-friendly software, with a graphical user interface (GUI) which does not require programming knowledge. It is mainly built on MAT-LAB scripts, and it implements tools that provide a complete pipeline for analysis of bioelectric recordings. It incorporates automatic 3D image segmentation of the head via MRI images, and it can integrate information originating from several different sources including cardiac activity, and eye movement. It also includes several data processing tools for M/EEG time series, such as automatic artifact detection. It does not currently incorporate FMM acceleration in its forward solvers, but this is projected to be included in the future.

FieldTrip [START_REF] Oostenveld | FieldTrip: Open Source Software for Advanced Analysis of MEG, EEG, and Invasive Electrophysiological Data[END_REF] is a MATLAB toolbox for M/EEG analysis. It does not incorporate a GUI. It provides functionality to perform source reconstruction from combined MEG and EEG data, as well as analysis of ECoG and sEEG recordings. EEGLAB [START_REF] Delorme | EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis[END_REF] is an interactive MATLAB toolbox for processing E/MEG data. It can incorporate independent component analysis (ICA) [START_REF] Herault | Space or time adaptive signal processing by neural network models[END_REF] into the sourcelocalization problem. ICA is a statistical method in signal processing, designed to recover the components of a linear superposition of signals, given its projection on several sensors. In the EEG problem these sensors are the scalp electrodes. The ICA step can be useful in detecting different types of EEG signals, such as those originating from seizure-related activity.

OpenMEEG [START_REF] Gramfort | OpenMEEG: opensource software for quasistatic bioelectromagnetics[END_REF] implements a high-accuracy solver using the symmetric boundary element method of Kybic et. al. [START_REF] Kybic | A common formalism for the integral formulations of the forward eeg problem[END_REF]. It can be called using MATLAB from Brainstorm or Fieldtrip, and can also be used as a Python module.

The Helisnki BEM Framework (HBF) [START_REF] Stenroos | Comparison of three-shell and simplified volume conductor models in magnetoencephalography[END_REF], [START_REF] Stenroos | Incorporating and Compensating Cerebrospinal Fluid in Surface-Based Forward Models of Magneto-and Electroencephalography[END_REF] is a MATLAB library implementing a BEM solver using the isolated source approach (ISA) [START_REF] Hämäläinen | Realistic conductivity geometry model of the human head for interpretation of neuromagnetic data[END_REF], [START_REF] Stenroos | Bioelectromagnetic forward problem: Isolated source approach revis(it)ed[END_REF]. This approach was introduced to handle numerical difficulties arising from the low relative conductivity of the skull, and it is obtained by splitting the potential into two components, one of which assumes that the skull is a perfect insulator.

To the date of writing, the packages above do not incorporate FMM acceleration. The traditional BEM cannot handle models with more than approximately 50,000 facets on the surfaces, and because of this the brain shell structures need to be simplified and downsampled.

On the other hand, the FMM-accelerated algorithms can process human head models of up to 60-70 million facets, including fine details such as the three brain meninges [START_REF] Weise | The effect of meninges on the electric fields in TES and TMS. Numerical modeling with adaptive mesh refinement[END_REF]. Currently, the FMM-accelerated software is mainly used for fast TMS and DBS computations [START_REF] Daneshzand | Rapid computation of tmsinduced e-fields using a dipole-based magnetic stimulation profile approach[END_REF], [START_REF] Makarov | Boundary element fast multipole method for modeling electrical brain stimulation with voltage and current electrodes[END_REF], and for the neuronal arbor modeling at microscale [START_REF] Noetscher | Estimations of charge deposition onto convoluted axon surfaces within extracellular electric fields[END_REF]. Typical simulation results can be found in [START_REF] Makarov | A fast direct solver for surface-based wholehead modeling of transcranial magnetic stimulation[END_REF]. An open-source implementation of FMM-accelerated BEM software, in the form of MATLAB-based scripts, can be found in the TMSCoreLab Github site [START_REF]TMSCoreLab Project Github Site[END_REF], which includes applications to M/EEG, TMS, and TES. Figure 4 shows simulation results of a TMS application on different interfaces of a detailed brain model taken from the Human Connectome Project (HPC) [START_REF] Van Essen | The human connectome project: A data acquisition perspective[END_REF]. Note that skin, skull and cerebrospinal fluid shells are in fact present in the model, but removed from visualization for clarity. 

Conclusions

We surveyed the main examples of integral equations used in bioelectric modeling, and illustrated how the surface charge density equations and the surface potential equations are dual to each other via a modification of Geselowitz's formula. The jump relations of the potential theory, together with Green's formula and its generalization due to Smythe, constitute the main theoretical tools that have been used in the subject. We clarified many of the details that typically are glanced over on most expositions. We reviewed the major software packages for bioelectric modeling that are currently available, and noted how FMM acceleration of the algorithms enables us to deploy more realistic models, and carry faster computations.
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  ∂ 2 Φ(x, y) ∂n(x)∂n(y) .

Theorem 12 (

 12 Exterior Neumann integral equation). Let u(x) be a solution to the exterior Neumann problem with boundary condition (∂u/∂n)(x) = g(x) on ∂D. Then, its value u(x) at the boundary ∂D satisfies the (Fredholm type II) integral equation: )Φ(x, y)ds(y), for all x ∈ ∂D.(68)

  )∇ y • (σ(y)∇ y Φ(x, y))dv(y) = -¢ B σ(x)u(y)∆ y 1 4π|x -y| = σ(x)u(x).(88)

Figure 2 :

 2 Figure 2: The compartment D i and its adjacent compartments

Figure 4 :

 4 Figure 4: Different images of an FMM-accelerated simulation output for HPC subject 120111 [65] (image taken from [38]). The model has a total of 1 million facets. a) Total electric field just inside of the gray matter interface; b) Total electric field just outside the white matter interface; c) Total electric field at the cortical midsurface; d) Total electric field in a transverse plane beneath the coil. The entire computational sequence runs in approximately 4.7 s including graphical rendering in MATLAB.
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