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Abstract
The multi-model ensemble approach is generally considered as the best way to explore the
advantage and to avoid the weakness of each individual model, and ultimately to achieve the best
climate projection. But the design of an optimal strategy and its practical implementation still
constitutes a challenge. Here we use the random forest (RF) algorithm (from the category of
machine learning) to explore the information offered by the multi-model ensemble simulations
within the Coupled Model Intercomparison Project Phase 6. Our objective is to achieve a more
reliable climate projection (mean climate and extremes) over China. RF is furthermore compared
to two other ensemble-processing strategies of different nature, one is the basic arithmetic mean
(AM), and another is the linear regression across the ensemble members. Our results indicate that
RF effectively enhances the capability in capturing spatial climate characteristics. Regions with
complex topography, such as the Tibetan Plateau and its periphery, show the most significant
improvements. RF projects less future warming but enhanced wet conditions across China. It also
produces larger spatial variability and more small-scale features. The most obvious increase of
precipitation is in the northern part and the periphery of the Tibetan Plateau. The projected
changes in RF for strong precipitation are almost twice higher than in AM, while in the
northwestern area, weaker increases of precipitation are projected by RF, which indicates larger
spatial inhomogeneity of its projection.

1. Introduction

Global warming has altered themean and extreme cli-
mate in many regions of the world, and this warm-
ing trend will undoubtedly continue (Hulme 2016).
Global climate models (GCMs) play a crucial role
in generating future projections to examine the
potential impacts of climate change. The ability
of GCMs to reproduce observed features of the
past and current climate increases our confidence
to correctly make future projections (Palmer et al
2005, Semenov and Stratonovitch 2010). Climate

projection is inevitably accompanied by uncertain-
ties, with available physically-based models being
imperfect (Knutti et al 2013, Hidalgo and Alfaro
2015). The multi-model ensemble approach is use-
ful to explore the advantage and to avoid the
weakness of individual models, and ultimately to
achieve the best climate projection. But the design
of an optimal ensemble-processing strategy and
its practical implementation still constitute a chal-
lenge (Knutti et al 2010, 2013). The arithmetic
mean (hereafter called AM) is the simplest and
mostly-used method to deal with a multi-model
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ensemble (Knutti et al 2010, Sanderson et al 2015).
Subsequently, more complex statistical methods such
as the Bayesian methods (Robertson et al 2004, Tan
et al 2016) or weighted averages, which consider the
simulation skills and model inter-dependence, have
been developed (Xu et al 2010, Jiang et al 2015, Knutti
et al 2017, Brunner et al 2020). These methods allow
tuning particular parameters or weights and con-
straining uncertainties with historical observations.
Most of these strategies or methods, however, rely on
the concept of linear regression (LR) based on some
specific relationships or indices, potentially neglect-
ing useful information.

With observations as a target or a constraint,
machine learning (ML) is a useful tool to extract
more information frommulti-model data. Significant
advancements have been reported with application
of heuristic ML for uses in weather forecast, climate
prediction, and reconstruction of missing climate
information (Ham et al 2019, Reichstein et al 2019,
Kadow et al 2020).ML has considerable advantages in
solving non-linear, high-dimensional, and hierarch-
ical problems to retrieve implicit patterns in complex
relationships (Alizamir et al 2018, Guo et al 2019,
Li et al 2020). With such general properties, ML can
better extract important dynamical and physical pro-
cesses within climate models and fully explore use-
ful information (Wang et al 2018, Reichstein et al
2019). Thiswould lead to a hybrid approach for future
climate projection, which combines the strengths of
physical modeling and mathematical algorithms of
ML (Reichstein et al 2019, Watson-Parris 2020).

Under the framework of the Coupled Model
Intercomparison Project (CMIP), a large number
of climate simulations have been performed and
released publicly. CMIP is an unprecedent effort and
has entered its 6th phase (CMIP6) (Eyring et al
2016), with more models and a larger ensemble of
simulations compared to its predecessor (CMIP5)
(Liang et al 2020, Zhu et al 2020a). It offers excit-
ing new opportunities for expanding our knowledge
of the Earth system through the exploration of big
data with advancedML concepts and algorithms. The
present study uses the random forest (RF), a power-
ful ML algorithm that is based on the decision tree
and able to extract non-linear relations and behavi-
ors (Breiman et al 1984, Breiman 2001). For the pur-
pose of demonstration, RF is contrasted to the AM,
the simplest ensemble-processing strategy, as well as
the basic LR applied to the ensemble members. We
want to check whether RF can effectively enhance our
skill to mimic observed properties and to make reli-
able future climate projections. This work is a part of
our general efforts of climate change mitigation and
adaptation in China. It focuses on the recommended
targets of 1.5 ◦C, and 2 ◦C global warming levels, fol-
lowing the Paris Agreement (UNFCCC 2015). The
geographic domain of our investigation is mainland

China where a reliable dataset of observed climate is
available.

The rest of the paper is organized as follows.
Section 2 describes the data, methodology, and the
three algorithms involved in our study, together with
the skill metrics for evaluation. Followed in section 3
are themain results of themethodological assessment
in present-day and future climate projection. Finally,
conclusions and a few discussions are provided in
section 4.

2. Data andmethods

2.1. Study area and data used
This work focuses on mainland China, a territ-
ory highly susceptible to climate change due to its
complex topography and strongly-pronounced mon-
soonal characteristics (Fu et al 2008, Piao et al 2010).
A high-quality in situ dataset (CN05.1), including
conventional surface climatic variables, is employed
for the calibration of all our approaches to develop
a reliable multi-model ensemble-processing strategy.
The daily gridded dataset covers 1961–2014, with a
spatial resolution of 0.25◦ × 0.25◦ over whole China.
Wu and Gao (2013) provide detailed information
about this dataset.

On the other hand, 24 CMIP6 models’ histor-
ical simulations and future projections from shared
socioeconomic pathway (SSP5-8.5) are used to con-
struct the multi-model ensemble and to generate
1.5 ◦C, 2 ◦C and 3 ◦C warming projection. These
models were selected on the sole criterion of data
availability for our purpose of determining warm-
ing targets at 1.5 ◦C, 2 ◦C and 3 ◦C. All CMIP6
data were retrieved through the data portals of the
Earth SystemGrid Federation, which can be obtained
from https://esgf-node.llnl.gov/search/cmip6/. Some
essential characteristics of the used models are lis-
ted in table S1 (available online at stacks.iop.org/
ERL/16/094028/mmedia). Only their first realization
(r1i1p1f1) was used in this work.

2.2. Methods
2.2.1. Climate indices
The present study employed six quantitative indices,
including mean temperature (TAS), annual max-
imum (hottest daytime) temperature (TXx), annual
minimum (coldest nighttime) temperature (TNn),
total precipitation in wet days (PRCPTOT), annual
maximum consecutive 5 d precipitation amount
(RX5DAY) and annual total precipitation for events
exceeding the 95th percentile (R95P, an indication
of strong precipitation). These indices are useful in
capturing climate change information and have been
widely used to identify and monitor extreme climate
(Zhang et al 2011, Zhu et al 2020a). They are derived
from daily precipitation and temperature CMIP6
datasets following the recommendation by the Expert
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Figure 1. Schematic showing the design and operating process to deal with multi-model ensemble simulations. Historical
simulations, together with observation, are used to train different multi-model ensemble-processing strategies, and to assess their
performance. The validated strategy is then used to make projections of future climate.

Team on Climate Change Detection and Indices
(http://etccdi.pacificclimate.org/). Indices from dif-
ferent models and observation were first calculated
at their original grid and then interpolated, using
bilinear interpolation, onto a common 1◦ × 1◦

grid comprising 928 geographic locations across
China. The three ensemble-processing strategies, AM,
LR and RF, were then practiced on this com-
mon grid to ensure fairness and to facilitate their
inter-comparison.

The study adopted the criteria used by Shi et al
(2018) in defining the calendar year for models to
reach 1.5 ◦C and 2 ◦C global warming thresholds.
A time window of 21 years, including the 10 years
before and after the nominative year, is used to deduce
the climate statistics. A similar approach has been
utilized in a few recent studies (e.g. Sun et al 2019,
Guo et al 2020).

2.2.2. Strategies in processing multi-model ensemble
Figure 1 shows an overall flow chart of our designed
processing. Historical simulations, together with
observation, are divided into the training period
1961–1994 (34 years) and the testing period
1995–2014 (20 years). The testing period also serves
as the historical reference for future warming pro-
jection. Our procedure is separately applied to each
of the six climate indices with the general goal to
explore, as much as possible, the properties of obser-
vation. The basic principle is to minimize the loss
function (here the mean squared error) represent-
ing the deviation between the multi-model ensemble
output and the observation. Once the training pro-
cedure is accomplished, the optimized multi-model
ensemble-processing scheme can then be used to
produce results for the testing period. Finally, future

projections under the 1.5 ◦C, 2 ◦C and 3 ◦C global
warming were conducted.

The AM is the simplest and widely-used
ensemble-processing strategy. There is no parameter
to optimize and it is incapable of learning from train-
ing data, which would constitute a biased reference to
fairly evaluate other ensemble-processing strategies.
To ensure a fair comparison with LR or RF, a lin-
ear scaling is used in AM to remove biases of cli-
matemodels with their domain-mean deviation from
observation (Lenderink et al 2007, Teutschbein and
Seibert 2012). The temperature (T) is corrected with
an additive term on original value and precipitation
(P) with a multiplier:

Tcor = Tori +µ(Tobs)−µ(Tori) (1)

Pcor = Pori ×
µ(Pobs)

µ(Pori)
(2)

where subscripts denote corrected (cor), raw (ori),
and observed (obs) values, andµ represents averaging
over the domain.

The result of AM after bias correction is included
here as a comparison baseline. It is worth mentioning
that this linear scaling bias correction has no impact
on the projections. This is due to the fact that meth-
ods measuring future changes are absolute change for
temperature and relative change for precipitation.

LR is a basic linear algorithm, suitable for resolv-
ing regression problems across multiple models or
members in an ensemble. It fits a linearmodel tomin-
imize the sum of squared errors. Its general form can
be written as: Y = a0 + A·X, where X(i, k) is the
input spatial field (i = 1, …, 928) from the 24 mod-
els (k= 1, …, 24) and Y(i) is the output spatial field

3
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(i= 1,…, 928). The regression coefficients a0 and Ak,
(k = 1, …, 24) were fitted with data in the training
period comprising 34 years from 1961 to 1994.

A linear model is not always inferior to non-
linear models, depending on the nature of the
problem to resolve (Choubin et al 2016, Xu et al
2020). The practical realization of LR used in
this paper was done through the function ‘LR’ in
the module ‘sklearn.linear_model’ in Python 3.8
(https://scikit-learn.org/stable/modules/generated/
sklearn.linear_model.LinearRegression).

RF solves regression problems by growing an
ensemble of decision trees based on binary recurs-
ive partitioning (Breiman et al 1984, Breiman 2001).
Although each individual regression (done at the
level of leaves or terminal nodes) is still linear, but
it is operated in a reduced range among the total
samples. This is why RF can solve non-linear prob-
lems and reveal complex behaviors hidden in the data
samples. Its randomness manifests in two particular
points. Firstly, the samples used to construct each
decision tree of the forest is a random subset of the
total samples. They are generally drawn with replace-
ment under the strategy of bootstrapping. Secondly,
for each partitioning node, only a randomly-formed
subset of features is used to split samples into binary
branches. The size of this subset is generally around
the square root of the number of total features. Under
such conditions, RF is quite time consuming for
its operation, but it has an excellent performance,
with large tolerance to imperfections of samples, and
good capacity to avoid overfitting. In our work, the
function ‘RF Regressor’ from the Python package
‘sklearn.ensemble’ (Pedregosa et al 2012) was used
(https://scikit-learn.org/stable/modules/generated/
sklearn.ensemble.RandomForestRegressor). For the
training procedure, we have data covering 34 years,
from 1961 to 1994, and 928 spatial points. The total
number of samples into our RF training is thus
34 × 928 = 31 552. Each of the 24 climate mod-
els is treated as a feature in our RF implementation.
After RF is trained, it is used in the testing period
from 1995 to 2014 to validate its performance. Sim-
ilarly, it is used to make the future projection under
the specific warming thresholds.

The ‘Bayesian Optimization’ was used to
find the best hyperparameters implemented in
the RF algorithm (Shahriari et al 2016) (http://
rmcantin.github.io/bayesopt/html/bopttheory.html).
It has a higher efficiency than other methods, such as
‘grid search’ or ‘randomized search’. We thus optim-
ized four important parameters of the RF algorithm,
the number of trees in the forest (n_estimators),
the maximum depth of the tree (max_depth), the
minimum number of samples required to split an
internal node (min_samples_split), and the number
of features to consider when looking for the best split
(max_features). Within 30 iterations, the Bayesian
optimization process generally converges to optimal

parameters for a specific climate index. The optimal
parameters for the six indices are shown in table S2.

As other statistical tools, ML methods do not
inspire confidence if we cannot ensure an appropriate
interpretation on their derived features, patterns, and
rules. In the RF model which consists of establishing
a set of decision trees with internal nodes and leaves,
the importance of input features or variables (climate
models in our case) can be measured by the variance
reduction attributed to each feature (total variance
before the splitting node minus the sum of the same
variance in the two split groups). In our case of mul-
tiple decision trees, the final measure of importance is
the sum from all trees in the forest. It is furthermore
normalized among all features or variables to ensure
that the total sum is unity. This ‘relative importance’
can help understanding the importance of each cli-
mate model in the ensemble-processing strategy. Rel-
evant analysis and results are shown in supplementary
materials text S1 and figure S1.

2.2.3. Skill evaluation metrics
Taylor diagram (Taylor 2001) and skill score are
standard tools providing a concise statistical sum-
mary of spatial characteristics between the simula-
tion and observation. The Taylor diagram can show
three aspects of statistical information: pattern correl-
ation coefficient, a ratio of the centered standard devi-
ations, and root mean square error, any two of them
being independent (Li et al 2021). A good simulation
would be that both the pattern correlation coefficient
and the ratio of standard deviations are close to one,
and the rootmean square error is close to zero (Taylor
2001, Jiang et al 2015).

Taylor skill score (TSS), calculated as in
equation (3), is a numerical summary of the Taylor
diagram to express a synthetic measure:

TSS=
4(1+Rm)

2(
σm
σ0

+ σ0
σm

)2
(1+R0)

2
(3)

where Rm is the spatial correlation coefficient of cli-
matological mean between simulation and obser-
vation, R0 is the maximum correlation coefficient
attainable set here to 0.999, σm and σ0 are the stand-
ard deviations of the simulated and observed spatial
patterns in climatological means, respectively. The
closer the value of TSS is to one, the better the agree-
ment between the simulation and observation. This
skill score has been generally used in many previ-
ous researches (Wang et al 2018, Zhu et al 2020a,
Ngoma et al 2021).

3. Results

3.1. Performance evaluation
To assess the ability of our three schemes dealing with
the multi-model ensemble simulations, the spatial
patterns and corresponding distribution boxplots for
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Figure 2. Spatial distributions (a)–(i) and corresponding boxplots (j)–(l) of the absolute biases from AM (a)–(c), LR (d)–(f),
and RF (g)–(i) algorithms for mean and extreme temperature indices in the validation period (unit: ◦C). From left to right are
TAS (column 1), TXx (column 2), TNn (column 3), respectively. Areas with significant amelioration based on AM above the 0.95
confidence level are marked with gray dots in the LR and RF panels, according to Student’s t-test. The upper and lower limits of
box are the 1st and 3rd quartile, the horizontal line and the asterisk in the box are the mean and median values, respectively, and
the whiskers show the 10th and 90th percentile values.

biases of all indices against observations across China
during the validation period are examined (figures 2
and 3). Darker colors and far-from-zero bars rep-
resent higher deviations from observation. To facilit-
ate visual inspection and interpretation of differential
fields, the climatology from observation in the valid-
ation period from 1995 to 2014 is exhibited in figure
S2. A general feature that can be observed in figures 2
and 3 is that the three schemes exhibit similar patterns
of spatial bias distribution, and AM (with a bias cor-
rection included) shows the largest biases. Compared
with AM, biases from LR and RF are reduced across
almost the whole domain.

Cold biases (∆T < −6 ◦C) from AM are mainly
concentrated in the Tibetan Plateau and the middle
and upper reaches of the Yangtze River for all tem-
perature indices. They are significantly reduced in LR
andRF (figures 2(d)–(i) vs (a)–(c)). The amelioration
of RF is especially remarkable, only some scattered
areas exist with bias exceeding 2 ◦C. Higher cold

biases (with focus on the 10th percentile biases in box-
plots) depict a decrease from AM to RF, with values
−2.62 ◦C to−1.12 ◦C for TAS,−2.73 ◦C to−1.46 ◦C
for TXx, and−5.07 ◦C to−2.58 ◦C for TNn.

Similar characteristic holds true for precipitation
indices (figures 3(d)–(i) vs (a)–(c)). Areas with large
biases in AM are reduced in LR and RF, especially in
the Tibetan Plateau and its periphery where there are
the largest wet biases. Higher wet biases (with focus
on the 90th percentile in the boxplots) are reduced
from 127% in AM to 25% in RF for PRCPTOT. Sim-
ilarly, RX5DAY shows a reduction from 74% to 28%,
and R95P from 178% to 101%. RF is the best per-
forming, and the biases are lower than 50% over
almost the whole territory of China for PRCPTOT
and RX5DAY. Higher wet biases for R95P exist in the
Tarim Basin and the Qilian Mountains with complex
topography.

Taylor diagram and TSS are presented in figure 4
to show a concise statistical analysis of the three

5
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Figure 3. Same as figure 2, but the relative biases for mean and extreme precipitation indices (unit: %). From left to right are
PRCPTOT (column 1), RX5DAY (column 2), R95P (column 3), respectively. Warm and cold colors indicate dry and wet biases
respectively.

ensemble-processing strategies in the evaluation
period. There is a general weak performance with
AM (gray markers). The correlation coefficients
of all temperature indices deduced from AM are
between 0.94 and 0.97, the standardized deviations
vary between 0.96 and 1.05, and the TSSs are lower
than 0.97. LR andRF schemes show an extra improve-
ment, compared to AM. The best-performing RF
gives correlation coefficient, and TSSs all superior to
0.98 and 0.99. Precipitation indices from AM show
an unsatisfactory performance, with all spatial cor-
relation coefficients less than 0.88, standardized devi-
ations between 0.64 and 0.80, and the lowest value of
TSSs reaching only 0.71. RF has the best efficiency,
with precipitation indices comparable to temperat-
ure indices. In terms of TSSs, RF improves them from
0.82 in AM to 0.98 for PRCPTOT, from 0.79 to 0.95
for RX5DAY and from 0.71 to 0.89 for R95P.

Overall, the results provide clear evidence that
LR and RF schemes effectively enhance the capab-
ility of reproducing the spatial climate characterist-
ics in China, especially in western China where, with

complex topography, most significant biases manifest
in AM. RF has the best performance, with TSSs of
all temperature indices at the level of 0.98 and 0.99,
and remarkably improves the skill scores of precipit-
ation indices to a level higher than 0.89. Temperat-
ure indices generally have a better performance than
precipitation, but the improvement for precipitation
indices is more significant and substantial.

Beyond the mean state, it is also interesting to
check howwell our ensemble-processing schemes can
produce their interannual variability. We now assess
the temporal standard deviation during the validation
period from1995 to 2014, with the interannual stand-
ard deviation from observation shown in figure S3.
The result of evaluation is shown in figure S4, and
expressed as a ratio of standard deviations between
the simulation and observation. Only the mean states
of TAS and PRCPTOT are exhibited as illustration.
This ratio is generally smaller than 1.0, reflecting the
fact that the ensemble-processing strategies present a
reduced interannual variability. Such a result is expec-
ted, since any ensemble-processing strategy, due to

6
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Figure 4. Taylor diagram (a) and TSS scatter plot (b) showing the mean and extreme temperature and precipitation indices under
the three ensemble-processing schemes (represented with colors) during the validation period. Different symbols represent
different indices, with hollow symbols for temperature indices and solid symbols for precipitation indices.

its nature of mixing different simulations, reduces
the interannual variability. In the case of AM, if all
members in the ensemble are sequentially independ-
ent and possess an identical standard deviation, then
the ensemble average fromN members would reduce
the standard deviation by a factor of 1/

√
N. In our

configuration of 24 models, this factor is about 0.20.
The actual ratio for the mean temperature indices
is larger than this expected value, but its counter-
part for precipitation indices is smaller (all indices
are not shown). We believe that this behavior is due
to the fact that temperature indices have a consistent
warm trend among models, but precipitation indices
do not. Let us now inspect the cases of RF and LR,
since a regression relationship is used to combine
the 24 models (or a subset), the reduction of inter-
annual variability is less pronounced. It is necessary
to point out that when the regression is ill-fitted
(with large negative coefficients for certain members,
for example), the interannual variability can even be
augmented.

3.2. Projection of future climate
Given its good performance in dealing with multi-
model ensemble simulations, RF is now used for
the regional projection of future climate for 1.5 ◦C,
2 ◦C and 3 ◦C global warming targets (relative to
preindustrial), under the SSP5-8.5 emission scen-
ario. The widely-used AM scheme is also shown as
a baseline and reference. As a conventional practice,
the target warming levels are relative to pre-industrial

(1861–1900), while the projected changes are relat-
ive to 1995–2014. For the sake of conciseness, only
temperature and precipitation indices under 1.5 ◦C
and 2 ◦C warming targets are given in the main text,
the results under 3 ◦Cwarming target being placed in
supplementary materials.

3.2.1. Temperature indices
The land fraction from whole China territory with
projected changes exceeding the abscissa’s values is
plotted in figures 5(a)–(c) in the form similar to a
curve of the cumulative probability distribution func-
tion. Results are shown for both RF and AM, for all
temperature indices, and for the 1.5 ◦C and 2 ◦C
warming targets, respectively. Figures 5(d)–(o) show
their corresponding spatial pattern of changes, while
the difference between RF and AM under the 2 ◦C
warming level is shown in figures 5(p)–(r).

Let us firstly examine the median value which
is an emblematic figure since it separates the
entire territory across China into two equal halves.
Changes of mean and extreme temperature projec-
ted by RF are lower than those by AM (figure 5).
Under the 2 ◦C warming target, but relative to
nowadays, RF shows a median change of TAS, TXx,
and TNn at 1.35 ◦C, 1.37 ◦C and 1.64 ◦C, which
are lower than the counterpart in AM, by about
0.23 ◦C, 0.31 ◦C and 0.15 ◦C. Recent studies based
on CMIP6 models show higher transient climate
response and equilibrium climate sensitivity than
what shown by previous versions of these models
in CMIP5. Consequently, the projection of future
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Figure 5. The land fractions (a)–(c) and corresponding spatial distributions (d)–(r) of the changes projected from RF (colored
lines and panels (d)–(f), (j)–(l) and AM (black lines and panels (g)–(i), (m)–(o)) for TAS (column 1), TXx (column 2), TNn

(column 3) at the 1.5 ◦C and 2 ◦C global warming relative to the reference period. The solid lines in land fraction plots and rows
2, 3 (panels (d)–(i)) are at 1.5 ◦C global warming target; dash lines and rows 4, 5 (panels (j)–(o)) are at 2 ◦C. Panels ((p)–(r)) are
the spatial distributions of distinctions between RF and AM at the 2 ◦C global warming. The STD over the country are given on
the top of panels (d)–(o). Areas with significant changes above the 0.95 confidence level with reference period are marked with
gray dots in panels (d)–(o), and areas with significant differences above the 0.95 confidence level between RF and AM are marked
with gray dots in panels (p)–(r), according to Student’s t-test (unit: ◦C).

climate in CMIP6 is also stronger than in CMIP5
(Gettelman et al 2019, Nijsse et al 2020, Zelinka et al
2020).However, with some observational constraints,
the projected warming is reduced compared with

non-constrained projection (Brunner et al 2020,
Liang et al 2020, Tokarska et al 2020). Our results
of multi-model ensemble projection seem to agree
with this conclusion. Observation plays important
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role in the ML RF ensemble-processing scheme,
similar to a role of observation-based constraining,
which lowers the projected warming compared to
unconstrained AM.

Obvious differences are detected between the land
fraction curves of RF and AM. Extreme changes have
higher probability of occurrence in more areas in RF
as its curves have longer tails. Under the 2 ◦C global
warming target, AM does not project warmer mean
temperature exceeding 2.6 ◦C, but RF suggests a like-
lihood of 9% over China with such a warming level.
In terms of geographic distribution of TAS, larger spa-
tial variability is detected in RF, as the spatial standard
deviations (STD) are almost twice larger than that in
AM (figures 5(j) vs (m)). Large magnitudes of warm-
ing projected by RF are found in the western part of
Northeastern China and the north part of Northwest-
ern China under 1.5 ◦C warming. Under the 2 ◦C
warming target, the warming in these areas would
further expand and strengthen, the northern and
eastern periphery of the Tibetan Plateau also shows
significant warming, exceeding 2.5 ◦C. Meanwhile,
AM projects a smoother distribution, with warm-
ing uniformly enhanced (exceeding 2.5 ◦C warming)
in the area north of 45◦ N and part of the Tibetan
Plateau. From the difference between RF and AM
(figure 5(p)), it is clear that, except a few regions with
drastic increases in RF, the warming projected from
RF is generally lower about 0.25 ◦C–1 ◦C than that
of AM in almost the whole country, especially in the
Tibetan Plateau, where the difference is significant
under the 0.95 confidence level.

Regarding the spatial pattern, a similar beha-
vior holds for extreme temperature TXx. Signific-
antly enhanced warming over Northeastern China,
the Tianshan Mountains, as well as the Loess Plateau
is projected in RF, with a magnitude of 2.5 ◦C above
current world under the 2 ◦C warming target. Areas
with larger increases from AM are evenly distrib-
uted in Northeastern China and the entire Northw-
est region. The change of TXx in different regions has
large distinction in the projection of RF, the STD are
more than three times larger than that in AM under
both 1.5 ◦C and 2 ◦C warming targets (figures 5(e) vs
(h) and figures 5(k) vs (n)).

For the minimum temperature TNn, sensitive
areas from RF are distributed in Northeastern China,
in the YellowRiver Basin and in sparse areas inNorth-
western China, while the warming projected by AM is
morewidely distributed in the southeast, extending to
the south of the Yangtze River Basin.

These results show broad similarities with those
from GCMs (Shi et al 2018, Sui et al 2018, Yang et al
2018), i.e. Northwestern China, Northeastern China,
and the Tibetan Plateau are particularly sensitive to
global warming. Compared to AM, RF shows more
detailed information and larger inhomogeneity, and
it exhibits a closer correlation with topography. More
pronounced hotspots can be observed in RF.

3.2.2. Precipitation indices
Mean and extreme precipitation projections are
presented in figure 6, both RF and AM project
increased precipitation over most of China in
response to global warming. For the median value
across China that separates the whole territory into
two equal halves, RF shows an increase of 3%, 4%,
and 19% for PRCPTOT, RX5DAY, and R95P under
the 2 ◦C global warming, which is almost the same
as the counterpart in AM (only about 0.6%, 0.1%
and 1.5% higher). For the change of total precipita-
tion (PRCPTOT) under the 1.5 ◦C and 2 ◦C global
warming targets, the fraction of lands where increase
exceeds 40% is projected to be almost non-existent
over China in AM, while that fraction in RF is above
6%. Thatmeans a higher risk for intense precipitation
in RF projection.

In terms of geographic distribution, RF and AM
show good consistency, but there are substantial dif-
ferences of magnitude (figures 6(d)–(r)). Small-scale
features in RF aremore significant, and the amplitude
of increase is also higher. Large-increase areas of total
precipitation (more than 30%) in RF are concen-
trated in the region of the Tsaidam Basin and Qilian
Mountains. For the case of AM, enhanced precipit-
ation (10%–20%) is more evenly distributed in the
whole western area, extends from the Tibetan Plateau,
northeastward, stretching to the Loess Plateau and its
northern area. In the northwestern area, significant
lower precipitation change is projected by RF com-
pared with AM. In other areas, the changes of total
precipitation projected by RF are generally more not-
able than that in AM.

Changes of RX5DAY show a close resemblance
to total precipitation in terms of intensity and main
geographic patterns. But precise areas of remark-
able increase have some differences, especially in RF.
Significant enhancement is found in most part of
the Tibetan Plateau and patchy areas in Northeast-
ern China, where the magnitudes exceed 20% under
the 2 ◦C global warming. Contrasted with RF, AM
suggests smaller increases of RX5DAY, but with a
more homogeneous geographic distribution. Almost
all the territory would see an increase within the 15%
threshold. As shown in figure 5(q), significant differ-
ences between AM and RF are found in the north-
western region.

Changes of R95P exceeding 50% in RF concen-
trate in the Tibetan Plateau and the Yellow River
Basin, where the changes are almost twice higher than
in AM (higher about 20%–30%). Meanwhile, in the
southeastern and northwestern regions, the projec-
ted increase in strong precipitation from RF are not
noticeable, which is lower than that projected by AM.

Further comparison of our RF projections with
previous studies using high-resolution regional cli-
mate models (RCMs) shows some similarities, espe-
cially in complex-terrain areas. Zhu et al (2020b),
usingWRF v3.7.1, showed that, for total precipitation
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Figure 6. Same as figure 5, but the relative changes of precipitation indices PRCPTOT, R95P, and RX5DAY (unit: %).

and extreme events, the Tibetan Plateau and regions
outside China’s northwestern boundaries are partic-
ularly sensitive to climate change, conclusion very
consistent with our results. Similar patterns from
our RF projection for RX5DAY were also present
in Li et al (2018b) using five RCMs involved in
the CORDEX-East Asia project. Our results are also
comparable to Li et al (2018a) using FROALS as a

dynamical downscaling model, together with a stat-
istical downscaling tool. It is worthy of note that our
projected R95P pattern in RF is very close to what
found with WRF v3.5.1 when it was applied to China
(Bao et al 2015).

The ML RF algorithm uses the concept of
multi-regression decision trees. It can efficiently solve
non-LR problems and achieve good matching to
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observation, in both temporal and spatial domains,
as well demonstrated in Crawford et al (2019) and
Pang et al (2017). Our results shown here are consist-
ent with its intrinsic properties and with our expect-
ation on it.

4. Conclusion and discussion

In this work, three different ensemble-processing
strategies, AM, LR, and RF (ML decision tree
algorithm), are used to explore information offered
by the multi-model ensemble climate simulations of
CMIP6. The main idea was to find the best way of
processing the ensemble simulations to mimic obser-
vational climatic properties and to give a more reli-
able projection of future climate. AM is the simplest
andmost intuitive strategy. LR advocates the vision of
a LR approach to establish the relationship between
simulations and observations, but it cannot neces-
sarily represent any physical rules governing the cli-
mate system. RF is one of the most advanced ML
algorithms. It can extract non-linear and complex
relations among climate models, instead of making a
simple evaluation of models’ apparent performance
as in other ensemble-processing strategies. This leads
to a hybrid approach that we advocate for climate
change issues, which combines physicalmodeling and
ML strengths, thus giving confidence in retrieving
more valuable information.

The performance of the three schemes was
assessed in the validation period (20 years, from 1995
to 2014). Compared with AM, LR and RF effectively
enhance the capability of capturing spatial climate
characteristics overChina. Improvement in areaswith
complex terrain is the most significant such as in the
periphery of the Tibetan Plateau. RF performs well,
with the TSS of temperature indices being of 0.98
and 0.99, and that of precipitation indices higher than
0.89. It was also revealed that the internal variability,
such as the interannual-scale standard deviation, can
not be correctly reproduced by any of our ensemble-
processing strategies which were designed, after all, to
calculate the mean state of our expectation.

After an inter-comparison of performance, RF
was selected as the optimal scheme and used to invest-
igate climate changes in the 1.5 ◦C, 2 ◦C and 3 ◦C
warmer worlds under the SSP5-8.5 emission scen-
ario. Compared with AM, RF shows less warming
and enhanced wet conditions at the national scale
of China. In terms of median changes across China,
mean temperature (TAS), annual maximum (hottest
daytime) temperature (TXx), and annual minimum
(coldest nighttime) temperature (TNn) show 1.35 ◦C,
1.37 ◦C and 1.64 ◦C warming relative to 1995–2014
period, respectively, under the 2 ◦C global warm-
ing level, when RF is used. They are lower than their
counterpart in AM, especially for TXx, lower about
0.31 ◦C. The median changes of total precipitation in
wet days (PRCPTOT), annual maximum consecutive

5 d precipitation amount (RX5DAY), and annual total
precipitation for events exceeding the 95th percentile
(R95P) projected inRF are 3%, 4%, and 19%, respect-
ively, similar with the counterpart in AM.

Regarding the geographic distribution, RF would
see larger warming in Northeastern China and the
northern part of Northwestern China. Tianshan
Mountain, Loess Plateau area for TXx, and the Yel-
low River Basin for TNn are also regions of hotspots.
Meanwhile except the regions with intensified warm-
ing, the warming projected fromRF is generally lower
than that of AM. That indicates a larger spatial vari-
ability andmore pronounced local-scale characterist-
ics of RF. For the projection of TXx, the spatial stand-
ard deviation can be three times larger comparedwith
that in AM.

RF also projects more intense precipitation in
most part of China. For example, in the region of
the Tsaidam Basin and the Qilian Mountains, the
projected changes in RF for the strong precipita-
tion (partly exceeding 50% under the 2 ◦C warm-
ing) are almost twice higher than in AM. Meanwhile
in the northwestern area, for all precipitation indices,
weaker increases of precipitation compared with AM
are projected by RF. AM shows however much more
homogeneous features.

It is interesting to point out that the geographic
structure of climate projection in RF shows a resemb-
lance to that from dynamical downscaling with high-
resolution models or from statistical downscaling (Li
et al 2018a, Zhu et al 2020b). This indicates that the
ML algorithm RF could capture detailed information
at local scale, certainly due to its ability to behave as do
those dynamic models with higher spatial resolution.
This is quite reasonable since the high-resolution
observation seems to play its role in constraining
the ensemble-processing strategy RF which is able to
manipulate complex nonlinear processes across mul-
tiple models. We believe that using advanced ML
techniques can provide a new perspective to retrieve
more information from large amounts of data and
make more reliable climate projections.
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