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TYPICALITY OF OPERATORS ON FRÉCHET ALGEBRAS

ADMITTING A HYPERCYCLIC ALGEBRA

WILLIAM ALEXANDRE, CLIFFORD GILMORE, SOPHIE GRIVAUX

Abstract. This paper is devoted to the study of typical properties (in the Baire Cat-

egory sense) of certain classes of continuous linear operators acting on Fréchet algebras,

endowed with the topology of pointwise convergence. Our main results show that within

natural Polish spaces of continuous operators acting on the algebra HpCq of entire func-

tions on C, a typical operator supports a hypercyclic algebra. We also investigate the

case of the complex Fréchet algebras X “ `ppNq, 1 ď p ă `8, or X “ c0pNq endowed

with the coordinatewise product, and show that whenever M ą 1, a typical operator on

X of norm less than or equal to M admits a hypercyclic algebra.

1. Introduction and main results

Our main aim in this work is to show that within certain natural classes of continuous

linear operators acting on Fréchet algebras, endowed with the topology of pointwise con-

vergence, a typical operator possesses a hypercyclic algebra. Its set of hypercyclic vectors

thus has one of the richest structures for which one can hope.

Let us recall some pertinent definitions: given a continuous operator T on a topological

vector space X, a vector x is said to be a hypercyclic vector for T if its orbit tTnx ; n ě 0u

under the action of T is dense in X. The set of hypercyclic vectors for T is denoted by

HCpT q, and it is dense in X as soon as it is nonempty. Whenever X is a second-countable

Baire space, HCpT q is a Gδ set (i.e. a countable intersection of open sets), so it is residual

in X as soon as it is nonempty. The study of the linear structure of this set HCpT q has

been the object of many interesting and deep studies: it is known that whenever HCpT q is

nonempty, the set HCpT qYt0u contains a dense linear manifold [10]. For certain classes of

hypercyclic operators T , HCpT qYt0u contains a closed infinite-dimensional subspace. See

for instance [15] for a characterization in spectral terms of operators acting on complex

separable Banach spaces with this property. We mention also the work [24].

When X is a topological algebra, it makes sense to ask whether HCpT q Y t0u contains

a non-trivial subalgebra of X. Such an algebra will be called a hypercyclic algebra, and

whenever it exists, we will say that T admits a hypercyclic algebra. This question of

the existence of a hypercyclic algebra was first considered by Bayart and Matheron in
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[4, Chapter 8], and independently by Shkarin in [28]: they showed that the differentiation

operator D : f ÞÑ f 1 on the algebra HpCq of entire functions on the complex plane admits

a hypercyclic algebra. On the other hand, the translation operators Ta : f ÞÑ fp ¨ ` aq,

a ‰ 0, acting on HpCq do not admit hypercyclic algebras [1]. The study of the existence

of hypercyclic algebras has by now developed into a flourishing branch of linear dynamics.

See for instance the works [7], [2], [5], [9], [8], [13] and [3] among many other relevant

references.

Several of these papers deal with the important question of characterizing the entire

functions φ of exponential type such that φpDq admits a hypercyclic algebra. The paper [2]

by Bayart introduces an approach to this problem based on the study of the eigenvectors

of the operator φpDq, which will be of particular importance in this paper.

Our aim is to study the question of the existence of hypercyclic algebras from the Baire

Category point of view. Recall that if pE, τq is a Polish space (i.e. separable and completely

metrizable), and (P) is a certain property of elements of E, we say that (P) is typical (or

equivalently, that a typical x P E has property (P)) if the set tx P E ; x has (P)u is

comeager in E. A comeager set in E is a set which contains a dense Gδ set, i.e. which

is large in E in the sense of Baire Category. Thus given a particular Polish space pE, τq,

it may be of interest to determine whether some natural properties of elements of E are

typical or not.

Given a separable Fréchet algebra X (i.e. a separable completely metrizable topological

algebra), our general goal is to define some natural spaces L of continuous linear operators

onX, which are Polish spaces when endowed with the topology of pointwise convergence on

X, and to determine whether a typical operator T in such a space L possesses a hypercyclic

algebra. When pX, } ¨ }q is a separable Banach algebra, natural spaces L to consider are

the closed balls BM pXq consisting of bounded operators T on X with }T } ď M , with

M ą 1 (so as to have a chance that a typical T P BM pXq for the topology of pointwise

convergence on X is hypercyclic). In this Banach space setting, we denote by BpXq the

algebra of bounded operators on X. The topology on BpXq defined as the topology of

pointwise convergence on X is usually called the Strong Operator Topology (SOT): if Tα is

a net of elements of BpXq, and if T P BpXq, Tα ÝÑ T for the SOT if and only if Tαx
} ¨ }
ÝÝÑ Tx

for every x P X. When X is a separable Banach space, pBM pXq, SOTq is a Polish space for

every M ą 0. The study of typical properties of operators T P pBM pXq, SOTq was initiated

in the Hilbertian setting by Eisner and Mátrai [12] and continued in the works [18] and

[19] in the case where X “ `ppNq, 1 ď p ă `8, or X “ c0pNq. Typical properties of

operators for other Polish topologies on closed balls BM pXq were also studied in [11] and

[16], as well as in the monograph [17].

When X is a separable Fréchet space, we denote by LpXq the algebra of continuous

linear operators on X, and by SOT the topology on LpXq of pointwise convergence on X.

Let pNjqjě1 be a sequence of semi-norms on X defining its topology. Given a sequence

pMjqjě1 of positive real numbers and a sequence pkjqjě1 of positive integers, we define

LpMjq,pkjqpXq :“
 

T P LpXq ; @j ě 1, @x P X, NjpTxq ďMj Nkj pxq
(

¨
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We will show in Proposition 2.1 below that pLpMjq,pkjqpXq, SOTq is a Polish space. Of course,

this space may be very small for certain choices of the sequences pMjqjě1 and pkjqjě1, but

in general, it makes sense to study SOT-typical properties of elements of LpMjq,pkjqpXq.

Observe that the space LpMjq,pkjqpXq depends on the choice of the sequence of semi-norms

pNjqjě1.

The main result of this paper deals with the case where X “ HpCq, the space of entire

functions on C endowed with the topology of uniform convergence on compact sets. This

topology on HpCq can be defined via the following sequence pNjqjě1 of semi-norms:

for every f P HpCq, fpzq “
ÿ

mě0

amz
m, z P C, let Njpfq :“

ÿ

mě0

|am| j
m.

There are of course plenty of different choices of sequences of semi-norms defining the

topology of HpCq, but for our purposes this choice is the most convenient. To simplify

the notation, we will write LpMjq,pkjq :“ LpMjq,pkjqpHpCqq, subordinated to this choice of

the sequence pNjqjě1.

We are now ready to state our main result.

Theorem 1.1. Let the sequences pMjqjě1 and pkjqjě1 be such that

(i) for all α ě 1, jα “ opMjq as j tends to infinity;

(ii) for all j ě 1, Mj ě j ` 1;

(iii) for all j ě 1, kj ě j ` 2;

(iv) M1 ă k1 and kj ě k1 for all j ě 1.

Then a typical operator T P pLpMjq,pkjq, SOTq admits a hypercyclic algebra.

Choosing the sequences pMjqjě1 and pkjqjě1 in such a way that for all j ě 1, Mj ě j`1

and kj ě j ` 2 ensures that the differentiation operator D – the crucial example of

an operator on HpCq which admits a hypercyclic algebra – belongs to LpMjq,pkjq. The

operators D and 1
n!D

n will be of special importance in the proof of Theorem 1.1; they will

play a role analogous to the left shift operator and its iterates in the Banach space case.

Before going further, we notice that the differentiation operator is a so-called tame

operator, and that the spaces LpMjq,pkjq in Theorem 1.1 include spaces of tame operators.

They are thus natural spaces to be considered in the context of Fréchet spaces. We recall

briefly the definition of a tame operator, and we refer to the survey [21] for more on tame

Fréchet spaces. Let X̃ be a Fréchet space whose topology is given by a certain increasing

family of semi-norms pÑjqjě1, and let T̃ : X̃ Ñ X̃ be a linear map. The map T̃ is called

tame if there exist two integers b, r ě 1 such that for every j ě b, the following is true:

there exists a constant Cj ą 0 such that ÑjpT̃ xq ď CjÑj`rpxq for every x P X̃. A tame

linear map is automatically continuous. It can easily be observed that the differentiation

operator D is tame, and the operators belonging to the space LpMjq,pkjq considered in

Theorem 1.1 are tame provided that there exists an integer r ě 2 such that kj “ j ` r for

all j sufficiently large.
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In order to prove Theorem 1.1, we must exhibit a dense set of operators T belonging to

LpMjq,pkjq admitting a hypercyclic algebra. These operators will be of the form

T “ A`
1

pn` 1q!
Dn`1

for some integer n ě 0, where A acts on Cnrzs (the vector space of complex polynomials of

degree at most n) as a nilpotent endomorphism, and Apzjq “ 0 for every j ą n. We note

that these operators are in general not of the form φpDq, where φ is an entire function

of exponential type (compare to [2], [3], [7]); thus they provide a new family of operators

acting on HpCq that admit hypercyclic algebras.

We also investigate the case of the complex Fréchet algebras X “ `ppNq, 1 ď p ă `8

or X “ c0pNq endowed with the coordinatewise product: if x “ pxnqně1 and y “ pynqně1
are two sequences of complex numbers belonging to X, we define x ¨ y “ pxnynqně1. Then

}x ¨ y} ď }x} }y}, where } ¨ } denotes the classical `p- or c0-norm on X. As X is a Banach

space, we place ourselves in the closed balls BM pXq of BpXq, M ą 1, and we prove the

following theorem.

Theorem 1.2. Let X “ `ppNq, 1 ď p ă `8, or X “ c0pNq, endowed with the coordi-

natewise product. Let M ą 1. A typical operator T P pBM pXq, SOTq admits a hypercyclic

algebra.

The proofs of Theorems 1.1 and 1.2 build on the approach via eigenvectors introduced

by Bayart in [2], and further developed by Bayart et al. in [3]. These results show,

in two different classical contexts, that having a hypercyclic algebra is a quite common

phenomenon, at least from the Baire Category point of view.

However, at this point a word of caution is in order: as explained in [18, Proposition

3.2], hitherto the properties (P) of operators (on X “ `ppNq or c0pNq) which have been

studied from the typicality perspective are either typical or “atypical” in pBM pXq, SOTq;
in other words, for such a property (P), either a typical T P pBM pXq, SOTq has (P), or a

typical T P pBM pXq, SOTq does not possess (P). This relies on the topological 0 ´ 1 law

(cf. [22, Theorem 8.46], and [18, Proposition 3.2] for its application in our context) and

on the fact that for the properties under consideration, T has (P) if and only if JTJ´1

has (P) for every surjective isometry J of X. In our setting, this argument fails: having a

hypercyclic algebra is not a property which is a priori stable by conjugation by invertible

isometries (cf. [3, Remark 4.7], where it is observed that admitting a hypercyclic algebra

is not a property which is preserved by similarity).

The paper is organized as follows: Sections 2, 3, 4 and 5 are devoted to the proof of

our main result, Theorem 1.1. We introduce in Section 2 our Polish spaces of operators

on the algebra of entire functions; then a technical result regarding the density of certain

classes of operators in pLpMjq,pkjq, SOTq is proved in Section 3; in Section 4 we show, using

the Godefroy-Shapiro Criterion, that hypercyclic operators form a dense Gδ subset of

pLpMjq,pkjq, SOTq; finally in Section 5, after recalling the Baire Category Criterion from

[3, Corollary 2.4] which we use to prove the existence of a hypercyclic algebra for the

operators under consideration, we prove Theorem 1.1. Theorem 1.2 is proved in Section 6.

Section 7 contains the additional result that when X “ `ppNq, 1 ď p ă `8, or X “ c0pNq,
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and M ą 1, a typical T P pBM pXq, SOTq admits a closed infinite-dimensional hypercyclic

subspace (Theorem 7.2).

2. Polish Space of operators on the algebra of entire functions.

We present in this section some general facts which will be of use in the sequel. We

begin by proving the following proposition for a general separable Fréchet space X.

Proposition 2.1. Let X be a separable Fréchet space, and let pNjqjě1 be a sequence of

semi-norms defining its topology. Let pMjqjě1 be a sequence of positive real numbers and

let pkjqjě1 be a sequence of positive integers. Then

LpMjq,pkjqpXq :“
 

T P LpXq ; @j ě 1, @x P X, NjpTxq ďMj Nkj pxq
(

is a Polish space when endowed with the SOT.

Proof. The proof is similar to that of [18, Lemma 3.1]. We recall it here briefly for the

sake of completeness. We denote by Z a countable dense subset of X. Then let

L̃pMjq,pkjqpZq :“ tT : Z Ñ X; T is linear and @j ě 1,@x P Z, NjpTxq ďMjNkj pxqu.

Then L̃pMjq,pkjqpZq is closed in XZ , where XZ is endowed with the product topology.

Indeed, since XZ is metrizable, let pTkqk be a sequence of elements of L̃pMjq,pkjqpZq which

converges to T . Since the product topology inXZ is the pointwise topology, T is necessarily

linear; since for all j ě 1, and all x P Z, the sequence pNjpTkxqqk converges to NjpTxq,

we also have that NjpTxq ďMjNkj pxq, and so T belongs to L̃pMjq,pkjqpZq.

Since XZ is a Polish space, L̃pMjq,pkjqpZq is a Polish space as a closed subset of a Polish

space. Now, we observe that the map Φ: pLpMjq,pkjqpXq, SOTq Ñ L̃pMjq,pkjqpZq defined

by ΦpT q “ T |Z is a homeomorphism, and we conclude that pLpMjq,pkjqpXq, SOTq is also a

Polish space. �

From now on, we will consider the case where X “ HpCq, the space of entire functions

on the complex plane endowed with the topology of uniform convergence on compact sets.

We denote by pzkqk the monomial basis of HpCq and for z P C and r ą 0, we let Dpz, rq

be the open disk of center z and radius r. We record here the following property.

Property 2.2. For every f P HpCq and every j ě 1, we have

sup
Dp0,jq

|f | ď Njpfq ď pj ` 1q sup
Dp0,j`1q

|f |.

Proof. The lefthand-side inequality is trivial, and the righthand-side inequality follows

from Cauchy’s inequalities: for all k P N and all r ą 0, we have

1

k!

ˇ

ˇ

ˇ

ˇ

Bkf

Bzk
p0q

ˇ

ˇ

ˇ

ˇ

“
1

2π

ˇ

ˇ

ˇ

ˇ

ˇ

ż

|ζ|“r

fpζq

ζk`1
dζ

ˇ

ˇ

ˇ

ˇ

ˇ

ď
1

rk
sup
Dp0,rq

|f |.

This implies that

Njpfq ď
`8
ÿ

k“0

ˆ

j

j ` 1

˙k

sup
Dp0,j`1q

|f | “ pj ` 1q sup
Dp0,j`1q

|f |.

�
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Therefore a sequence pfnqn of functions in HpCq converges to f in HpCq if and only if

the sequence pNjpfn ´ fqqn converges to 0 for every j ě 1; thus the family pNjqj indeed

induces the topology of HpCq.
The next property provides a useful neighborhood basis of an element of LpMjq,pkjq for

the SOT.

Property 2.3. Let T0 belong to LpMjq,pkjq. A neighborhood basis of T0 for the SOT is given

by the family of sets

VT0ε,r,K “ tT P LpMjq,pkjq ; @k “ 0, . . . ,K, NrppT ´ T0qz
kq ă εu,

where ε ą 0, and K, r are integers with K ě 0 and r ě 1.

Proof. It suffices to show that if pTkqk is a sequence of elements of LpMjq,pkjq such that, for

all ε ą 0, all K ě 0 and all r ě 1, there exists κ0 P N such that for all k ě κ0, Tk belongs

to V0
ε,r,K , then pTkqk converges SOT to 0.

Let f be an entire function and let j ě 1 be a positive integer. There exists an analytic

nonzero polynomial P such that Nkj pf ´P q ă
ε

2Mj
. Denote by d the degree of P , write P

as P pzq “
řd
l“0 plz

l, and set ε1 “ ε
2
řd
l“0 |pl|

. By assumption, there exists κ0 P N such that

for all k ě κ0, Tk belongs to V0
ε1,d,j . Therefore we have

NjpTkfq ď NjpTkpf ´ P qq `NjpTkP q ďMjNkj pf ´ P q `
d
ÿ

l“0

|pl|NjpTkz
lq

ďMj
ε

2Mj
` ε1

d
ÿ

l“0

|pl| “ ε.

This implies that the sequence pTkfqk converges to 0 uniformly on any compact subset of

C, and thus pTkqk converges SOT to 0. �

In the forthcoming proof of Theorem 1.1, the operators Sn :“ 1
n!D

n, n ě 1, will play a

crucial role. It is thus important to be able to demonstrate that they belong to the space

LpMjq,pkjq. In the next proposition, we provide conditions on the sequences pMjqjě1 and

pkjqjě1 which ensure that this is indeed the case.

Proposition 2.4. Let pMjqjě1 be a sequence of positive real numbers and let pkjqjě1 be a

sequence of positive integers such that for every j ě 1, Mj ě j ` 1 and kj ě j ` 2. Then

Sn belongs to LpMjq,pkjq for every n ě 1.

Proof. Let n ě 1, j ě 1, and let z P Dp0, j ` 1q. By Cauchy’s formula, we have:

1

n!

Bnf

Bzn
pzq “

1

2iπ

ż

|ζ´z|“1

fpζq

pζ ´ zqn`1
dζ

so that |Snpfqpzq| ď supDp0,j`2q |f |. We then deduce from Property 2.2 that

NjpSnfq ď pj ` 1q sup
Dp0,j`1q

|Snpfq| ď pj ` 1q sup
Dp0,j`2q

|f | ď pj ` 1qNj`2pfq,

and this proves that Sn belongs to LpMjq,pkjq when pMjqjě1 and pkjqjě1 satisfy the as-

sumptions of this proposition. �
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3. Dense families of operators in LpMjq,pkjq

For every n ě 0, we define the operator Tn : HpCq Ñ HpCq by setting

Tnfpzq “
n
ÿ

j“0

1

j!

Bjf

Bzj
p0qzj , where f P HpCq

and we note that for all j ě 1, NjpTnfq ď Njpfq.

Given A P LpMjq,pkjq, our aim is to approximate A with an operator supporting a

hypercyclic algebra. We first approximate A by an operator of the form Bn “ TnATn.

When n goes to infinity, pBnqn converges SOT to A, and for all n ě 1, Bn belongs to

LpMjq,pkjq. Indeed, we have for every f P HpCq and every n, j ě 1 that

NjpBnfq ď NjpATnfq ďMjNkj pTnfq ďMjNkj pfq.

When Mj ě j ` 1 and kj ě j ` 2 for all j ě 1, it follows from Proposition 2.4 that

Sn`1 belongs to LpMjq,pkjq for every n ě 0. Hence, for every δ P r0, 1s, the operator

p1 ´ δqBn ` δSn`1 also belongs to LpMjq,pkjq. Moreover, pp1´ δqBn ` δSn`1qδPp0,1q SOT

converges to Bn as δ goes to 0. Thus we have proved the following.

Proposition 3.1. Let pMjqjě1 be a sequence of positive real numbers, and let pkjqjě1 be

a sequence of positive integers such that Mj ě j ` 1 and kj ě j ` 2 for every j ě 1. Then

the following holds: for every A P LpMjq,pkjq and every SOT-neighborhood V of A, there

exist n ě 0, an operator B P LpMjq,pkjq satisfying B “ TnBTn, and δ P p0, 1q such that

B ` δSn`1 belongs to V.

We will prove in Section 4 below that operators of the form B` δSn`1 are hypercyclic,

where δ ą 0, n ě 0 and B is such that B “ TnBTn. So the reader mainly interested in

the density of hypercyclic operators in LpMjq,pkjq can proceed directly to Section 4.

On the other hand, it does not seem to be trivial that an operator of the form B`δSn`1
with δ P p0, 1q, n ě 0 and B such that B “ TnBTn supports a hypercyclic algebra. What

we will be able to prove in Section 5 is that if for every polynomial P , the sequence

pBjP qj converges to 0 in HpCq, then B ` δSn`1 indeed supports a hypercyclic algebra

(cf. Theorem 5.1). With this result in view, we now show that the family of nilpotent

operators B satisfying B “ TnBTn for some n ě 0 is SOT dense in LpMjq,pkjq provided that

the sequences pMjqj and pkjqj satisfy some suitable assumptions, which in fact ensure that

LpMjq,pkjq contains sufficiently many operators.

Proposition 3.2. Let pMjqjě1 be a sequence of positive real numbers, and let pkjqjě1 be

a sequence of positive integers such that

(i) for all α ě 1, jα “ opMjq as j tends to infinity;

(ii) kj ą j for every j ě 1;

(iii) M1 ă k1 and kj ě k1 for every j ě 1.

Let A be an operator belonging to LpMjq,pkjq and let V be an SOT-neighborhood of A in

LpMjq,pkjq. Then there exist B P V and n ě 1 such that B “ TnBTn (in particular, for all

f P HpCq, Bf is a polynomial of degree at most n) and Bn`1 “ 0.
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Remark 3.3. Conditions (i) and (ii) of Proposition 3.2 ensure that LpMjq,pkjq contains

sufficiently many operators. For example, for every n ě 0 and every a P C close enough to

0 (how close depends on n), the operator Bn defined by Bnf “ aznf , f P HpCq, belongs

to LpMjq,pkjq. Indeed, for every j ě 1 and every i ě 1 we have

NjpBnz
iq “ Njpaz

i`nq “ |a|ji`n.

Thus Bn belongs to LpMjq,pkjq if and only if |a|ji`n ď Mjk
i
j for every j ě 1. Condition

(ii) ensures in particular that j ď kj , so that NjpBnz
iq ď |a|jnkij for every i, j ě 1.

Condition (i) ensures the existence of j0 ě 1 such that jn ďMj for every j ě j0; if |a| ď 1,

NjpBnz
iq ďMjk

i
j for every i ě 1 and every j ě j0. Now, if |a| is small enough, depending

on n, we can ensure that |a|jn ď Mj for every 1 ď j ď j0 and thus NjpBnz
iq ď Mjk

i
j for

every i ě 1 and every j ď j0. Hence Bn belongs to LpMjq,pkjq.

Condition (iii) is a technical condition which will be needed in the proof of Proposition

3.2. It does not appear to be overly restrictive.

Remark 3.4. In the Hilbertian setting, it is known that nilpotent contractions on a

complex separable Hilbert space H are SOT˚-dense in B1pHq, so in particular SOT-dense

([16, Proposition 4.6]). It seems to be unknown whether this result can be extended to

`p-spaces, 1 ă p ă `8, p ‰ 2.

The rest of this section is devoted to the proof of Proposition 3.2.

Proof of Proposition 3.2. Without loss of generality (cf. Property 2.3), we assume that V
has the form

V “ VAε0,r,K “ tB P LpMjq,pkjq ; NrpBz
j ´Azjq ă ε0, j “ 0, . . . ,Ku,

where ε0 ą 0, and r,K ě 1 are fixed.

Let n0 ě K be a sufficiently large integer and δ P p0, 1q a sufficiently small positive

number. We set

A0 “ p1´ δqTn0ATn0 .

If n0 is sufficiently large and δ is sufficiently small, then A0 belongs to V. We now fix the

parameters n0 ě K and δ P p0, 1q. We then consider an operator B defined as follows:

Bzj “

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

A0z
j ` εzn0`1`j , 0 ď j ď n0

εzn0`1`j , n0 ` 1 ď j ď pn0 ` 1qpn1 ` 1q ´ 1

zn0`1`j , pn0 ` 1qpn1 ` 1q ď j ď pn0 ` 1qn2 ´ 1

Dn0,n1,n2pz
jq, pn0 ` 1qn2 ď j ď pn0 ` 1qpn2 ` 1q ´ 1

0, j ě pn0 ` 1qpn2 ` 1q

where

Dn0,n1,n2pz
jq :“ ´

n1
ÿ

m“0

1

εn1´m`1
zpn0`1qmAn2`1´m

0 zj´n2pn0`1q

´

n2
ÿ

m“n1`1

zpn0`1qmAn2`1´m
0 zj´n2pn0`1q



TYPICALITY OF HYPERCYCLIC ALGEBRAS 9

and where n1, n2 ě 1, ε ą 0 have to be determined in order to ensure that B belongs

to LpMjq,pkjq. Our first goal is to show that with this definition, B is nilpotent – more

precisely that Bn2`1 “ 0.

Fact 3.5. For every P P Cn0rzs and every 1 ď n ď n2, we have

BnP “

minpn,n1q
ÿ

k“0

εkzkpn0`1qAn´k0 P ` εn1`1
n
ÿ

k“n1`1

zkpn0`1qAn´k0 P.(3.1)

Proof. Equality (3.1) is true for n “ 1, since by definition BP “ A0P ` εzn0`1P . If we

assume that (3.1) is true for some n ě 1, then, for every 1 ď k ď n1, z
kpn0`1qAn´k0 P is

a sum of monomials whose degrees lie between kpn0 ` 1q and pk ` 1qpn0 ` 1q ´ 1; since

kpn0 ` 1q ě n0 ` 1 and pk ` 1qpn0 ` 1q ´ 1 ď pn1 ` 1qpn0 ` 1q ´ 1, it follows that

Bpzkpn0`1qAn´k0 P q “ εzpk`1qpn0`1qAn´k0 P for 1 ď k ď n1.

Analogously, for n1`1 ď k ď n2´1, zkpn0`1qAn´k0 P is a sum of monomials whose degrees

lie between kpn0 ` 1q and pk ` 1qpn0 ` 1q ´ 1, with kpn0 ` 1q ě pn1 ` 1qpn0 ` 1q and

pk ` 1qpn0 ` 1q ď n2pn0 ` 1q ´ 1. Thus

Bpzkpn0`1qAn´k0 P q “ zpk`1qpn0`1qAn´k0 P for every n1 ď k ď n2 ´ 1.

We now consider separately two cases.

Case 1: If n ă n1, we have

Bn`1P “ BAn0P `
n
ÿ

k“1

εkB
´

zkpn0`1qAn´k0 P
¯

“ An`10 P ` εzn0`1An0P `
n
ÿ

k“1

εk`1zpk`1qpn0`1qAn´k0 P

“ An`10 P ` εzn0`1An0P `
n`1
ÿ

k“2

εkzkpn0`1qAn`1´k0 P

“

minpn`1,n1q
ÿ

k“0

εkzkpn0`1qAn`1´k0 P.

Hence (3.1) still holds true at rank n` 1 when n ă n1.

Case 2: If n1 ď n ă n2, we have

Bn`1P “ BAn0P `
n1
ÿ

k“1

εkB
´

zkpn0`1qAn´k0 P
¯

` εn1`1
n
ÿ

k“n1`1

B
´

zkpn0`1qAn´k0 P
¯

“ An`10 P ` εzn0`1An0P `
n1
ÿ

k“1

εk`1zpk`1qpn0`1qAn´k0 P

` εn1`1
n
ÿ

k“n1`1

zpk`1qpn0`1qAn´k0 P.
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This gives that

Bn`1P “ An`10 P ` εzn0`1An0P `
n1`1
ÿ

k“2

εkzkpn0`1qAn`1´k0 P

` εn1`1
n`1
ÿ

k“n1`2

zkpn0`1qAn`1´k0 P

“ An`10 P ` εzn0`1An0P `
n1
ÿ

k“2

εkzkpn0`1qAn`1´k0 P

` εn1`1
n`1
ÿ

k“n1`1

zkpn0`1qAn`1´k0 P.

Hence (3.1) is still true at rank n` 1 in this second case where n2 ą n ě n1, which ends

the proof of Fact 3.5. �

Fact 3.6. For every P P Cn0rzs, we have Bn2`1P “ 0.

Proof. Fact 3.5 applied to n “ n2 yields that

Bn2`1P “ B

˜

n1
ÿ

k“0

εkzkpn0`1qAn2´k
0 P ` εn1`1

n2
ÿ

k“n1`1

zkpn0`1qAn2´k
0 P

¸

“ An2`1
0 P ` εzn0`1An2

0 P `
n1
ÿ

k“1

εk`1zpk`1qpn0`1qAn2´k
0 P

` εn1`1
n2´1
ÿ

k“n1`1

zpk`1qpn0`1qAn2´k
0 P ´ εn1`1

n1
ÿ

m“0

1

εn1´m`1
zmpn0`1qAn2`1´m

0 P

´ εn1`1
n2
ÿ

m“n1`1

zmpn0`1qAn2`1´m
0 P.

Writing the sum

εn1`1
n1
ÿ

m“0

1

εn1´m`1
zmpn0`1qAn2`1´m

0 P

as

An2`1
0 P `

n1´1
ÿ

m“0

εm`1zpm`1qpn0`1qAn2´m
0 P,

and the sum

εn1`1
n2
ÿ

m“n1`1

zmpn0`1qAn2`1´m
0 P

as

εn1`1zpn1`1qpn0`1qAn2´n1
0 P ` εn1`1

n2´1
ÿ

m“n1`1

zpm`1qpn0`1qAn2´m
0 P,

we obtain that Bn2`1P “ 0, which proves Fact 3.6. �

We are now ready to prove the next fact.
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Fact 3.7. We have Bn2`1 “ 0.

Proof. Let us first check that the family p1, . . . , zn0 , B1, . . . , Bzn0 , . . . , Bn21, . . . , Bn2zn0q

is a basis of Cpn0`1qpn2`1q´1rzs. Suppose that
řn2
k“0

řn0
j“0 λk,jB

kzj “ 0 for some complex

numbers λk,j . Applying Bn2 to this equality, we obtain by Fact 3.6 that
řn0
j“0 λ0,jB

n2zj “

0. Fact 3.5 then implies that

n0
ÿ

j“0

λ0,j

˜

n1
ÿ

k“0

εkzkpn0`1qAn2´k
0 zj ` εn1`1

n2
ÿ

k“n1`1

zkpn0`1qAn2´k
0 zj

¸

“ 0(3.2)

so that the two polynomials

n0
ÿ

j“0

λ0,j

˜

n1
ÿ

k“0

εkzkpn0`1qAn2´k
0 zj ` εn1`1

n2´1
ÿ

k“n1`1

zkpn0`1qAn2´k
0 zj

¸

and

´εn1`1
n0
ÿ

j“0

λ0,jz
n2pn0`1qzj

are equal. For 0 ď k ď n2 ´ 1 and 0 ď j ď n0, the degree of zkpn0`1qAn2´k
0 zj is less than

n2pn0 ` 1q ´ 1 while the degree of zn2pn0`1q`j is strictly greater than n2pn0 ` 1q ´ 1. It

follows that
řn0
j“0 λ0,jz

n2pn0`1q`j “ 0, and so that λ0,0 “ ¨ ¨ ¨ “ λ0,n0 .

Suppose now that λ0,0 “ ¨ ¨ ¨ “ λ0,n0 “ ¨ ¨ ¨ “ λl,0 “ ¨ ¨ ¨ “ λl,n0 for some 0 ď l ă n2. We

know that
řn2
k“l`1

řn0
j“0 λk,jB

kzj “ 0, and we apply Bn2´pl`1q to this equality. We then

obtain as previously that λl`1,0 “ ¨ ¨ ¨ “ λl`1,n0 . By induction, λj,k “ 0 for all j and k, and

p1, . . . , zn0 , B1, . . . , Bzn0 , . . . , Bn21, . . . , Bn2zn0q is indeed a basis of Cpn0`1qpn2`1q´1rzs.

Now, writing any polynomial P P Cpn0`1qpn2`1q´1rzs as P “
řn2
k“0

řn0
j“0 µk,jB

kzj , we

obtain Bn2`1P “ 0. This proves Fact 3.7. �

The last step in our proof of Proposition 3.2 is the following Fact 3.8, which shows that

the operator B belongs to V for suitably chosen n1, n2 and ε ą 0.

Fact 3.8. There exist integers n1 and n2 large enough and ε ą 0 small enough such that

the operator B belongs to V.

Proof. Since n0 ě K, we have Bzj “ A0z
j ` εzj for every j “ 0, . . . ,K, and thus

NrpBz
j ´Azjq ď NrpBz

j ´A0z
jq `NrpA0z

j ´Azjq

ď εrj `NrpA0z
j ´Azjq.

Since A0 belongs to V, we have NrpA0z
j ´ Azjq ă ε0 for every j “ 0, . . . ,K. One can

choose ε ą 0 small enough, so as to ensure that NrpBz
j ´ Azjq ă ε0 also holds for every

j “ 0, . . . ,K. Therefore, to demonstrate that B belongs to V, the main problem is to

show that B belongs to LpMjq,pkjq for suitable choices of the integers n1 and n2 (which will

have to be large) and of the real number ε ą 0 (which must be sufficiently small).

Since
Mj

jn0`1 Ñ `8 as j Ñ `8, there exists an integer j0 P N such that jn0`1 ďMj for

all j ě j0, and provided that j0 is large enough, we also have M1k
n0
1

1

j
n0`1
0

ă 1. Once j0 is

fixed, we choose n1, n2 and ε as follows:
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(i) Since kj ą j for all j, we can first choose an integer n1 sufficiently large, so that

jn0`1
0

ˆ

j

kj

˙pn1`1qpn0`1q

ďMj for every 1 ď j ď j0.

(ii) We next choose ε ą 0 satisfying the following two properties:

0 ă ε ď δ and εj2n0`1
0 ď δ min

1ďjăj0
Mj .

(iii) Let c0 :“
ř`8
m“0

ˆ

M1k
n0
1

1

j
n0`1
0

˙m

ă `8. We choose an integer j1 ą j0 such that

c0
1

εn1`1
M1k

n0
1

1

j1
ă 1.

(iv) Lastly, using again the assumption that kj ą j for all j ě 1 and that M1 ă k1, we

choose an integer n2 sufficiently large, such that

(a) c0
1

εn1`1M1k
n0
1

´

j
kj

¯n2pn0`1q
1
j ă 1 for every j0 ď j ă j1;

(b) n2`1
εn1`1

´

j
kj

¯n2pn0`1q
pmax1ďiďj0 kiq

n0 ă 1 for every 1 ď j ď j0;

(c) n2`1
εn1`1k

n0
1

´

M1
k1

¯n2

ă 1.

For these choices of the parameters n1, n2 and ε ą 0, we will prove that NjpBz
mq ď

Mjk
m
j for every integer m with 0 ď m ď pn2 ` 1qpn0 ` 1q ´ 1 and every j ě 1. Since

Bzm “ 0 for all m ě pn2 ` 1qpn0 ` 1q, this will imply that B belongs to LpMjq,pkjq.

We fix j ě 1, and separate the proof into four cases.

Case 1 : 1 ď m ď n0.

We have Bzm “ A0z
m ` εzn0`1`m so NjpBz

mq ď NjpA0z
mq ` εNjpz

n0`1`mq. Notice

that

NjpA0z
mq “ p1´ δqNjpTn0ATn0z

mq ď p1´ δqNjpAz
mq ď p1´ δqMjk

m
j

from which we deduce that

NjpBz
mq ď p1´ δqMjk

m
j ` εj

n0`1`m.

If j ě j0, then jn0`1 ď Mj so NjpBz
mq ď p1 ´ δ ` εqMjk

m
j and since δ ě ε, we get

NjpBz
mq ďMjk

m
j .

If 1 ď j ă j0, NjpBz
mq ď p1 ´ δqMjk

m
j ` εj2n0`1

0 and by (ii) we also have that

NjpBz
mq ďMjk

m
j .

Case 2: pn1 ` 1qpn0 ` 1q ď m ď n2pn0 ` 1q ´ 1.

In this case we have Bzm “ zm`n0`1 so NjpBz
mq “ jm`n0`1.

If j ě j0, we have jn0`1 ďMj and kj ą j, so NjpBz
mq ďMjk

m
j .

If 1 ď j ă j0,

NjpBz
mq “ jn0`1

ˆ

j

kj

˙m

kmj ď jn0`1
0

ˆ

j

kj

˙pn1`1qpn0`1q

kmj ďMjk
m
j

where the last inequality follows from (i).

Case 3: pn0 ` 1q ď m ď pn1 ` 1qpn0 ` 1q ´ 1.
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For these values of m we have Bzm “ εzm`n0`1 so NjpBz
mq “ εjm`n0`1.

If j ě j0, we have jn0`1 ďMj , kj ą j and ε ă 1, so NjpBz
mq ďMjk

m
j .

If 1 ď j ă j0,

NjpBz
mq ď εjn0`1

0 jm ďMjk
m
j

where the last inequality follows from (ii) and from the fact that j ă kj .

Case 4: n2pn0 ` 1q ď m ď pn2 ` 1qpn0 ` 1q ´ 1.

We write m as m “ n2pn0 ` 1q ` l with 0 ď l ď n0. In this case we have that

Bzm “ ´
n1
ÿ

i“0

1

εn1´i`1
zpn0`1qiAn2´i`1

0 zl ´
n2
ÿ

i“n1`1

zpn0`1qiAn2´i`1
0 zl

and since 0 ă ε ă 1, it follows that

NjpBz
mq ď

1

εn1`1

n2
ÿ

i“0

Nj

´

zpn0`1qiAn2´i`1
0 zl

¯

“
1

εn1`1

n2
ÿ

i“0

jpn0`1qiNj

´

An2´i`1
0 zl

¯

.

Next we will estimate the norms of the iterates of A0. The main difficulty with this

estimate comes from the fact that given a polynomial P , the quantity NjpA0P q can be

controlled by Nkj pP q only, and not by NjpP q.

We remark that if P is a polynomial of degree at most d, we have NjpP q ď jdN1pP q.

Thus for any polynomial P of degree at most n0, we have N1pA0P q ď M1k
n0
1 N1pP q. It

follows that

N1pA
n
0P q ď pM1k

n0
1 q

nN1pP q for every n ě 0.(3.3)

– We consider first the case where j ě j0. For every 0 ď i ď n2 and every 0 ď l1 ď n0,

(3.3) gives

Nj

´

An2´i`1
0 zl

1
¯

ď jn0N1

´

An2´i`1
0 zl

1
¯

ď jn0 pM1k
n0
1 q

n2´i`1 .

It then follows that

Nj pBz
mq ď

1

εn1`1

n2
ÿ

i“0

jpn0`1qijn0pM1k
n0
1 q

n2´i`1

“
jpn0`1qpn2`1q`n0

εn1`1

n2
ÿ

i“0

ˆ

M1k
n0
1

1

jn0`1

˙n2´i`1

.

By the definition of c0 given in (iii), we get

Nj pBz
mq ď

jpn0`1qpn2`1q`n0

εn1`1
c0M1k

n0
1

1

jn0`1
¨

Since kj ě 1 and m ě n2pn0 ` 1q it follows that

Nj pBz
mq ďMjk

m
j c0

1

εn1`1
M1k

n0
1

ˆ

j

kj

˙n2pn0`1q jn0

Mj
,
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and using the fact that Mj ě jn0`1 (because j ě j0), it follows that

Nj pBz
mq ďMjk

m
j c0

1

εn1`1
M1k

n0
1

ˆ

j

kj

˙n2pn0`1q 1

j
¨

If j ě j1, using that j
kj
ď 1 as well as property (iii), we get that Nj pBz

mq ďMjk
m
j .

If j0 ď j ă j1, (iv)-(a) gives the inequality Nj pBz
mq ďMjk

m
j .

– It now remains to consider the integers j such that 1 ď j ă j0. For all polynomials P

of degree at most n0 we have

NjpA0P q ď p1´ δqMjNkj pP q ď p1´ δqMjkj
n0N1pP q,

from which it follows that

NjpBz
mq ď

1

εn1`1

n2
ÿ

i“0

jpn0`1qiNj

´

An2´i`1
0 zl

¯

ď
1

εn1`1

n2
ÿ

i“0

jpn0`1qip1´ δqMjkj
n0N1

´

An2´i
0 zl

¯

.

We use p3.3q in order to get N1

´

An2´i
0 zl

¯

ď pM1k
n0
1 q

n2´i and

NjpBz
mq ď

1

εn1`1
Mjkj

n0

n2
ÿ

i“0

jpn0`1qi pM1k
n0
1 q

n2´i

“
1

εn1`1
Mjkj

n0jn2pn0`1q
n2
ÿ

i“0

ˆ

M1k
n0
1

1

jn0`1

˙n2´i

.

If M1k
n0
1

1
jn0`1 ď 1, we obtain

NjpBz
mq ď

1

εn1`1
Mjkj

n0jn2pn0`1qpn2 ` 1q “Mjkj
mn2 ` 1

εn1`1

jn2pn0`1q

k
n2pn0`1q`l´n0

j

ďMjkj
mn2 ` 1

εn1`1

ˆ

j

kj

˙n2pn0`1qˆ

max
1ďiďj0

ki

˙n0

.

Then condition (iv)-(b) implies that NjpBz
mq ďMjk

m
j .

In the case where M1k
n0
1

1
jn0`1 ě 1, we have

NjpBz
mq ď

1

εn1`1
Mjkj

n0jn2pn0`1qpn2 ` 1q

ˆ

M1k
n0
1

1

jn0`1

˙n2

“Mjkj
mn2 ` 1

εn1`1
kn0´l
1

ˆ

M1

k1

˙n2 k
n2pn0`1q`l´n0

1

k
n2pn0`1q`l´n0

j

ďMjkj
mn2 ` 1

εn1`1

ˆ

M1

k1

˙n2

kn0´l
1

where the last inequality comes from the fact that kj ě k1. Now (iv)-(c) gives that

NjpBz
mq ďMjk

m
j . This shows for every j ě 1 and every m ě 0 that NjpBz

mq ďMjk
m
j ,

and Fact 3.8 is thus proved. �
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Combining Facts 3.7 and 3.8 concludes the proof of Proposition 3.2. �

What we actually need in the proof of Theorem 1.1 is that operators of the form

B ` δSn`1 are dense in LpMjq,pkjq, for δ P p0, 1q and B P LpMjq,pkjq nilpotent such that

B “ TnBTn. The following corollary shows that this is an easy consequence of Proposition

3.2.

Corollary 3.9. Let pMjqjě1 be a sequence of positive real numbers, and let pkjqjě1 be a

sequence of positive integers such that

(i) for all α ě 1, jα “ opMjq as j tends to infinity;

(ii) kj ą j for every j ě 1;

(iii) M1 ă k1 and kj ě k1 for every j ě 1.

Let A be an operator belonging to LpMjq,pkjq and let V be an SOT-neighborhood of A in

LpMjq,pkjq. Then there exist B P LpMjq,pkjq, δ P p0, 1q and n ě 1 such that B “ TnBTn,

Bn`1 “ 0 and B ` δSn`1 belongs to V.

Proof. We denote by B1 P V a nilpotent operator with B1 “ TnB
1Tn for some integer

n ě 1, given by Proposition 3.2. If δ P p0, 1q is sufficiently small, p1´δqB1`δSn`1 belongs

to V, B “ p1´ δqB1 belongs to LpMjq,pkjq and it satisfies B “ TnBTn and Bn`1 “ 0. �

4. Density of hypercyclic operators

Our aim in this section is to prove the following theorem.

Theorem 4.1. Let pMjqjě1 be a sequence of positive real numbers, and let pkjqjě1 be a

sequence of positive integers such that Mj ě j ` 1 and kj ě j ` 2 for every j ě 1. Then

the set of hypercyclic operators is a dense Gδ subset of pLpMjq,pkjq, SOTq.

The statement of Theorem 4.1 is not strictly necessary for the proof of Theorem 1.1.

However, we will subsequently make use of many of the ingredients of its proof, in par-

ticular of the expression and the properties of the eigenvectors of operators of the form

B ` δSn`1, where B “ TnBTn (cf. Proposition 3.1).

Proof. Let us begin by proving that the set of hypercyclic operators is Gδ in LpMjq,pkjq.

The argument for this is classical (cf. [17, Corollary 2.2]). Let pUpqpě1 be a countable basis

of open sets of HpCq. The set of hypercyclic operators in LpMjq,pkjq can be expressed as

G “
!

T P LpMjq,pkjq ; @p, q ě 1 Du P Up DN ě 1 such that TNu P Uq
)

“
č

p,qě1

ď

Ně1

!

T P LpMjq,pkjq ; Du P Up such that TNu P Uq
)

.

To establish that G is a Gδ set, it suffices to prove that, for all p, q and N , the set

Gp,q,N :“
!

T P LpMjq,pkjq ; Du P Up such that TNu P Uq
)

is SOT-open. This is a consequence of the following claim:

Claim 4.2. For every integer N ě 1 and every function u P HpCq, the map φN,u : T ÞÑ

TNu from LpMjq,pkjq into HpCq is SOT-continuous.
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We take the claim for granted for the moment. Let T0 belong to Gp,q,N . Choose u P Up
such that TN0 u belongs to Uq. Then φ´1N,upUqq is an SOT-open set contained in Gp,q,N
containing T0. Therefore Gp,q,N is indeed SOT-open, and G is an SOT-Gδ set, provided the

claim holds.

Proof of Claim 4.2. Let pTnq be a sequence of elements of LpMjq,pkjq that SOT-converges

to T . For every j ě 0, define κpjq :“ kj . Note that for all S P LpMjq,pkjq, all l ě 1, all

f P HpCq and all j ě 1, we have

NjpS
lfq ď

˜

l
ź

m“1

Mκm´1pjq

¸

Nκlpjqpfq,(4.1)

where κmpjq “ κ ˝ ¨ ¨ ¨ ˝ κ pjq, j ě 0, is the composition of the function κ with itself m

times. Now we express φN,upTnq ´ φN,upT q as follows:

φN,upTnq ´ φN,upT q “
N
ÿ

l“1

´

T lnT
N´lu´ T l´1n TN´l`1u

¯

“

N
ÿ

l“1

T l´1n pTn ´ T qT
N´lu.

Thus, by (4.1), we have for all j ě 1 that

Nj pφN,upTnq ´ φN,upT qq ď
N
ÿ

l“1

Nj

´

T l´1n pTn ´ T qT
N´lu

¯

ď

N
ÿ

l“1

˜

l´1
ź

m“1

Mκm´1pjq

¸

Nκl´1pjq

´

pTn ´ T qT
N´lu

¯

.

Since N ě 1 and u P HpCq are fixed, and since the sequence pTnqn SOT-converges to

T , we have Nκl´1pjq

`

pTn ´ T qT
N´lu

˘

ÝÑ 0 as n Ñ `8 for every l “ 1, . . . , N . Thus

Nj pφN,upTnq ´ φN,upT qq ÝÑ 0, proving the claim. �

Next we prove that hypercyclic operators are SOT-dense in LpMjq,pkjq. To this end,

by Proposition 3.1 it suffices to prove that the operators B ` δSn`1, with n ě 0 and

B “ TnBTn, are hypercyclic.

The general strategy of the proof is the following: we will show (cf. Lemma 4.5 below)

that if a subset A of C has an accumulation point in C, then the linear span of entire

functions f which satisfy pB ` δSn`1qf “ λf for some λ P A is dense in HpCq. The

Godefroy-Shapiro Criterion (cf. for instance [20, Theorem 3.1]) will then imply that B `

δSn`1 is hypercyclic, and thus Theorem 4.1 will follow.

Our first task is to describe the eigenvectors of B ` δSn`1. For n ě 0, we denote by

Πn`1 : Cn`1 Ñ C the canonical projection defined by Πn`1pz0, . . . , znq “ zn for every

pz0, . . . , znq P Cn`1. For λ P C, let Mλ be the pn` 1q-square matrix defined as

Mλ “

¨

˚

˚

˚

˚

˚

˚

˚

˝

0 ¨ ¨ ¨ ¨ ¨ ¨ 0 pn`1q!
δ λ

1
. . . 0 0

0
. . .

. . .
...

...
. . .

. . .
. . .

...

0 ¨ ¨ ¨ 0 1 0

˛

‹

‹

‹

‹

‹

‹

‹

‚

.
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We begin by proving the following lemma.

Lemma 4.3. Let B be a continuous linear operator on HpCq and let δ ą 0. Suppose that

there exists n ě 0 such that B “ TnBTn. Then for every polynomial P P Cnrzs and every

λ P C, the entire function fλ,P defined by

fλ,P pzq “P pzq `Πn`1

˜

ż

r0,zs

pn` 1q!

δ
expppz ´ tqMλq

`

p´B ` λIqP ptq, 0, . . . , 0
˘

dt

¸

is the only eigenvector of B ` δSn`1 associated to the eigenvalue λ such that Tnfλ,P “ P .

In particular, dim kerpB ` δSn`1 ´ λIq “ n` 1.

Proof of Lemma 4.3. Let f belong to HpCq. We set P “ Tnf and g “ f ´ P . Since

B “ TnBTn and Tng “ 0, we have that Bg “ 0. Therefore pB` δSn`1qf “ λf if and only

if BP ` δSn`1g “ λg ` λP .

Thus g is a solution of the ordinary differential equation

pEq :

#

yn`1 ´ λ pn`1q!δ y “ pn`1q!
δ pλI ´BqP

ypnqp0q “ ¨ ¨ ¨ “ yp0q “ 0.

Hence there exists a unique eigenvector fλ,P of B ` δSn`1 associated to the eigenvalue

λ such that Tnfλ,P “ P . It has the form fλ,P “ P ` g, where g is the unique solution of

pEq.

As usual, in order to solve the differential equation pEq, one sets Y “ pypnq, . . . , yq.

Then y is a solution of pEq if and only if Y is a solution of the system

pE1q :

$

&

%

Y 1 “MλY `
pn`1q!
δ

´

p´B ` λIqP ptq, 0, . . . , 0
¯

Y p0q “ 0.

The unique solution of pE1q is given by

Y pzq “

ż

r0,zs

pn` 1q!

δ
expppz ´ tqMλq

`

p´B ` λIqP ptq, 0, . . . , 0
˘

dt

which yields the expression of fλ,P as given in the statement of Lemma 4.3. �

We will need a more explicit expression of fλ,P when P describes the canonical basis

P0, . . . , Pn of Cnrzs, with Plpzq “ zl, l “ 0, . . . , n. For i, j “ 0, . . . , n, let aij P C be such

that

Bzj “
n
ÿ

i“0

aijz
i for every 0 ď j ď n.

We also set, for j “ 0, . . . , n and l ě 1,

α
pjq
l “

j
ÿ

m“0

ˆ

j

m

˙

p´1qm

pn` 1ql `m
and α

pjq
0 “ 1.
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Lemma 4.4. Let B be a continuous linear operator on HpCq and let δ ą 0. Suppose that

there exists n ě 0 such that B “ TnBTn. Then we have for every i “ 0, . . . , n

fλ,Pipzq “ zi `
`8
ÿ

l“0

˜

ˆ

pn` 1q!

δ

˙l`1 1

ppn` 1ql ` nq!

˜

λl`1α
piq
l`1z

i`pn`1qpl`1q

´λl
n
ÿ

j“0

ajiz
pn`1qpl`1q`jα

pjq
l`1

¸¸

.

Proof of Lemma 4.4. We define the matrices J pjq “
´

J
pjq
m,l

¯

1ďm,lďn`1
, for j “ 0, . . . , n, by

setting

J
pjq
m,l “

#

1, for m “ j ` 1, . . . , n` 1 and l “ m´ j

0, otherwise

and N pjq “
´

N
pjq
m,l

¯

1ďm,lďn`1
, for j “ 1, . . . , n, by setting

N
pjq
m,l “

#

1, for m “ 1, . . . , n` 1´ j and l “ j `m

0, otherwise

with N pn`1q “ 0.

We then have, for every j “ 0, . . . , n and every l ě 0 that

M
pn`1ql`j
λ “

ˆ

λ
pn` 1q!

δ

˙l ˆ

J pjq ` λ
pn` 1q!

δ
N pn`1´jq

˙

,

which implies that

exp ppz ´ tqMλq “

`8
ÿ

l“0

˜

n
ÿ

j“0

pz ´ tqpn`1ql`j

ppn` 1ql ` jq!

ˆ

λ
pn` 1q!

δ

˙l ˆ

J pjq ` λ
pn` 1q!

δ
N pn`1´jq

˙

¸

.

It then follows from Lemma 4.3 that

fλ,Pipzq “ zi `

ż

r0,zs

`8
ÿ

l“0

pz ´ tqpn`1ql`n

ppn` 1ql ` nq!

ˆ

pn` 1q!

δ

˙l`1

λl

˜

λti ´
n
ÿ

j“0

ajit
j

¸

dt.

In order to compute the above integral, we decompose tj as tj “
řj
m“0

`

j
m

˘

zj´mpt´ zqm

and thus obtain that the integral in the expression above is equal to
ż

r0,zs

`8
ÿ

l“0

˜

p´1qpn`1ql`n

ppn` 1ql ` nq!

ˆ

pn` 1q!

δ

˙l`1

λl

˜

λ
i
ÿ

m“0

ˆ

i

m

˙

zi´mpt´ zqpn`1ql`n`m

´

n
ÿ

j“0

aji

j
ÿ

m“0

ˆ

j

m

˙

zj´mpt´ zqpn`1ql`n`m

¸¸

dt

“

`8
ÿ

l“0

˜

p´1qpn`1qpl`1q

ppn` 1ql ` nq!

ˆ

pn` 1q!

δ

˙l`1

λl

˜

λ
i
ÿ

m“0

ˆ

i

m

˙

zi´mp´zqpn`1qpl`1q`m

pn` 1qpl ` 1q `m

´

n
ÿ

j“0

aji

j
ÿ

m“0

ˆ

j

m

˙

zj´mp´zqpn`1qpl`1q`m

pn` 1qpl ` 1q `m

¸¸

.
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This then yields that

fλ,Pipzq “ zi `
`8
ÿ

l“0

˜

1

ppn` 1ql ` nq!

ˆ

pn` 1q!

δ

˙l`1
˜

α
piq
l`1λ

l`1zi`pn`1qpl`1q

´λl
n
ÿ

j“0

α
pjq
l`1ajiz

pn`1qpl`1q`j

¸¸

,

which is exactly the expression given in Lemma 4.4. �

Our last task is to prove the density of the vector space spanned by the functions fλ,P ,

where P ranges over P P Cnrzs and λ ranges over a certain subset A of C having an

accumulation point in C.

Lemma 4.5. Let B be a continuous linear operator on HpCq such that B “ TnBTn for

some n ě 0 and let δ ą 0. For every subset A of C which has an accumulation point in

C, the vector space

span

«

ď

λPA
kerpB ` δSn`1 ´ λIq

ff

is dense in HpCq.

Proof of Lemma 4.5. We proceed as in the proof of [14, Theorem 5.1]. Let Λ be a con-

tinuous linear functional on HpCq that vanishes on each function fλ,P , λ P A, P P Cnrzs.
The lemma will be proved as soon as we show that Λ “ 0. As in [14], we use the fact that

there exists a complex Borel measure µ on C, supported on a disk of radius r ą 0 and

centered at the origin, such that for every f P HpCq

Λpfq “

ż

C
fdµ.

For 0 ď j ď n and l ě 0, we set

u
pjq
l “

ż

C
zpn`1ql`jdµpzq.

We aim to prove for all j and l, that u
pjq
l “ 0. The continuity of Λ will then imply that

Λ “ 0.

For every polynomial P P Cnrzs, we define FP : CÑ C by setting

FP pλq “

ż

C
fλ,Pdµ, λ P C.

On the one hand, since Λpfλ,P q “ 0 “
ş

C fλ,Pdµ for every λ P A and every P P Cnrzs, we

have FP pλq “ 0 for every λ P A.

On the other hand, since fλ,P depends holomorphically on λ by Lemma 4.3, and since µ

is compactly supported, differentiation under the integral sign shows that FP is an entire

function. Since A has an accumulation point, we deduce that FP “ 0. In particular, for

every P P Cnrzs and every l ě 0,

F
plq
P p0q “

ż

C

Blfλ,P
Bλl

ˇ

ˇ

ˇ

ˇ

λ“0

dµ “ 0.
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We will now show that the values of the u
pjq
l ’s are linked to those of the derivatives

F
plq

zj
p0q. In order to do this, we need to compute the successive derivatives of fλ,zj with

respect to λ at the point λ “ 0.

We continue to denote by B the pn`1q-square matrix B “ paijq1ďi,jďn`1, i.e. the matrix

of the restriction of the operator B to Cnrzs with respect to the canonical basis of Cnrzs.
We also denote by Ũl the vector Cn`1 defined by Ũl “ pα

p0q
l u

p0q
l , α

p1q
l u

p1q
l , . . . , α

pnq
l u

pnq
l q.

From Lemma 4.4 we deduce that

FPip0q “ u
piq
0 ´

pn` 1q!

δ

1

n!

n
ÿ

j“0

ajiα
pjq
1 u

pjq
1 for every i “ 0, . . . n,

and since FPip0q “ 0 for i “ 0, . . . , n we get that

Ũ0 “
pn` 1q!

δn!
ᵀBŨ1,

where the notation ᵀB denotes the transpose of the matrix B. For l ě 1, we differentiate

with respect to λ the expression given in Lemma 4.4 and obtain that for every i “ 0, . . . , n,

BlFPi
Bλl

p0q “

ˆ

pn` 1q!

δ

˙l ˆ l!

ppn` 1qpl ´ 1q ` nq!
α
piq
l u

piq
l

´
pn` 1q!

δ

l!

ppn` 1ql ` nq!

n
ÿ

j“0

ajiα
pjq
l`1u

pjq
l`1

¸

“ 0

from which we deduce that

Ũl “
pn` 1q!

δ

ppn` 1qpl ´ 1q ` nq!

ppn` 1ql ` nq!
ᵀBŨl`1.

It follows that for every m ě 0 and every l ě 0,

Ũl “

ˆ

pn` 1q!

δ

˙m
ppn` 1qpl ´ 1q ` nq!

ppn` 1qpl `m´ 1q ` nq!
ᵀBmŨl`m,

with the convention that p´1q! “ 1.

If we denote by } ¨ } the sup norm on Cn`1 and by |||¨||| the norm on pn ` 1q square

matrices subordinated to this norm, we get that
›

›

›
Ũl

›

›

›
ď

ˆ

pn` 1q!

δ

˙m
ppn` 1qpl ´ 1q ` nq!

ppn` 1qpl `m´ 1q ` nq!
|||ᵀB|||m

›

›

›
Ũl`m

›

›

›
for every l,m ě 0.

We now observe that for every j “ 0, . . . , n and every l ě 1, we have

α
pjq
l “

j
ÿ

m“0

ˆ

j

m

˙

p´1qm

pn` 1ql `m
“

ż 1

0

j
ÿ

m“0

ˆ

j

m

˙

p´1qmtpn`1ql`m´1dt

“

ż 1

0
tlpn`1q´1pt´ 1qjdt,

so that 0 ď α
pjq
l ď 1 for every l ě 1. Recall also that α

pjq
0 “ 1.
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On the other hand, remembering that µ is supported on the disc centered at 0 and of

radius r (which may be assumed to be bigger than 1), we have
ˇ

ˇ

ˇ
u
pjq
l

ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ

ˇ

ż

C
zpn`1ql`jdµpzq

ˇ

ˇ

ˇ

ˇ

ď rpn`1ql`j |µ|pCq for every j “ 0, . . . , n and l ě 0.

It thus follows that
›

›

›
Ũl

›

›

›
ď

ˆ

pn` 1q!

δ

˙m
ppn` 1qpl ´ 1q ` nq!

ppn` 1qpl `m´ 1q ` nq!
|||ᵀB|||mrpn`1qpl`mq`n|µ|pCq.

Letting m go to infinity, we conclude that Ũl “ 0. Thus u
pjq
l “ 0 for all j, l ě 0, from

which it follows that Λ “ 0. Lemma 4.5 is thus proved. �

As explained at the beginning of the proof of Theorem 4.1, Lemma 4.5 combined with

the Godefroy-Shapiro Criterion allows us to conclude that operators in LpMjq,pkjq of the

form B`δSn`1, with δ ą 0, n ě 0 and B “ TnBTn, are hypercyclic. Hypercyclic operators

are thus dense in pLpMjq,pkjq, SOTq. We have already observed that the set of hypercyclic

operators is Gδ in pLpMjq,pkjq, SOTq, so this concludes the proof of Theorem 4.1. �

5. Operators supporting a hypercyclic algebra: proof of Theorem 1.1

A last crucial step in the proof of Theorem 1.1 is the following result.

Theorem 5.1. Let B be a continuous linear operator on HpCq such that there exists

n ě 0 which satisfies B “ TnBTn. Suppose also for every j ě 0 that the sequence

pBmzjqm converges to 0 in HpCq as m goes to infinity. Then for every δ P p0, 1q, the

operator A “ B ` δSn`1 supports a hypercyclic algebra.

To prove Theorem 5.1, we will apply [2, Lemma 1.6] (cf. also [3, Corollary 2.4]), which

provides a useful “Birkhoff-type Criterion” for proving that an operator admits a hyper-

cyclic algebra.

Lemma 5.2 ([2]). Let A be a continuous operator on a separable, metrizable and complete

topological algebra X. Assume that for any pair pU ,Vq of nonempty open sets in X, any

neighborhood W of 0 in X, and for any integer m ě 1, one can find a vector u P U and an

integer N ě 0 such that AN pujq belongs to W for every 1 ď j ă m and AN pumq belongs

to V. Then A supports a hypercyclic algebra.

In [2], this criterion is applied in the following way: the vector u is found in a dense linear

subspace of the space X spanned by holomorphic vector fields pEλqλPC of eigenvectors of

A. To compute AN pujq, we require that these eigenvector fields be multiplicative, i.e. that

Eλ`µ “ Eλ ¨ Eµ for every λ and µ in C. In our case, the product of two eigenvectors is

not necessarily an eigenvector. To overcome this obstacle, we will introduce multiplicative

vector fields whose powers are close to powers of eigenvectors fields. It is here that the

assumption that the sequences pBmzjqm, j ě 0, converge to 0 in HpCq plays a crucial role.

We begin by giving a simpler expression for some of the eigenvectors exhibited in Lemma

4.3. Let B be an operator satisfying the hypothesis of Theorem 5.1 and let A be the
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operator A “ B ` δSn`1, with δ P p0, 1q. For every α P C, we denote by eα the function

defined by eαpzq “ exppαzq, z P C. We also set

x0 “

ˆ

pn` 1q!

δ

˙
1

n`1

,

and we denote by φ the function defined by

φpzq “

ˆ

z

x0

˙n`1

“
δ

pn` 1q!
zn`1 for every z P C.

For every β P Czφ´1 pσ pBqq, where σ pBq denotes the spectrum of the operator B acting

on HpCq, we put

εβ “ eβ ` pφpβqI ´Bq
´1Beβ.

We note that σ pBq is finite. Keeping in mind that Bεβ is a polynomial of degree at most

n, we have

Aεβ “
δ

pn` 1q!
βn`1eβ `Beβ `B pφpβqI ´Bq

´1Beβ

“ φpβqeβ ` φpβq pφpβqI ´Bq
´1Beβ `Beβ ´ pφpβqI ´Bq pφpβqI ´Bq

´1Beβ

“ φpβqεβ,

i.e. εβ is an eigenvector of A associated to the eigenvalue φpβq.

We now prove the following density lemma.

Lemma 5.3. Let B be a subset of C which has an accumulation point and is such that

βe
2iπj
n`1 belongs to B for every 0 ď j ď n and every β P B. Then the linear vector space

span
“

εβ ; β P Bzφ´1 pσ pBqq
‰

is dense in HpCq.

Proof. We will show that for every β P Bzφ´1 pσ pBqq, we have

span
”

εβ1 ; β1 “ βe
2iπj
n`1 , j “ 0, . . . , n

ı

“ kerpA´ φpβqIq.

Then, since for every β P Bzφ´1 pσ pBqq and every 0 ď j ď n the complex numbers βe
2iπj
n`1

still belong to Bzφ´1 pσ pBqq, it will follow that

span

»

–

ď

λPφpBqzσpBq
kerpA´ λIq

fi

fl “ span
“

εβ ; β P Bzφ´1 pσ pBqq
‰

.

Since φpBqzσ pBq has an accumulation point in C, Lemma 4.5 will imply that the linear

vector space spanned by the family
 

εβ ; β P Bzφ´1 pσ pBqq
(

is dense in HpCq.

So, let β belong to Bzφ´1 pσ pBqq, and set βj “ βe
2iπj
n`1 , j “ 0, . . . , n. We will check that

the functions εβ0 , . . . , εβn are linearly independent in HpCq. Since for every j “ 0, . . . , n

the function εβj is an eigenvector of A associated to the eigenvalue φpβq, and since, by

Lemma 4.3, dim kerpA´ φpβqIq “ n` 1, Lemma 5.3 will thus be proven.

Let γ0, . . . , γn be n`1 complex numbers such that
řn
j“0 γjεβj “ 0. Since for every j the

function εβj is the sum of eβj and a polynomial of degree at most n, differentiating n` 1
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times the latter sum we get that
řn
j“0 β

n`1γjeβj “ 0. Since φp0q “ 0 is an eigenvalue of

B, βn`1 ‰ 0, and we thus have
řn
j“0 γjeβj “ 0. Now since eβ0 , . . . , eβn are linearly inde-

pendent functions in HpCq, γ0 “ ¨ ¨ ¨ “ γj “ 0, and εβ0 , . . . , εβn are linearly independent.

Lemma 5.3 is thus proved. �

The vectors εβ, β P B, thus span a dense linear subspace of HpCq provided that B has

an accumulation point and is invariant by the rotation of angle 2π
n`1 . However, in general

it does not hold that εα ¨ εβ “ εα`β. In order to overcome this difficulty, we will take

advantage of the fact that, of course, eα ¨ eβ “ eα`β, and of the link between Ameβ and

Amεβ given by the following Fact 5.4.

Fact 5.4. For every β P Czφ´1 pσ pBqq and every m ě 0, we have

Ameβ “ φpβqmεβ ´ pφpβqI ´Bq
´1Bm`1eβ.(5.1)

Proof. By definition of εβ, we have the equality eβ “ εβ ´ pφpβqI ´Bq
´1Beβ. If we

assume for some integer m ě 0 that (5.1) is true, then, since pφpβqI ´Bq´1Bm`1eβ is a

polynomial of degree at most n, we have

Am`1eβ “ φpβqmAεβ ´B pφpβqI ´Bq
´1Bm`1eβ

“ φpβqm`1εβ ´ pφpβqI ´Bq
´1Bm`2eβ.

Therefore, by induction, (5.1) is valid for every m ě 0. �

When pBmP qm converges to 0 for every polynomial P of degree at most n, Fact 5.4

implies that Ameβ is close to Amεβ “ φpβqmεβ. This will be a key element in showing

that A satisfies the assumptions of Lemma 5.2, cf. Lemma 5.6 below. In the proof of this

lemma, we will need Lemma 5.5, which can be compared to the beginning of the proof of

Theorem 2.1 in [2].

Lemma 5.5. Let m be a positive integer, and let η and ε be positive real numbers. To the

parameters η and ε we associate two subsets A and B of C defined as follows: A “ Dp0, ηq

is the open disk of center 0 and of radius η in C, and B is the set

B “
n
ď

j“1

tζjp1` itq ; t P r´η, ηsu

where ζj “ x0p1 ` εqe
2iπj
n`1 for every 0 ď j ď n. Then there exist η ą 0 and ε ą 0

sufficiently small such that for every j “ 1, . . . ,m, every d “ 0, . . . , j with d ‰ m, every

ξ̃1, . . . , ξ̃j´d P A and every ξ1, . . . , ξd P B, we have
ˇ

ˇ

ˇ

ˇ

φ

ˆ

ξ̃1 ` ¨ ¨ ¨ ` ξ̃j´d `
ξ1 ` ¨ ¨ ¨ ` ξd

m

˙ˇ

ˇ

ˇ

ˇ

ă 1,(5.2)

and for every l “ 1, . . . ,m and every ξ1, . . . , ξl P B which are not all equal, we have
ˇ

ˇ

ˇ

ˇ

φ

ˆ

ξ1 ` ¨ ¨ ¨ ` ξl
m

˙
ˇ

ˇ

ˇ

ˇ

ă |φpξ1q|
1
m ¨ ¨ ¨ |φpξlq|

1
m .(5.3)
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Proof. We first prove (5.3). We consider first the case where l ă m: in this case we have
ˇ

ˇ

ˇ

ˇ

ξ1 ` ¨ ¨ ¨ ` ξl
m

ˇ

ˇ

ˇ

ˇ

ď
m´ 1

m
x0p1` εqp1` ηq ă x0

as soon as ε and η are sufficiently small. Thus
ˇ

ˇ

ˇ

ˇ

φ

ˆ

ξ1 ` ¨ ¨ ¨ ` ξl
m

˙ˇ

ˇ

ˇ

ˇ

ă φpx0q “ 1.

On the other hand, for every i “ 1, . . . , l, |φpξiq| “ p1` εq
n`1 ą 1 for every ε ą 0. Thus

ˇ

ˇ

ˇ

ˇ

φ

ˆ

ξ1 ` ¨ ¨ ¨ ` ξl
m

˙ˇ

ˇ

ˇ

ˇ

ă |φpξ1q|
1
m ¨ ¨ ¨ |φpξlq|

1
m .

In the case where l “ m, we denote by ij the unique integer with 0 ď ij ď n such that

ξj “ ζij p1` itjq “ x0p1` εqe
2iπ
n`1

ij p1` itjq for some tj P r´η, ηs.

We first assume that the sequence pijq1ďjďm is not constant. Since the unit disc is

strictly convex, we have

α :“ sup

ˇ

ˇ

ˇ

ˇ

ˇ

1

m

m
ÿ

p“1

e
2iπ
n`1

jp

ˇ

ˇ

ˇ

ˇ

ˇ

ă 1

where the upper bound is taken over all the m-tuples of integers pj1, . . . , jmq lying between

0 and n which are not all equal. Hence if ε is sufficiently small
ˇ

ˇ

ˇ

ˇ

ζi1 ` ¨ ¨ ¨ ` ζim
m

ˇ

ˇ

ˇ

ˇ

ď αx0p1` εq ă x0.

By continuity, if η is sufficiently small (depending on ε but not on the ξj ’s), we have
ˇ

ˇ

ˇ

ˇ

ξ1 ` ¨ ¨ ¨ ` ξm
m

ˇ

ˇ

ˇ

ˇ

ă x0,

and as before this yields that
ˇ

ˇ

ˇ

ˇ

φ

ˆ

ξ1 ` ¨ ¨ ¨ ` ξm
m

˙ˇ

ˇ

ˇ

ˇ

ă 1 ď |φpξ1q|
1
m ¨ ¨ ¨ |φpξmq|

1
m .

Next, we assume that the sequence pijq1ďjďm is constant, i.e. ij “ i1 for every 1 ď

j ď m, and we consider the function ψ defined on R by ψptq “ ln |φ pζi1p1` itqq| “
n`1
2 lnp1 ` t2q ` pn ` 1q lnp1 ` εq. We have ψ2ptq “ pn ` 1q 1´t2

p1`t2q2
and if 0 ă η ă 1, the

function ψ is strictly convex on r´η, ηs. It follows that
ˇ

ˇ

ˇ

ˇ

φ

ˆ

ξ1 ` ¨ ¨ ¨ ` ξm
m

˙
ˇ

ˇ

ˇ

ˇ

ă |φpξ1q|
1
m ¨ ¨ ¨ |φpξmq|

1
m ,

and so (5.3) is shown in this case as well.

We now establish (5.2). Provided ε and η are sufficiently small, we have
ˇ

ˇ

ˇ

ˇ

ξ̃1 ` ¨ ¨ ¨ ` ξ̃j´d `
ξ1 ` ¨ ¨ ¨ ` ξd

m

ˇ

ˇ

ˇ

ˇ

ď pj ´ dqη `
dx0p1` εq

m

ď mη `
m´ 1

m
x0p1` εq ă x0

and (5.2) readily follows from these inequalities. �

Next, we finally prove that the operator A satisfies the hypothesis of Lemma 5.2.
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Lemma 5.6. Let B be a continuous linear operator on HpCq such that there exists n ě 0

which satisfies B “ TnBTn. We suppose that the sequence pBmzjqm converges to 0 in

HpCq as m tends to infinity for every j ě 0. Let δ P p0, 1q and we set A “ B ` δSn`1.

Then A fulfills the assumptions of Lemma 5.2.

Proof. Let U and V be two open sets in HpCq, let W be a neighborhood of 0 in HpCq and

let m be a positive integer. Let A and B be the subsets of C given by Lemma 5.5. Since A
has accumulation points in C, the linear vector space span reα ; α P As is dense in HpCq.
Thus there exist a1, . . . , ap P C and α1, . . . , αp P A such that the function

řp
j“1 ajeαj

belongs to U .

Since B is invariant by the rotation of angle 2π
n`1 , and since B has accumulation points,

Lemma 5.3 asserts that span rεβ ; β P Bs is dense in HpCq. Thus there exist b1, . . . , bq P C
and β1, . . . , βq P B such that the function

řq
j“1 bjεβj belongs to V.

During the forthcoming computations, quantities of the form

φ

˜

p
ÿ

j“0

rjαj `
1

m

q
ÿ

j“0

sjβj

¸

will appear, where the rj ’s and sj ’s are positive integers such that
řp
j“1 rj`

řq
j“1 sj ď m.

We will need to be able to ensure that the sums
řp
j“0 rjαj `

1
m

řq
j“0 sjβj do not belong

to the spectrum of B. In order to ensure this condition, we notice that for all tuples

r “ pr1, . . . , rpq P Np and s “ ps1, . . . , sqq P Nq such that
řp
j“1 rj `

řq
j“1 sj ď m, the set

Er,s “

#

ppα1, . . . , αpq, pβ1, . . . , βqqq P Ap ˆ Bq ; φ

˜

p
ÿ

j“0

rjαj `
1

m

q
ÿ

j“0

sjβj

¸

P σ pBq

+

is a closed subset of ApˆBq with empty interior. Since
řp
j“1 rj `

řq
j“1 sj ď m, there are

only finitely many such sets. Therefore, the set

(5.4) Ap ˆ Bqz

¨

˚

˚

˝

ď

rPNp,sPNq
řp
j“1

rj`
řq
j“1

sjďm

Er,s

˛

‹

‹

‚

is dense in Ap ˆ Bq.

We now observe that eα1 tends to eα in HpCq as α1 tends to α, and that εβ1 tends to

εβ in HpCq as β1 tends to β, with β, β1 P Czφ´1pσ pBqq. The first assertion is obvious. In

order to prove the second assertion, let r be a positive integer. We equip Cnrzs with the

norm Nr and denote by Nr the norm on the space BpCnrzsq of linear continuous operators

on Cnrzs induced by Nr. We notice that for every w P Czσ pBq, for every polynomial P ,

pwI ´Bq´1P is still a polynomial, and that the map Θ : w ÞÑ pwI ´Bq´1B from Czσ pBq
into BpCnrzsq is well defined and continuous.



26 WILLIAM ALEXANDRE, CLIFFORD GILMORE, SOPHIE GRIVAUX

Now for all β, β1 P Czφ´1pσ pBqq, we have

Nr

`

εβ1 ´ εβ
˘

“Nr

`

eβ1 ´ eβ `Θpφpβ1qqTneβ1 ´ΘpφpβqqTneβ
˘

ďNr

`

eβ1 ´ eβ
˘

`Nr

`

Θpφpβ1qq ´Θpφpβqq
˘

Nr

`

eβ1
˘

`Nr pΘpφpβqqNr

`

eβ1 ´ eβ
˘

.

Therefore, the continuity of Θ implies thatNr

`

εβ1 ´ εβ
˘

tends to zero as β1 P Czφ´1pσ pBqq
tends to β P Czφ´1pσ pBqq. Hence, εβ1 tends to εβ in HpCq when β1 P Czφ´1pσ pBqq tends

to β P Czφ´1pσ pBqq.

Therefore, by choosing
`

pα11, . . . , α
1
pq, pβ

1
1, . . . , β

1
qq
˘

in the set defined in (5.4) close enough

to ppα1, . . . , αpq, pβ1, . . . , βqqq, we can assume that for every r P Np and every s P Nq such

that
řp
j“1 rj `

řq
j“1 sj ď m, the complex number φ

´

řp
j“0 rjαj `

1
m

řq
j“0 sjβj

¯

does not

belong to σ pBq.

For N ě 0 and j “ 1, . . . , q, let cjpNq be a complex number such that

cjpNq
m “

bj
φpβjqN

¨

We set

uN “

p
ÿ

l“1

aleαl `

q
ÿ

j“1

cjpNqeβj
m

.

For every β P B, we have |β| ą x0, thus |φpβq| ą 1 and the sequence
˜

q
ÿ

j“1

cjpNqeβj
m

¸

N

converges to 0 in HpCq as N goes to infinity. Consequently, uN belongs to U if N is large

enough.

We now compute the quantities ukN and ANukN for every k P t1, . . . ,mu. For every

d-tuple L “ pl1, . . . , ldq P t1, . . . , pu
d, we put aL “ al1 ¨ ¨ ¨ ald when d ě 1 and aH “ 1.

For every J “ pj1, . . . , jk´dq P t1, . . . , qu
k´d, we put cJpNq “ cj1pNq ¨ ¨ ¨ cjk´qpNq when

k ´ d ě 1, and cHpNq “ 1. We have

ukN “
k
ÿ

d“0

ÿ

LPt1,...,puk´d

JPt1,...,qud

hpL, JqaLcJpNqeαl1`¨¨¨`αlk´d`
1
m
pβj1`¨¨¨`βjd q

where the hpL, Jq’s are constants depending only on L and J but not on N (cf. the proof

of [2, Theorem 2.1]).

Setting λ “ αl1 ` ¨ ¨ ¨ ` αlk´d `
1
mpβj1 ` ¨ ¨ ¨ ` βjdq, we get from Fact 5.4 that

cJpNqA
Neλ “ cJpNq

´

φpλqNελ ´ pφpλqI ´Bq
´1BN`1eλ

¯

.

(a) If k ă m, for every d P t0, . . . , ku it follows from (5.2) that |φpλq| ă 1. Since the

sequence pcJpNqqN is bounded, it follows that
`

cJpNqφpλq
Nελ

˘

N
converges to 0 in

HpCq. Since
`

BN`1eλ
˘

N
also converges to 0 in HpCq,

`

cJpNqA
Neλ

˘

N
converges
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to 0, and so there exists N sufficiently large such that for every k P t1, . . . ,m´ 1u,

the function ANukN belongs to W.

(b) If k “ m and d ă m, again from (5.2) in Lemma 5.5 we have |φpλq| ă 1, and since

pcJpNqqN is a bounded sequence,
`

cJpNqA
Neλ

˘

N
converges to 0 in HpCq.

(c) If k “ d “ m and if the βj ’s are not all equal, then

ˇ

ˇcJpNqφpλq
N
ˇ

ˇ “ |bj1 ¨ ¨ ¨ bjm |
1
m

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

φ
´

βj1`¨¨¨`βjm
m

¯

φ pβj1q
1
m ¨ ¨ ¨φ pβjmq

1
m

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

N

.

Assertion (5.3) in Lemma 5.5 yields that
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

φ
´

βj1`¨¨¨`βjm
m

¯

φ pβj1q
1
m ¨ ¨ ¨φ pβjmq

1
m

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ă 1,

so that pcJpNqφpλq
NελqN converges to 0 in HpCq. Since

`

Bn`1eλ
˘

N
converges to

0 in HpCq, it follows again that
`

cJpNqA
Neλ

˘

N
converges to 0 in HpCq.

(d) Finally, if k “ m “ d and if all the βj ’s are equal, then λ “ βj1 , J “ pj1, . . . , j1q

and

cJpNqA
Neλ “ cj1pNq

mφ pβj1q
N εβj1 ´ pφpβj1qI ´Bq

´1BN`1eβj1

“ bj1εj1 ´ pφ pβj1q I ´Bq
´1BN`1eβj1 .

Since pBN`1eβj1 qN converges to 0 in HpCq, it follows that
`

cJpNqA
Neλ

˘

N
con-

verges to bj1εj1 .

From assertions (b)-(d) above, we finally deduce that the sequence
`

ANumN q
˘

N
converges

to
řq
j“1 bjεj , and so there exists N large enough such that ANumN belongs to V. This ends

the proof of Lemma 5.6. �

Proof of Theorem 1.1: Let pUpqpě1 be a basis of open sets of HpCq, and let pWrqrě1 be a

basis of neighborhoods of 0 in HpCq. Now let

G :“
!

A P LpMjq,pkjq ; @p, q, r ě 1,@m ě 1, Du P Up, DN ě 1,

such that @0 ď n ă m,TN punq PWr and TN pumq P Uq
(

.

Therefore, in order to prove Theorem 1.1, it suffices to prove that G is a dense Gδ set.

We can rewrite G as

G “
č

p,q,r,mě1

ď

uPUp
Ně1

Gp,q,r,m,u,N ,

where

Gp,q,r,m,u,N :“ tT P LpMjq,pkjq ; @0 ď n ă m, TNum PWr and TNum P Uqu.

It suffices to show that Gp,q,r,m,u,N is an open set in LpMjq,pkjq. Let T0 belong to Gp,q,r,m,u,N .

If T is sufficiently SOT-close to T0, then Claim 4.2 implies that for every 0 ď n ă m, TNun
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belongs to Wr and TNum belongs to Uq. Thus Gp,q,r,m,u,N is indeed SOT-open and G is a

Gδ set.

We now check that G is dense in LpMjq,pkjq. Let A belong to LpMjq,pkjq and let V
be a SOT-neighborhood of A in LpMjq,pkjq. It follows from Corollary 3.9 that there exist

B P LpMjq,pkjq, δ P p0, 1q and n ě 1 such that B ` δSn`1 belongs to V, B “ TnBTn and

Bn`1 “ 0. By Lemma 5.6, the operator B ` δSn`1 satisfies the hypothesis of Lemma

5.2 and thus belongs to G. Hence G is dense in LpMjq,pkjq. This concludes the proof of

Theorem 1.1.

�

6. Proof of Theorem 1.2 and related results

In this section, the setting is the following: X is one of the (complex) Banach spaces

`ppNq, 1 ď p ă `8, or c0pNq. We endow X with the coordinatewise product, so that

it becomes a Banach algebra. For every M ą 1, a typical operator T P pBM pXq, SOTq is

hypercyclic, see the proof of [17, Proposition 2.3] which can be adapted in a straightforward

way from the Hilbertian setting to the case where X “ `ppNq, 1 ď p ă `8, or X “ c0pNq.
Theorem 1.2 augments this statement by showing that, in fact, a typical T admits a

hypercyclic algebra.

Proof of Theorem 1.2. Let pUqqqě1 be a basis of the topology of X consisting of open balls.

We write Uq “ Bpxq, ρqq for each q ě 1, where xq is the center of the ball and ρq its radius.

For each s ě 1, we set Ws “ Bp0, 2´sq, so that pWsqsě1 is a basis of neighborhoods of 0 in

X. Set also Uq “ Bpxq,
1
2ρqq and Ws “ Bp0, 2´ps`1qq, so that Uq Ď Uq and Ws ĂWs. Let

`

Uql , Url ,Wsl ,m0,l
,m

1,l

˘

lě1
be an enumeration of all the tuples pU, V,W,m0 ,m1q, where

U and V belong to the set tUq ; q ě 1u, W belongs to the set tWs ; s ě 1u, and pm0 ,m1q

is a pair of positive integers with m0 ă m1 .

Proceeding as in the proof of Theorem 1.1, we consider the set

GM pXq “
 

T P BM pXq ;@l ě 1, Dul P Uql , Dkl ě 1 such that T kl
`

u
m

0,l

l

˘

P Url

and T kl
`

unl
˘

PWsl for every n with m
0,l
ă n ď m

1,l

(

¨

Using the fact that all the maps T ÞÝÑ T k, k ě 1, from pBM pXq, SOTq into BpXq are

continuous [17, Lemma 2.1], it is easy to show that GM pXq is a Gδ set in pBM pXq, SOTq.
By [3, Corollary 2.4] (or by Lemma 5.2 in Section 5 above), every operator belonging

to GM pXq admits a hypercyclic algebra. In order to show that the property of having

a hypercyclic algebra is typical in pBM pXq, SOTq, it thus suffices to show that GM pXq is

SOT-dense in BM pXq.
Let d be a distance on BM pXq which induces the SOT and turns BM pXq into a com-

plete separable metric space. The main step in order to show the density of GM pXq in

pBM pXq, SOTq is the following lemma.

Lemma 6.1. Let S P BM pXq with }S} ă M , and let ε ą 0. Let also U and V be two

nonempty open subsets of X, let W be an open neighborhood of 0, and let m0 ă m1 be

two positive integers. Then there exists an operator T P BM pXq with }T } ăM , an integer

k ě 1 and a vector b P X such that:
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(a) dpT, Sq ă ε;

(b) b P U ;

(c) T k
`

bm0

˘

P V and @m0 ă n ď m1, T k
`

bn
˘

PW.

Proof. Denote by penqně0 the canonical basis of X, and let EN :“ re0, e1, . . . , eN s be the

linear span of the first N ` 1 basis vectors in X, N ě 0. Let also PN denote the canonical

projection of X onto EN , and set SN “ PNSPN . We have }SN} ď }S} ă M . Let δ ą 0

and γ ą 0 be such that maxp1, }S} ` δq ăM ´ γ ăM .

Setting M 1 :“M ´ γ, we consider the operator T acting on X defined by

Ten “

$

’

’

&

’

’

%

SNen, for 0 ď n ď N

δen´pN`1q, for N ` 1 ď n ď 2N ` 1

M 1en´pN`1q, for n ą 2N ` 1.

Then T is a bounded operator on X with }T } “ M 1 ă M . Moreover, T can be made as

close to S as we wish with respect to the SOT, provided that N is chosen sufficiently large.

We fix N so large that dpT, Sq ă
ε

2
¨

Operators of this form were introduced in [17, Proposition 2.10], where it is shown

that for every complex number λ with |λ| ă M 1, the eigenspace kerpT ´ λIq is pN ` 1q-

dimensional. Whenever Λ is a subset of the open disk Dp0,M 1q Ă C, which has an

accumulation point in Dp0,M 1q, the eigenspaces kerpT ´ λIq, λ P Λ, span a dense linear

subspace of X. In particular, the vector space

H´pT q :“ span r kerpT ´ λIq ; |λ| ă 1s

is dense in X. For every k ě 1 and every n ě 0, we have:

(6.1) T kekpN`1q`n “

#

M 1k´1δen, if 0 ď n ď N

M 1ken, if n ą N.

We choose a vector z P U , with finite support, which we write as z “
řJ
j“0 γjej .

Since H´pT q is dense in X, there exists for each 0 ď j ď J a vector fj P H´pT q with

}fj ´ ej} ă
δ1
J`1 , where 0 ă δ1 ă ε is sufficiently small (how small will be specified in the

sequel). Letting u “
řJ
j“0 γjfj , for δ1 sufficiently small, u belongs to U . We now set for

every n ě 1

(6.2) ru˚n :“
J
ÿ

j´0

γnj fj .

Observe that ru˚n belongs to H´pT q for every n ě 1, so that
›

›

›
T kru˚n

›

›

›
ÝÑ 0 as k ÝÑ `8.

We have ru˚1 “ u.

Let now v be a vector belonging to V, of the form v “
řd
i“0 αiei, with d ą N . For every

k ě 1, we set

(6.3) vpkq :“
N
ÿ

i“0

´ αi
M 1k´1δ

¯1{m0
ekpN`1q`i `

d
ÿ

i“N`1

´ αi
M 1k

¯1{m0
ekpN`1q`i.
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Since M 1 ą 1, we have
›

›

›
vpkq

›

›

›
ÝÑ 0 as k ÝÑ `8.

For n “ m0 ,m0 ` 1, . . . ,m1 we have

“

vpkq
‰n
“

N
ÿ

i“0

´ αi
M 1k´1δ

¯n{m0
ekpN`1q`i `

d
ÿ

i“N`1

´ αi
M 1k

¯n{m0
ekpN`1q`i

(recall that the product considered on X is the coordinatewise product with respect to

the canonical basis). We thus have T k
“

vpkq
‰m0 “ v by (6.1). Since M 1 ą 1, we also have

›

›

›

“

vpkq
‰m0

›

›

›
ÝÑ 0 as k ÝÑ `8.

On the other hand, if m0 ă n ď m1 , we have

T k
“

vpkq
‰n
“

N
ÿ

i“0

´ αi
M 1k´1δ

¯n{m0
M 1k´1δ ei `

d
ÿ

i“k`1

´ αi
M 1k

¯n{m0
M 1k ei

by (6.1). So

T k
“

vpkq
‰n
“

N
ÿ

i“0

α
n{m0
i ¨

1
`

M 1k´1δ
˘n{m0´1

¨ ei `
d
ÿ

i“N`1

α
n{m0
i ¨

1
`

M 1k
˘n{m0´1

¨ ei

and since n
m0
´ 1 ą 0, we obtain that
›

›

›
T k

“

vpkq
‰n
›

›

›
ÝÑ 0 as k ÝÑ `8 for every m0 ă n ď m1 .

Summarising, we have shown that

u` vpkq ÝÑ u as k ÝÑ `8(6.4)

T k
`

ru˚m0 `
“

vpkq
‰m0

˘

ÝÑ v as k ÝÑ `8(6.5)

T k
`

ru˚n `
“

vpkq
‰n˘

ÝÑ 0 as k ÝÑ `8 for every m0 ă n ď m1 .(6.6)

We now define a bounded operator L on X by setting

Lej “

#

fj , if 0 ď j ď J

ej , if j ą J.

Then we have

}Lx´ x} “

›

›

›

›

›

J
ÿ

j“0

xjpfj ´ ejq

›

›

›

›

›

ď max
0ďjďJ

|xj |
J
ÿ

j“0

}fj ´ ej} ď δ1 ¨ }x} for every x P X,

so that }L´ I} ď δ1 ă ε. If 0 ă δ1 ă 1, L is invertible, and

›

›L´1 ´ I
›

› ď
δ1

1´ δ1
ď 2δ1

as soon as 0 ă δ1 ă 1{2. Let now xk “ u` vpkq and yk “ L´1pu` vpkqq. If k is sufficiently

large, the support of vpkq is disjoint from the interval r0, Js. We have

yk “
J
ÿ

j“0

γjej `
N
ÿ

i“0

´ αi
M 1k´1δ

¯1{m0
ekpN`1q`i `

d
ÿ

i“N`1

´ αi
M 1k

¯1{m0
ekpN`1q`i



TYPICALITY OF HYPERCYCLIC ALGEBRAS 31

so that for every n ě 1,

ynk “
J
ÿ

j“0

γnj ej `
N
ÿ

i“0

´ αi
M 1k´1δ

¯n{m0
ekpN`1q`i `

d
ÿ

i“N`1

´ αi
M 1k

¯n{m0
ekpN`1q`i.

It follows that

(6.7) Lpynk q “ ru˚n `
“

vpkq
‰n

for all k sufficiently large.

By (6.4), (6.5), and (6.6), combined with (6.7), we have, as k goes to infinity,

xk ÝÑ u and yk ÝÑ L´1u(6.8)

T kLpy
m0
k q ÝÑ v

T kLpynk q ÝÑ 0 for every m0 ă n ď m1 .

Set now T1 :“ L´1TL. Then

}T1 ´ T } “
›

›L´1TL´ T
›

› ď
›

›L´1T pL´ Iq
›

›`
›

›pL´1 ´ IqT
›

›

ď }T } δ1p1` 2 δ1q ` }T } . 2 δ1 ă 4}T } δ1,

so that }T1} ăM and dpT1, T q ă
ε

2
, provided that δ1 is sufficiently small. We also deduce

from the properties above that, as k goes to infinity,

T k1 py
m0,1

k q ÝÑ L´1v(6.9)

T k1 py
n
k q ÝÑ 0 for every m0 ă n ď m1 .(6.10)

Now, L´1u “ z belongs to U and if δ1 is sufficiently small, L´1v belongs to V. If we

choose k sufficiently large, and then set b “ yk, we eventually obtain that b P U (by (6.8)),

T k1
`

bm0

˘

P V (by (6.9)), and T k1
`

bn
˘

P W for every m0 ă n ď m1 (by (6.10)) which is

exactly what is required by Lemma 6.1. �

Returning to the proof of Theorem 1.2, we now consider an operator S P BM pXq with

}S} ă M , and ε ą 0. Our aim is to construct an operator T P GM pXq with dpT, Sq ă ε.

Let pεlqlě1 be a sequence of positive numbers such that
ř

lě1 εl ă ε. Using Lemma 6.1,

we can construct by induction on l ě 1

‚ a sequence pTlqlě0 of operators on X, with T0 “ S,

‚ a sequence pblqlě1 of vectors of X,

‚ a sequence pklqlě1 of positive integers

such that for every l ě 1,

(a) dpTl, Tl´1q ă εl;

(b) bl P Uql Ď Uql ;

(c) @ 1 ď l1 ď l, T
kl1
l

`

b
m

0,l1

l1

˘

P Url1 and @m
0,l1
ă n ď m

1,l1
, T

kl1
l

`

bnl1
˘

PWsl1 .

The fact that we can ensure, at each step l ě 1, that condition (c) holds for every

1 ď l1 ď l, and not only for l, relies on the observation that the maps T ÞÝÑ T k, k ě 1,

are SOT-continuous from BM pXq into BpXq. Thus if Tl is constructed sufficiently close to

Tl´1, i.e. if dpTl, Tl´1q is sufficiently small, our induction assumption implies that (c) is

true for every 1 ď l1 ă l.
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Since pBM pXq, dq is a complete metric space, the sequence of operators pTlqlě1 converges

in pBM pXq, dq to an operator T P BM pXq such that dpT, Sq ă ε. Moreover, letting l tend to

infinity in (c) above, and using again the SOT-continuity of the maps T ÞÝÑ T k, we obtain

that for all l ě 1, T kl
`

b
m

0,l

l

˘

P Url Ď Url , and T kl
`

bnl
˘

PWsl1 ĎWsl for all m
0,l
ă n ď m

1,l
.

Hence T belongs to GM pXq.

We have thus proved that GM pXq is dense in pBM pXq, SOTq. This finishes the proof of

Theorem 1.2. �

There are other interesting topologies which can turn the operator balls BM pXq into

Polish spaces. One of the most relevant is the so-called Strong˚ Operator Topology (SOT˚):

if pTαq is a net of operators in BpXq, T P BpXq and T ˚ P BpX˚q is the adjoint of T , then

we say that

Tα
SOT
˚
// T if and only if Tα

SOT // T in X and T ˚α
SOT // T ˚ in X˚.

When X is a Banach space with separable dual, the balls BM pXq, M ą 0, are Polish

spaces when endowed with the SOT˚ topology. See the works [12], [17], [18], [19], and [16]

for a study of typical properties of operators for the SOT˚, as well as explanations on the

relevance of this topology.

Theorem 1.2 admits the following analogue for the SOT˚ topology.

Theorem 6.2. Let X “ `ppNq, 1 ă p ă `8, or X “ c0pNq, endowed with the coordi-

natewise product. Let M ą 1. A typical operator T P pBM pXq, SOT˚q admits a hypercyclic

algebra.

Proof. The proof is similar to that of Theorem 1.2. Since the set GM pXq is SOT-Gδ, it

is also SOT˚-Gδ. And a look at the proof of Theorem 1.2 shows that GM pXq is in fact

SOT˚-dense in BM pXq. �

We say that T P BpXq is dual hypercyclic if both T and its adjoint T ˚ are hypercyclic.

The first examples of such operators were obtained by Salas [26,27] and Petersson [25], and

it is an immediate consequence of the remark after [17, Proposition 2.3] (see also [16, Fact

2.1]) that when X “ `ppNq, 1 ă p ă `8, or X “ c0pNq, an SOT˚-typical T P BM pXq is

dual hypercyclic. Using the same argument, we can deduce from Theorem 6.2 the following

result.

Proposition 6.3. If X “ `ppNq, 1 ă p ă `8, or X “ c0pNq, and M ą 1, a typical

operator T P pBM pXq, SOT˚q is such that both T and T ˚ admit a hypercyclic algebra (with

respect to the coordinatewise product).

The existence of T P BpXq such that both T and T ˚ admit a hypercyclic algebra can

also be deduced directly from [3, Corollary 4.11] and [26].

7. Typicality of Admitting a Hypercyclic Subspace

Let X be a complex separable infinite-dimensional Banach space. Our aim in this final

section is to study whether, given M ą 1, a typical operator T P pBM pXq, SOTq admits a
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closed infinite-dimensional hypercyclic subspace. When it makes sense, we also consider

this question for T P pBM pXq, SOT˚q.
For a hypercyclic operator T P BpXq, a hypercyclic subspace is defined as a closed

infinite-dimensional subspace Z Ď X such that every nonzero vector in Z is hypercyclic for

T . Since the early work of Bernal González and Montes-Rodŕıguez [6], the investigation

of hypercyclic subspaces has amassed a vast literature, as documented in [4, Chapter

8] and [20, Chapter 10]. In contrast to the generic property that the set HC pT q Y t0u

always contains a dense linear manifold of hypercyclic vectors, it turns out that there exist

hypercyclic operators that do not admit a hypercyclic subspace. Examples of operators

that support hypercyclic subspaces in the Fréchet space setting include the differentiation

and translation operators acting on the space HpCq of entire functions (cf. [20, Examples

10.12 and 10.13]). For the Banach spaces X “ `ppNq, 1 ď p ă 8, or X “ c0pNq, a weighted

backward shift Bw P BpXq admits a hypercyclic subspace if

sup
ně1

n
ź

j“1

|wj | “ `8 and sup
ně1

lim sup
kÑ8

n
ź

j“1

|wj`k| ă `8,

cf. [20, Example 10.10]. However, it is well known that scalar multiples cB of the backward

shift for |c| ą 1 do not possess hypercyclic subspaces (cf. [20, Example 10.26]).

The following characterization of operators that satisfy the Hypercyclicity Criterion and

admit a hypercyclic subspace was identified by León-Saavedra and Montes-Rodŕıguez [23]

in the Hilbert space setting, and by González et al. in [15] for separable complex Banach

spaces.

Theorem 7.1 ([15], [23]). Let X be a separable complex Banach space. Suppose that

T P BpXq satisfies the Hypercyclicity Criterion. The following assertions are equivalent.

(i) T possesses a hypercyclic subspace.

(ii) There exists some closed infinite-dimensional subspace Z0 Ď X and an increasing

sequence of integers pnkq such that TnkxÑ 0 for all x P Z0.

(iii) There exists some closed infinite-dimensional subspace Z0 Ď X and an increasing

sequence of integers pnkq such that supk‖T
nk
|Z0

‖ ă 8.

(iv) The essential spectrum σe pT q of T intersects the closed unit disk.

We recall that an operator T P BpXq is said to be Fredholm if both the dimension of its

kernel dim kerpT q and the codimension of its range codim ranpT q are finite. Equivalently,

T is Fredholm if and only if it has closed range and dim kerpT q ă 8 and dim kerpT ˚q ă 8.

The essential spectrum σe pT q of the operator T P BpXq is defined to be

σe pT q :“ tλ P C : T ´ λ is not Fredholmu.

The following theorem is a straightforward consequence of results from [17] and [18].

Theorem 7.2. Let X “ `ppNq, 1 ď p ă `8, or X “ c0pNq. For every M ą 1, a typical

T P pBM pXq, SOTq admits a hypercyclic subspace.

Proof. An elementary adaptation of the proofs of [17, Proposition 2.3] and [17, Proposition

2.16] shows that a typical operator T P pBM pXq, SOTq satisfies the Hypercyclicity Criterion.
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It thus suffices to show that the essential spectrum of a typical T P pBM pXq, SOTq is equal

to the closed disk Dp0,Mq. As observed in [18, Remark 4.5], it follows from [12, Lemma

5.13] that a typical T P pBM pXq, SOTq is not Fredholm. Consider now the set

A :“ tT P BM pXq ; @λ P Dp0,Mq, T ´ λ is surjectiveu.

By the topological 0 ´ 1 law [18, Proposition 3.2], A is either meager or comeager in

pBM pXq, SOTq.
– Suppose first that A is SOT-comeager in pBM pXq, SOTq (which is known to happen

when X “ `1pNq or when X “ `2pNq). Since a typical T P pBM pXq, SOTq is not Fredholm,

the continuity of the Fredholm index on Dp0,Mq implies that for all λ P Dp0,Mq, T ´λ is

not Fredholm (see the argument just before Remark 4.5 in [18]). Hence σe pT q “ Dp0,Mq.

– Suppose now that A is SOT-meager in pBM pXq, SOTq (which is known to happen when

X “ `ppNq for p ą 2). As the set of operators T P pBM pXq, SOTq such that T ´ λ has

dense range for every λ P Dp0,Mq is comeager in pBM pXq, SOTq (cf. [18, Proposition 3.9]),

a typical T P pBM pXq, SOTq is such that for every λ P Dp0,Mq, T ´λ does not have closed

range. Hence T ´ λ is not Fredholm, and σe pT q “ Dp0,Mq. �

The following shows that we have a similar statement for SOT˚-typical operators.

Theorem 7.3. Let X “ `ppNq, 1 ă p ă `8. For every M ą 1, a typical T P

pBM pXq, SOT˚q admits a hypercyclic subspace.

Proof. This is a direct consequence of the fact that a typical operator T P pBM pXq, SOT˚q
satisfies the Hypercyclicity Criterion, and of [16, Theorem 3.1], which states that a typical

T P pBM pXq, SOT˚q is such that σe pT q “ Dp0,Mq. �

We can also deduce from Theorem 7.3 the following result.

Proposition 7.4. Let X “ `ppNq, 1 ă p ă `8. For every M ą 1, a typical operator

T P pBM pXq, SOT˚q is such that T and its adjoint T ˚ both admit hypercyclic subspaces.
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for some classical hypercyclic operators, Integral Equations Oper. Theory 58 (2007), no. 4, 591–596

(English). Ò2

[2] F. Bayart, Hypercyclic algebras, J. Funct. Anal. 276 (2019), no. 11, 3441–3467. MR3944300 Ò2, 4, 21,

23, 26

[3] F. Bayart, F. Costa Júnior, and D. Papathanasiou, Baire theorem and hypercyclic algebras, Adv. Math.

376 (2021), 59 (English). Id/No 107419. Ò2, 4, 21, 28, 32
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[6] L. Bernal González and A. Montes-Rodŕıguez, Universal functions for composition operators, Complex

Variables Theory Appl. 27 (1995), no. 1, 47–56. MR1316270 Ò33

[7] J. Bès, J. A. Conejero, and D. Papathanasiou, Hypercyclic algebras for convolution and composition

operators, J. Funct. Anal. 274 (2018), no. 10, 2884–2905. MR3777634 Ò2, 4

[8] J. Bès, R. Ernst, and A. Prieto, Hypercyclic algebras for convolution operators of unimodular constant

term, J. Math. Anal. Appl. 483 (2020), no. 1, 123595, 25. MR4023880 Ò2



TYPICALITY OF HYPERCYCLIC ALGEBRAS 35

[9] J. Bès and D. Papathanasiou, Algebrable sets of hypercyclic vectors for convolution operators, Israel

J. Math. 238 (2020), no. 1, 91–119. MR4145796 Ò2

[10] P. S. Bourdon, Invariant manifolds of hypercyclic vectors, Proc. Am. Math. Soc. 118 (1993), no. 3,

845–847 (English). Ò1

[11] T. Eisner, A “typical” contraction is unitary, Enseign. Math. (2) 56 (2010), no. 3-4, 403–410 (English).

Ò2
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