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Abstract

Phase-field fracture (PFF) modeling is a popular approach to model and simulate fracture processes in

solids. Accurate material parameters and boundary conditions are of utmost importance to ensure a good

prediction quality of numerical simulations. In this work, an Integrated Digital Image Correlation (IDIC)

algorithm is proposed to calibrate boundary conditions, Poisson’s ratio, fracture energy and internal length,

all at once, by using the phase-field model itself and images of a deforming sample. The presented approach

is applied to virtual experiments mimicking a single edge notched shear test and implemented in the open-

source deal.II-based software pfm-cracks and the digital image correlation library Correli 3.2. The

reliability of the results is investigated for different levels of acquisition noise, thereby demonstrating high

robustness and accuracy for a wide range of noise levels. The conditioning of the problem is analyzed via

sensitivity fields for all parameters and the eigendecomposition of the Hessian matrix used in the IDIC

algorithm.
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1. Introduction

Fracture assessment is a current topic in engineering and applied mathematics. To model fracture,

various approaches are known such as boundary finite elements [13], displacement discontinuity methods [14],

cohesive-zone models [88], generalized/extended finite elements [60, 22, 4], peridynamics [76] or (regularized)

variational phase-field fracture models [7, 59, 47, 8]. In this work, the latter ones are of interest, namely,5

phase-field approaches, which share close relationships with damage models [53, 52, 72, 54, 17, 15]. Based

on energy formulations of brittle fracture [21] and their numerical implementation [7], this approach has

been further developed and applied in numerous situations [8, 83, 9, 18, 82]. It is intriguing because the

crack path, crack direction, and crack tip velocity are obtained within the model in an implicit fashion

without explicit need to compute stress intensity factors and crack front positions. Moreover, it is relatively10

easy to apply (except the computational cost) to two- and three-dimensional spatial settings. Further, crack

initiation is included (see, for instance, L-shaped panel tests [1], where further theoretical and computational

analyses about its functionality are carried out [80, 48]).

To date, in most studies, the primary focus is on so-called forward models in which the phase-field

framework with given model, numerical, and material parameters is employed to compute the material15

state, which is theoretically, computationally, or experimentally analyzed. Here, one important goal is to

use numerical simulations to predict the behavior of components within developments of new materials or

work tools. Much less work has been carried in inverse modeling and optimization in which unknown param-

eters or boundary conditions are to be computed by comparing the numerical simulations to experimental

data sets. Some recent work on optimal control with phase-field fracture shows how the phase-field model is20

driven into some desired states by adapting boundary conditions [64, 65, 61, 42, 43]. Topology optimization

was designed [16], and stochastic phase-field modeling [24] was discussed. Parameter identification based

on lower-scale simulations (e.g., via molecular dynamics), which are then employed within phase-field frac-

ture models, was proposed in Refs. [27, 71]. The closest studies in their objectives to the present one, by

addressing parameter identification, are found in Refs. [44, 85, 69, 70]. However, therein Bayesian inver-25

sion [77] techniques were employed. The main novelty of the current work is to use digital image correlation
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to estimate unknown parameters, and to the best of the authors’ knowledge the integrated combination of

images and phase-field simulations has not yet been proposed in the literature.

Phase-field models have been probed against experimentally measured kinematic fields on a qualitative

basis essentially. First, simulated strain fields were compared to experimental strain fields measured via dig-30

ital image correlation [66, 62, 19, 37, 87]. Similarly, displacement fields were used instead [84]. Second, crack

patterns were also compared when imaged via X-ray computed tomography [66, 81] when 3D simulations

were driven by measured boundary conditions. In all the aforementioned references, the internal length was

not calibrated, even though it is believed to be a material parameter (see [67, 59] with more references cited

therein). On the other hand, from the mathematical viewpoint the length scale was initially introduced as35

a regularization parameter [7] as in nonlocal damage models. The internal length was identified by using

force/strain data for bone [36]. The full strain validations were performed from a purely statistical point of

view (and not experimental field against simulated field).

In the context of nonlocal damage, several routes have been considered to calibrate the internal (or also

called characteristic) length. It was first estimated experimentally by an energetic approach as the ratio40

of the fracture energy to the energy dissipated per unit volume of the material [55, 5]. An identification

based on several load deflection curves from three point bending tests was proposed [49]. However, it was

shown that the identification of the internal length based on such global curves did not lead to a unique solu-

tion [38]. It was suggested to calibrate a non-local damage model from discrete models [86]. An identification

of the damage parameters based on digital image correlation (DIC) data was also considered [23]. The in-45

ternal length was identified without coupling DIC and the identification procedure. The DIC measurements

included a restricted area of the sample with a relatively small number of pixels.

In the following, it is proposed to investigate the feasibility of calibrating the internal length of a phase-

field model by using displacement field measurements. This parameter is the most delicate [40]. Other

material parameters will also be sought (i.e., Poisson’s ratio and fracture energy). To make the analysis50

even more challenging, the boundary conditions will also be considered unknown. Various methods exist

to calibrate material parameters from full-field measurements [25]. In this study, the displacement fields
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are determined via digital image correlation [79, 78]. Series of images of two synthetic tests, generated

with multiple acquisition noise levels, were constructed by using simulated displacement fields. Instead of

following a two-step procedure, namely, first measuring displacement fields via DIC and then post-processing55

them to extract the unknown parameters, integrated digital image correlation (IDIC) was selected [51, 57].

It performs registrations using mechanically admissible displacement fields (i.e., the two steps are merged

into a unique minimization). This approach enables, for instance, meshes to be tailored as fine as needed

for numerical reasons [51, 56, 33] instead of controlled by measurement uncertainties.

The outline of this paper is as follows. In Section 2, the overall notations of this paper and integrated60

digital image correlation are introduced. Section 3 is devoted to the governing phase-field model used

herein. Section 4 introduces the integrated computational framework applied to applications for parameter

identification.

2. Integrated digital image correlation

Let Ω ⊂ R2 be the region of interest and I := (0, T ) be the time interval of interest, where T > 0 is the65

end time value. Moreover, let Ω× I be the so-called space-time cylinder.

2.1. Digital image correlation and space-time framework

Digital image correlation has proven to be a powerful tool to measure displacement fields [79, 35, 78].

Assuming brightness conservation, one can register an image I0 : Ω→ R with a series of images I : Ω×I → R.

Then, there is a displacement field u : Ω× I → R2 such that

I0(x) = I(x+ u(x, t), t) =: Iu(x, t), ∀(x, t) ∈ Ω× I. (1)

The underlying problem to solve is constructed by minimizing the squared differences of the reference image

I0 and the backdeformed series of images Iu over the space-time cylinder Ω× I.
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Problem 1 (DIC). Find a displacement field u ∈ V := L2(I;L2(Ω)) such that

u = argmin
v∈V

J1(v), (2)

with

J1(v) := ∥Iv − I0∥V and ∥ · ∥2V :=

∫
I

∫
Ω

·2 dxdt. (3)

Remark 1. In V there are no boundary conditions prescribed for u. We notice that this is usual in DIC70

since the boundary is considered in the corresponding numerical solution algorithm, and consequently the

final solution is unique. A detailed discussion about the well-posedness of the static problem and the use of

L2(Ω) in space is given in Ref. [20].

Remark 2. Regular DIC algorithms are not formulated in a space-time framework, such that the displace-

ment field is computed for each image It of the series of images I separately [79]. But the space-time75

approach has proven to be more robust with respect to noise and low sensitivities, not only for DIC but

also for integrated digital image correlation (IDIC, see next sub-section), which is expected to be important

for the calibration of the internal length. A more detailed discussion about the advantages of space-time

formulations for DIC can be found in Ref. [6] and for IDIC in Refs. [57, 63].

2.2. Integrated identification80

IDIC is a method to identify parameters of some mechanical models directly from images [34, 51]. Based

on Problem 1, one is again minimizing the squared differences between a reference image and a backdeformed

series of images, but the unknown u is made explicitly dependent on the sought parameters. Let P be a

vector space of possible parameterizations andM : P → V be a model that computes a displacement field

for the parameterization p ∈ P, then one can substitute the displacement by the model response,

u =M(p). (4)

Therefore the new problem reads as follows:
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Problem 2 (IDIC). Let I0 be a reference image, It a series of images andM a model. Find a parameter-

ization p ∈ P such that

p = argmin
q∈P

J2(q) (5)

with

J2(q) := ∥IM(q) − I0∥2V. (6)

Assuming M(p) to be Fréchet differentiable with derivative ∂M(p)(q), then a solution to Problem 2

needs to fulfill the following first-order optimality condition

∂J2(p)(q) :=
∫
I

∫
Ω

(∂M(p)(q) · ∇IM(p))(IM(p) − I0) dxdt = 0 ∀q ∈ P. (7)

Solving Equation (7) is a nonlinear problem, and Newton’s method is proposed as the solution strategy.

Assuming that M(p) is twice Fréchet differentiable with the second-order derivative ∂2M(p)(δp, q), the

corresponding Hessian reads [63]

∂2J2(p)(δp, q) =
∫
I

∫
Ω

(∂2M(p)(δp, q) · ∇IM(p))(IM(p) − I0)

+ (∂M(p)(δp) · ∇2IM(p) · ∂M(p)(q))(IM(p) − I0)

+ (∂M(p)(δp) · ∇IM(p))(∂M(p)(q) · ∇IM(p)) dxdt.

(8)

For the computation of both, ∂M(p)(q) and ∂2M(p)(δp, q) a finite-difference scheme is introduced.

Since P is a vector space, there exists a basis {Φpi } such that q =
∑
j ajΦ

p
j and δp =

∑
j bjΦ

p
j for any

(q, δp) ∈ P2. Last, the derivatives are approximated as

∂M(p)(q) ≈
∑
i

M(p+ sΦpi )−M(p)

s
ai =:M ′

s(p)(q), (9)
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and

∂2M(p)(δp, q) ≈
∑
i,j

M(p+ sΦpi + sΦpj )−M(p+ sΦpi )−M(p+ sΦpj ) +M(p)

s2
ai bj =:M ′′

s (p)(δp, q),

(10)

where s > 0 is a given fixed perturbation parameter. Assuming that P is n-dimensional, with n ∈ N being

a finite number, M ′ needs n evaluations of M and M ′′ needs n2 evaluations of M. In the case of the

phase-field model, which is described in the next section, the computation of M ′′ is extremely expensive

even for a low-dimensional parameter space. Since the term ∂2M includes the residuals

ρ(x, t) := IM(p)(x, t)− I0(x), (11)

which tend to zero near the solution, it is neglected. Together with the finite-difference approximation, the

new (approximated) Jacobian reads

As(p)(q) :=

∫
I

∫
Ω

(M ′
s(p)(q) · ∇IM(p))(IM(p) − I0) dxdt, (12)

and the new (approximated) Hessian becomes

∂As(p)(δp, q) =

∫
I

∫
Ω

(∂M(p)(δp) · ∇2IM(p) · ∂M(p)(q))(IM(p) − I0)

+ (∂M(p)(δp) · ∇IM(p))(∂M(p)(q) · ∇IM(p)) dxdt.

(13)

The final simplified Newton algorithm for Problem 2 including line-search iterations, is given by Algorithm 1.
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Algorithm 1 Newton’s method for IDIC

1: Choose an initial guess p(0) ∈ P, a basis {ΦP
k} and s > 0

2: for i = 0, 1, 2, ... do ▷ Newton iteration
3: EvaluateM(pi)(ΦP

k) for all k to be able to compute M ′
s(p)(q) for all q ∈ P

4: Solve
∂As(p

(i))(δp, q) = −As(p(i))(q) ∀q ∈ P (14)

5: for l = 0, 1, ..., lmax do ▷ Line-search iteration
6: λ = 0.5l

7: p(i+1) ← p(i) + λδp
8: if J (p(i+1)) < J (p(i)) then
9: Stop line-search iteration

10: end if
11: end for
12: if

∑
k ∥δak/a

(0)
k ∥ < TOL with p(0) = (a

(0)
1 , a

(0)
2 , ...), δp = (δa1, δa2, ...), then

13: Stop Newton iteration
14: end if
15: end for

Remark 3. Using again the arguments of vanishing residuals, one could also neglect the term including

the Hessian matrix ∇2IM(p) in Equations (8) and (13). This simplification then results in a Gauss-Newton

scheme. The vanishing residuals are achieved by good initial guesses. One can get satisfactory initial guesses85

by multi-level approaches using for example coarse graining or blurring of the images [35]. A more detailed

discussion can be found in Refs. [74, 20].

Remark 4. Instead of using a finite difference scheme for the computation of ∂M(p)(q) and ∂2M(p)(δp, q)

one can also use the direct differentiation of the residual equation of the model [26].

3. Phase-field modeling of brittle fracture90

In this section, a phase-field approach is introduced to model fracture. One starts from the energy level

and obtains, by differentiation, the Euler-Lagrange equations in terms of a coupled variational inequality

system.

3.1. Modeling

A phase-field model based on the variational formulation of brittle fracture [21] and more precisely the95

related regularization form [7] is briefly introduced to specify the modelM used in Section 4.
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Assuming small displacements and linear elasticity, the infinitesimal strain tensor is written as

ε := ε(u) =
1

2
(∇u+∇uT ), (15)

and the elastic energy density function

Ψ0(ε) = µ ε : ε+
λ

2
tr(ε · ε), (16)

where µ and λ are the Lamé parameters. A smoothed scalar-valued phase-field function φ : Ω → [0, 1]

is introduced to model damage inside a linear elastic material. The value 0 indicates a fully damaged

material, and 1 an undamaged material. Moreover, it is assumed that damage is an irreversible process

(i.e., no healing is possible) [52], which is modeled by ∂tφ ≤ 0 and known as the crack irreversibility

constraint (i.e., an inequality constraint in time). To circumvent unrealistic damage patterns, an additive

decomposition of the energy density is introduced [59, 58] with a comparison to other models made in [1].

Let ε(u) =
∑
i ϵini ⊗ ni be the spectral decomposition of the strain tensor and ε±(u) :=

∑
i⟨ϵi⟩±ni ⊗ ni

with ⟨·⟩± := 1
2 (· ± | · |). Then, the energy density is decomposed as

Ψ0(ε) = Ψ+(ε) + Ψ−(ε), (17)

where

Ψ+(ε) := µ ε+ : ε+ +
λ

2
⟨tr(ε)⟩2+ and Ψ−(ε) := µ ε− : ε− +

λ

2
⟨tr(ε)⟩2− (18)

are the extensional and contractional energy densities, respectively. Then, the regularized problem is

formulated as follows: Find u and φ for almost all times t such that

(u, φ) = argmin
(v,ψ)

Eℓ((v, ψ)) and ∂tφ ≤ 0, (19)
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with

Eℓ((u, φ)) :=
1

2

∫
Ω

(
(1− κ)φ2 + κ

)
Ψ+(ε(u)) + Ψ−(ε(u)) +Gc

(
1

2ℓ
(1− φ)2 + ℓ

2
|∇φ|2

)
dx, (20)

where Gc is the fracture energy, ℓ the internal length, and κ a positive regularization parameter to counteract

numerical issues (zero entries on the diagonal where φ = 0 in the discrete system matrix resulting into a

singular, non-solvable, linear equation system) when φ tends to 0. Since one works here in a quasi-

static regime without time derivatives in the governing equations, the time-continuous crack irreversibility

constraint is written in incremental form using a difference-quotient approximation

∂tφ ≈
φ(tn)− φ(tn−1)

tn − tn−1
(21)

with tn, tn−1 ∈ I. Consequently, the phase-field variable is from the following closed convex set

Yin := {φn ∈ H1(Ω)| 0 ≤ φn ≤ φn−1 ≤ 1 a.e. in Ω}.

The solutions u(tn) and φ(tn) at the time tn are from now on denoted by un and φn. For the displacements,

one uses the function space

X := {u ∈ H1(Ω)| u = uD on Γ ⊂ ∂Ω}.

Remark 5. The Dirichlet boundary conditions uD are part of the unknowns in Section 4 and are going to

be computed via IDIC.

The resulting optimization problem is then summarized as follows:

Problem 3. Given φ0 and for the incremental steps tn, with n = 1, ..., N , find un ∈ X and φn ∈ Yin, such

that

(un, φn) = argmin
(v,ψ)∈X×Yin

Eℓ((v, ψ)) (22)

where Eℓ is defined in Equation (20).100
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The corresponding optimality condition is given by [82][Proposition 19]

∂Eℓ((u
n, φn))((v, ψ − φn)) ≥ 0 ∀(v, ψ) ∈ X× Yin, (23)

where

∂Eℓ((u, φ))((v, ψ)) =

∫
Ω

(
(1− κ)φ2 + κ

)
∂Ψ+(ε(u))(ε(v)) + ∂Ψ−(ε(u))(ε(v))

+ (1− κ)φψΨ+(ε(u)) +Gc

(
−1

ℓ
(1− φ)ψ + ℓ∇φ · ∇ψ

)
dx

(24)

and

∂Ψ+(ε(u))(ε(v)) = µ ε+(u) : ε(v) +
λ

2
⟨tr(ε(u))⟩+tr(ε(v)),

∂Ψ−(ε(u))(ε(v)) = µ ε−(u) : ε(v) +
λ

2
⟨tr(ε(u))⟩−tr(ε(v)).

(25)

Unfortunately, the energy functional Eℓ((u, φ)), as defined in Equation (20), is not convex simultaneously

in each variable such that the numerical solution of the fully monolithic problem becomes difficult. As

proposed in Ref. [28], the solution variable in the term
(
(1− κ)φ2 + κ

)
∂Ψ+(ε(u))(ε(v)) is approximated

by a linear extrapolation in time

φ ≈ φ̃(φn−1, φn−2) := φn−2 +
t− tn−2

tn−1 − tn−2
(φn−1 − φn−2), (26)

where φn−1 and φn−2 denote the solutions at the previous times tn−1 and tn−2, respectively. In order to still

have a monolithically-coupled variational formulation, φ is not approximated in the energy functional (20),

but in the optimality condition (23), such that ∂Eℓ is approximated by the semilinear form

Bℓ((u, φ))((v, ψ)) :=

∫
Ω

(
(1− κ)φ̃2 + κ

)
∂Ψ+(ε(u))(ε(v)) + ∂Ψ−(ε(u))(ε(v))

+ (1− κ)φψΨ+(ε(u)) +Gc

(
−1

ℓ
(1− φ)ψ + ℓ∇φ · ∇ψ

)
dx

(27)

and the new optimality condition reads

∂Bℓ((u
n, φn))((v, ψ − φn)) ≥ 0 ∀(v, ψ) ∈ X× Yin. (28)
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Equation (28) is solved by Newton’s method. A detailed discussion about the solution algorithm including

the derivation and computation of the Jacobian can be found in Ref. [41][Section 3].

3.2. Discretization

As a next step the solution of the phase-field model, described in the previous section, should be inserted

into Algorithm 1. Therefore, a finite-element discretization, defined on a quadrilateral discretization Th of

Ω with elements E of size h and piecewise bilinear functions Q1 := span{1, x1, x2, x1x2} is introduced

Xh := {vh ∈ C(Ω) ∩ X : vh|E ∈ Q1 for all E ∈ Th} ,

Yin,h := {ψh ∈ C(Ω) ∩ Yin : ψh|E ∈ Q1 for all E ∈ Th} .
(29)

The discrete optimization problem reads as follows:

Problem 4. Given φ0
h and for the incremental steps tn, with n = 1, ..., N , find unh ∈ X and φn ∈ Yin, such

that

(unh, φ
n
h) = argmin

(vh,ψh)∈Xh×Yin,h

Bℓ((vh, ψh)), (30)

where Bℓ is defined in Equation (28).105

3.3. Numerical solution and software

The previous system requires linear and nonlinear solvers. There exist three types of nonlinearities,

(i) the variational inequality constraint due to the crack irreversibility condition, (ii) the decomposition

of the strain energy, and (iii) the nonlinear coupling between the displacement equation and the phase-

field variational inequality. In Ref. [28], a combined Newton algorithm was suggested in which the crack110

irreversibility is addressed in terms of a primal-dual active-set method and the nonlinear system with a

classical line-search assisted Newton method. Both steps are combined into one loop and implemented in

open-source pfm-cracks [30] based on the finite-element library deal.II [2, 3]. Recently, improvements of

the combined active set and Newton solver have been suggested including supporting numerical tests [45].

Within the nonlinear combined Newton iterations, the linear systems are solved with GMRES (generalized115
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minimal residual method) [75], which is preconditioned with a block-diagonal system, where the blocks

are approximated with algebraic multigrid from Trilinos [31]. Parallelization is based on MPI, where the

adaptive meshes are organized by p4est [10].

4. Application

The previous developments are taken to design an integrated digital image correlation scheme based on120

the phase-field fracture model. Algorithm 1 has been implemented in the Correli 3.2 framework, which

is an extension of the 3.0 version [50], namely, a Matlab based library with C++ kernels for digital image

correlation. The phase-field codes to determine fracture propagation are described and referenced in Section

3.3.

4.1. Small-sample experiment125

The first synthetic experiment to analyze the proposed IDIC approach is a slightly adapted version of the

single edge notched shear test presented in Ref. [59]. The sample is of square shape and each edge is 1 mm

long, see Figure 1(a). To generate synthetic images, the phase-field model is used to compute displacement

fields for time steps tk = k · 10−4 second with k = 0, ..., 75. The displacement fields are then applied to the

reference image shown in Figure 1(b),

It(x, tk) = I0(x− u(x, tk)). (31)

The definition (i.e., number of pixels) of the deformed images is identical to that of the reference picture.

Therefore Equation (31) is solved for all pixels of each synthetically deformed image. The field of view

of the images is slightly larger than the sample to have the fully deformed domain inside of the images.

In the reference image, the sample is identified by the speckle pattern and the added field of view by the

black background. The speckle pattern was generated using a Halton sequence placing ellipses of normally130

distributed intensity with radii uniformly ranging from 5 to 25 px on the sample surface. The pixel size is

about 1 µm.
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(a) (b)

Figure 1: Small-sample experiment. Geometry of the sample and applied boundary conditions (a), speckle pattern applied to
the sample surface (b). The pixel size is about 1 µm.

The Dirichlet boundary conditions, chosen to be feasible using multi-axial testing machines [12], are

u|Γ0
= 0 [mm] and u|Γ1

= (−2 τ, 1.5x1 τ)T [mm], (32)

where τ is the dimensionless time. Due to the end time of 7.5 · 10−3 second and a pixel size of about 1 µm,

the maximum displacement at the boundary Γ1 is going to be about 15 px The material and numerical

parameters of the synthetic test are gathered in Table 1. The element size h of the structured mesh is of135

the order of 12 µm (or 11 px) and the internal length ℓ is assumed to be equal to 2 times the element size.

Table 1: Reference material and numerical parameters to generate the displacement fields for the deformed configurations for
the small-sample experiment.

Parameter Definition Value
h Diagonal cell diameter 12 µm (or ≈ 11 px)
Gc Fracture energy 2.7 kJ/m2

E Young’s modulus 250 GPa
ν Poisson’s ratio 0.2
ℓ Internal length 2h ≈ 24 µm (or ≈ 22 px)
κ Regularization parameter 10−10

The resulting displacement field together with the phase-field solution at frame 75 are shown in Figure 2.
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The crack starts propagating from the beginning of the slit at frame 43 toward the bottom/left corner.

(a) (b) (c)

Figure 2: Solution of the phase-field model of the small-sample test at frame 75 for the reference parameters. Phase-field
variable φ (a), displacements u1 (b) and u2 (c).

In practice, one typically performs a first measurement using standard DIC techniques to estimate the

boundary conditions, and take them as known for IDIC analyses [57], such that only material parameters

need to be optimized. However, numerical models are very sensitive to boundary conditions [73] with

specific examples related to the current work in [12, 29], such that slightly incorrect boundary conditions

(due to measurement uncertainties in DIC analyses) may influence the quality of IDIC results. Therefore,

the boundary conditions as well as the material parameters are optimized simultaneously, such that the

space of parameterization is chosen to be P = R5 with two parameters controlling the boundary condition

on Γ1 and the other three parameters are the Poisson’s ratio ν, the fracture energy Gc and the internal

length ℓ. More precisely, a parameterization p = (a1, ..., a5)
T ∈ P is defined as

u(x, t)|Γ1×I = (a1 t, a2 x1 t)
T [mm], ν = a3, Gc = a4 and ℓ = a5 h, (33)

where x = (x1, x2) ∈ Γ1 and t ∈ I. Using this parameterization, one should be aware that the Poisson’s ratio

should belong to the interval (−1, 0.5), and the fracture energy should be greater than zero. Furthermore,

the internal length ℓ has to be at least as large as the size of one element, e.g. h such that ℓ > h, which is a
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well-known numerical requirement in the case of low-order finite elements [7][Section 2.1.2] or [82][Section

5.5]. With respect to the selected resolution, the internal length has to be larger than 11 px. Consequently,

one has to add inequality constraints

−1 < a3 < 0.5, a4 > 0 and a5 ≥ h, (34)

into the minimization problem. In the presented study, a simple active-set scheme was added inside Algo-

rithm 1. The initial parameterization

p0 = (a
(0)
1 , ..., a

(0)
5 ) = (−1, 0.5, 0.4, 2, 3)T (35)

was selected because the corresponding solution did not include a crack, see Figure 3, and is therefore

suitable to test the method for non-optimal initialization.140

(a) (b) (c)

Figure 3: Solution of the phase-field model of the small-sample test at frame 75 for the initial parameterization p(0). Phase-field
variable φ (a), displacements u1 (b) and u2 (c).

This initial guess is also used to define the basis of P

ΦP
i = a

(0)
i ei, (36)
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where ei is one in its i-th component and zero else. This definition is especially useful for the finite-difference

scheme. By choosing a perturbation parameter s = 0.01, one automatically perturbs the parameters by 1%

wrt. its initial values. As one can assume that the initial parameterization is at least of the same order

as the real solution, the finite-difference approximation is a reasonably good approximation of the actual

derivative of the model.145

4.1.1. Sensitivity and conditioning study

The sensitivity fields Si =M ′
s(p)(Φ

P
i ), where M

′
s is defined in Equation (9), visually represent at which

rate the displacement field changes for a given perturbation of the parameters p at a certain time instant

and location. Figure 4 shows the sensitivity fields for each considered parameter at time τ = T of the

converged solution, scaled by the perturbation factor s = 0.01. Due to the scaling, one can also interpret150

the sensitivity fields as the absolute variation of the displacement (in pixels) by a perturbation of 1% of

the parameters p. The high values of the other fields mostly concentrate around the damaged zone, while

the fields of the boundary condition are very sensitive over large regions around the damaged zone and the

boundary itself. The damage model parameters Gc and ℓ are sensitive in relatively large areas around the

crack, even though the sensitivity values are relatively low. Despite the fact that the sensitivity fields of the155

phase-field variable are not directly of importance for the IDIC algorithm itself, they are indirectly part of

the variation and sensitivity of the displacement field and are therefore also displayed in Figure 4. Again,

the sensitivity field is scaled by the perturbation factor and therefore corresponds to the absolute variation

of 1% of the parameters p. Contrary to the variation of the displacement fields, the sensitivity fields of

the phase-field variable clearly concentrate around the active zone of damage growth and not along the full160

path. Only the sensitivity field of the internal length is visible along the damage path, but the levels are

much lower than for all other parameters.
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φ u1 u2

a1

a2

ν

Gc

ℓ

Figure 4: Variation of the phase-field variable for 1% perturbation of the parameters (left column), the first component of the
displacement field (middle column) and the second component of the displacement field (right column) for the small-sample
experiment. All fields are scaled by the perturbation factor s = 0.01.

The sensitivities can be further understood by analyzing the normalized, instantaneous IDIC Hessian
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matrices

H inst
ij (t) =

1

|Ω|

∫
Ω

(Si · ∇IM(p))(Sj · ∇IM(p)) dx, (37)

and the full space-time Hessian matrix

H full
ij =

1

|Ω× I|

∫
I

∫
Ω

(Si · ∇IM(p))(Sj · ∇IM(p)) dx dt. (38)

For both cases, the Hessian matrix of the exact solution is analyzed such that not only the first but also

the second term of the true IDIC Hessian (8) were omitted. In the following, the condition numbers for the

Hessian matrices are analyzed in more detail. While the condition number indicates good or bad convergence165

rates [68], one can also interpret it as an amplification factor of errors existing due to, e.g., acquisition

noise [32, 57]. The condition number of the instantaneous Hessian matrix decreases significantly with time

(Figure 5) and reaches its lowest level after the damaged zone already propagated and at the end of the test.

Interestingly, the condition number also increased during damage propagation. The full space-time Hessian

has a lower condition number than any instantaneous Hessian.170

Figure 5: Condition number of the space-time Hessian matrix Hfull compared to that of the instantaneous Hessian matrix
Hinst for each image of the small-sample experiment.

To get a better understanding of the conditioning of the Hessian matrices, the eigendecomposition of

the instantaneous Hessians is reported in Figure 6 for frames 20, 50 and 75 as well as the full space-time
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Hessian. The parameters of the boundary conditions, a1 and a2, represent the first two eigenparameters with

the highest eigenvalues for all frames. The Poisson’s ratio only fully uncouples from all other parameters

during the elastic deformation process such as at frame 20. Even though the Poisson’s ratio remains mostly175

uncoupled up to frame 50, a weak coupling with respect to the fracture energy becomes visible and further,

the corresponding mode becomes less sensitive than the mode of the fracture energy. Conversely, Gc and

ℓ are fully coupled and the corresponding eigenparameters have very low eigenvalues. This is due to the

fact that damage starts to develop in the vicinity of the slit root. The moment the damaged zone starts to

propagate, the eigenparameters related to Gc and ℓ have much higher eigenvalues such that the parameter180

Gc becomes more sensitive than ν at frame 50. For frame 75, all eigenvalues increase and especially the

eigenvalue mostly related to Gc, such that Gc and ν have almost the same sensitivity. The full space-time

Hessian has the same eigenparameters as the instantaneous Hessian at frame 50, but the eigenvalues are

closer to those of the instantaneous Hessian at frame 75.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k)

Figure 6: Solution of the phase-field variable for frames 20 (a), 50 (d) and 75 (g) for the small-sample experiment. Rows one
to three correspond to instantaneous Hessian matrices and row four with the full space-time Hessian matrix. The eigendecom-
position of the Hessian matrices gives the eigenparameters shown in (b,e,h,j) and the eigenvalues shown in (c,f,i,k).
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4.1.2. Results185

Instead of using the full sample Ω = [0, 10]2 for the IDIC problem, a slightly smaller region excluding

the slit was used. At the slit, high interpolation errors were observed, which influenced the accuracy of

the converged solution. The mask shown in Figure 7 corresponds to the black area. The residuals of the

initial and converged parameterizations are displayed in the region of interest at frames 20, 43 and 75,

corresponding to the (essentially) elastic phase, the onset of damage propagation and the end of the test,190

respectively. The residuals do not vanish completely, but their RMS level is reduced from 38.7 to 1.5, and

they have a periodic pattern, which is traced back to gray level (spline) interpolation errors when creating

the image series IM(p). Interestingly, the maximum value of the residuals decreases in time, as indicated by

the residuals in Figure 7(d-f). This is the result of the increasing sensitivity of the parameters, which was

observed in Section 4.1.1.195

(a) (b) (c)

(d) (e) (f)

Figure 7: Initial (a-c) and converged (d-f) gray level residuals at frames 20 (a,d), 43 (b,e) and 75 (c,f) for the small-sample
experiment.

By comparing the overall convergence of the residual ∥ρ∥L2(I;Ω)/|I×Ω| (Figure 8(a)) with the convergence
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of the relative error of the parameters (Figure 8(b))

Ri =
|ai − areali |
|areali |

, (39)

one observes that the first reduction of the residual is related to the boundary conditions. Moreover, the

parameters a1 and a2 are, on average, the most accurate parameters. Even though the residual barely

reduced after iteration 7, the parameters and the displacement field still changed quite a lot. After the fifth

iteration, an exponential convergence rate was reached and after the twelfth iteration, the sum of ∥δai/a(0)i ∥

was less than 10−3 such that the iteration was stopped.200

(a) (b)

Figure 8: Small-sample experiment. Convergence of the residual J2 and difference of the approximate and true displacement
compared to an exponential convergence rate (dashed line) (a). Convergence of the relative error R defined by Equation (39)
for the five identified parameters (b).

4.1.3. Influence of acquisition noise

So far, the virtual images were assumed to be almost optimal i.e., they were constructed such that the

gray level conservation held, except for interpolation errors. Real images include much larger errors due

to acquisition noise that can be modeled by Gaussian white noise η such that the gray level conservation

becomes

I0(x) = IM(p)(x, t) + η(x, t). (40)
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The influence of noise is analyzed by adding Gaussian white noise with different standard deviation levels

to all images, while the identification scheme remains the same. In Figure 9, the relative error Ri for

each parameter is reported for different levels of noise. Despite the fact that one would typically only

expect standard deviations of about 5% of the dynamic range (at the most) i.e., 12.75 GL (Gray Levels),205

the performance of the identification procedure with standard deviations up to 20% of the dynamic range

(51 GL) was investigated. Having also converged for the 20% level indicates that the presented algorithm

is robust and remains very accurate. Noticeably, the relative error is less than 1% of the actual solution for

5% noise.

Figure 9: Convergence results for the small-sample experiment in terms of parameter errors for different levels of standard
deviation of Gaussian white noise.

4.2. Large-sample experiment210

The second experiment is used to analyze Algorithm 1 in a more realistic setting. Therefore, the sample

is enlarged to have the same size as in the CARPIUC benchmark [11], see Figure 10(a), but the speckle

pattern and the overall shape are kept the same as in the previous section, Figure 10(b). The material

parameters are also adapted to be closer to a quasi-brittle material, see Table 2.
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Figure 10: Large-sample experiment. Geometry of the sample and applied boundary conditions (a), speckle pattern applied to
the sample surface (b). The pixel size is 104 µm.

Table 2: Reference material and numerical parameters to generate the displacement fields for the deformed configurations for
the large-sample experiment.

Parameter Definition Value
h Diagonal cell diameter 2.4 mm (or ≈ 23 px)
Gc Fracture energy 0.3 kJ/m2

E Young’s modulus 15 GPa
ν Poisson’s ratio 0.2
ℓ Internal length 2h ≈ 4.7 mm (or ≈ 46 px)
κ Regularization parameter 10−10

The following boundary condition

u|Γ0
= 0 [mm] and u|Γ1

= (−50 τ, 1/4x1 τ)T [mm] (41)

results in a similar crack pattern as in the first test, see Figure 11, but this time with the end time of215

τ = 7.5 · 10−3 and a pixel size of about 104 µm the maximum displacement at the boundary Γ1 is about

3.6 px. Therefore, the maximum displacement in terms of pixels is reduced by a factor of about 5 compared

to the small-sample test. This level allows for a comparison of the two tests and the convergence of the

algorithm.

25



(a) (b) (c)

Figure 11: Solution of the phase-field model of the large-sample test at frame 75 for the reference parameters. Phase-field
variable φ (a), displacements u1 (b) and u2 (c).

The parameterization p = (a1, ..., a5)
T ∈ P is defined as

u|Γ1×I = (10a1 t, a2/20x1 t)
T , ν = a3, Gc = a4 and ℓ = a5 h, (42)

and the initial parameterization was chosen to be

p0 = (a
(0)
1 , ..., a

(0)
5 ) = (−1, 1, 0.4, 0.5, 3)T , (43)

such that, similar to the first test, no crack has propagated.220

4.2.1. Conditioning study

Similar to the first experiment, the full space-time Hessian matrix has a lower condition number than

any instantaneous Hessian matrix as shown in Figure 12. Yet, the eigenvalues are much lower, while the

eigenmodes are essentially the same.
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(a) (b) (c)

Figure 12: Condition number of the space-time Hessian matrixHfull compared to that of the instantaneous Hessian matrixHinst

for each image of the large-sample experiment (a), the eigenparameters of the space-time Hessian (b) and its eigenvalues (c).

4.2.2. Influence of noise225

Gaussian white noise was added up to 20% of the dynamic range. One can see in Figure 13 that the error

increased by a factor of about 100 between 1% (0.5 GL) to 3% (1.5 GL) noise. Nevertheless, today’s cameras

are able to acquire images with noise levels of about 1% of the dynamic range, such that also the internal

length is expected to be measurable in real-world settings. Furthermore, the error remained relatively stable

even for high noise levels. Thus, the low eigenvalues lead to robustness with respect to Gaussian noise.230

Figure 13: Convergence results for the large-sample experiment in terms of parameter errors for different levels of standard
deviation of Gaussian white noise.

27



5. Conclusion and Outlook

In this study, a phase-field fracture model was included into an integrated-DIC framework, enabling for

the identification of material parameters and boundary conditions. In the first parts of this work, algorithms

and conceptional developments were designed in order to utilize numerically a modern phase-field fracture

approach with primal-dual active set techniques and parallel computing. Phase-field fracture acted as inner235

approach of IDIC. Two synthetic experiments were designed based on realistic sample geometries, boundary

conditions, image contrast and acquisition noise. The samples were deformed with the phase-field model

with realistic material parameters until a crack initiated and propagated.

The results showed the capability to simultaneously identify the boundary conditions and material pa-

rameters for the whole acquisition of a single experiment. For both experiments, the parameter sensitivity240

fields, their relative coupling and amplitudes were investigated at different crack propagation steps. Re-

markably, high sensitivities were obtained for Poisson’s ratio and the internal length through the proposed

space-time formulation for the first test case (i.e., the influence of acquisition noise on the calibration results

remained limited over a very large range of standard deviations). The identification of those two param-

eters is frequently highlighted as challenging in the literature. For the second test case, which was more245

challenging in terms of noise to signal ratio, good calibration results were obtained for a more limited range

of acquisition noise. Such observations show that the sensitivity analyses as discussed herein are very useful

to probe IDIC frameworks prior to actual experiments.

Since the present analysis effectively demonstrated the potential for coupling the phase-field fracture

model with IDIC using synthetic test cases, a future study is to apply it to real experiments (e.g., the so-250

called CARPIUC benchmark [11]), from which the synthetic experiments were inspired. Using projection-

based digital volume correlation (P-DVC), it would also be possible to extend the analysis to 4D measure-

ments [39, 46]. Additionally, even though the presented method converged fast, it may be interesting to

further investigate the computation of the sensitivities for each parameter. This step requires a full compu-

tation of the phase-field model for each parameter at each Newton iteration, which is in the end a costly255

operation.
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[27] A. C. Hansen-Dörr, L. Wilkens, A. Croy, A. Dianat, G. Cuniberti, and M. Kästner. Combined molecular dynamics and
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