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A predictive tool called COSMO-RS, Conductor-Like Screening Model for Real Solvents, based on quantum chemistry, dielectric continuum models, electrostatics surface interactions and statistical thermodynamics have been used to predict five key physicochemical properties of raw materials used in perfumery industries. The prediction of boiling point (BP), octanolwater partition coefficient (log P), vapor pressure (VP), water-solubility (WS) and Henry's law constant (HLC) of fragrance molecules has been validated with a reference data set of 166 organic compounds. Knowing these properties for a fragrance molecule is essential and being able to predict them precisely can be particularly useful in the development of new molecules or in the replacement of controversial molecules regarding safety issues without compromising the overall hedonic accord. Finally, mapping the vapor pressure versus the Henry's law constant and the octanol-water partition coefficient, consistently predicts the note class of the molecules useful for release comparison of captives.

Introduction

Each year, fragrance companies develop and patent two or three new molecules called captives. [START_REF] Burr | the Seductive Fragrance of Molecules Under Patent[END_REF] These molecules are created not only to entice consumers with unique notes for perfumery but also to decrease cost, allergic reactions, feedstock shortages or nonbiodegradability/non-renewability of previous raw materials. To launch two to three captives per year on the market, screening of hundreds or thousands of molecules is necessary. As such, fragrance design requires considerable experimental work of synthesis and characterization. Hence, predicting in silico the physicochemical properties of virtual candidates can significantly contribute to a faster development of new captives with targeted features.

According to the REACH regulation, [START_REF] Lewis | Integrating process safety with molecular modeling-based risk assessment of chemicals within the REACH regulatory framework: Benefits and future challenges[END_REF] 17 properties must be determined to bring a new molecule to the market (Table S1). However, measuring experimentally all these properties is not always realistic in terms of time, cost, feasibility at R&D level and safety (notably for hazardous compounds). Therefore, this implementation has motivated the development of alternative approaches to experimental testing with fast and reliable methods. [START_REF] Lewis | Integrating process safety with molecular modeling-based risk assessment of chemicals within the REACH regulatory framework: Benefits and future challenges[END_REF] As a consequence, thanks to improvements in computer hardware and software in the past decades, numerous tools to predict property values for large molecule sets have emerged.

Perfumery is typically a field of application in which prediction of physicochemical properties can be very useful. Indeed, vapor pressure (VP) and boiling point (BP) as well as Henry's law constant (HLC) which represents the mass transfer of molecules from liquid to air are essential data to describe and assess the volatility of scent molecules. [START_REF] Wagner | Densities, Vapor Pressures, and Surface Tensions of Selected Terpenes[END_REF][START_REF] Bhal | LogP-Making Sense of the Value[END_REF][START_REF] Klamt | COSMO-RS: a novel and efficient method for the a priori prediction of thermophysical data of liquids[END_REF][START_REF] Nieto-Draghi | A General Guidebook for the Theoretical Prediction of Physicochemical Properties of Chemicals for Regulatory Purposes[END_REF][START_REF] Panayiotou | Equation-of-State Models and Quantum Mechanics Calculations[END_REF] Likewise, watersolubility (WS) and octanol-water partition coefficient (log P) can bring valuable insights for the elaboration of aqueous formulations. [START_REF] Bhal | LogP-Making Sense of the Value[END_REF] Among the available predictive approaches, mainly five stand out for estimating chemical properties with their pros and cons. [START_REF] Klamt | COSMO-RS: a novel and efficient method for the a priori prediction of thermophysical data of liquids[END_REF][START_REF] Nieto-Draghi | A General Guidebook for the Theoretical Prediction of Physicochemical Properties of Chemicals for Regulatory Purposes[END_REF][START_REF] Panayiotou | Equation-of-State Models and Quantum Mechanics Calculations[END_REF][START_REF] Grensemann | Performance of a Conductor-Like Screening Model for Real Solvents Model in Comparison to Classical Group Contribution Methods[END_REF][START_REF] Hornig | COSMOfrag: A Novel Tool for High-Throughput ADME Property Prediction and Similarity Screening Based on Quantum Chemistry[END_REF][START_REF] Franke | A Case Study in the Pre-Calculation of Henry Coefficients[END_REF][START_REF] Wille | Effect of Electrolytes on Octanol-Water Partition Coefficients: Calculations with COSMO-RS[END_REF] The group contribution model (GC) or additive group method is an empirical method based on the division of molecule in blocks (functional groups). [START_REF] Van Speybroeck | The calculation of thermodynamic properties of molecules[END_REF][START_REF] Benson | Additivity rules for the estimation of thermochemical properties[END_REF][START_REF] Constantinou | New group contribution method for estimating properties of pure compounds[END_REF][START_REF] Joback | Estimation of pure-component properties from groupcontributions[END_REF] In most cases, the property is computed as a sum of contributions of each group, though nonlinear GC models are sometimes proposed. GC is easy to use but despite all the development to improve the methods, the lack of parameters to describe all the molecules, the non-unicity of breakdown schemes for some molecules, the impossibility to discriminate isomers or the bad accuracy in the prediction for chiral compounds does not fulfill all the expectations for some applications. Quantitative structure-property relationships (QSPR) models correlate chemical properties with molecular features encoded by a series of molecular descriptors. [START_REF] Dearden | In Silico Prediction of Physicochemical Properties[END_REF][START_REF] Katritzky | Quantitative Correlation of Physical and Chemical Properties with Chemical Structure: Utility for Prediction[END_REF][START_REF] Dearden | QSPR prediction of physico-chemical properties for REACH[END_REF] It is based on the assumption that "similar structures give similar properties". Though the QSPR approach can quickly generate predictions, descriptors (especially topological and quantum-chemical ones) are not always easy to calculate and interpret. Moreover, as a purely empirical model, a QSPR model is fundamentally limited in its applicability to molecules similar to the ones it has been trained for. The equation of state approach (EoS) takes advantage of thermodynamics and statistical mechanical principles. [START_REF] Valderrama | The State of the Cubic Equations of State[END_REF][START_REF] Michelsen | Fundanental s & Computational Aspects: Thermodynamics Models[END_REF][START_REF] Kontogeorgis | Thermodynamic Models for Industrial Applications: From Classical and Advanced Mixing Rules to Association Theories[END_REF] It is based on mathematical relationships which allow describing the state of matter under certain physical conditions such as pressure, volume or temperature. Different approaches are possible, and some empirical modifications can improve the accuracy. These approaches are often powerful to predict physicochemical properties at different pressures and temperatures given a few experimental (or even predicted) data points. However, by themselves, they are of limited use where no initial data are available for the calibration of the models. Molecular simulation relies on the explicit computation of inter-particle energies and motion over a large ensemble of particles. [START_REF] Haile | Molecular Dynamics Simulation: Elementary Methods[END_REF][START_REF] Gubbins | Molecular Modeling of Matter: Impact and Prospects in Engineering[END_REF][START_REF] Maginn | Historical Perspective and Current Outlook for Molecular Dynamics As a Chemical Engineering Tool[END_REF] Macroscopic properties can then be calculated based on statistical mechanics principles. The molecular dynamic based on the equation of motion and the Monte-Carlo method based on statistics are the two main methods. These techniques present complex simulation set-up and the calculation time is generally long compared to previous techniques. Furthermore, the force fields that model the intermolecular interactions should be carefully selected as a function of the problem, requiring substantial user expertise. To the end, COSMO-RS is an approach which combines quantum chemistry, dielectric continuum models, electrostatic surface interactions and statistical thermodynamics. [START_REF] Klamt | COSMO-RS: a novel and efficient method for the a priori prediction of thermophysical data of liquids[END_REF][START_REF] Klamt | Erratum to "COSMO-RS: a novel and efficient method for the a priori prediction of thermophysical data of liquids[END_REF][START_REF] Lin | A Priori Phase Equilibrium Prediction from a Segment Contribution Solvation Model[END_REF][START_REF] Lin | Prediction of Vapor Pressures and Enthalpies of Vaporization Using a COSMO Solvation Model[END_REF][START_REF] Wang | Application of the COSMO-SAC-BP Solvation Model to Predictions of Normal Boiling Temperatures for Environmentally Significant Substances[END_REF] It is a fast method to predict liquid phase properties for neutral molecules, ionic liquids and mixtures.

Note that though the method is highly suitable to predict properties in the liquid phase, if ever the solid phase becomes relevant (e.g., to calculate the solubility of solid solutes) the contribution of crystal packing must be supplied eternally.

In this article, we show how the COSMO-RS method can be wisely used to find new captives when no experimental information is available in the literature or even easily accessible experimentally. Indeed, physicochemical properties can be predicted with accuracy for existing or virtual candidates avoiding time-consuming experimental measurements and the use of solvent and other hazardous chemicals.

Herein, we have therefore focused on five essential physicochemical properties of fragrance molecules: log P, boiling point BP, vapor pressure VP, Henry's law constant HLC and watersolubility WS. Their value has been predicted and compared to experimental data for 166 organic compounds to validate the approach which has then been applied to a set of 16 common fragrance and flavor compounds. Finally, a 3D-mapping of the predicted properties has been built for a real perfume to show how such information could be beneficial to compare the potential release of captives and therefore to adjust the perfume composition.

Materials and methods

Reference data set and data set of flavor and fragrance molecules

Data of 166 organic raw materials were extracted from the Yaws' database. [START_REF] Yaws | Yaws' Handbook of Thermodynamic and Physical Properties of Chemical Compounds[END_REF] They were selected on the basis of their chemical structure. Indeed, only molecules with the C, N, O, H atoms were extracted as they constitute the majority of the fragrance molecules. In addition, we have taken care to cover the whole range of chemical functions of fragrance molecules (i.e. alcohols, aldehydes, ketones, acetates, esters, terpenes, phenols/aromatic derivatives and ethers) of the perfumer portfolio (see Figure S1).

COSMO molecular surfaces

The COSMO-RS model is a semi-explicit extension of an implicit solvation model, the COnductor-like Screening MOdel (COSMO). [START_REF] Klamt | From Quantum Chemistry to Fluid Phase Thermodynamics and Drug Design[END_REF][START_REF] Klamt | COSMO: a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient[END_REF] In this model, solute-solvent interactions are represented by the polarization induced on the solvent by the charge distribution of the solute (Figure 1), in the form of polarization charge densities on the solute/solvent interface, i.e. the molecular surface of the solute (here named COSMO surface).

COSMO models the solvent as a conductor, and the extent to which this implicit solvent is polarized by the solute is entirely controlled by its dielectric constant. Though real solvents have a finite dielectric constant, an interesting reference state is reached for the perfect conductor, i.e. a fictitious solvent with infinite dielectric constant. COSMO-RS theory is based on COSMO surfaces at infinite dielectric constant (or in the perfect conductor). [START_REF] Klamt | From Quantum Chemistry to Fluid Phase Thermodynamics and Drug Design[END_REF][START_REF] Klamt | COSMO: a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient[END_REF] In general, a molecule is represented by a few distinct COSMO surfaces, each one corresponding to a relevant geometrical configuration. Note that for some small or rigid molecules (such as benzene), a single COSMO surface is enough. To obtain the COSMO surfaces (represented by COSMO files in a computer), a combination of molecular modeling and conformational search steps is required. [START_REF]COSMO Conf 4.2[END_REF] For molecules of small to average size, such as fragrances, obtaining the relevant COSMO files represents a moderate computational cost (from minutes to hours as a background task on a personal computer). The COSMO-RS model then provides chemical potentials of molecules by evaluating the interactions between the charged molecular surfaces obtained through COSMO calculations. More details about the procedure required to obtain COSMO files for a given molecule are given in the Supporting Information.

COSMO-RS theory

Combining quantum chemistry results with a simple statistical thermodynamic approach, COSMO-RS can predict the pseudo-chemical potentials of molecules in liquid phases.

COSMOtherm, a software tool that applies COSMO-RS theory, also includes a semiempirical model that predicts the pseudo-chemical potential in gas phase, and a QSPR model that predicts the Gibbs free energy of melting (i.e. transfer from pure solid to pure liquid phase). [START_REF] Cosmotherm | [END_REF] Based on these pseudo-chemical potentials, the properties of interest in this paper, which are based on such chemical potentials, can then be estimated (Figure 2). Specifically, COSMO-RS takes as a reference a universal standard state (the "ideal conductor", here denoted by a star superscript "*") to calculate pseudo-chemical potentials.

By definition, the pseudo-chemical potential [START_REF] Ben-Naim | Molecular Theory of Solutions[END_REF] and the chemical potential are related by eq. 1:

(1) in this equation,

is the pseudo-chemical potential of component i in phase S, is its actual chemical potential, and is the mole fraction of component i in phase S. Finally, R is the ideal gas constant and T is temperature. The pseudo-chemical potential of compound i in phase S can be straightforwardly interpreted as a measure of the affinity of the compound i for the phase S.

Combining eq. 1 with the thermodynamic requirement of equal chemical potentials in all phases gives:

(

In this equation, and are the chemical potentials of the molecule i in phases S1 and S2, respectively, whereas and are the pseudo-chemical potentials of the molecule i in phases S1 and S2, respectively. and are the mole fractions of the molecule i in phases 1 and 2, respectively. Thanks to eq. 2, the COSMO-RS pseudo-chemical potentials can be used to predict the equilibrium distribution of species in relevant phases.

In this article, a brief description of the procedure to predict these standard-state chemical potentials in the liquid phase (the core applicability domain of COSMO-RS) is provided. The interested reader is referred into the descriptions already available in literature for more details, as well as for the empirical models used for the gas and solid phases. [START_REF] Klamt | COSMO-RS: a novel and efficient method for the a priori prediction of thermophysical data of liquids[END_REF][START_REF] Eckert | Fast solvent screening via quantum chemistry: COSMO-RS approach[END_REF] First, the molecule of interest is placed in a realistically shaped cavity (or molecular surface), itself in a virtual conductor environment thanks to the continuum solvation model COSMO.

This conductor induces a screening charge density σ on each point of the molecular surface.

By taking account of the 3D distribution of the screening charge density on the surface of the molecule, a surface composition function is defined, called the σ-profile. Then, the COSMOtherm software uses statistical thermodynamics to calculate the chemical potential of a surface segment from the local properties of the segments in the mixture (i.e. polarization charge density, but also underlying atom type). [START_REF]COSMOtherm Reference Manual[END_REF] The pseudo-chemical potential of a molecule in the liquid phase is then obtained by summing the chemical potentials of the segments, weighted by their σ-profile. The link between the pseudo-chemical potentials and the properties of interest in this paper is presented below. These properties are always estimated based on an adapted variation of eq. 2.

The solubility of a solute i in a solvent S (in mole fraction) reflects the affinity balance between the solvent and the pure ( ) compound phases. It is calculated according to equation 3: [START_REF]COSMOtherm Reference Manual[END_REF] (3)

where n i S is the number of moles of the compound i in the solvent S, μ i *,P represents the pseudo-chemical potential of the pure compound i, μ S *,i corresponds to the pseudo-chemical potential at infinite dilution in the solvent S, and ΔG fus = μ *,solid i -μ *,liquid i is the Gibbs free energy of melting of the pure solute (which can be approximated from a QSPR model as stated previously, but also obtained from reference experimental solubilities, or from melting point and heat of fusion [START_REF] Klamt | Prediction of aqueous solubility of drugs and pesticides with COSMO-RS[END_REF] ). This solubility is already a good estimate in the diluted regime.

Nevertheless, the solubility of the solute can be refined iteratively until convergence by reusing eq. 2 including finite concentrations of solute in the solvent to predict the pseudochemical potential in the solvent until the predicted solubility converges or full miscibility ( =1) is reached. [START_REF]COSMOtherm Reference Manual[END_REF] It is worth noting that the equation assumes that the mole fraction of the solute in the solid phase is 1 (i.e. it neglects the formation of solid solvates). Combining a simple estimate for the molar volume of the solvent (based on the volume of the COSMO cavity as the main contributor), as well as the molar weight of the solute, with the predicted mole fraction solubilities, COSMOtherm also provides the solubility in molar concentration (WS), as well as in mass concentration. The partition coefficient log P i ow between octanol and water is calculated from equation 3, which combines eq. 4 with the definition of molar concentration: 36

where c i octanol and c i water are the concentrations of the solute i in octanol and in water, respectively, x i octanol and x i water are the corresponding mole fractions of the solute i, V water and V octanol are the molar volumes of the two solvent phases, and μ *,i water and μ *,i octanol are the pseudo-chemical potentials of the solute i in water and in octanol, respectively. Because water is soluble in octanol, the octanol phase was not defined as a pure octanol phase but as a "wet octanol" one with a molar ratio of 0.726 in octanol. The vapor pressure of a pure compound, based on the affinity balance of the solute for itself and the gas phase, is predicted using the equation below. [START_REF]COSMOtherm Reference Manual[END_REF] (5) in this equation, is the pseudo-chemical potential of the solute i in the ideal gas phase.

This equation is obtained by combining eq. 2 with the ideal gas relation pV = nRT. In addition, the temperature at which pseudo-chemical potentials are evaluated can be iterated until the computed VP becomes equal to the atmospheric pressure, yielding a BP prediction.

Finally, the activity coefficient at infinite dilution of the solute i in solvent S (for example water), , by definition, is related to the pseudo-chemical potentials as follows:

The HLC reflects the affinity balance between the solvent and gas phases. Since the HLC is defined as the product of the activity coefficient at infinite dilution with VP, it can be predicted by COSMO-RS 36 by combining eqs. 5 and 6:

(7)

Computational method

WS, log P, VP, BP, and HLC were predicted using the software package COSMOtherm (COSMOlogic GmbH & CO KG, Leverkusen, Germany). The COSMOthermX Version 19.0.1 software and the BP_TZVPD_FINE parameterization were used. The COSMO input files were taken from the COSMOtherm database or calculated using the COSMOconf software. The TZVPD-FINE quantum chemistry parametrization was used to predict the properties.

Results and discussion

Experimental versus predicted properties for a reference data set

The experimental data extracted from the Yaws' database were compared with the predicted ones calculated with the COSMO-RS theory for the five target properties. A set of 166 raw materials (RMs) was selected from the handbook. Not all five experimental data are available for the RMs. Indeed, though BPs are available for all of them, only 195 VP, 140 WS, 138

HLC and 123 log P are listed for the 166 RMs. The whole data are given in Table S2. Figure 3 represents the predicted values as a function of the calculated ones for the 5 properties.

As shown in Figure 3a, there is a very good correlation between calculated and experimental BP values for the whole set of molecules. The accuracy of the prediction is excellent with a R 2 of 0.99. The root-mean square error (RMSE) is 5.7 K which is better than the 15-18 K reported by Klamt [START_REF] Klamt | Conductor-like Screening Model for Real Solvents: A New Approach to the Quantitative Calculation of Solvation Phenomena[END_REF] and Wang [START_REF] Wang | Application of the COSMO-SAC-BP Solvation Model to Predictions of Normal Boiling Temperatures for Environmentally Significant Substances[END_REF] for their prediction of a test set compounds of 61 common molecules with various chemical functions and 369 chemicals including pollutants, herbicides, insecticides and drugs. The improvements made on the predictive model since the publication of Klamt, especially with a more thermodynamically consistent COSMOspace and the use of the FINE cavity which describes better the chemical potential for many compounds, can explain the better accuracy presented here. The model in COSMO-SAC software used by Wang also does not consider the FINE cavity which could explain lower accuracy. The maximum deviation is found for acetamide and diacetone alcohol with 25.6 K and 24.2 K standard deviation respectively.

The prediction of the octanol-water partition coefficient (log P) for 118 molecules is also well correlated to the experimental data (Figure 3b). The accuracy of the prediction is high with R 2 of 0.97. The RMSE (0.15 log units) is better than the one obtained in the COSMO-RS parameterization article [START_REF] Klamt | Refinement and Parametrization of COSMO-RS[END_REF] for a set of 168 organic molecules with a RMSE of 0.3 log units and by Buggert et al. [START_REF] Buggert | COSMO-RS Calculations of Partition Coefficients: Different Tools for Conformation Search[END_REF] with a RMSE of 0.4 log units for a set of 31 organic molecules with various chemical functions. It corresponds to the standard found by Klamt and Eckert [START_REF] Klamt | COSMO-RS: a novel and efficient method for the a priori prediction of thermophysical data of liquids[END_REF] and by Wille et al. [START_REF] Wille | Effect of Electrolytes on Octanol-Water Partition Coefficients: Calculations with COSMO-RS[END_REF] of 0.25 log units. Here, amine derivatives (triethylamine and diethylamine) and long linear alkanes (dodecane and decane) are predicted with the highest log P difference of over 1 log unit difference.

Prediction of VP values is also very satisfactory with a R 2 of 0.96 and a RMSE of 0.13 log units (Figure 3c). It matches the results of Klamt et al. [START_REF] Klamt | Refinement and Parametrization of COSMO-RS[END_REF] with a RMSE of 0.14. The average accuracy is also consistent with the literature with a 0.25 log unit difference. However, for our data set, the factor of the linear correlation is 0.93 which implies a noticeable deviation from the axis bisection. This can be explained by higher predicted VP values than experimental ones for molecules with very low volatility (< 0.001 bar). Indeed, measurement for such molecules is not straightforward and can lead to a significant error. The highest error was found for nonyl acetate (1.82 log unit difference). The problem comes from the experimental vapor pressure given in the Yaws handbook. Indeed, Krasnykh et al. [START_REF] Krasnykh | Vapour pressures and enthalpies of vaporization of a series of the linear n-alkyl acetates[END_REF] have measured the vapor pressure of nonyl acetate at 6.42•10 -5 bar at 25 °C whereas Yaws gives a vapor pressure equal to 5.79 10 -7 bar. The modification of the experimental value gives a 0.25 log units difference with the predicted data from COSMO-RS which is more acceptable.

COSMO-RS theory also shows good results for the prediction of the WS of the 135 molecules (Figure 3d). The correlation is very accurate as indicated by the R 2 of 0.92. The RMSE is 0.18 which is better than other results from the literature. Klamt et al. [START_REF] Klamt | Prediction of aqueous solubility of drugs and pesticides with COSMO-RS[END_REF] have reported a 0.5 log unit on a set of 107 pesticide-like and 150 drug-like molecules. Oleszek-Kudlak et al. [START_REF] Oleszek-Kudlak | Application of the COnductor-Like Screening Model for Real Solvents for prediciton of the aqueous solubility of chlorobenzenes depending on temperature and salinity[END_REF] have studied the water-solubility of 12 chlorobenzene derivatives and observed a RMSE of 0.14 whereas Kholod and al. 43 obtained a RMSE of 0.9 for the water-solubility of 27 nitro compounds. However, the solubility of solid compounds is overestimated, in particular phenolic derivatives which are usually solid. It may be due to the empirical account for crystal packing, as ΔG fus is approximated by a QSPR model. Moreover, the water-solubility of fragrance is not accurate for very soluble compounds (> 0.25 g/g H 2 O ). In this case, experimental inaccuracies could explain the discrepancies, as it is harder to measure the solubility of highly soluble compounds. Finally, the 133 HLC predictions are quite accurate with a R 2 of 0.97 and a RMSE of 0.19 (Figure 3e). The average log unit difference is 0.25 which is better than the one reported by Eckert et Klamt [START_REF] Eckert | Fast solvent screening via quantum chemistry: COSMO-RS approach[END_REF] for the validation set of 150

Henry's law constants of 0.38.

Prediction of the properties of fragrance molecules

The reference data set provides good correlations between experimental and COSMO-RS predicted data. This approach was then applied to a set of 16 common fragrance molecules which were not included in the training set of 166 molecules. Table 1 summarizes the experimental and COSMO-RS predicted values.

All the correlations obtained for the set of fragrance molecules are shown in Figure 4.

Whatever the properties, they are generally well predicted. The prediction of the BP (Figure 4a) is very good with a RMSE of 6.4 K which is far below the calculation error of the COSMO-RS theory. A deviation between experimental and calculated values is obtained for vanillin with a BP overpredicted by 36.7 K. This discrepancy can be accounted for by its high boiling point which is near the limitation of accuracy of the COSMO-RS theory. The octanolwater partition coefficient (log P) gives with a RMSE of 0.14 and the average log P difference is almost equal to the 0.25 expected by the COSMO-RS theory [START_REF] Klamt | COSMO-RS: a novel and efficient method for the a priori prediction of thermophysical data of liquids[END_REF] (Figure 4b). The highest deviation is obtained for D-limonene with a 0.86 log P difference. The VP prediction gives a RMSE of 0.18 log units and an average difference of 0.26 log units (Figure 4c). Anethole and pelargol exhibit the highest deviation with respectively 0.85 and 1.09 log difference. This can be explained by the difficulty of precisely measuring the vapor pressure of low volatile compounds (1.73x10 -5 bar and 2.75x10 -4 bar respectively). The water-solubility prediction is consistent with the expectation with a RMSE of 0.21 log units and an average difference of 0.29 log units (Figure 4d). Only the prediction of furfuryl alcohol is not very accurate (log difference of 0.90), probably due to its very high solubility in water. Finally, regarding the HLC, with a RMSE of 0.24 log units and an average log difference of 0.34 log units, the highest errors are obtained with pelargol (1.04 log units) and 2-phenylethanol (0.69 log units) (Figure 4e). However, the Henry's law constant depends on water-solubility and vapor pressure and for pelargol and 2-phenylethanol, it turns out that the deviation of their vapor pressure is high. Therefore, this could explain the high deviation for their Henry's law constant.

Predicting the perfume's notes from molecular structures

A perfume is a mixture of 20 to 100 molecules with specific properties. As an example, Table 2 reports the composition of a real perfume with oriental notes. Fragrance molecules are classified into three categories: top, middle and base notes. While a top note is smelled immediately after the application of a perfume, a base note can be smelled long after the application, and a middle note is in-between these two extremes. Thus, it reflects the perfume character and its specificity over time. However, it is very common than one molecule can belong to two note classes due to different odors which can appear at different time scale.

Table 2 reports the main note as well as the potential secondary note of the 33 fragrance molecules constituting the oriental perfume. The classification has been made according to odor analysis by experts and analytic data from gas chromatography.

The knowledge of the physicochemical properties of each molecule can provide information on the affiliation of one compound to a group of scents. However, the experimental data are sometimes not available for some compounds. For the oriental perfume, the prediction of the BP, VP, log P and HLC with the data reported in the literature is rather good. The RMSE for the boiling point is 11.2 K which is higher than the RMSE for our reference data set. The RMSE of the vapor pressure is 0.23 which is in the acceptability range of the method. The deviation comes mainly from molecules with a very low volatility for which the experimental measurement of BP is not straightforward. The RMSE is equal to 0.32 for the log P and HLC which is a standard error. The correlation graphs between experimental and predicted values are given in Supporting Information (Figure S3). The vapor pressure, the Henry's law constant and the octanol-water partition coefficient are good descriptors to evaluate the group of scents. By plotting the logarithm of the vapor pressure versus the logarithm of the Henry's law constant and the logarithm of the octanol-water partition coefficient for each molecule, it turns out that this approach allows to clearly identify the group scents of molecules as shown in Figure 5.

As expected, the top notes correspond to molecules with high log HLC over the fragrance log Such an approach can be useful in understanding when new molecules perform during perfume application but also with which molecules it is possible to play in order to meet perfectly the technical specifications. Moreover, this approach can also be used to replace some problematic molecules (for safety and/or toxicity reasons) while the hedonic accords has to be kept. For instance, the substitution of Lilial has been one of the most investigated issue for the perfumery industry over the last past years. Armanino et al. [START_REF] Armanino | What's Hot, What's Not: The Trends of the Past 20 Years in the Chemistry of Odorants[END_REF] have proposed 17

P
molecules likely to substitute Lilial in the current perfume compositions (Table 3). All the substitutes have been selected thanks to their lily-of-the-valley smell. Some alternatives are direct derivatives of cyclamen aldehyde, and the difference is coming from the substitutions in ortho, meta or para of the aromatic group (2-8, 16, 17). Others were developed to be nonaromatic ingredients (9-11, 13,14). The propanal side chain is an important odor vector and the distance of the aldehyde osmophore to the bridgehead atom C 3 is kept. Finally, the aldehyde function has been replaced by alcohol (12, 15). Using the COSMO-RS method, we have determined their log P, VP and HLC (Table 3).

Even if all these molecules belong to the class of lily-of-the-valley odorants, some of them may not perform at the same time as Lilial does. Plotting the predicted properties (log HLC, log VP and log P) of Lilial substitutes clearly shows that only Hivernal 3, Josenol 15, Nympheal 16 and Mimosal 17 do not belong to the middle class as Lilial (Figure 6).

The positioning of the molecules from their physicochemical properties predicts a base note performance and may lead to change in the hedonic character of the perfume because Lilial is predicted as a middle note. Therefore, when using one of these molecules, it may be necessary to associate them with another compound to reach the same release as Lilial. For example, a composition containing both Hivernal and Lilyflore has been proposed to match the Lilial release. 46 According to the prediction, the other molecules should well perform to substitute the Lilial.

Conclusion

Five essential physicochemical properties for fragrance molecules, namely the boiling point BP, the octanol-water partition coefficient log P, the vapor pressure VP, the water-solubility WS and the Henry's law constant HLC, have been predicted using the COSMO-RS theory for a large data set of 161 molecules. Accurate predictions were obtained for most molecules for all these properties, with RMSE of 0.1-0.2 log units. Predictions were less accurate for molecules with low vapor pressure (< 0.001 bar) and high water-solubility (> 0.25 g/g H 2 O ).

Overall, it is clearly shown that the COSMO-RS approach is particularly well suited to fragrance molecules.

In addition, the determination of the note class of the compounds is well mapped either by plotting the vapor pressure versus the boiling point, or the Henry's law constant versus the octanol-water partition coefficient as it is illustrated with an oriental perfume. Thus, identifying the performance time for new captives can be essential to solve the current problematics in the perfumery industry. In particular, the replacement of compounds due to safety issues like Lilial without damaging the hedonic accords all along the lifetime of the fragrance is still under investigation despite the current proposal of alternatives. All the experiments are performed at 298.15 K. For the octanol-water partition prediction due to the partially miscibility of water in octanol, the octanol phase is a mixture of octanol/water at a molar fraction 0.726/0.274 

  range and high VP (over 0.20 mbar), visually represented in blue. Base notes correspond to molecules with low log HLC and low VP (under 0.01 mbar), in brown. Middle notes are the group in-between the two other classes, identifiable by the orange color. Some molecules (2, 15, 20, 25, 29, 31) seem to not be perfectly mapped from their predicted properties due to their secondary class. Indeed, linalool oxide is a top note which can impact in a longer time scale which makes it also middle class. Conversely, phenyl acetaldehyde is a middle note impacting also the top note group by a strong rose smell at the beginning. Coumarin, caryophyllene and eugenol are three base note molecules with secondary impact in the middle class due to their high vapor pressure.

Table 1 .

 1 Experimental and predicted properties for 16 common fragrance molecules.[START_REF] Yaws | Yaws' Handbook of Thermodynamic and Physical Properties of Chemical Compounds[END_REF] 

			Log HLC (bar)	Log Pow	Log VP (mbar)	BP (K)		Log WS (ppmv)
	Name	Chemical structure	Exp. 29	Pred.	Exp. 29	Pred.	Exp. 29	Pred.	Exp. 29	Pred.	Exp. 29	Pred.
	furfuryl alcohol		-1.65	-1.59	0.28	0.65	-0.06	-0.17	443.15	455.19	6.00	5.1
	benzyl alcohol		-1.84	-1.45	1.10	1.37	-0.95	-0.68	477.85	479.27	4.63	4.54
	2-phenylethanol		-0.80	-1.45	1.36	1.69	-0.94	-1.03	492.05	500.46	3.69	4.25
	pelargol		1.22	0.17	3.99	3.8	-0.56	-1.53	485.15	493.43	2.17	2.25
	furfural		-0.73	-1.24	0.41	0.19	0.46	0.2	434.85	464.79	4.90	5.05
	hexanal		1.29	1.12	1.78	1.87	1.18	1.14	401.45	404.73	3.75	3.76
	benzaldehyde		0.15	-0.18	1.48	1.41	0.24	0.14	451.90	466.09	3.82	4.09
	4-methyl-2-pentanone		0.88	0.6	1.31	1.25	1.38	1.39	389.65	391.86	4.28	4.52
	2-heptanone		0.87	0.56	1.98	1.93	0.73	0.65	424.05	427.57	3.63	3.88
	hexyl acetate		1.44	1.19	2.83	2.99	0.31	0.12	444.65	445.75	2.71	2.83
	ethyl butyrate		1.30	1.09	1.85	1.89	1.35	1.2	394.65	396.64	/	3.36
	ethyl benzoate		0.61	0.57	2.64	2.82	-0.43	-0.5	486.55	483.72	2.86	2.85
	vanillin		-3.37	-3.5	1.21	1.12	-3.48	-2.75	558.00	600.67	4.04	4.66
	indole		-1.47	-0.98	2.14	2.36	-1.76	-0.85	526.15	519.41	3.27	3.94
	anethole		0.74	1.17	3.39	3.63	-1.12	-0.84	508.45	501.56	2.05	1.9
	D-limonene		3.16	2.88	4.83	4.09	0.49	0.43	449.65	437.85	1.14	1.43
	RMSE		0.24		0.14		0.18		6.42		0.21	
	Δ exp/calc		0.34		0.20		0.26		9.07		0.29	

Table 3 .

 3 Calculated log P, log VP and log HLC of the fragrance molecules likely to substitute Lilial in perfume compositions.

	N°	molecule	log P	log VP (mbar) log HLC (bar)
	1	lilial	4.12	-2.52	-0.01
	2	bourgeonal	3.78	-2.50	-0.31
	3	hivernal	3.91	-2.88	-0.59
	4	cyclemax	3.44	-1.97	-0.15
	5	silvial	4.38	-2.49	0.28
	6	florhydral	3.78	-2.12	0.05
	7	mefloral	4.19	-2.36	0.24
	8	cyclamenaldehyde	3.96	-1.96	0.39
	9	tillenal	3.22	-1.27	0.21
	10	aquaflora	3.31	-1.53	0.03
	11	starfleur	4.57	-2.26	0.61
	12	lilyflore	3.16	-2.39	-1.37
	13	lilybelle	3.79	-1.99	0.09
	14	mugoxal	3.94	-2.32	-0.08
	15	josenol	2.88	-2.66	-1.91
	16	nympheal	4.26	-2.84	-0.17
	17	mimosal	3.59	-3.02	-0.95
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Table 2. Experimental and COSMO-RS predicted boiling point (BP), vapor pressure (VP), octanol-water partition coefficient (log P) and Henry's law constant (HLC) of the 33 fragrance molecules constituting an oriental perfume. Experimental BP values were extracted from the Scifinder® database while experimental VP and logP were obtained from the Good Scents Company website, and HLC were found in the compilation of Sander.