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Abstract

This article addresses the discretisation of fractured/faulted poromechanical models using 3D
polyhedral meshes in order to cope with the geometrical complexity of faulted geological mod-
els. A new polytopal scheme is proposed for contact-mechanics, based on a mixed formulation
combining a fully discrete space and suitable reconstruction operators for the displacement field
together with a face-wise constant approximation of the Lagrange multiplier, accounting for the
surface tractions along the fracture/fault network. To ensure the inf–sup stability of the mixed
formulation, a bubble-like degree of freedom is included in the discrete space of displacements
and used in the reconstruction operators. This fully discrete scheme for the displacement is equiv-
alent to a low-order Virtual Element scheme, with a bubble enrichment of the virtual space. This
P1-bubble VEM–P0 mixed discretisation is combined with an Hybrid Finite Volume scheme for
the Darcy flow. The proposed approach is adapted to complex geometry with a network of planar
faults/fractures which can include corners, tips and intersections; it leads to efficient semi-smooth
Newton solvers for the contact-mechanics, and preserves the dissipative properties of the fully
coupled model. The scheme is numericalluy investigated in terms of convergence and robustness
on several 2D and 3D test cases, using either analytical or numerical reference solutions and
considering both the stand alone static contact-mechanics model and the fully coupled porome-
chanical model.

Keywords: contact-mechanics, poromechanics, mixed-dimensional model, virtual element
method, mixed formulation, bubble stabilisation, polytopal method, hybrid finite volume.

1 Introduction

Hydro-mechanical models in faulted/fractured porous media play an important role in many appli-
cations in geosciences, such as geothermal systems or geological storages. This is in particular the
case for CO2 sequestration, in which the pressure build-up due to CO2 injection can potentially lead
to fault reactivation with risks of induced seismicity or loss of storage integrity, issues which must
be carefully investigated. Numerical modelling is an essential tool to better assess and control these
type of risks. It involves the simulation of processes coupling the flow along the faults and in the
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surrounding porous rock, the rock mechanical deformation, and the mechanical behaviour of the
faults related to contact-mechanics.

The objective of this work is to design a robust numerical method which must both preserve the
mathematical structure of the coupled system of PDEs, in particular its dissipative properties, and
cope with the geometrical complexity of faulted geological models. Generating a mesh which
represents the complex geometry of heterogeneous geological formations – including stratigraphic
layering, erosions and faults – is a difficult task and a current topic of intensive research [4343]. Today’s
geomodels are mostly based on Corner Point Geometries (CPG), leading to hexahedral meshes
with edge degeneracy accounting for erosions and non-matching interfaces at faults. CPG can be
represented as conformal polyhedral meshes by typically cutting each non planar quadrangular faces
into two triangles, and by co-refinement of the fault surfaces [2727]. However, standard numerical
methods for mechanical models are based on Finite Element Methods (FEM) that cannot cope with
polyhedral meshes. Alternatively, poromechanical models can be discretised on two different meshes,
typically using a FEM mesh for the mechanics and a CPG mesh combined with a Finite Volume scheme
for the flow [4141]. This type of approach induces additional interpolation errors and computational
costs, which makes the design of numerical methods applicable to single polyhedral meshes desirable.
In this direction, one can benefit from the active research field on polytopal discretisations such as
Discontinuous Galerkin [3333], Hybrid High Order [2121], MultiPoint Flux and Stress Approximations
[4040, 3535], Hybrid Mimetic Methods [2020], and Virtual Element Methods (VEM) [55, 1919]. Among
those, VEM, as a natural extension of FEM to polyhedral meshes, has received a notable attention
from the numerical mechanics community, and has been applied to various problems including in
geomechanics [22], poromechanics [1818, 1313, 2525], contact-mechanics [4747, 4545], and fracture mechanics
[4646].

The main objective of this work is to extend the first order VEM to contact-mechanics in the
framework of poromechanical models in fractured/faulted porous media. Compared with previous
works based on nodal Lagrange multipliers and focusing on single interfaces, such as [4747, 4545], our
purpose is to develop a formulation more adapted to fracture networks including intersections, tips
and corners. The faults/fractures are represented by a network of planar surfaces connected to the
surrounding matrix domain, leading to the so-called mixed-dimensional models which have been the
object of many recent works [3838, 2828, 2929, 3030, 77, 4242, 99, 1010, 1111, 1212]. Different formulations of the
contact-mechanics have been developed to take into account Coulomb frictional contact at matrix–
fracture interfaces; these include mixed or stabilized mixed formulations [3434, 4444, 3737, 4747], augmented
Lagrangian [1515], and Nitsche methods [1616, 1717, 33]. Following [2424, 2828, 1111], our choice is based on
the mixed formulation combined with face-wise constant Lagrange multipliers representing surface
tractions along the fracture network. It allows us to deal with fracture networks including corners,
tips and intersections, to use efficient semi-smooth Newton nonlinear solvers, and to preserve at
the discrete level the dissipative properties of the contact terms. The combination of a first order
VEM discretisation of the displacement field together with a face-wise constant approximation of the
Lagrange multiplier requires a bespoke stabilisation to satisfy the inf-sup compatibility condition.
This is achieved by extending to the VEM polyhedral framework the principles of P1-bubble FEM
discretisations [66]. It relies here on the enrichment of the discrete displacement space by addition of a
bubble unknown on one side of each fracture face. The discretisation of the contact-mechanics is first
derived in a fully discrete framework, based on vector spaces of discrete unknowns and reconstruction
operators in the spirit of Hybrid High Order or Discrete De Rham methods [2121, 2222]. This discretisation
is then shown to be equivalent to a VEM formulation. For the coupled poromechanical model, the
Darcy flow is discretised using a Finite Volume scheme which, thanks to its flux conservativity
properties, could easily be adapted to more advanced models such as multiphase Darcy flows. To
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fix ideas, the Hybrid Finite Volume scheme [2626] is used; it belongs to the family of Hybrid Mimetic
Mixed methods [2323] and was adapted to mixed-dimensional models in [1414].

This paper is organised as follows. The coupled poromechanical model with Coulomb frictional
contact a matrix–fracture interface is first described in Section 22, based on the mixed-dimensional
setting. Then, its fully discrete approximation is introduced in Section 33, starting with the mixed-
dimensional Darcy flow in Section 3.23.2 followed by the contact-mechanical model in Section 3.33.3.
The equivalent VEM formulation of the contact-mechanical discretisation is derived in Section 3.43.4;
the detailed proofs of the connections between both formulations are reported to Appendix AA. The
numerical Section 44 investigates the convergence and robustness of the discretisation based on both
2D and 3D analytical or numerical reference solutions. Section 4.14.1 first considers stand-alone static
contact-mechanics test cases. Section 4.24.2 extends the numerical assessment of the proposed scheme
to the fully coupled poromechanical model.

2 Mixed-dimensional poromechanical model

We first present the geometrical setting, and then the poromechanical model in strong form, starting
with the mixed-dimensional Darcy flow followed by the contact-mechanical model and the coupling
laws.

2.1 Mixed-dimensional geometry and function spaces

In what follows, scalar fields are represented by lightface letters and vector fields by boldface letters.
We let Ω ⊂ R𝑑 , 𝑑 ∈ {2, 3}, denote a bounded polytopal domain, partitioned into a fracture domain
Γ and a matrix domain Ω\Γ. The network of fractures is defined by

Γ =
⋃
𝑖∈𝐼

Γ𝑖 ,

where each fracture Γ𝑖 ⊂ Ω, 𝑖 ∈ 𝐼, is a planar polygonal simply connected open domain (Figure 11).
The two sides of a given fracture of Γ are denoted by ± in the matrix domain, with unit normal vectors
n± oriented outward from the sides ±. We denote by 𝛾± the trace operators on the side ± of Γ for
functions in 𝐻1(Ω\Γ)𝑟 with 𝑟 = 1 or 𝑑 (in the latter case, the trace is taken component-wise). The
jump operator on Γ is defined as

JuK = 𝛾+u − 𝛾−u ∀u ∈ 𝐻1(Ω\Γ)𝑑 ,

and we denote by
JuKn = JuK · n+ and JuK𝝉 = JuK − JuKnn+

its normal and tangential components. The notation JV𝑚Kn = 𝛾+nV𝑚 + 𝛾−n V𝑚 will also be used to
denote the normal jump of functions V𝑚 ∈ 𝐻div(Ω \ Γ), where 𝛾±n is the normal trace operator on
the side ± of Γ. The tangential gradient and divergence along the fractures are respectively denoted
by ∇𝝉 and div𝝉 . The symmetric gradient operator ε is defined such that ε(v) = 1

2 (∇v + 𝑡 (∇v)) for a
given vector field v ∈ 𝐻1(Ω\Γ)𝑑 .

Let 𝑑𝑐
𝑓

: Γ → (0, +∞) be the fracture aperture in contact state (see Figure 22). The function 𝑑𝑐
𝑓

is
assumed to be continuous with zero limits at 𝜕Γ \ (𝜕Γ ∩ 𝜕Ω) (i.e., the tips of Γ) and strictly positive
limits at 𝜕Γ ∩ 𝜕Ω.

The primary unknowns of the poromechanical model are the matrix pressure 𝑝𝑚 in the matrix domain,
the fracture pressure 𝑝 𝑓 along the fracture network, and the displacement vector field u in the matrix
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Figure 1. Mixed-dimensional geometry with the fracture network Γ and the matrix domain Ω \ Γ.
The poromechanical unknowns are defined by the matrix pressure 𝑝𝑚, the fracture pressure 𝑝 𝑓 and
the displacement vector field u in the matrix domain.

Figure 2. Conceptual fracture model with contact at asperities. d𝑐
𝑓

is the fracture aperture at contact
state.

domain (see Figure 11), for which we introduce the following function spaces. We denote by 𝐻1
𝑐 (Γ)

the space of functions 𝑞 𝑓 ∈ 𝐿2(Γ) such that (𝑑𝑐
𝑓
)3/2∇𝝉𝑞 𝑓 belongs to 𝐿2(Γ)𝑑−1, and whose traces are

continuous at fracture intersections. The weight (𝑑𝑐
𝑓
)3/2 in the definition of 𝐻1

𝑐 (Γ) accounts for the
fact that the fracture aperture 𝑑 𝑓 ≥ 𝑑𝑐

𝑓
can vanish at the tips and that only the 𝐿2(Γ)𝑑−1 norm of

𝑑
3/2
𝑓
∇𝝉 𝑝 𝑓 will be controlled. The space for the displacement is

U = 𝐻1(Ω\Γ)𝑑 ,

and we denote by
U0 = {v ∈ U : v |𝜕Ω = 0}

its subspace of vanishing displacement at the boundary 𝜕Ω. Assuming that Ω\Γ is connected, the
semi-norm ∥v∥U = ∥∇v∥𝐿2 (Ω)𝑑 defines a norm on U0. The space for the pair of matrix/fracture
pressures is

𝑉 = 𝑉𝑚 ×𝑉 𝑓 with 𝑉𝑚 = 𝐻1(Ω\Γ) and 𝑉 𝑓 = 𝐻
1
𝑐 (Γ).

For 𝑞 = (𝑞𝑚, 𝑞 𝑓 ) ∈ 𝑉 , let us denote the jump operator on the side ± of the fracture by

J𝑞K± = 𝛾±𝑞𝑚 − 𝑞 𝑓 .

2.2 Mixed-dimensional Darcy flow

The flow model is a mixed-dimensional model assuming an incompressible fluid. It based on volume
conservation equations, on the Darcy law for the velocity field V𝑚 in the matrix, and on the Poiseuille
law for the velocity field V 𝑓 along the fractures. Additionally, the model incorporates transmission
conditions to account for the interaction and exchange of fluid between the matrix and fractures.
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Denoting by (0, 𝑇) the time interval, we obtain the following flow equations

𝜕𝑡𝜙𝑚 + div V𝑚 = ℎ𝑚 on (0, 𝑇) ×Ω\Γ,

V𝑚 = −K𝑚
𝜂
∇𝑝𝑚 on (0, 𝑇) ×Ω\Γ,

𝜕𝑡d 𝑓 + div𝝉 V 𝑓 − JV𝑚K𝑛 = ℎ 𝑓 on (0, 𝑇) × Γ,

V 𝑓 =
𝐶 𝑓

𝜂
∇𝝉 𝑝 𝑓 , on (0, 𝑇) × Γ,

𝛾±n V𝑚 = Λ 𝑓 J𝑝K± on (0, 𝑇) × Γ.

(1)

In (11), 𝜂 is the constant fluid dynamic viscosity, 𝜙𝑚 is the matrix porosity, and K𝑚 is the matrix
permeability tensor. The right hand sides ℎ𝑚 and ℎ 𝑓 account for injection or production source
terms. The fracture aperture, denoted by d 𝑓 , yields the fracture conductivity 𝐶 𝑓 , typically given by
the Poiseuille law 𝐶 𝑓 = d3

𝑓
/12, and the fracture normal transmissivity Λ 𝑓 = 2𝐾 𝑓 ,n/d 𝑓 , where 𝐾 𝑓 ,n

is the fracture normal permeability. To fix ideas, homogeneous Dirichlet boundary conditions are
imposed for 𝑝𝑚 on 𝜕Ω and for 𝑝 𝑓 on 𝜕Γ ∩ 𝜕Ω, while homogeneous Neumann boundary conditions
are imposed for 𝑝 𝑓 at the fracture tips on 𝜕Γ\𝜕Ω.

2.3 Quasi static contact-mechanical model and coupling laws

The quasi static contact-mechanical model accounts for the poromechanical equilibrium equation,
with a Biot isotropic linear elastic constitutive law and a Coulomb frictional contact model at matrix–
fracture interfaces: 

− div σ⊤ (u, 𝑝𝑚) = f on (0, 𝑇) ×Ω\Γ,

T+ + T− = 0 on (0, 𝑇) × Γ,

𝑇n ⩽ 0, JuKn ⩽ 0, JuKn𝑇n = 0, on (0, 𝑇) × Γ,

|T𝝉 | ⩽ −𝐹 𝑇n on (0, 𝑇) × Γ,

T𝝉 · 𝜕𝑡JuK𝝉 − 𝐹 𝑇n
��𝜕𝑡JuK𝝉

�� = 0 on (0, 𝑇) × Γ.

(2)

The total stress tensor σ⊤ is defined in terms of the effective stress tensor σ and the matrix pressure
𝑝𝑚 as follows 

σ⊤ (u, 𝑝𝑚) = σ(u) − 𝑏𝑝𝑚 I on (0, 𝑇) ×Ω\Γ,

σ(u) = 2𝜇ε(u) + 𝜆 div u I on (0, 𝑇) ×Ω\Γ.
(3)

In (22)–(33), 𝑏 is the Biot coefficient, 𝜇 and 𝜆 are the Lamé parameters, 𝐹 is the friction coefficient, and
the surface tractions are defined by

T± = 𝛾±n σ⊤ (u, 𝑝𝑚) + 𝑝 𝑓 n±, on (0, 𝑇) × Γ,

𝑇n = T+ · n+, on (0, 𝑇) × Γ,

T𝝉 = T+ − (T+ · n+)n+ on (0, 𝑇) × Γ,

(4)

where the trace 𝛾±n σ⊤ is taken row-wise. Homogeneous Dirichlet boundary conditions are imposed
on 𝜕Ω for the displacement field u. The model is closed by the following coupling laws

𝜕𝑡𝜙𝑚 = 𝑏 div (𝜕𝑡u) + 1
𝑀
𝜕𝑡 𝑝𝑚 on (0, 𝑇) ×Ω\Γ,

d 𝑓 = d𝑐
𝑓
− JuKn on (0, 𝑇) × Γ.

(5)
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The first equation accounts for the linear isotropic poroelastic constitutive law for the porosity 𝜙𝑚,
with 𝑀 denoting the Biot modulus. The second equation specifies the fracture aperture d 𝑓 , assuming
to fix ideas that the contact aperture d𝑐

𝑓
is reached for JuKn = 0, see Figure 22.

Following [4444], the poromechanical model with Coulomb frictional contact is formulated in mixed
form using a vector Lagrange multiplier 𝝀 : Γ → R𝑑 at matrix–fracture interfaces. Denoting for
𝑟 ∈ {1, 𝑑} the duality pairing of 𝐻−1/2(Γ)𝑟 and 𝐻1/2(Γ)𝑟 by ⟨·, ·⟩Γ, we define the dual cone

𝑪 𝑓 (𝜆n) =
{
𝝁 ∈ 𝐻−1/2(Γ)𝑑 : ⟨𝝁, v⟩Γ ≤ ⟨𝐹𝜆n, |v𝝉 |⟩Γ for all v ∈ (𝐻1/2(Γ))𝑑 with 𝑣n ≤ 0

}
.

The Lagrange multiplier formulation of (22)–(33)–(44) then formally reads, dropping any consideration
of regularity in time: find u : [0, 𝑇] → U0 and 𝝀 : [0, 𝑇] → 𝑪 𝑓 (𝜆n) such that for all v : [0, 𝑇] → U0
and 𝝁 : [0, 𝑇] → 𝑪 𝑓 (𝜆n),∫

Ω

(
σ(u) : ε(v) − 𝑏 𝑝𝑚div(v)

)
+ ⟨𝝀, JvK⟩Γ +

∫
Γ

𝑝 𝑓 JvKn =

∫
Ω

f · v,

⟨𝜇n − 𝜆n, JuKn⟩Γ + ⟨𝝁𝝉 − 𝝀𝝉 , J𝜕𝑡uK𝝉⟩Γ ≤ 0.

(6)

It can be checked that this variation formulation links the Lagrange multiplier and the traction by
𝝀 = −T+ = T−.

3 Discretisation

We consider here the discretisation of the coupled model (11)–(55) on conforming polyhedral meshes
defined in Section 3.13.1. To make the presentation more concrete, the discretisation of the mixed-
dimensional Darcy flow is based on the Hybrid Finite Volume (HFV) scheme introduced in [1414] and
briefly recalled in Section 3.23.2, but other finite volume methods could be considered as well. Sections
3.33.3 and 3.43.4 deal with the core of this work which is the discretisation of the contact-mechanical
model based on a mixed P1-bubble VEM–P0 formulation. It is first introduced in Section 3.33.3 using
a discrete setting, and an equivalent Virtual Element formulation is described in Section 3.43.4. The
discrete coupling conditions are presented in Section 3.3.43.3.4.

3.1 Space and time discretisation

We consider a polyhedral mesh of the domain Ω, conforming to the fracture network Γ. For each cell
𝐾 , we denote by ℎ𝐾 its diameter and by |𝐾 | its measure; we also denote by |𝜎 | the (𝑑−1)-dimensional
measure of a face 𝜎. The set of cells 𝐾 , the set of faces 𝜎, the set of edges 𝑒 and the set of nodes 𝑠
are denoted respectively by M, F , E and V. For any subset 𝐴 of R𝑑 and X ∈ {M, F , E,V}, we
denote by X𝐴 the set of elements in X that are included in 𝐴 or that contain 𝐴; hence, F𝐾 is the set
of faces of the element 𝐾 ∈ M, E𝜎 is the set of edges of the face 𝜎 ∈ F , and M𝜎 is the set of cells
that contain the face 𝜎. We assume the existence of a subset of faces FΓ ⊂ F such that

Γ =
⋃
𝜎∈FΓ

𝜎.

The mesh is assumed conforming in the sense that the set M𝜎 of neighboring cells of 𝜎 ∈ F is either
M𝜎 = {𝐾, 𝐿} for an interior face 𝜎 ∈ F int (in which case we write 𝜎 = 𝐾 |𝐿), or M𝜎 = {𝐾} for a
boundary face 𝜎 ∈ F ext. It is assumed that FΓ ⊂ F int and, if 𝜎 = 𝐾 |𝐿, that 𝐾 and 𝐿 are ordered
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such that n𝐾𝜎 = n+ and n𝐿𝜎 = n−, where n𝐾𝜎 (resp. n𝐿𝜎) is the unit normal vector to 𝜎 oriented
outward of 𝐾 (resp. 𝐿).

We denote by Vext and Eext the boundary nodes and edges. For each 𝜎 ∈ F , n𝜎𝑒 is the unit normal
vector to 𝑒 ∈ E𝜎 in the plane spanned by 𝜎 oriented outward to 𝜎. For each 𝐾 ∈ M and 𝜎 ∈ F𝐾 we
denote by 𝛾𝐾𝜎 the trace operator on 𝜎 for functions in 𝐻1(𝐾); similarly, for each 𝜎 ∈ F and 𝑒 ∈ E𝜎 ,
𝛾𝜎𝑒 is the trace operator on 𝑒 for functions in 𝐻1(𝜎).

For the time discretisation, we consider a partition (𝑡𝑛)0≤𝑛≤𝑁 of the time interval [0, 𝑇] with 𝑡0 = 0,
𝑡𝑁 = 𝑇 and 𝑡𝑛 − 𝑡𝑛−1 = Δ𝑡𝑛 > 0, 𝑛 = 1, ..., 𝑁 . For a family 𝑤 = (𝑤𝑛)𝑛=0,...,𝑁 , we let 𝛿𝑛𝑡 𝑤 ≔ 𝑤𝑛−𝑤𝑛−1

Δ𝑡𝑛
.

We assume in the following that the Lamé parameters 𝜇, 𝜆 and the permeability tensor K𝑚 are
cell-wise constant. The fracture normal permeability 𝐾 𝑓 ,n and friction coefficient 𝐹 will both be
assumed face-wise constant.

3.2 Mixed-dimensional Darcy flow discretisation

We consider the Hybrid Finite Volume (HFV) discretisation of the mixed-dimensional Darcy flow
model introduced in [1414]. It is based on the vector space 𝑋D = 𝑋D𝑚 × 𝑋D 𝑓

of discrete pressures
𝑝D = (𝑝D𝑚 , 𝑝D 𝑓

) defined by

𝑋D𝑚 =

{
𝑝D𝑚 =

(
(𝑝𝐾 )𝐾∈M , (𝑝𝜎)𝜎∈F\FΓ

, (𝑝𝐾𝜎)𝜎∈FΓ , 𝐾∈M𝜎

)
: 𝑝𝐾 ∈ R , 𝑝𝜎 ∈ R , 𝑝𝐾𝜎 ∈ R

}
,

𝑋D 𝑓
=

{
𝑝D 𝑓

=

(
(𝑝𝜎)𝜎∈FΓ

, (𝑝𝑒)𝑒∈EΓ

)
: 𝑝𝜎 ∈ R , 𝑝𝑒 ∈ R

}
.

We denote by 𝑋0
D𝑚 (resp. 𝑋0

D 𝑓
) the subspace of 𝑋D𝑚 (resp. 𝑋D 𝑓

) with vanishing values at the boundary
F ext (resp. Eext∩EΓ), and we set 𝑋0

D = 𝑋0
D𝑚×𝑋

0
D 𝑓

. The HFV scheme is obtained by replacing, in the
primal variational formulation of (11), the continuous operators by discrete reconstruction operators
∇D𝑚 , ΠD𝑚 in the matrix and ∇D 𝑓

, ΠD 𝑓
, J·K±D along the fractures, defined as follows.

The matrix gradient reconstruction operator ∇D𝑚 : 𝑋D𝑚 −→ 𝐿2(Ω)𝑑 is such that, for a suitable
symmetric positive definite tensor (T𝜈𝜈′

𝐾
)𝜈,𝜈′ , for all 𝑝D𝑚 ∈ 𝑋D𝑚 ,∫

𝐾

K𝑚∇D𝑚 𝑝D𝑚 · ∇D𝑚𝑞D𝑚 =
∑︁
𝜈∈𝐼𝐾

∑︁
𝜈′∈𝐼𝐾

T𝜈𝜈
′

𝐾 (𝑝𝜈 − 𝑝𝐾 ) (𝑞𝜈′ − 𝑞𝐾 ) ∀𝑞D𝑚 ∈ 𝑋D𝑚 ,

with
𝐼𝐾 = {𝜎 ∈ F𝐾 \ FΓ} ∪ {𝐾𝜎, 𝜎 ∈ F𝐾 ∩ FΓ} .

The fracture tangential gradient operator ∇D 𝑓
: 𝑋D 𝑓

−→ 𝐿2(Γ)𝑑−1 is such that, for a suitable
symmetric positive definite tensor (T𝑒𝑒′𝜎 )𝑒,𝑒′ , for all 𝑝D 𝑓

∈ 𝑋D 𝑓
,∫

𝜎

𝐶 𝑓 ,D∇D 𝑓
𝑝D 𝑓

· ∇D 𝑓
𝑞D 𝑓

=
∑︁
𝑒∈E𝜎

∑︁
𝑒′∈E𝜎

T𝑒𝑒
′

𝜎 (𝑝𝑒′ − 𝑝𝜎) (𝑞𝑒 − 𝑞𝜎) ∀𝑞D 𝑓
∈ 𝑋D 𝑓

,

with the face-wise constant approximation of the fracture conductivity given by

𝐶 𝑓 ,D =
(d 𝑓 ,D)3

12

(where d 𝑓 ,D is the face-wise constant approximation of the fracture aperture specified in (1515)). The
detailed definitions of (T𝜈𝜈′

𝐾
)𝜈,𝜈′ and (T𝑒𝑒′𝜎 )𝑒,𝑒′ can be found in [1414].

7



The piecewise constant matrix and fracture function reconstruction operators ΠD𝑚 : 𝑋D𝑚 → 𝐿2(Ω)
and ΠD 𝑓

: 𝑋D 𝑓
→ 𝐿2(Γ) are defined by

ΠD𝑚𝑞D𝑚 (x) = 𝑞𝐾 , ∀x ∈ 𝐾, 𝐾 ∈ M,

ΠD 𝑓
𝑞D 𝑓

(x) = 𝑞𝜎 , ∀x ∈ 𝜎, 𝜎 ∈ FΓ,

and the face-wise constant jump reconstruction operators J·K±D : 𝑋D → 𝐿2(Γ) by

J𝑞DK+D (x) = 𝑞𝐾𝜎 − 𝑞𝜎 , J𝑞DK−D (x) = 𝑞𝐿𝜎 − 𝑞𝜎 , ∀x ∈ 𝜎 = 𝐾 |𝐿, 𝜎 ∈ FΓ .

Let us also define the face-wise constant approximation of the fracture normal transmissivity

Λ 𝑓 ,D =
2𝐾 𝑓 ,n
d 𝑓 ,D

.

Then, the HFV scheme can be expressed as the following discrete variational formulation: find
(𝑝𝑛D)𝑛=1,...,𝑁 ∈ (𝑋0

D)𝑁 such that, for all 𝑞D ∈ 𝑋0
D and all 𝑛 = 1, · · · , 𝑁 , it holds∫

Ω

(
𝛿𝑛𝑡 𝜙D ΠD𝑚𝑞D𝑚 + K𝑚

𝜂
∇D𝑚 𝑝

𝑛
D𝑚 · ∇D𝑚𝑞D𝑚

)
+
∫
Γ

(
𝛿𝑛𝑡 d 𝑓 ,D ΠD 𝑓

𝑞D 𝑓
+
𝐶𝑛−1
𝑓 ,D

𝜂
∇D 𝑓

𝑝𝑛D 𝑓
· ∇D 𝑓

𝑞D 𝑓

)
+

∑︁
𝔞∈{+,−}

∫
Γ

Λ𝑛−1
𝑓 ,DJ𝑝𝑛DK𝔞D J𝑞DK𝔞D =

∫
Ω

ℎ𝑚ΠD𝑚𝑞D𝑚 +
∫
Γ

ℎ 𝑓∇D 𝑓
𝑞D 𝑓

,

(7)

where the approximations of the porosity 𝜙D and fracture aperture d 𝑓 ,D are defined by the coupling
laws specified in (1515).

3.3 Contact-mechanics discretisation and coupling conditions

The discretisation of the contact-mechanics (22)–(33)–(44) is based on a mixed variational formulation
set on the spaces of displacement field and of Lagrange multipliers accounting for the surface traction
−T+ along the fractures. Following [1111, 33], we focus on a face-wise constant approximation of the
Lagrange multipliers, which allows us to readily deal with fracture networks including intersections,
corners and tips. This choice also provides a local expression of the discrete contact conditions
leading to the preservation of the dissipative property of the contact term, as well as to efficient
non-linear solvers based on semi-smooth Newton algorithms.

In this section, we describe the discretisation of the displacement field using a similar framework as
for the Darcy flow based on a vector space of discrete displacement and reconstruction operators. An
equivalent Virtual Element formulation is provided in Section 3.43.4.

3.3.1 Discrete unknowns and spaces

Let us first define a partition M𝑠 of the set of cells M𝑠 around a given node 𝑠 ∈ V. For a given cell
𝐾 ∈ M𝑠 we denote by K𝑠 ∈ M𝑠 the subset of M𝑠 such that

⋃
𝐿∈K𝑠 𝐿 is the closure of the connected

component of (⋃𝐿∈M𝑠
𝐿) \ Γ containing the cell 𝐾 (denoted by ΩK𝑠 in Figure 33). In other words,

K𝑠 is the set of cells in M𝑠 that are on the same side of Γ as 𝐾 .

To account for the discontinuity of the discrete displacement field at matrix–fracture interfaces, a
nodal displacement unknown vK𝑠 is defined for eachK𝑠 ∈ M𝑠. There is a unique nodal displacement
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unknown vK𝑠 at a node 𝑠 not belonging to Γ, since M𝑠 = M𝑠 in that case. On the other hand, for
𝑠 ∈ VΓ, the nodal displacement unknown vK𝑠 is the one on the side 𝐾 of the set of fractures connected
to 𝑠.

The additional bubble displacement unknown v𝐾𝜎 is on the “+” side of a fracture face 𝜎, and is
therefore linked with the following (possibly empty) set F Γ,+

𝐾
of fracture faces of 𝐾 such that 𝐾 is on

their + side:
F +
Γ,𝐾 =

{
𝜎 ∈ FΓ ∩ F𝐾 | n𝐾𝜎 · n+ > 0

}
.

The vector space UD of discrete displacements is then defined as

UD =

{
uD =

(
(vK𝑠)K𝑠∈M𝑠 ,𝑠∈V , (v𝐾𝜎)𝜎∈F+

Γ,𝐾
, 𝐾∈M

)
: vK𝑠 ∈ R𝑑 , v𝐾𝜎 ∈ R𝑑

}
,

and U0
D is its subspace of vectors having vanishing nodal values at all 𝑠 ∈ Vext.

Figure 3. Degrees of freedom vK𝑠, K𝑠 ∈ M𝑠, at a given node 𝑠 ∈ VΓ with three intersecting
fractures. vK𝑠 corresponds to the nodal unknown at node s located on the side 𝐾 of the fractures.
Here, u is a fictive continuous function that v could interpolate, and is used to give a clearer meaning
to the degrees of freedom on each side of the fracture.

Remark 3.1 (Two-sided bubbles vs. one-sided bubbles). It is also possible to define the vector space
UD with bubble unknowns on both sides of each fracture face (two-sided bubbles), which amounts
to replacing F +

Γ,𝐾
by FΓ ∩ F𝐾 in the definition of this space. This can lead to a better stabilisation of

the Lagrange multiplier, as exhibited in the numerical section in Figure 99, at the price of additional
unknowns. Moreover, two-sided bubbles raise additional difficulties for the extension of the scheme
to non-matching meshes at matrix–fracture interfaces, as opposed to the one-sided bubble case where
both Lagrange multipliers and bubble unknowns can be defined on the same side of the interface.

The unknowns vK𝑠 correspond to the nodal displacements (see Figure 33), while the bubble unknowns
v𝐾𝜎 – which we recall are located on the "+" side of the fracture face 𝜎 (see Figure 44) – correspond
to a correction of the face mean value with respect to the linear nodal reconstruction Π𝐾𝜎vD defined
below in (88). These additional bubble unknowns are required to ensure the stability of the mixed
variational formulation based on face-wise constant Lagrange-multiplier along the network Γ.

Let C0(Ω\Γ) denote the space of continuous functions 𝑓 : Ω\Γ → R with finite limits on 𝜕Ω and on
each side of Γ. We define two interpolators IV ,D : C0(Ω \ Γ)𝑑 → UD and ID : C0(Ω \ Γ)𝑑 → UD .
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The first one only interpolates at the vertices: for v ∈ C0(Ω \ Γ)𝑑 , IV ,Dv ∈ UD is given by

(IV ,Dv)K𝑠 = v |𝐾 (x𝑠) for all 𝑠 ∈ V, K𝑠 ∈ M𝑠, 𝐾 ∈ K𝑠,
(IV ,Dv)𝐾𝜎 = 0 for all 𝜎 ∈ F +

Γ,𝐾
, 𝐾 ∈ M .

The second interpolator keeps these vertex values, and provides face values that correct the trace of
the function to take into account the vertex values: IDv ∈ UD is defined by

(IDv)K𝑠 = v |𝐾 (x𝑠) for all 𝑠 ∈ V, K𝑠 ∈ M𝑠, 𝐾 ∈ K𝑠,

(IDv)𝐾𝜎 =
1
|𝜎 |

∫
𝜎

(𝛾𝐾𝜎v − Π𝐾𝜎 (IV ,Dv)) for all 𝜎 ∈ F +
Γ,𝐾

, 𝐾 ∈ M .

Here, Π𝐾𝜎 is the reconstructed face value defined by (88) below (note that this reconstructed value
only depends on the degrees of freedom at the vertices).

The vectorial Lagrange multiplier represents the approximations of the surface traction −T+ on Γ. Its
discretisation is defined by the space MD of face-wise constant vectorial functions

MD =
{
𝝀D ∈ 𝐿2(Γ)𝑑 : 𝝀D (x) = 𝝀𝜎 ∀𝜎 ∈ FΓ,∀x ∈ 𝜎

}
.

Let us defined the normal and tangential components of 𝝀D ∈ MD by

𝜆D,n(x) = 𝜆𝜎,n = 𝝀𝜎 ·n𝐾𝜎 and 𝝀D,𝝉 (x) = 𝝀𝜎,𝝉 = 𝝀𝜎 −𝜆𝜎,nn𝐾𝜎 , for all x ∈ 𝜎 = 𝐾 |𝐿, 𝜎 ∈ FΓ .

If 𝝀D ∈ MD , we define the discrete dual cone of admissible Lagrange multipliers as

CD
(
𝜆D,n

)
=

{
𝝁D =

(
𝜇D,n, 𝝁D,𝝉

)
∈ MD : 𝜇D,n ≥ 0, |𝝁D,𝝉 | ≤ 𝐹𝜆D,n

}
.

3.3.2 Reconstruction operators

For each face 𝜎 ∈ F𝐾 , 𝐾 ∈ M, the tangential gradient reconstruction operator based on the nodal
unknowns is defined by

∇𝐾𝜎 : UD → P 0(𝜎)𝑑×𝑑 such that, for all vD ∈ UD ,

∇𝐾𝜎vD =
1
|𝜎 |

∑︁
𝑒=𝑠1𝑠2∈E𝜎

|𝑒 |
vK𝑠1 + vK𝑠2

2
⊗ n𝜎𝑒,

and the linear function reconstruction operator by

Π𝐾𝜎 : UD → P1(𝜎)𝑑 such that, for all vD ∈ UD ,
Π𝐾𝜎vD (x) = ∇𝐾𝜎vD (x − x𝜎) + v𝐾𝜎 ∀x ∈ 𝜎,

(8)

with
v𝐾𝜎 =

∑︁
𝑠∈V𝜎

𝜔𝜎𝑠 vK𝑠 and x𝜎 =
∑︁
𝑠∈V𝜎

𝜔𝜎𝑠 x𝑠 . (9)

Here, 𝜔𝜎𝑠 are non-negative weights associated to the center of mass of the face 𝜎 (so that x𝜎 is the
center of mass of 𝜎 and

∑
𝑠∈V𝜎 𝜔

𝜎
𝑠 = 1).

For each fracture face 𝜎 = 𝐾 |𝐿 ∈ FΓ, we introduce the displacement jump operator:

J·K𝜎 : UD → P 0(𝜎)𝑑 such that, for all vD ∈ UD ,

JvDK𝜎 =
1
|𝜎 |

∫
𝜎

(
Π𝐾𝜎vD − Π𝐿𝜎vD

)
d𝜎 + v𝐾𝜎 ,

as well as its normal and tangential components J·K𝜎,n = J·K𝜎 · n𝐾𝜎 and J·K𝜎,𝝉 = J·K𝜎 − J·K𝜎,n n𝐾𝜎 .
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Remark 3.2 (Discrete jump). It can easily be checked that, if v ∈ 𝐶0(Ω\Γ)𝑑 , then

JIDvK𝜎 =
1
|𝜎 |

∫
𝜎

(
𝛾𝐾𝜎v − Π𝐿𝜎IDv

)
,

showing that JIDvK𝜎 is an approximation of the (average of the exact) jump, using the exact trace of
v on the positive side and an approximate trace on the negative side.

In case of two bubbles (see Remark 3.13.1), the jump is defined by

JvDK𝜎 =
1
|𝜎 |

∫
𝜎

(
Π𝐾𝜎vD − Π𝐿𝜎vD

)
d𝜎 + (v𝐾𝜎 − v𝐿𝜎),

and, when applied to interpolated vectors, provides the average of the exact continuous jump:

JIDvK𝜎 =
1
|𝜎 |

∫
𝜎

JvK.

For each cell 𝐾 , we define the gradient reconstruction operator

∇𝐾 : UD → P 0(𝜎)𝑑×𝑑 such that, for all vD ∈ UD ,

∇𝐾vD =
∑︁

𝜎∈F+
Γ,𝐾

|𝜎 |
|𝐾 |v𝐾𝜎 ⊗ n𝐾𝜎 +

∑︁
𝜎∈F𝐾

|𝜎 |
|𝐾 |v𝐾𝜎 ⊗ n𝐾𝜎 , (10)

where v𝐾𝜎 is defined by (99). The linear function reconstruction operator is

Π𝐾 : UD → P1(𝐾)𝑑 such that, for all vD ∈ UD ,
Π𝐾vD (x) = ∇𝐾vD (x − x𝐾 ) + v𝐾 ∀x ∈ 𝐾,

(11)

with
v𝐾 =

∑︁
𝑠∈V𝐾

𝜔𝐾𝑠 vK𝑠 and x𝐾 =
∑︁
𝑠∈V𝐾

𝜔𝐾𝑠 x𝑠,

where 𝜔𝐾𝑠 are non-negative weights such that x𝐾 is the center of mass of 𝐾 and
∑
𝑠∈V𝐾 𝜔

𝐾
𝑠 = 1. By

construction, all these local reconstruction operators are exact on linear functions in the sense that
∇𝐾IDq = ∇q and Π𝐾IDq = q for all q ∈ P1(𝐾)𝑑 , and ∇𝐾𝜎IDq = ∇𝝉q and Π𝐾𝜎IDq = q, for all
q ∈ P1(𝜎)𝑑 .

Let us now define the global discrete reconstruction ΠD : UD → 𝐿2(Ω)𝑑 and the global discrete
gradient ∇D : UD → 𝐿2(Ω)𝑑×𝑑 such that

ΠDvD (x) = Π𝐾vD (x) and ∇DvD (x) = ∇𝐾vD for all x ∈ 𝐾, 𝐾 ∈ M .

From the discrete gradient, we deduce the following discrete symmetric gradient, divergence and
stress:

εD (·) = 1
2
(∇D (·) + 𝑡∇D (·)), divD (·) = Tr (εD (·)) and σD (·) = 2𝜇εD (·) + 𝜆divD (·)I.

Finally, we define the discrete global displacement jump operator

J·KD : UD → 𝐿2(Γ)𝑑 such that, for all vD ∈ UD ,
JvDKD (x) = JvDK𝜎 , ∀x ∈ 𝜎, 𝜎 ∈ FΓ,
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as well as its normal and tangential components,

JvDKD,n = JvDKD · n+ and JvDKD,𝝉 = JvDKD − JvDKD,nn+.

The discrete 𝐻1-like semi-norm on UD is defined by: for all uD ∈ xD ,

∥uD ∥D :=

( ∑︁
𝐾∈M

∥∇𝐾uD ∥2
𝐿2 (𝐾 ) + 𝑆𝐾 (uD , uD)

)1/2

,

where the local stabilisation term is given by the bilinear form 𝑆𝐾 : UD × UD → R such that, for all
uD , vD ∈ UD ,

𝑆𝐾 (uD , vD) = ℎ𝑑−2
𝐾

∑︁
𝑠∈V𝐾

(uK𝑠 −Π𝐾uD (x𝑠)) · (vK𝑠 −Π𝐾vD (x𝑠)) +
∑︁

𝜎∈F+
Γ,𝐾

ℎ𝑑−2
𝐾 u𝐾𝜎 · v𝐾𝜎 . (12)

3.3.3 Discrete mixed variational formulation

We can now introduce the mixed variational discretisation of the contact-mechanical problem (66):
Find (u𝑛D , 𝝀

𝑛
D)𝑛=1,...,𝑁 ∈ (U0

D ×CD (𝜆𝑛D,n))
𝑁 such that, for all (vD , 𝝁D) ∈ U0

D ×CD (𝜆𝑛D,n) and all
𝑛 = 1, · · · , 𝑁 , it holds∫

Ω

σD (u𝑛D) : εD (vD) + 𝑆𝜇,𝜆,D
(
u𝑛D , vD

)
−

∫
Ω

𝑏ΠD𝑚 𝑝
𝑛
D𝑚divDvD

+
∫
Γ

ΠD 𝑓
𝑝𝑛D 𝑓

JvDKD,n +
∫
Γ

𝝀𝑛D · JvDKD =
∑︁
𝐾∈M

∫
𝐾

f𝑛𝐾 · ΠDvD , (13a)

∫
Γ

(
(𝜇D,n − 𝜆𝑛D,n)Ju

𝑛
DKD,n + (𝝁D,𝝉 − 𝝀𝑛D,𝝉) · J𝛿

𝑛
𝑡 uDKD,𝝉

)
≤ 0, (13b)

with f𝑛𝐾 =
1

|𝐾 |Δ𝑡𝑛
∫ 𝑡𝑛

𝑡𝑛−1

∫
𝐾

f and the scaled stabilisation form 𝑆𝜇,𝜆,D defined by

𝑆𝜇,𝜆,D (uD , vD) =
∑︁
𝐾∈M

(2𝜇𝐾 + 𝜆𝐾 )𝑆𝐾 (uD , v𝐷).

Thanks to the fracture face-wise constant Lagrange multiplier, the variational inequality (13b13b) together
with 𝝀𝑛D ∈ CD (𝜆𝑛D,n) can equivalently be replaced by the following non linear equations:{

𝜆𝑛D,n = [𝜆𝑛D,n + 𝛽D,nJu
𝑛
DKD,n]R+

𝜆𝑛D,𝝉 = [𝜆𝑛D,𝝉 + 𝛽D,𝝉J𝛿
𝑛
𝑡 uDKD,𝝉]𝐹𝜆𝑛D,n ,

(14)

where 𝛽D,n > 0 and 𝛽D,𝝉 > 0 are arbitrarily chosen face-wise constant functions along Γ, [𝑥]R+ =

max{0, 𝑥}, and [·]𝛼 is the projection on the ball of radius 𝛼 centered at 0, that is:

[x]𝛼 =


x if |x| ≤ 𝛼,
𝛼

x
|x| otherwise.

The equations (1414) can be expressed locally to each fracture face and lead to an efficient semi-smooth
Newton solver for the discrete contact-mechanics; see [33] for more details.
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3.3.4 Discretisation of the coupling conditions

The set of equations (77)–(13a13a)–(1414) is combined with the following coupling conditions:

𝛿𝑛𝑡 𝜙D = 𝑏 divD
(
𝛿𝑛𝑡 uD

)
+ 1
𝑀
ΠD𝑚𝛿

𝑛
𝑡 𝑝D𝑚 ,

d𝑛
𝑓 ,D = d𝑐

𝑓 ,D − Ju𝑛DKD,n,
(15)

defining the discrete porosity 𝜙𝑛D and fracture aperture d𝑛
𝑓 ,D for all 𝑛 ≥ 0, given a cell-wise constant

approximation 𝜙0
D of the initial porosity 𝜙0 and a face-wise constant approximation d𝑐

𝑓 ,D of the
contact aperture d𝑐

𝑓
.

3.3.5 Discrete energy estimate

Proposition 3.3 (Discrete energy estimate). Any solution (𝑝𝑛D , u
𝑛
D , 𝝀

𝑛
𝐷
)𝑛=1,...,𝑁 ∈ (𝑋0

D × U0
D ×

CD (𝜆𝑛D,n))
𝑁 of the fully coupled scheme (77)–(13a13a)–(1414)–(1515) satisfies the following discrete energy

estimates for all 𝑛 = 1, · · · , 𝑁:

𝛿𝑛𝑡

∫
Ω

1
2

(
σD (uD) : εD (uD) + 𝑆𝜇,𝜆,D (uD , uD) + 1

𝑀
|ΠD𝑚 𝑝D𝑚 |2

)
+

∫
Γ

𝐹𝜆𝑛D,n |J𝛿
𝑛
𝑡 uDKD,𝝉 |

+
∫
Ω

K𝑚
𝜂

∇D𝑚 𝑝
𝑛
D𝑚 · ∇D𝑚 𝑝

𝑛
D𝑚 +

∫
Γ

𝐶𝑛−1
𝑓 ,D

𝜂
|∇D 𝑓

𝑝𝑛D 𝑓
|2 +

∑︁
𝔞∈{+,−}

∫
Γ

Λ𝑛−1
𝑓 ,D (J𝑝𝑛DK𝔞D)2

≤
∫
Ω

ℎ𝑚ΠD𝑚 𝑝
𝑛
D𝑚 +

∫
Γ

ℎ 𝑓∇D 𝑓
𝑝𝑛D 𝑓

+
∑︁
𝐾∈M

∫
𝐾

f𝑛𝐾 · ΠD𝛿
𝑛
𝑡 uD .

(16)

In addition, the discrete fracture aperture satisfies the lower bound d𝑛
𝑓 ,D ≥ d𝑐

𝑓 ,D , which ensures the
positivity of the fracture conductivity 𝐶𝑛−1

𝑓 ,D and normal transmissivity Λ𝑛−1
𝑓 ,D .

Proof. We only recall the main steps of the proof, which follows the lines of the proof of [1111, Eq. (19)].
We first recall [1111, Lemma 4.1] which shows that an equivalent form of (1414) is

𝜆𝑛D,n ≥ 0, Ju𝑛DKD,n ≤ 0, 𝜆𝑛D,nJu
𝑛
DKD,n = 0,

|𝜆𝑛D,𝝉 | ≤ 𝐹𝜆𝑛D,n, 𝜆𝑛D,𝝉 · J𝛿
𝑛
𝑡 uDKD,𝝉 − 𝐹𝜆𝑛D,n |J𝛿

𝑛
𝑡 uDKD,𝝉 | = 0.

(17)

As in the proof of [1111, Theorem 4.2], the following discrete persistency condition follows from (1717):
𝜆𝑛D,nJ𝛿

𝑛
𝑡 uDKD,n ≥ 0. In turn, this condition yields the dissipative property of the contact term:∫

Γ

𝝀𝑛D · J𝛿𝑛𝑡 uDKD ≥
∫
Γ

𝐹𝜆𝑛D,n |J𝛿
𝑛
𝑡 uDKD,𝝉 | ≥ 0. (18)

Then, setting vD = 𝛿𝑛𝑡 uD in (13a13a) and 𝑞D𝑚 = 𝑝𝑛D𝑚 in (77), taking into account the coupling equations
(1515) and (1818), we obtain (1616). The lower bound on the discrete fracture aperture follows directly from
(1515) and Ju𝑛DKD,n ≤ 0 as stated in (1717). □

Following [1111], in order to deduce from (1616) a priori estimates and the existence of a discrete solution,
we need to establish a discrete Korn inequality in U0

D , and a discrete inf-sup condition for the bilinear
form

∫
Γ
𝝀D · JvDKD in U0

D × MD . This is a work in progress, which requires new developments
related to the additional bubble unknowns and to fracture networks including tips and intersections.
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3.4 An equivalent VEM formulation of the contact-mechanics

We show here that the previous discretisation of the mechanics has an equivalent VEM formulation,
based on the same displacement degrees of freedom. The scheme we propose can therefore be
interpreted as a P1-bubble VEM discretisation.

The VEM framework provides an extension of Finite Element Methods (FEM) to polyhedral meshes,
see the seminal paper [44]. As for FEM, it builds a subspace Vℎ of U by gluing together local spaces
V𝐾
ℎ

⊂ 𝐻1(𝐾)𝑑 defined in each cell 𝐾 ∈ M. On the other hand, the basis functions do not have in
general an analytical expression, and only certain projections of them onto polynomial spaces can
be explicitly calculated from the degrees of freedom. The bilinear form is then obtained from the
continuous one using these projections, and by stabilising their kernel. In the following, we first exhibit
the connection between the VEM face 𝜋𝐾𝜎 and cell 𝜋𝐾 projectors and the reconstruction operators
Π𝐾𝜎 and Π𝐾 . Then, the VEM local and global spaces are defined leading to the stabilised bilinear
form and the equivalent VEM mixed variational formulation of the contact-mechanical problem. The
unisolvence of the degrees of freedom in the VEM space Vℎ is also shown. Detailed proofs are
reported to Appendix AA.

3.4.1 VEM projectors, function spaces and equivalent mixed variational formulation

For each 𝐾 ∈ M, let 𝜋𝐾 be the local projection operator defined by:

𝜋𝐾 : C0(𝐾)𝑑 → P1(𝐾)𝑑 such that, for all v ∈ C0(𝐾)𝑑 ,
𝜋𝐾v = Π𝐾 ◦ IDv,

(19)

where, by abuse of notation, the interpolator ID is applied to the extension by zero of v outside 𝐾 .
Similarly, for each 𝜎 ∈ F𝐾 , 𝐾 ∈ M, let 𝜋𝐾𝜎 be the local projection operator defined by:

𝜋𝐾𝜎 : C0(𝜎)𝑑 → P1(𝜎)𝑑 such that, for all v ∈ C0(𝜎)𝑑 ,
𝜋𝐾𝜎v = Π𝐾𝜎 ◦ IDv.

(20)

The local VEM space for the displacement field on each cell 𝐾 ∈ M is

V𝐾ℎ =

{
v ∈ C0(𝐾)𝑑 | 𝛾𝐾𝜎v ∈ V𝐾𝜎ℎ , ∀𝜎 ∈ F𝐾 ;

Δv ∈ P1(𝐾)𝑑;
∫
𝐾

(𝜋𝐾v) · p =

∫
𝐾

v · p, ∀p ∈ P1(𝐾)𝑑
}
,

(21)

with

V𝐾𝜎ℎ =

{
v ∈ C0(𝜎)𝑑 | 𝛾𝜎𝑒v ∈ P1(𝑒)𝑑 , ∀𝑒 ∈ E𝜎;

Δ𝝉v ∈ P1(𝜎)𝑑 in 𝜎;
∫
𝜎

(𝜋𝐾𝜎v) · p =

∫
𝜎

v · p, ∀p ∈ (Q𝐾𝜎)𝑑
}
,

(22)

where Q𝐾𝜎 = P1(𝜎) if 𝜎 ∈ F𝐾 \ F +
Γ,𝐾

– corresponding to the no-bubble case – and Q𝐾𝜎 is a
complementary space of constant functions in P1(𝜎) if 𝜎 ∈ F +

Γ,𝐾
– corresponding to the bubble case.

Lemma 3.4 (Link between discrete reconstructions and elliptic projectors). For all 𝐾 ∈ M, the
projector 𝜋𝐾 : V𝐾

ℎ
→ P1(𝐾)𝑑 is the elliptic projector, that is, it satisfies: for all v ∈ V𝐾

ℎ
,∫

𝐾

∇(𝜋𝐾v) : ∇q =

∫
𝐾

∇v : ∇q ∀q ∈ P1(𝐾)𝑑 , (23a)
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(𝜋𝐾v) (x𝐾 ) =
∑︁
𝑠∈V𝐾

𝜔𝐾𝑠 v(x𝑠). (23b)

For all 𝜎 ∈ F𝐾 , the projector 𝜋𝐾𝜎 : V𝐾𝜎
ℎ

→ P1(𝜎)𝑑 is the elliptic projector for the tangential
gradient, that is, it satisfies: for all v ∈ V𝐾𝜎

ℎ
,∫

𝜎

∇𝝉 (𝜋𝐾𝜎v) : ∇𝝉q =

∫
𝜎

∇𝝉v : ∇𝝉q ∀q ∈ P1(𝜎)𝑑 , (24a)

(𝜋𝐾𝜎v) (x𝜎) =
∑︁
𝑠∈V𝜎

𝜔𝜎𝑠 v(x𝑠). (24b)

Proof. See Appendix A.1A.1. □

As a consequence of (2323) and the fact that σ has constant coefficients on each cell, we have, for all
𝐾 ∈ M and v ∈ V𝐾

ℎ
, ∫

𝐾

σ(𝜋𝐾v) : ε(q) =
∫
𝐾

σ(v) : ε(q) ∀q ∈ P1(𝐾)𝑑 . (25)

For v ∈ V𝐾
ℎ

, the VEM local degrees of freedom are the same as in the unknows of the fully discrete
setting, namely the nodal value vK𝑠 = v(x𝑠) = (IDv)K𝑠 at each node 𝑠 ∈ V𝐾 and the bubble value
v𝐾𝜎 = (IDv)𝐾𝜎 for each 𝜎 ∈ F +

Γ,𝐾
(see Figure 44). Note that the bubble unknown can also be

expressed using the local projector 𝜋𝐾𝜎 as follows:

v𝐾𝜎 = (IDv)𝐾𝜎 =
1
|𝜎 |

∫
𝜎

(
𝛾𝐾𝜎v − 𝜋𝐾𝜎 (𝛾𝐾𝜎v)

)
. (26)

Figure 4. P1-bubble VEM

The global VEM space for the displacement field is obtained as usual by patching together the local
VEM spaces in a conforming way in 𝐻1(Ω \ Γ)𝑑 . It is defined by

Vℎ =
{
v ∈ 𝐻1(Ω \ Γ)𝑑 ∩ C0(Ω \ Γ)𝑑 | v |𝐾 ∈ V𝐾ℎ , ∀𝐾 ∈ M

}
,

and we denote by V0
ℎ

its subspace with vanishing values on the boundary 𝜕Ω. Note that the vector
of all degrees of freedom of v ∈ Vℎ is precisely IDv ∈ UD . We define 𝜋ℎ as the global projection
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operator onto the broken polynomial space P1(M)𝑑 , such that, for all v ∈ Vℎ, (𝜋ℎv) |𝐾 = 𝜋𝐾 (v |𝐾 ).
The diagram (2727) illustrates the fundamental relation between 𝜋ℎ and ΠD .

V0
ℎ

U0
D

P1(M)𝑑

ID

𝜋ℎ
ΠD (27)

The mixed variational formulation for the contact-mechanical problem in the P1-bubble VEM frame-
work is defined by: find (u𝑛, 𝝀𝑛D)𝑛=1,...,𝑁 ∈ (V0

ℎ
× CD (𝜆𝑛D,n))

𝑁 such that, for all 𝑛 = 1, . . . , 𝑁 and
all (v, 𝝁D) ∈ V0

ℎ
× CD (𝜆𝑛D,n),∑︁

𝐾∈M

∫
𝐾

σ(𝜋𝐾u𝑛) : ε(𝜋𝐾v) + 𝑆𝜇,𝜆,D (IDu𝑛,IDv) −
∑︁
𝐾∈M

∫
𝐾

𝑏ΠD𝑚 𝑝
𝑛
D𝑚div(𝜋𝐾v)

+
∑︁
𝜎∈FΓ

∫
𝜎

ΠD 𝑓
𝑝𝑛D 𝑓

JvKn +
∑︁
𝜎∈FΓ

∫
𝜎

𝝀𝑛D · JvK =
∑︁
𝐾∈M

∫
𝐾

f𝑛𝐾 · 𝜋𝐾v, (28a)

∑︁
𝜎∈FΓ

∫
𝜎

(
(𝜇D,n − 𝜆𝑛D,n)Ju

𝑛Kn + (𝝁D,𝝉 − 𝝀𝑛D,𝝉) · J𝛿
𝑛
𝑡 uK𝝉

)
≤ 0. (28b)

It is straightforward to observe that the variational formulation (2828) is equivalent to (1313) based on the
correspondence uD = IDu and vD = IDv.

We note that the term
∫
𝜎
JuKd𝜎 is computable from the degrees of freedom since, with 𝜎 = 𝐾 |𝐿,∫

𝜎

JuKd𝜎 =

∫
𝜎

(𝛾𝐾𝜎u − 𝛾𝐿𝜎u) =
∫
𝜎

(
𝜋𝐾𝜎 (𝛾𝐾𝜎u) − 𝜋𝐿𝜎 (𝛾𝐿𝜎u)

)
+ |𝜎 | (IDu)𝐾𝜎 ,

where we have used (2626) to express
∫
𝜎
𝛾𝐾𝜎u, and the condition in (2222) for V𝐿𝜎

ℎ
with p constant

(which is valid since 𝐿 is not on the bubble side of 𝜎) to write
∫
𝜎
𝛾𝐿𝜎u =

∫
𝜎
𝜋𝐿𝜎 (𝛾𝐿𝜎u).

The stabilisation term 𝑆𝜇,𝜆,D (IDu𝑛,IDv) matches the classical VEM "dofi-dofi" approach [1919] based
on the degrees of freedom (see Appendix A.2A.2 for a detailed proof). The consistency of the local
bilinear form

𝑎𝐾D (u, v) =
∫
𝐾

σ(𝜋𝐾u) : ε(𝜋𝐾v) + (2𝜇𝐾 + 𝜆𝐾 )𝑆𝐾 (uD , v𝐷)

derives from (2525) and the fact that 𝜋𝐾w = w for all w ∈ P1(𝐾)𝑑 .

3.4.2 Unisolvence of the degrees of freedom

Proposition 3.5. For all 𝐾 ∈ M, the local degrees of freedom associated to 𝐾 are unisolvent for V𝐾
ℎ

.
As a consequence, the degrees of freedom in UD are unisolvent for Vℎ.

Proof. Let us consider a mesh element 𝐾 that includes at least a fracture face (the case without any
fracture face being done similarly, and in a simpler way). Let us show that the local interpolation
operator ID |V𝐾

ℎ
: V𝐾

ℎ
→ UD that extracts the degrees of freedom from a given function of V𝐾

ℎ
is

injective. We therefore need to prove that any function v ∈ V𝐾
ℎ

satisfying

(IDv)K𝑠 = 0, ∀𝑠 ∈ V𝐾 , (29a)
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(IDv)𝐾𝜎 = 0, ∀𝜎 ∈ F +
Γ,𝐾 , (29b)

vanishes in 𝐾 . From (29a29a), we get that 𝛾𝐾𝜎v = 0 on 𝜕𝜎, for all 𝜎 ∈ F𝐾 . In order to show that
𝛾𝐾𝜎v = 0 on 𝜎, it suffices to show that∫

𝜎

(𝛾𝐾𝜎v) · p = 0, ∀p ∈ P1(𝜎)𝑑 . (30)

Indeed, suppose that (3030) is satisfied, then one can write

0 =︸︷︷︸
Δ𝝉𝛾

𝐾𝜎v∈P1 (𝜎)𝑑

∫
𝜎

(𝛾𝐾𝜎v) · Δ𝝉𝛾
𝐾𝜎v =︸︷︷︸

𝛾𝐾𝜎v= 0 on 𝜕𝜎

∫
𝜎

∇𝝉𝛾
𝐾𝜎v · ∇𝝉𝛾

𝐾𝜎v,

which directly implies 𝛾𝐾𝜎v = 0 on 𝜎 since 𝛾𝐾𝜎v = 0 on 𝜕𝜎. By the integral condition in (2222), we
have, for all p ∈ (Q𝐾𝜎)𝑑 , ∫

𝜎

(𝛾𝐾𝜎v) · p =

∫
𝜎

𝜋𝐾𝜎 (𝛾𝐾𝜎v) · p = 0, (31)

where the conclusion follows from (29a29a) which implies 𝜋𝐾𝜎 (𝛾𝐾𝜎v) = 0. If 𝜎 ∉ F +
Γ,𝐾

then Q𝐾𝜎 =

P1(𝜎) and (3030) follows. Otherwise, using (29b29b), (2626) and 𝜋𝐾𝜎 (𝛾𝐾𝜎v) = 0 we have
∫
𝜎
𝛾𝐾𝜎v = 0.

Combined with (3131) which is valid for any p in a complement space of P0(𝜎)𝑑 , this proves that (3030)
also holds. It results that v = 0 on 𝜕𝐾 .

We then repeat a similar (but simpler, since the integral condition in (2121) is already expressed against
test functions in P1(𝐾)𝑑) procedure on 𝐾 , to finally obtain v = 0 on 𝐾 . Therefore, ID |V𝐾

ℎ
is injective.

Proceeding as in [11], it is easy to show that dim(V𝐾
ℎ
) ≥ 𝑑 · (#V𝐾 + #F +

Γ,𝐾
) which implies that ID

defines a bĳection from V𝐾
ℎ

to the vector space (R𝑑)#V𝐾+#F+
Γ,𝐾 of degrees of freedom of the cell 𝐾 .

Consequently, the degrees of freedom in 𝐾 are unisolvent for V𝐾
ℎ

. □

4 Numerical experiments

We assess here the numerical convergence of the discretisation of the poromechanical model with
frictional contact at matrix–fracture interfaces defined by (77)–(13a13a)–(1414)–(1515). Section 4.14.1 investi-
gates the discretisation of the contact-mechanics on the stand-alone static contact-mechanical model.
Then, in Section 4.24.2, the discretisation of the fully coupled poromechanical model is considered.

In the following test cases, the Lamé coefficients can be defined from the Young modulus 𝐸 and
the Poisson coefficient 𝜈 by 𝜇 = 𝐸

2(1+𝜈) and 𝜆 = 𝜈𝐸
(1+𝜈) (1−2𝜈) . The 2D test cases are performed with

the 3D code using meshes obtained by extrusion in the 𝑧 direction of the 2D meshes of the (𝑥, 𝑦)
domain, with one layer of cells of thickness 1. The 𝑧 components of the displacement field and of
the Lagrange multiplier are set to zero and homogeneous Neumann boundary conditions are imposed
at 𝑧 = 0 and 𝑧 = 1. The resulting discretisation is equivalent to the 2D version of the scheme. Note
that the discrete fracture networks of Sections 4.1.34.1.3, 4.2.14.2.1 and 4.2.24.2.2 are chosen to include difficulties
representative of the geological complexity, such as fractures with corners, fractures intersecting the
boundary, or fractures intersecting each other.

4.1 Stand alone static contact-mechanics

The numerical convergence of the mixed P1-bubble VEM–P0 discretisation (1313)–(1414) is investigated
on three static contact-mechanical test cases obtained from (22)–(33)–(44) by setting the matrix 𝑝𝑚 and
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fracture 𝑝 𝑓 pressures to zero and replacing J𝜕𝑡uK𝝉 by JuK𝝉 in the contact term. The first one considers
a manufactured 3D analytical solution with a single non-immersed fracture and a frictionless contact
model. The second test case is based on an analytical solution for a single fracture in contact slip
state immersed in an unbounded 2D domain. The last test case compares our discretisation to a
Nitsche P1 Finite Element Method (FEM) on a 2D domain with 6 fractures. In all simulations, the
contact-mechanical model is solved using the semi-smooth Newton method based on the contact
equations (1414). It is combined with a direct sparse linear solver.

4.1.1 3D manufactured solution for a frictionless static contact-mechanical model

We consider the 3D domain Ω = (−1, 1)3 with the single non-immersed fracture Γ = {0} × (−1, 1)2.
The friction coefficient 𝐹 is set to zero, which corresponds to a frictionless contact, and the Lamé
coefficients are 𝜇 = 𝜆 = 1. The exact solution

u(𝑥, 𝑦, 𝑧) =



©«
𝑔(𝑥, 𝑦)𝑝(𝑧)

𝑝(𝑧)
𝑥2𝑝(𝑧)

ª®®¬ if 𝑧 ≥ 0,

©«
ℎ(𝑥)𝑝+(𝑧)
ℎ(𝑥) (𝑝+(𝑧))′

−
∫ 𝑥

0 ℎ(𝜉)d𝜉 (𝑝
+(𝑧))′

ª®®¬ if 𝑧 < 0, 𝑥 < 0,

©«
ℎ(𝑥)𝑝− (𝑧)
ℎ(𝑥) (𝑝− (𝑧))′

−
∫ 𝑥

0 ℎ(𝜉)d𝜉 (𝑝
− (𝑧))′

ª®®¬ if 𝑧 < 0, 𝑥 ≥ 0,

with 𝑔(𝑥, 𝑦) = − sin( 𝜋𝑥2 ) cos( 𝜋𝑦2 ), 𝑝(𝑧) = 𝑧2, ℎ(𝑥) = cos( 𝜋𝑥2 ), 𝑝+(𝑧) = 𝑧4 and 𝑝− (𝑧) = 2𝑧4,
is designed to satisfy the frictionless contact conditions at the matrix–fracture interface Γ. The
right hand side f = −divσ(u) and the Dirichlet boundary conditions on 𝜕Ω are deduced from u.
Note that the fracture Γ is in contact state for 𝑧 > 0 (JuKn = 0) and open for 𝑧 < 0, with a
normal jump JuKn = −min(𝑧, 0)4 depending only on 𝑧. The convergence of the mixed P1-bubble
VEM–P0 formulation is investigated on families of uniform Cartesian, tetrahedral and hexahedral
meshes. Starting from uniform Cartesian meshes, the hexahedral meshes are generated by random
perturbations of the nodes and by cutting non-planar faces into two triangles (see Figure 55).

Figure 5. Example of randomly perturbated Cartesian cell with non planar faces cut into two triangles.

Figure 66 exhibits the relative 𝐿2 norms of the errors u − ΠDuD , JuK − JuDKD , ∇u − ∇DuD and
𝜆n − 𝜆D,n on the three family of refined meshes as functions of the cubic root of the number of cells.
It shows, as expected for such a smooth solution, a second-order convergence for u and JuK for all
families of meshes. A first-order convergence is obtained for ∇u and 𝜆n with both the hexahedral and
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tetrahedral families of meshes, while a second order super convergence is observed with the family
of Cartesian meshes.

2nd order

𝐿
2

Er
ro

r

𝑁
1
3
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(a)

1st and 2nd order

𝑁
1
3
cell

(b)

1st and 2nd order

𝑁
1
3
cell

(c)

Figure 6. Relative 𝐿2 norms of the errors u − ΠDuD , JuK − JuDKD , ∇u − ∇DuD and 𝜆n − 𝜆D,n as
functions of the cubic root of the number of cells, using the families of Cartesian (a), tetrahedral (b)
and hexahedral (c) meshes. Test case of Section 4.1.14.1.1.

Figure 77 plots, for the hexahedral meshes, the face-wise constant normal jump JuDKD,n on Γ and the
nodal normal jumps as functions of 𝑧 along the “broken” line corresponding, before perturbation of
the mesh, to 𝑥 = 𝑦 = 0. We recall that the continuous normal jump depends only on 𝑧.
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Figure 7. (a) Face-wise constant normal jump JuDKD,n on Γ obtained on the hexahedral mesh with
23𝑚 cells, 𝑚 = 5. (b) Nodal normal jumps along the line 𝑥 = 𝑦 = 0 as functions of 𝑧 both for the
discrete solutions on the hexahedral meshes with 23𝑚 cells,𝑚 = 3, 4, 5 and for the continuous solution
depending only on 𝑧. Test case of Section 4.1.14.1.1.

4.1.2 Unbounded 2D domain with a single fracture under compression

This test case presented in [3939, 2828, 2929] consists of a 2D unbounded domain containing a single fracture
and subject to a compressive remote stress 𝜎 = 100 MPa. The fracture inclination with respect to
the 𝑥-direction is 𝜓 = 𝜋/9, its length is 2ℓ = 2 m, and the friction coefficient is 𝐹 = 1/

√
3. Young’s

modulus and Poisson’s ratio are set to 𝐸 = 25 GPa and 𝜈 = 0.25. The analytical solution is such that:

𝜆n = 𝜎 sin2(𝜓), |JuK𝝉 | =
4(1 − 𝜈)

𝐸
𝜎 sin(𝜓) (cos(𝜓) − 𝐹 sin(𝜓))

√︁
ℓ2 − (ℓ2 − 𝜏2), (32)

where 0 ≤ 𝜏 ≤ 2ℓ is the curvilinear abscissa along the fracture. Since 𝜆n > 0, we have JuKn = 0 on
the fracture. For this simulation, we sample a large square domain (− 𝐿2 ,

𝐿
2 )

2 with 𝐿 = 160 m. The top
and bottom boundaries are free, while a compression σ(u)n = −𝜎n is imposed at the left and right
boundaries. Moreover, to get rid of the rigid body motions while preserving the symmetry of the
expected solution and compression boundary condition, homogeneous Dirichlet boundary conditions
are imposed on 𝑢𝑥 at x = (0,± 𝐿2 ) and on 𝑢𝑦 at x = (± 𝐿2 , 0) as shown in Figure 88. An initial triangular
mesh of the domain is created, with a local refinement in a neighborhood of the fracture; this mesh is
then uniformly refined to give rise to meshes containing 100, 200, 400, and 800 faces on the fracture
(corresponding, respectively, to 12 468, 49 872, 199 488, and 797 952 triangular elements).

Figure 99 shows the comparison between the analytical and numerical Lagrange multipliers 𝜆n and
tangential displacement jump JuK𝝉 , computed on the finest mesh with either one-sided or two-sided
bubbles along the fracture (see Remark 3.13.1). The Lagrange multiplier 𝜆n presents some oscillations
in a neighborhood of the fracture tips. As already explained in [2828], this is due to the sliding of faces
close to the fracture tips (in this test case, all fracture faces are in a contact-slip state). The strong
singularity of the solution at such points, together with the weak control of the Lagrange multiplier
in 𝐻−1/2(Γ) norm induced by the inf-sup condition, can also explain such oscillatory behaviour of
the solution. As could be expected, the two-sided bubble case significantly reduces the Lagrange
multiplier oscillations compared with the one-sided bubble case, due to a better stabilisation (but at
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the cost of more degrees of freedom). In both cases, the discrete tangential displacement jump cannot
be distinguished from the analytical solution on this fine mesh. Figure 1010 and Table 11 display, for
the one-sided bubble case, the convergences of the tangential displacement jump and of the normal
Lagrange multiplier with respect to the size of the largest fracture face denoted by ℎ. Note that the
𝐿2 error for the Lagrange multiplier is computed 5% away from each tip to circumvent the lack of
convergence induced by the oscillations as in [2828]. A first-order convergence for the displacement
jump and a 1.5 convergence order for the Lagrange multiplier are observed. The former (low) rate
is related to the low regularity of JuK𝝉 close to the tips (cf. the analytical expression (3232)); the latter
(higher than expected) rate is likely related to the fact that 𝜆n is constant. Table 11 also shows the
robust convergence of the semi-smooth Newton algorithm on the family of refined meshes.

(a)
X

Y

Z

(b)

Figure 8. Unbounded domain containing a single fracture under uniform compression (a) and mesh
including nodes for boundary conditions (♦: 𝑢𝑥 = 0, ■: 𝑢𝑦 = 0) (b), for the example of Section 4.1.24.1.2.
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Figure 9. Comparison between the numerical and analytical solutions on the finest mesh (with 800
fracture faces), in terms of 𝜆n and JuK𝝉 with one-sided bubbles (left) and two-sided bubbles (right),
example of Section 4.1.24.1.2.

ℎ (m)

Re
la

tiv
e
𝐿

2
Er

ro
r

Figure 10. Relative 𝐿2 norms of the errors JuK𝝉 − JuDKD,𝝉 and 𝜆n − 𝜆D,n away from the tip, with
respect to the size of the largest fracture face denoted by ℎ, one-sided bubble case. Test case of
Section 4.1.24.1.2.
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#FΓ 𝑁dof 𝐸
JuK𝝉
𝐿2 order JuK𝝉 𝐸

𝜆n
𝐿2 order 𝜆n 𝑁Newton

100 13028 4.36E-2 - 2.23E-2 - 2
200 50992 1.80E-2 1.27 8.84E-3 1.34 2
400 201728 7.71E-3 1.25 2.91E-3 1.60 2
800 802432 3.46E-3 1.15 9.89E-4 1.56 2

Table 1. Relative 𝐿2 errors and convergence orders for JuK𝝉 − JuDKD,𝝉 and 𝜆n − 𝜆D,n away from
the tip, and number 𝑁Newton of semi-smooth Newton iterations for the different meshes with 𝑁dof

scalar degrees of freedom (3D mesh) and #FΓ fracture faces. One-sided bubble case. Test case of
Section 4.1.24.1.2.

4.1.3 2D Discrete Fracture Matrix model with 6 fractures: static contact-mechanics test case

To illustrate the behaviour of our scheme on a more complex fracture network, we consider the
Discrete Fracture Matrix (DFM) model test case presented in [77, Section 4.1], where a 2m× 1m× 1m
domain including a network Γ =

⋃6
𝑖=1 Γ𝑖 of fractures is considered, see Figure 1111. Fracture 1 is made

up of two sub-fractures forming a corner, whereas one of the tips of Fracture 5 lies on the boundary of
the domain. We use the same values of Young’s modulus and Poisson’s ratio, 𝐸 = 4 GPa and 𝜈 = 0.2,
and the same set of boundary conditions as in [77], that is, the two left and right sides of the domain
are free, and we impose u = 0 on the lower side and u = 𝑡 [0.005 m,−0.002 m] on the top side. The
friction coefficient is 𝐹𝑖 (x) = 0.5(1 + 10𝑒−𝐷2

𝑖
(x)/0.005), with 𝑖 ∈ {1, ..., 6} the fracture index, x ∈ Γ𝑖 a

generic point on fracture 𝑖, and 𝐷𝑖 (x) the minimum distance from x to the tips of fracture 𝑖 (the bend
in Fracture 1 is not considered a tip).

Since no closed-form solution is available for this test case, the numerical convergence is evaluated
with respect to a reference solution computed on a fine mesh made of 730 880 triangular elements.
Figure 1212 shows the convergence rates obtained for both JuK and 𝝀. The family of triangular meshes
is obtained by successive uniform refinements of a given initial coarse mesh. As in [77], an asymptotic
first-order convergence is observed for the vector Lagrange multiplier for all fractures, except Fracture
4 which exhibits a convergence rate close to 2 owing to its entire contact-stick state, and Fracture 1
which exhibits a lower rate due to the additional singularity induced by the corner. For the jump of
the displacement field across fractures, we obtain an asymptotic convergence rate equal to 1.5 for all
fractures. In Figure 1313, we compare the error curves of the displacement jump JuK and the traction
mean value (T+ − T−) /2 between our method and the Nitsche P1 FEM for contact-mechanics [33],
for Fractures 1, 2, and 3. It is noticeable that we have approximately the same convergence for
both methods. Taking advantage of the flexibility of the polytopal VEM method, we then consider
a modified mesh obtained by inserting a node at the midpoint of each fracture-edge, generating
4-node triangles on both sides of the fractures. Figure 1414 exhibits the tangential displacement jumps
obtained with the original coarse mesh, and the one refined only along the fractures with these 4-node
triangles. The numerical solution better captures the stick-slip transition on the refined mesh than
on the original mesh. This improvement is achieved with a minor computational overcost, as the
volumetric discretisation remains unchanged, and we exclusively refine along the fractures.
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Slip OpenStick

Figure 11. 3D prism / 2D Rectangular domain with six fractures. Fracture 1 comprises two sub-
fractures making a corner, and Fracture 5 has a tip on the boundary. The contact state of each
fracture obtained by the simulation is also shown on the same mesh: Mixed P1-bubble VEM–P0

(left) vs. Nitsche P1 FEM (right). Test case of Section 4.1.34.1.3.

1.5th order 
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K

1st order 

𝝀

Figure 12. Relative 𝐿2 errors (using a reference solution) for JuK and 𝝀, as functions of the size of
the largest fracture face, yielding a 1.5-order of convergence for JuK and 1st order of convergence for
𝝀. Test case of Section 4.1.34.1.3.
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Figure 13. Comparison of the Mixed P1-bubble VEM–P0 vs. Nitsche P1 FEM: relative 𝐿2 errors
on (T+ − T−) /2 (top) and JuK (bottom), as functions of the size of the largest fracture face. These
errors are computed along Fractures 1, 2 and 3 (left to right), using a reference solution. Test case of
Section 4.1.34.1.3.
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Figure 14. Tangential jumps JuK𝝉 on Fracture 1 (left) and Fracture 3 (right) obtained on the original
coarse triangular mesh ("tri3 mesh”), and the mesh obtained by refining, only along the fracture faces,
using 4-node triangles ("tri3-tri4 mesh"). Test case of Section 4.1.34.1.3.

4.2 Poromechanical test cases

The objective here is first to compare our discretisation with the one presented in [33] combining
a Nitsche P2 FEM for the contact-mechanics with the HFV scheme for the flow on triangular 2D
meshes. The second objective is to assess the robustness of our approach on a 3D test case with a
fracture network including intersections. The coupled nonlinear system is solved at each time step of
the simulation using the fixed-stress algorithm [3636] adapted to mixed-dimensional models following
[3131]. This algorithm comprises two nested loops: an outer one on the time steps (index 𝑛), and an
inner one on the fixed-stress steps (index 𝑘). For each time step, the inner loop is:

• Initialization (𝑘 = 0). Set an guess for the displacement and pressure by interpolating from the
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previous two time steps:

u𝑛,0D = u𝑛−1
D + Δ𝑡𝑛

u𝑛−1
D − u𝑛−2

D
Δ𝑡𝑛−1 , 𝑝

𝑛,0
D = 𝑝𝑛−1

D + Δ𝑡𝑛
𝑝𝑛−1
D − 𝑝𝑛−2

D
Δ𝑡𝑛−1 .

• Step from 𝑘 − 1 to 𝑘 . While ∥u𝑛,𝑘D −u𝑛,𝑘−1
D ∥∞

𝑢ref
+ ∥ 𝑝𝑛,𝑘D −𝑝𝑛,𝑘−1

D ∥∞
𝑝ref

≥ 𝜖fs do

• Given u𝑛,𝑘−1
D , compute 𝑝𝑛,𝑘D solution of the linear Darcy flow system, using the following

porosity and fracture width:

𝜙
𝑛,𝑘

D = 𝜙𝑛−1
D + 𝑏divD (u𝑛,𝑘−1

D − u𝑛−1
D ) + 1

𝑀
ΠD𝑚 (𝑝

𝑛,𝑘

D𝑚 − 𝑝𝑛−1
D𝑚 )

+ 𝐶𝑟 ,𝑚ΠD𝑚 (𝑝
𝑛,𝑘

D𝑚 − 𝑝𝑛,𝑘−1
D𝑚 ),

d𝑛,𝑘
𝑓 ,D = d𝑛−1

𝑓 ,D − Ju𝑛,𝑘−1
D − u𝑛−1

D KD,n + 𝐶𝑟 , 𝑓ΠD𝑚 (𝑝
𝑛,𝑘

D 𝑓
− 𝑝𝑛,𝑘−1

D 𝑓
).

• Given 𝑝
𝑛,𝑘

D , compute u𝑛,𝑘D solution of the contact-mechanical system using the semi-
smooth Newton algorithm.

Note that the fixed-stress iterative algorithm is initialised in such a way that the first iterate corresponds
to the sequential fixed-stress solution [88]. At each subsequent iteration, the Darcy linear problem
is solved using a GMRes iterative solver preconditioned by AMG with stopping criteria 10−8. The
contact-mechanical model is then solved using the semi-smooth Newton method combined with a
direct sparse linear solver; the stopping criteria is 10−10 on the relative residual, or on the maximum
displacement increment (whichever comes first). The fixed-stress stopping criteria is fixed to 𝜖fs =

10−5 with 𝑢ref = 10−3 m, 𝑝ref = 105 Pa, and the relaxation parameters are given by 𝐶𝑟 ,𝑚 = 3𝑏2

2𝜇+3𝜆 and
𝐶𝑟 , 𝑓 = 0.

4.2.1 2D DFM with 6 fractures: poromechanical test case

This test case presented in [33, Section 5] adds the fluid flow to the contact-mechanical test case
of Section 4.1.34.1.3. On the mechanical side, the only changes are related to the friction coefficient
fixed here to 𝐹 = 0.5 and to the following time dependent Dirichlet boundary conditions on the top
boundary:

u(𝑡, x) =

𝑡 [0.005 m,−0.002 m] 4𝑡

𝑇
if 𝑡 ≤ 𝑇

4 ,

𝑡 [0.005 m,−0.002 m] otherwise.

Concerning the flow boundary conditions, all sides are impervious except the left one, on which a
pressure equal to the initial pressure 105 Pa is prescribed. To fully exploit the capabilities of the HFV
flow discretisation, we consider the following anisotropic permeability tensor in the matrix:

K𝑚 = 𝐾𝑚

(
1 0
0 1/2

)
.

The permeability coefficient is set to 𝐾𝑚 = 10−15 m2, the Biot coefficient to 𝑏 = 0.5, the Biot modulus
to 𝑀 = 10 GPa, and the dynamic viscosity to 𝜂 = 10−3 Pa·s. For further details related to the Darcy
flow, we refer the reader to [33, Section 5]. The triangular meshes are the same as in Section 4.1.34.1.3,
the final time is set to 𝑇 = 2000 s, and a uniform time stepping with 20 time steps is used for the
Euler implicit time integration (the same time integration is used for the Nitsche P2 FEM used for
comparison).
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Figure 1515 exhibits the good convergence behaviour of the mean matrix pressure as a function of time,
on a family of three uniformly refined meshes and using a numerical reference solution computed on
a finer mesh through the Nitsche P2 FEM presented in [33]. The matrix over-pressure (w.r.t. the initial
pressure) obtained at final time is also compared in Figure 1616 to the one obtained by the Nitsche
P2 FEM of [33]. Notably, we found that the numerical results of the two methods are very similar.
Figure 1717 shows the mean fracture aperture and pressure as functions of time for the family of three
uniformly refined meshes, showing a good spatial convergence to the numerical reference solution.
Note that the fracture pressure is extremely close to the trace of the matrix pressure due to the high
conductivity of the fractures. Figure 1818 exhibits a 1.5-order convergence rate of the discrete 𝑙2 errors
in time of the matrix mean pressure, the porosity, the fracture mean pressure, the aperture, and the
tangential jump. The reference solution is computed using the Nitsche P2 FEM on a fine mesh.

0 500 1000 1500 2000

M
ea

n
pr

es
su

re
in

th
e

m
at

rix

𝑡 (s)

Figure 15. Mean pressure in the matrix as a function of time, for a family of three uniformly refined
meshes. The reference solution is computed on a finer mesh using the Nitsche P2 FEM presented in
[33]. Test case of Section 4.2.14.2.1.
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Figure 17. Mean fracture aperture and pressure as functions of time, for a family of three uniformly
refined meshes. The reference solution is computed on a finer mesh using the Nitsche P2 FEM
presented in [33]. Test case of Section 4.2.14.2.1.
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Figure 16. Matrix over-pressures (w.r.t. the initial pressure) in Pa at final time obtained with the mixed
P1-bubble VEM–P0/HFV scheme (left) vs. the Nitsche P2 FEM/HFV scheme (right). Test case of
Section 4.2.14.2.1.
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Figure 18. Relative discrete 𝑙2 error in time, as a function of the size ℎ of the largest fracture face,
between the numerical and reference solutions for the mean matrix pressure and porosity (left), and
the mean fracture pressure, aperture, and tangential jump JuK𝝉 (right). Test case of Section 4.2.14.2.1.

4.2.2 3D DFM with intersecting fractures

The objective of this test case is to assess the ability of the discretisation and of the nonlinear solver
to simulate a poromechanical test case on a 3D DFM with intersecting fractures. We consider the
domain Ω = (0, 1 m)3 with the fracture network Γ of Figure 1919, which we discretise by a tetrahedral
mesh consisting of either 47k or 127k cells. Both meshes are generated using TetGen [3232], starting
with a triangulation of the fracture network and extended it to a conforming tetrahedral mesh of the
3D domain.

The Young’s modulus and Poisson’s ratio are set to 𝐸 = 4 GPa and 𝜈 = 0.2, and the friction coefficient
to 𝐹 = 0.5. The Biot coefficient is set to 𝑏 = 0.5 and the Biot modulus to 𝑀 = 10 GPa. Dirichlet
boundary conditions are imposed at the bottom and top boundaries for the displacement field. We
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set u = 0 at the bottom boundary 𝑧 = 0, and the following time dependent displacement at the top
boundary 𝑧 = 1:

u(𝑡, 𝑥, 𝑦, 1) =

𝑡 [0.002 m, 0.002 m,−0.002 m] 2𝑡

𝑇
if 𝑡 ≤ 𝑇

2 ,

𝑡 [0.002 m, 0.002 m,−0.002 m] otherwise.

Homogeneous Neumann boundary conditions are set on the lateral sides for the mechanics. Regarding
the Darcy flow, the matrix permeability tensor is set to K𝑚 = 𝐾𝑚I with 𝐾𝑚 = 10−14 m2, and the
dynamic viscosity to 𝜂 = 10−3 Pa · s. The initial matrix porosity is 𝜙0

𝑚 = 0.2 and the fracture aperture
corresponding to both contact state and zero displacement field is given by d𝑐

𝑓
= 10−3 m. The initial

pressure in the matrix and fracture network is 𝑝0
𝑚 = 𝑝0

𝑓
= 105 Pa. Notice that the initial fracture

aperture differs from d𝑐
𝑓
, since it is computed by solving the contact-mechanics given the initial

pressures 𝑝0
𝑚 and 𝑝0

𝑓
. The final time is set to 𝑇 = 20 s and the time integration uses a uniform time

stepping with 20 time steps. The boundary conditions for the flow are impervious except at the lateral
boundaries 𝑦 = 0 and 𝑦 = 1, where a fixed pressure 𝑝𝑚 = 105 Pa is prescribed.

We fix an orthonormal coordinate system (n, 𝝉1, 𝝉2) on each fracture, and represent in Figures 2020 and
2121 the normal and the 𝝉2-tangential components of the displacement jump at the final time 𝑡 = 𝑇 .
These pictures illustrate qualitatively the convergence of the displacement jump along the fracture
when the mesh is refined.

Figure 2222 plots the cumulated total number of semi-smooth Newton iterations for the contact-
mechanical model as a function of time, for both the one-sided and two-sides bubble cases. It shows
the robustness of the nonlinear solver with respect to the mesh size and the (moderate) benefit of the
stronger stabilisation obtained with the two-sided bubble discretisation.

Figure 19. Tetrahedral mesh of the 3D DFM with intersecting fractures comprising roughly 127k
cells. Test case of Section 4.2.24.2.2.
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Figure 20. Normal jump with the 47k cells mesh (left) and the 127k cells mesh (right), obtained at
final time 𝑡 = 𝑇 . Test case of Section 4.2.24.2.2.
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Figure 21. The 𝝉2 component of the tangential jump with the 47k cells mesh (left) and the 127k cells
mesh (right), obtained at final time 𝑡 = 𝑇 . Test case of Section 4.2.24.2.2.
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Figure 22. Total number of semi-smooth Newton iterations for the contact-mechanical model as a
function of time, with both one-sided and two-sided bubbles and for both meshes with 47k cells (left)
and 127k cells (right). Test case of Section 4.2.24.2.2.

5 Conclusions

We have developed a novel numerical scheme for contact-mechanics in fractured/faulted porous
media. It is based on a mixed formulation, using face-wise constant approximations of the Lagrange
multipliers and a polytopal scheme for the displacement with fully discrete spaces and reconstruction
operators. This scheme is applicable on meshes with generic elements, and employs a bubble degree
of freedom to ensure the inf–sup stability with the Lagrange multiplier space. This fully discrete
scheme is equivalent to a low-order bubble-VEM scheme, which is to our knowledge the first of its
kind. Numerical validations were carried out on several 2D and 3D test cases, both for the stand alone
contact-mechanical and the fully coupled mixed-dimensional poromechanical models. Our future
plan is to investigate the robustness of these polytopal discretisations to simulate fault reactivation
in CO2 geological storage, by using polyhedral meshes based on Corner Point Geometries. The
stability and convergence analysis of this mixed P1 VEM-bubble–P0 discretisation of the contact-
mechanics requires new developments related to the additional bubble unknowns and to fracture
networks including tips and intersections. This is a work in progress that will prove the discrete Korn
inequality and the inf–sup condition.

A Analysis of the elliptic projectors and stabilisation in the VEM space

A.1 Proof of Lemma 3.43.4

For 𝐾 ∈ M and 𝜎 ∈ F𝐾 , let us show that the local projectors 𝜋𝐾 and 𝜋𝐾𝜎 defined in (1919) and (2020),
respectively, satisfy conditions (2323) and (2424) in V𝐾

ℎ
.

For v ∈ V𝐾
ℎ

, one can write:∫
𝐾

∇v =
∑︁
𝜎∈F𝐾

∫
𝜎

𝛾𝐾𝜎v ⊗ n𝐾𝜎

=
∑︁

𝜎∈F+
Γ,𝐾

∫
𝜎

𝛾𝐾𝜎v ⊗ n𝐾𝜎 + 1
|𝐾 |

∑︁
𝜎∈F𝐾\F+

Γ,𝐾

∫
𝜎

𝛾𝐾𝜎v ⊗ n𝐾𝜎
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=
∑︁

𝜎∈F+
Γ,𝐾

[∫
𝜎

(
𝛾𝐾𝜎v − 𝜋𝐾𝜎 (𝛾𝐾𝜎v)

)
⊗ n𝐾𝜎

]
+

∑︁
𝜎∈F𝐾

∫
𝜎

𝜋𝐾𝜎 (𝛾𝐾𝜎v) ⊗ n𝐾𝜎 ,

where we have used the Stokes formula in the first equality and, in the conclusion, subtracted and
added ∑︁

𝜎∈F+
Γ,𝐾

∫
𝜎

𝜋𝐾𝜎 (𝛾𝐾𝜎v) ⊗ n𝐾𝜎

and used the relation
∫
𝜎
𝛾𝐾𝜎v =

∫
𝜎
𝜋𝐾𝜎 (𝛾𝐾𝜎v) for all 𝜎 ∈ F𝐾 \ F +

Γ,𝐾
(see the integral condition in

(2222)). We therefore have∫
𝐾

∇v =
∑︁

𝜎∈F+
Γ,𝐾

|𝜎 | (IDv)𝐾𝜎 ⊗ n𝐾𝜎 +
∑︁
𝜎∈F𝐾

∫
𝜎

𝜋𝐾𝜎 (𝛾𝐾𝜎v) ⊗ n𝐾𝜎 . (33)

The relation (2020) between 𝜋𝐾𝜎 and Π𝐾𝜎 and the definition (88) of Π𝐾𝜎 (recalling that
∫
𝜎
(x−x𝜎) = 0)

yield ∫
𝜎

𝜋𝐾𝜎 (𝛾𝐾𝜎v) =
∫
𝜎

Π𝐾𝜎 (ID𝛾𝐾𝜎v) = |𝜎 | (ID𝛾𝐾𝜎v)𝐾𝜎 = |𝜎 | (IDv)𝐾𝜎

(where (IDv)𝐾𝜎 is defined by (99) with IDv instead of v). Hence, (3333) and the definition (1010) of
∇𝐾 = ∇Π𝐾 show that ∫

𝐾

∇v = |𝐾 |∇𝐾 (IDv) =
∫
𝐾

∇Π𝐾 (IDv) =
∫
𝐾

∇𝜋𝐾v.

Taking q ∈ P1(𝐾)𝑑 and multiplying this relation with ∇q (which is constant) yields (23a23a).

To get the relation (23b23b), on the other hand, we use , the fact that 𝜋𝐾v = Π𝐾IDv is linear and (1111) to
write

(𝜋𝐾v) (x𝐾 ) =
1
|𝐾 |

∫
𝐾

Π𝐾IDv = (IDv)𝐾 =
∑︁
𝑠∈V𝐾

𝜔𝐾𝑠 (IDv)K𝑠 =
∑︁
𝑠∈V𝐾

𝜔𝐾𝑠 v(x𝑠).

We now turn to (2424). If v ∈ V𝐾𝜎
ℎ

, then v ∈ P1(𝑒) on each edge 𝑒 of 𝜎 and thus, by Stokes formula,∫
𝜎

∇𝝉v =
∑︁
𝑒∈E𝜎

∫
𝑒

𝛾𝜎𝑒v ⊗ n𝜎𝑒 =
∑︁

𝑒=𝑠1𝑠2∈E𝜎
|𝑒 |

(IDv)𝐾𝑠1 + (IDv)𝐾𝑠2
2

⊗ n𝜎𝑒 = |𝜎 |∇𝐾𝜎 (IDv).

The conclusion of (2424) then follows as above.

A.2 Discrete stability term 𝑆𝜇,𝜆,D as a VEM dofi-dofi stabilisation

Given u, v ∈ V𝐾
ℎ

, let us set uD = IDu, vD = IDv. The usual dofi-dofi approach first introduces the
bilinear form based on the VEM degrees of freedom

𝑠𝐾 (u, v) = ℎ𝑑−2
𝐾

( ∑︁
𝑠∈V𝐾

uK𝑠vK𝑠 +
∑︁

𝜎∈F+
Γ,𝐾

u𝐾𝜎v𝐾𝜎
)
,

and defines the stabilisation bilinear form as

S𝐾 (u, v) = 𝑠𝐾 (u − 𝜋𝐾u, v − 𝜋𝐾v).

The fact thatS𝐾 (u, v) = 𝑆𝐾 (IDu,IDv) directly follows from the definition of 𝑆𝐾 in (1212) and from the
identities (w−𝜋𝐾w)K𝑠 = (IDw)K𝑠−(Π𝐾IDw) (x𝑠) and (w−𝜋𝐾w)𝐾𝜎 = (IDw)𝐾𝜎−(ID𝜋𝐾w)𝐾𝜎 =

(IDw)𝐾𝜎 for all w ∈ V𝐾
ℎ

(we have used (IDq)𝐾𝜎 = 0 whenever q ∈ P1(𝐾), which follows from the
fact that Π𝐾𝜎 (IDq) = q since q is linear).
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