Guillaume Noetinger 
  
Fabrice Lemoult 
  
Sébastien M Popoff 
  
Dynamic structured illumination for confocal microscopy

Structured illumination enables the tailoring of an imaging device's optical transfer function to enhance resolution. We propose the incorporation of a temporal periodic modulation, specifically a rotating mask, to encode multiple transfer functions in the temporal domain. This approach is demonstrated using a confocal microscope configuration. At each scanning position, a temporal periodic signal is recorded. By filtering around each harmonic of the rotation frequency, multiple images of the same object can be constructed. The image carried by the nth harmonic is a convolution of the object with a phase vortex of topological charge n, similar to the outcome when using a vortex phase plate as an illumination. This enables the collection of chosen high spatial frequencies from the sample, thereby enhancing the spatial resolution of the confocal microscope.

The optical confocal microscope [1], an imaging device extensively utilized for decades, has proven invaluable for scientists investigating phenomena at the scale of hundreds of nanometers. These researchers, including biologists and material scientists, benefit from the device's ability to filter out-of-focus light. This is known as optical sectioning. This feature enables the capture of high contrast images even in diffusive samples such as biological tissue [START_REF] Corle | Confocal Scanning Optical Microscopy and Related Imaging Systems[END_REF]. The high-resolution capabilities of the confocal microscope are particularly beneficial for fluorescent imaging [START_REF] Jonkman | Tutorial: guidance for quantitative confocal microscopy[END_REF]. Combined with a depletion beam in the STED configuration the device can achieve superresolution, yielding precise structural insights at the cellular level [START_REF] Klar | Breaking abbes diffraction resolution limit in fluorescence microscopy with stimulated emission depletion beams of various shapes[END_REF]. However, fluorescent markers present limitations, including their potential toxicity and the prerequisite treatment of the sample, making them unsuitable in some contexts. Consequently, the development of optical label-free superresolution microscopy would be highly advantageous in numerous practical applications [START_REF] Marx | It's free imaging -label-free, that is[END_REF][START_REF] Astratov | Label-Free Super-Resolution Microscopy[END_REF].

Broadly, the inclusion of time in an optical scheme opens new possibilities [START_REF] Engheta | Four-dimensional optics using time-varying metamaterials[END_REF]. Mechanical scanning as used in STED, illumination and acquisition sequences as seen in STORM [START_REF] Rust | Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (storm)[END_REF], and structured illumination [START_REF] Gustafsson | Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy[END_REF], as well as the analysis of emission fluctuations in SOFI [START_REF] Dertinger | Fast, background-free, 3d super-resolution optical fluctuation imaging (sofi)[END_REF], all exemplify the prevalent use of time as an additional degree of freedom in numerous superresolution techniques. For example, recent work involving illumination modulation in a fluorescent sample with time-varying structured illumination has demonstrated remarkable precision in localization [START_REF] Jouchet | Nanometric axial localization of single fluorescent molecules with modulated excitation[END_REF].

In this article, we address the challenge of label-free superresolution in the far-field utilizing an analogous approach that capitalizes on the temporal domain to enhance the volume of data gathered from the object for image reconstruction. To that end, we suggest incorporating wavefront shaping techniques into a standard confocal microscope to introduce a temporal modulation in the signal acquired at each scanning point. The resultant additional degrees of freedom could enhance the * sebastien.popoff@espci.fr space-bandwidth product [START_REF] Lohmann | Space-bandwidth product of optical signals and systems[END_REF] of the confocal microscope, leading to an improved resolution.

CONCEPT

In the absence of fluorescent probes, the confocal microscope demonstrates a modest improvement in lateral resolution compared to the full-field configuration. In a full-field microscope, the coherent point-spread function (PSF) corresponds to the 2D Fourier transform of the pupil function. With a circular pupil, it is recognized as the Airy function. Owing to the scanning process and under the approximation of a point-like detector, the coherent PSF of the confocal microscope can be expressed as the product of the illumination and collection PSFs [START_REF] Mertz | Introduction to Optical Microscopy[END_REF]. In a symmetric configuration, its width is smaller than that of the full field microscope. Using a Gaussian approximation of the PSF, the improvement in lateral resolution is estimated to be on the order of √ 2 which is about 40%.

In terms of spatial frequencies, the coherent transfer function (CTF) of a full-field microscope is dictated by the shape of the microscope objective's pupil. For a circular pupil, the CTF takes the form of a circular step function: spatial frequencies with a modulus greater than NA/λ are filtered out, where NA represents the numerical aperture and λ is the working wavelength. All spatial frequencies within this zone are transmitted with the same amplitude.In the confocal microscope, the CTF is the convolution of the illumination and collection CTFs [START_REF] Wilson | Theory and Practice of Scanning Confocal Microscopy[END_REF]. Assuming a symmetric configuration for illumination and collection, the confocal possesses a wellknown conical CTF of support twice as large as the full field CTF [START_REF] Mertz | Introduction to Optical Microscopy[END_REF]. This means that the highest transmitted spatial frequency, 2NA/λ, is twice that in the fullfield configuration. However, the gain diminishes linearly, peaking at low spatial frequencies and reaching a minimum at the cut-off frequency. In the presence of noise, the low signal to noise ratio at high frequencies leads to a degraded resolution in practice. One straightforward strategy to offset this declining gain is to employ an annular pupil [START_REF] Sheppard | Imaging properties of annular lenses[END_REF]. Its drawbacks are a deterioration of the optical sectioning and the presence of secondary lobes. In this paper, we aim to present an alternative approach using a temporal modulation.

In a recent work, we demonstrated experimentally with acoustic waves that the use of spatiotemporal wavefront shaping allows multiplexing the acquisition for image reconstruction [START_REF] Noetinger | Superresolved imaging based on spatiotemporal wave-front shaping[END_REF]. Using a rotating source for the illumination and a rotating receiver for the collection, we obtained different images corresponding to the convolutions of the object with different orthogonal PSFs. The PSFs present different topological phase structures. Owing to a periodic Doppler effect, a point-like object perceives a monochromatic wavefield at ω 0 only on the rotation axis and a periodically modulated signal elsewhere equivalent to a frequency comb patterned spectrum. For each frequency ω 0 + nΩ, the field forms a vortex with a vorticity n, centered on the optical axis, as though a vortex plate were positioned in the pupil plane. During the backscattering process, the same phenomenon applies, resulting in a focal spot twice as small as that of the full-field microscope at ω 0 , and also vortex patterns twice as small as those in the focal plane at other frequencies. This suggests that the rotating emitter and recorder function as a spatiotemporal filter, retaining only the information associated with the high spatial frequency content collected by the confocal microscope. Consequently, the presence of harmonic frequencies in the modulated signal perceived by the object, along with vortex-like features, depends solely on the presence of a rotating modulation. Importantly, this is independent of the speed of the modulation relative to the wave's speed or frequency. By exploiting the diversity of information by summing the images recovered from each PSF, an improvement of the confocal resolution by 70% is obtained. This improvement enabled the distinction between two point-like objects closer than λ 4NA , surpassing the confocal limit. While the experiment described was implemented using acoustics as a proof of concept, the principles highlighted are broadly applicable to wave-based imaging [START_REF] Weglein | Image resolution of the scanning acoustic microscope[END_REF]. In this article, we expand on this approach, applying it to an optical confocal scanning microscope. Nevertheless, it's crucial to acknowledge that optics possess subtle differences with acoustics that drastically modifies the implementation (see SI). Interestingly, this effect has already been studied in optics for the detection of rotating bodies in astronomy [START_REF] Lavery | Detection of a spinning object using light's orbital angular momentum[END_REF] but to our knowledge has never been applied in microscopy.

To engineer a high-speed, time-varying illumination with optical waves that will not significantly impede the confocal acquisition process, we opt to utilize a Digital Micromirror Device (DMD) optically conjugated to the pupil plane of a microscope objective (Figure 1.a). This device enables amplitude modulation of the field at approximately 10 kHz. The time-varying pattern displayedmodulates temporally the pupil function and, as a result, the CTF. In this scenario, both the illumination and collection pupils are time-varying, which is equivalent to a rotation of the object via a change of frame. In the following, we focus on a particular type of illumination consisting on a pattern rotating about the optical axis. We demonstrate how it allows multiplexing the image acquisition process, enabling the efficient extraction of the highest spatial frequency components. We show the capacity of this approach to improve the image resolution.

NUMERICAL APPROACH

We choose a sequence on the DMD, M (x d , y d , t), consisting of the full pupil deprived from a 45 • truncated sector as depicted on Figure 2.a. This preserves the optical sectioning as well as providing some signal amplification of the temporal backscattered signal associated to the rotating pattern (see SI).

As a time-periodic pattern, it can be decomposed as a Fourier series with coefficients M n (x d , y d ). As seen in Figure 2.b, these coefficients are associated to vortices. Similarly, the corresponding temporal PSF or CTF can be computed and then again expressed as Fourier series (Figure 2.c & d). As a topological invariant [START_REF]Optical vortices and their propagation[END_REF], the vorticity seen on the DMD patterns is conserved and is seen on the PSFs; thus guaranteeing their orthogonality. Indeed, the PSF corresponding to the frequency nΩ is a vortex of vorticity n with a radius increasing with |n|. CT F 0 is roughly equivalent to the confocal CTF: the average pupil used during the illumination being almost the full microscope objective pupil, CT F 0 is also roughly the autoconvolution of the objective's pupil. The other dynamic CTFs possess a vorticity which imposes a zero for the low spatial frequencies. CT F n̸ =0 carries information with a high gain only for the high spatial frequencies of the sample. This illustrates the benefit of using a rotating illumination in confocal microscopy since those frequencies are usually transmitted with a low gain leading to a resolution lower than 2NA λ in the presence of noise.

EXPERIMENT & RESULTS

Let us examine a practical implementation of the experiment (Figure 1) detailed in SI. It is made using a narrowband polarized laser Coherent Sapphire SF NX @488 nm. The beam is enlarged with beam expanders, filtered using a pinhole, sent to a 2 Mpx Vialux DMD and then to the sample using an Olympus MPLFLN40X microscope objective of numerical aperture NA = 0.75. With a quarter waveplate, the flux is sent to a Thorlabs PDA10A2 photodiode after a second passage by the polarizing beam splitter cube. The latter is placed behind a pinhole whose equivalent size in the object plane is approximately 1 Airy unit. The current from the photodiode is amplified by a transimpedance amplifier and recorded by a Picoscope electronic oscilloscope.

Using a 1951 USAF target, the full-field resolution in white light is near 388 nm, close to λ/2NA = 325 nm and the confocal resolution is determined to be 244 nm close enough to λ 2 √ 2 = 230 nm to consider the set-up to be diffraction-limited (see SI).

For each scan point, the sequence of 60 masks M (x d , y d , t) is displayed first followed by a circular pattern associated to the full aperture. In this way, dynamic and standard confocal images are acquired with the same scan. We employ the sequence depicted in phase information that is reminiscent of the vortex nature of each PSF, except for the image at n = 0 which is equivalent to an intensity image. Each of these images carry different informations of the same objects with its own noise.

For absolute values of n exceeding 1, experimental data begin to diverge from the theoretical and numerical predictions. A possibility is that higher order vortices break into ±1 vortices that are the only one existing naturally [? ] when encountering the sample. Other possible explanations are the integrating effect of the pinhole [START_REF] Wilson | Theory and Practice of Scanning Confocal Microscopy[END_REF] which is in fact of finite size and the setup's susceptibility to misalignment, thermal instability, and mechanical vibrations as reported in a similar experiment [START_REF] Pushkina | Superresolution linear optical imaging in the far field[END_REF].

To build a single image out of this series, we implement a simple inversion procedure. Each image at each harmonic is deconvolved by its own inverted PSF predicted by the numerical simulation. To ensure the procedure is resistant to noise, a Tikhonov regularization is employed during the inversion [START_REF] Tikhonov | Solution of incorrectly formulated problems and the regularization method[END_REF][START_REF] Popoff | Image transmission through an opaque material[END_REF]. The regularized inverse operator writes:

iCT F n = i P SF n = (CT F * n • CT F n + σ) -1 • CT F * n (1)
σ being the noise-to-signal ratio, • * denotes the complex conjugate and . the 2D spatial Fourier transform. Note that the pseudo-inverse of a vortex-like PSF is also a vortex-like function with the opposite topological charge. Each image from each harmonic yields a deconvolved image referred to as Obj n , as depicted in Figure 13.b). Each image resembles the target object, albeit with noticeable degradation for n = 2, aligning with the discrepancies observed earlier. The final image is achieved by summing all the deconvolved intensity images, resulting in a pattern of enhanced contrast and improved resolution.

To draw a comparison with the standard confocal setup, we present in Figure 4 the confocal images, both with and without inversion, alongside the results from our approach, pertaining to lines that are now 218 nm thick, a bit smaller than in the previous Figure . The reconstructed image resulting from the temporally modulated wavefronts is the only one that successfully allows discriminating the individual lines. This represents a 10% improvement in resolution compared to the inverted confocal image.

CONCLUSION & PERSPECTIVES

In this article, we provide a proof-of-concept of adding a temporal modulation to an imaging scheme. As an example, we chose to use rotating wavefronts to enhance the lateral resolution of confocal microscopy. Displaying a pattern rotating by the optical axis leads to the same periodic modulation of the illumination equivalent to a frequency comb observed with sound waves. For each frequency, a different image of the same sample is obtained. All the information can be summed to obtain an improved reconstruction of the object. Our results demonstrate this technique's capacity to improve the contrast and resolution of confocal imaging.

Although our experiments suffer from the current flaws of the wavefront shaping tools as highlighted in [START_REF] Ritsch-Marte | Structured light for microscopy in Roadmap on structured light[END_REF], namely, the slowness of SLMs and the binary amplitude modulation of DMDs (not to mention the introduction of mechanical vibrations and aberrations), our approach opens new perspectives for confocal imaging. While it has already outperformed confocal imaging in terms of resolution, we anticipate that addressing stability concerns and implementing a more sophisticated reconstruction algorithm could lead to further enhancements in resolution and image quality. In the study presented, we leverage the vortex shape at each harmonic, which facilitates the selective reconstruction of information from different regions of the image's spatial spectrum to enhance the image quality. Noticeably, the implementation of spatiotemporal modulation unlocks these new degrees of freedom, while still necessitating only a single photodetector for the measurement part. This application is an example of PSF engineering as we exploit the spatiotemporal modulation of the illumination field to generate controlled CTFs for different harmonics. It offers control over the reconstruction process, enabling one to concentrate, for example, on parts of the spectrum more sensitive to noise, or to selectively detect specific patterns.

Moreover, these ideas could be applied to various optical setups in a full-field configuration, e.g. readily in image scanning microscopy [START_REF] Müller | Image scanning microscopy[END_REF] to enhance again the resolution. In astronomy, a possible application could be to replace the vortex plates used in coronagraphy [START_REF] Aleksanyan | Multiplestar system adaptive vortex coronagraphy using a liquid crystal light valve[END_REF] with more flexibility. Contrarily to the main text, we consider a more complete version of the setup shown on Figure 5. With this setup, the backscattered field is collected using two different photodiodes with or without a second pass on the DMD (referred respectively as photodiode 1 and 2). This is achieved by adding or suppressing a polarizing beamsplitter cube behind the microscope objective. This corresponds more accurately to the real experimental setup and allows for a more profound physical understanding. In the main text, only the simulation and experimental results corresponding to the second photodiode are presented since they are the most interesting results.

II. PHYSICAL & MATHEMATICAL MODEL

The goal of this section is to compute the point-spread function (PSF) and the coherent transfer function (the monochromatic optical transfer function, thereafter referred as the CTF) of the system.

All the calculations are made for the field and not the intensity except in the part II J 'Observation of vortex-like images with intensity-only measurements' concerning the optical sectioning where the coherent transfer function is explicitly calculated in intensity. This is reminded with the 'I' of ICTF (for Intensity Coherent Transfer Function).

A. Model for the confocal microscope

The model used here is standard, it is presented in details in [START_REF] Mertz | Introduction to Optical Microscopy[END_REF]. Under the hypothesis of a punctual detector the PSF is the product of the illumination and collection PSFs. In the Fourier domain it becomes a convolution : 

PSF conf = PSF ill • PSF coll T F 2D ⇐===⇒ CTF conf = CTF ill ⊗ CTF coll (2) 

B. Influence of the pinhole size on the PSF

In practice, the pinhole size cannot be too small in order to collect a significative photon flux. To understand the effect of this parameter it is possible to examine two limiting cases: in addition to the case of a punctual pinhole (which is the confocal case) we consider the case of an infinite pinhole. In this second case, the sample is illuminated on a single diffraction-limited point and all the light from the sample is collected in a full-field way. What limits the resolution is then the illumination. Thus, in this limiting case, the PSF is the illumination PSF equivalent to the full-field PSF namely PSF ff . The convolution comes from the XY scanning of the sample. Thus, in a symmetrical configuration, the PSF evolves from PSF ff to PSF 2 ff . Hence, the lateral resolution is always slightly higher than in the full-field configuration. 

( -→ r , t| -→ r d ) = ∞ n=-∞ δ(r -r d )e in(θ-θ d ) e inΩt • e iω 0 t (3) 
In the plane of the modulator the field already writes as a frequency comb and the field is already a sum of vortex. The phase of the vortices is in fact an encoding of the angular position of the moving point in time. This first theoretical result is also retrieved by numerical simulation as shown in Figure 6.b.

This kind of beams with vortex singularities are well-known in optics [START_REF] Dennis | Chapter 5 singular optics: Optical vortices and polarization singularities[END_REF]. This effect, which can be understood as a consequence of the Doppler effect, has already been highlighted in the litterature [START_REF] Courtial | Rotational frequency shift of a light beam[END_REF][START_REF] Schechner | Wave propagation with rotating intensity distributions[END_REF] but has not yet applied to microscopy to our knowledge.

Due to their topological nature, the vortex structure is conserved by propagation and by spatial Fourier transform [START_REF] Turunen | Propagation-invariant optical fields[END_REF][START_REF] Coullet | Optical vortices[END_REF]. By applying the principles of Fourier optics [START_REF] Goodman | Introduction to Fourier Optics[END_REF], the field in the focal plane of the microscope objective associated to a moving point is a plane wave of wavevector -→ k (t) = 2πr d cos(Ωt) λf , 2πr d sin(Ωt) λf as shown in Figure 6. The elementary pattern displayed dM (r, θ, t|r

d , θ d ) = δ(r -r d )δ(θ -(θ d +Ωt)
) is a point-source at position (r d , θ d ) in the plane of the DMD. We wish to express the field in the sample's plane at position (r, θ) which is in the Fourier plane of the DMD. The basic principles of Fourier optics [START_REF] Goodman | Introduction to Fourier Optics[END_REF] states that the image of a point is a plane wave (within the exit pupil, this is neglected here since the field is considered near the optical axis). With cylindrical coordinates and in the sample's plane ( -→ ur, -→ u θ ), the wavevector associated to dM writes 

-→ k (r d , θ d ) = 2πr d λf -→ ur + (θ d + Ωt) -→ u θ
Now, from [START_REF] Lehtinen | Everything a physicist needs to know about bessel functions[END_REF], we use the generating function of Bessel's functions:

g(x, t) = e x 2 (z-1 z ) = ∞ n=-∞ Jn(x)z n (5) 
by identifying z = e i(θ d +θ+Ωt) and x = 2πr d r λf . By linearity, each term of the sum thereafter named dIlln is the 2D Fourier transform of each term from Equation (3) with a scaling factor (same calculations as the alternative demonstration below). This expression is equivalent to the field emitted by a rotating receiver in the acoustic experiment of [START_REF] Noetinger | Superresolved imaging based on spatiotemporal wave-front shaping[END_REF] with an additional phase shift between each term. As in the acoustic experiment, the field is again a frequency comb of spacing Ω centered on ω0. Also, for each frequency, the field is vortex-like and concentrated on rings whose radius increase with n. This is easily confirmed numerically by performing the 2D Fourier transform of a sequence with a rotating point and then computing the first terms of the temporal Fourier series as illustrated in Figure 6. We retrieve the results from the acoustical experiment.

Another option is to decompose from the beginning the field on the harmonics nΩ as a Fourier series

d M (t) = ∞ n=-∞
dMne inΩt with n ∈ Z, where we need to compute the Fourier coefficients defined by:

dMn(rD, θD) = 1 T T 0 M (rD, θD, t)e -inΩt dt (6) 
Then a possible definition of Jn(x) shows up :

Jn(x) = 2π 0 e ix sin(θ)-inθ dθ (7) 

D. Field created by a rotating sector and alternative demonstration

To provide another proof of this formula let us consider the example of a sector rotating on the DMD of angular width α and radial width R as shown on figure 7. It can be written as a product of two gate functions in radius-angle (r, θ) or in radius-time (r, t) since the two variables are now linked:

M (rD, θD, t) ∝ Π [Ωt,Ωt+α] (θ d ) • Π [0,R] (r) = Π θ d Ω , θ d +α Ω (t) • Π [0,R] (r) (8) 
The Fourier coefficients write: To obtain the field in the object plane the 2D Fourier transform writes:

Mn(rD, θD) = 1 T 2π 0 Π θ d Ω , θ d +α Ω (t)Π [0,R] (r d )e -iΩt (r)dt = 1 T Π [0,R] (r d ) θ d +α Ω θ d Ω e -inΩt dt = α 2π sinc nα 2 e -in(θ d +α/2) Π [0,R]
Ill(r, θ, t) = +∞ -∞ M (r d , θ d , t)e -i 2π λf (r d r•(cos(θ d )cos(θ)+sin(θ d )sin(θ)) r d dr d dθ d (9) = +∞ -∞ M (r d , θ d , t)e -i 2π λf r d r•cos(θ d -θ) r d dr d dθ d (10) ∝ R,2π 0,0 M (r d , θ d , t)e -i 2π λf r d r•sin(θ d -θ+π) r d dr d dθ d (11) 
= +∞ 0 Π [0,R] (r) 2π 0 ∞ n=-∞ sinc nα 2 e -in(θ d + α 2 ) e -i 2π λf r d r•sin(θ d -θ+π) dθ d r d dr d e inΩt (12) 
Using the definition of Bessel function from above (Equation ( 7)):

Ill(r, θ, t) ∝ i n sinc nα 2 e in( α 2 +π/2+θ) R 0 Jn 2π λf rDr r d dr d (13) 
Applying the formula 2 gives the two PSFs:

PSF1(r, θ, t) ∝ Ill(r, θ, t) • J1 2πON λ r r (14) PSF2(r, θ, t) ∝ Ill(r, θ, t) • Ill(r, θ + π, t) . (15) 
To generalize to any pattern, it is possible to deform continuously this specific pattern to obtain a surface element of angular and radial width dθ d and dr d then we transform :

    R rmin α/2 + π/2 α     →     r d + dr d r d θ d dθ d     (16) 
The two integrals disappear leaving only:

dIlln(r, θ) = i n e -in(θ d +θ) Jn 2πrD λf r r d dr d dθ d (17) 
It is then possible to integrate this expression on the DMD surface to find the PSFs.

E. Field created by any rotating pattern

In order to acquire an image, it is recommended to concentrate energy in the object's plane near the optical axis. This can be achieved by summing waves constructively, a process better known as focusing. This is achieved here by displaying a larger pattern on the DMD. Moreover, this allows to take advantage of the high number of degrees of freedom available with the DMD. By integrating the contribution of each surface elements dM which is equivalent to summing the angular spectrum, the field in the focal plane ie. the illumination Ill associated to the pattern M (r d , θ d ) is computed:

Ill(r, θ, t) = M e i - → k • - → r = ∞ n=-∞ i n M (r d ,θ d ) Jn 2π λf r d r • e inθ e inΩt • e iω 0 t r d dr d dθ d (18) 
To express the confocal images built for each photodiode it is necessary to take into account the collection of the backscattered wave by the objective and possible filtering during the second passage by the DMD. For the sake of simplicity we express the PSF for each photodiode in terms of filed and not in intensity so that the images are given by:

Imi = |PSFi ⊗ Obj| 2 ( 19 
)
where Obj is the object in the focal plane. For the first photodiode, the backscattered light is collected with all the numerical aperture so PSF coll is just the full-field PSF ie. the Airy function:

PSF1(r, θ, t) ∝ Ill(r, θ, t) • J1 2πON λ r r (20) 
This configuration seems close to Fourier ptychography [START_REF] Zheng | Wide-field, highresolution fourier ptychographic microscopy[END_REF] or ROCS microscopy [START_REF] Ruh | Superior contrast and resolution by image formation in rotating coherent scattering (ROCS) microscopy[END_REF], the difference lies in the confocal configuration : we use a bucket point-like receptor and a scanning process. For the second photodiode only the wavevectors associated to the pattern are collected. The reflection on the sample has to be taken into account, in this case all the incident wavevectors are mirrored after reflection so that:

PSF2(r, θ, t) ∝ Ill(r, θ, t) • Ill(r, θ + π, t) . (21) 
As a periodic function of time, these PSFs are decomposed using Fourier series as a sum of PSFs for each frequency ω0 + nΩ named the harmonic PSFs thereafter n-indexed and written PSFi,n (with i being 1 or 2).

F. Example : PSF associated to a 45 • rotating sector

To illustrate the previous expresssions, we choose to consider, as a rotating pattern for the DMD, a 45°sector (Figure 8.a)). The PSF1,n are also vortices of similar size to the confocal PSF localized next to the focal point and with less secondary lobes than the illumination Illn thanks to the focusing of the backscattered wave by the microscope objective. The PSF for the second photodiode involves a product of two frequency combs. This is another frequency comb whose coefficients can be computed using Cauchy product but is rather difficult to interpret. Therefore it is more straightforward to use numerical simulation results. As a consequence of the difference between the acoustical and optical experiments mentioned in the main text consisting of a spherical phase disappearing in the optical experiment PSF2,n are null if n is odd and are significantly larger than the confocal PSF otherwise as seen on Figure 8.a). With this kind of PSF it is not possible to enhance the resolution of the confocal microscope

G. Explanations on the resolution decrease after a second pass on the DMD

To understand the low resolution obtained with the 45 • sector (see Figure 3 of the main text) let us consider the configurations depicted by Figure 9. Using a limited zone of the DMD that we consider to be point-like at the edge of the pupil, a plane wave is projected onto the sample. If the sample consists in a simple point-like object then it backscatters a wave in phase with the plane wave. The collected wave corresponds to the same plane wave. Thus, the phase law applied in the first place is exactly compensated during the collection: for each position of the mechanical scan the same signal is collected. This does not allow to build an image since the signal collected is always the same. In order to collect spatial frequencies close to 2NA λ the angular spectrum directed by the symmetrical plane wave should be collected. This can be achieved by doubling the pattern. Then the high frequencies are collected but the low frequencies are also collected.

The results obtained in acoustics [START_REF] Noetinger | Superresolved imaging based on spatiotemporal wave-front shaping[END_REF] and the previous calculations are obtained in field only. Accessing the field in optics requires an interferometric setup such as phase-shifting or off-axis holography and adds experimental constraints. As we use an intensity detector here, the quality of the image depends on the interference of all the wave collected. Using a reference beam as in tomographic [START_REF] Haeberlé | Tomographic diffractive microscopy: basics, techniques and perspectives[END_REF] or iSCAT microscopy [START_REF] Young | Interferometric scattering microscopy[END_REF] we could retrieve spatial features limited by 2NA/λ but we chose here to collect only light from the sample as a reference beam would not be stable enough for long acquisition time as in confocal scanning. In this case, a collection wavevector with an important angle must be collected from the sample. In the full-field configuration they are in the cone of angular width θ (with n sin(θ) = NA). Hence, another explanation is that the illumination projected on the sample is equivalent to the illumination associated with the same DMD pattern centered on the optical axis up to a phase ramp (as a consequence of Fourier transform properties). This defines a numerical aperture NA, if this aperture is low then the resolution of the collected images can only be low (see Figure 10).

H. Difference with the acoustic experiment

In the acoustic experiment depicted in [START_REF] Noetinger | Superresolved imaging based on spatiotemporal wave-front shaping[END_REF], the field originates from a point-like source at a finite distance, allowing it to be described as a spherical wave. In contrast, in the suggested optical experiment, the object resides in the focal plane of the objective, i.e. in the far-field. In the acoustic experiment, each loudspeaker emits successively so the modulation takes place at the level of the lens's pupil whereas in the optical experiment the whole lens is contributing to the signal. Another important difference is the use of intensity detector.

I. Observation of vortex-like images with intensity-only measurements

To improve our understanding of the experiment proposed in this paper, let us consider the thought experiment depicted in Figure 11.a) where the sample is illuminated by a plane wave of wavevector -→ k1 using a DMD displaying a single rotating point in the Fourier plane of the sample and the transmitted field is collected only in the single direction of another plane wave -→ k2 using a second DMD. This is rigorously the configuration of diffractive tomography [START_REF] Haeberlé | Tomographic diffractive microscopy: basics, techniques and perspectives[END_REF]. The frequency space explored is given by the sum of the two vectors -→ k1 + -→ k2 and is limited by 2NA λ but the field is complex. To capture the same information in reflection, we propose to use a sequence with two rotating points. The PSF writes:

PSF( -→ r , t) = e i -→ k 1 (t)•r + e i -→ k 2 (t)•r e -i -→ k 1 (t)•r + e -i -→ k 2 (t)•r ∝ 1 + cos ( -→ k1 - -→ k2) • -→ r (22) 
Thus, with this kind of pattern, it is possible to extract high spatial frequencies of the sample, here the term cos (

-→ k1 - -→ k2) • -→ r
but a low frequency term is also present (the term 1 here). Each wavevector being limited by NA/λ the maximum frequency of the sum 2NA/λ is reached for a symmetric sequence of two points rotating symmetrically at the edge of the pupil similarly to the acoustic experiment [START_REF] Noetinger | Superresolved imaging based on spatiotemporal wave-front shaping[END_REF]. In the case of the sector in Figure 8.a), for any pair of points of the pattern | -→ k1 --→ k2| < NA/λ hence the decrease in resolution compared to the full-field configuration. In the case of two points rotating symmetrically, the illumination is then a rotating intensity fringe pattern as for structured illumination [START_REF] Gustafsson | Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy[END_REF]. In the general case, the 2D Fourier transform of a symmetric pattern being real, the PSFs are real and can be observed with an intensity-sensitive device. As a consequence of this symmetry, odd-numbered harmonics are lost. FIG. 10. Equivalence between the illumination associated with off-axis and centered patterns. The illuminations differs only by a phase ramp. Then the image that can be built by a DMD pattern defining a cone of angular width ∆θ is of resolution defined by the numerical aperture n sin(∆θ) as if the pattern was centered on the optical axis. In reflection, displaying a sequence with two points allows to explore the same frequency space, if the two points are placed symmetrically relatively to the axis the field is real.

J. Preservation of optical sectioning: PSF with complementary pattern

Illuminating the object by a rotating source and collecting the backscattered signal with a rotating receiver as in the acoustic setup can be achieved here by displaying a rotating point on the DMD. However, with this kind of sequence, the sample would be illuminated by a plane wave. This configuration is not favorable to imaging: a small amount of energy would be sent to a large area of the sample and an even smaller amount of energy would be collected and interfere. Moreover, optical sectioning, a key feature of a confocal microscope, would be lost.

In order to preserve optical sectioning its is better to focus the light on a specific spot. This means using the maximum surface of the pupil. We figured out that, instead of using a pattern associated to a time-dependent CTF named thereafter CTF dyn , it is possible to use the complementary pattern which means the numerical aperture from which we substract the dynamic pattern. In order to understand the benefits of this particular type of patterns, the associated ICTF (the coherent transfer function in intensity) associated to the measurements in the spatial Fourier space is illustrated schematically by the calculation of Figure 12.

The new pattern can be expressed as the whole pupil minus the pattern associated to CTF dyn . Applying the Equation 1 of the paper in Fourier space gives the new CTF. We assume that the product CTF dyn ⊗ CTF dyn can be neglected relatively to the other convolution products because the convolution with the full pupil amplifies the CTF. Then when the intensity is computed a term corresponding to the normal confocal microscope |CTF conf | 2 shows up. This term is not time-dependent.

FIG. 12.

Associated intensity coherent transfer function (ICTF) to a complementary pattern. Application of the formula CTF = CTF ill ⊗ CTF coll , the complementary pattern can be decomposed as the substraction of the pattern of interest to the full pupil.

The second term that shows up is proportional to the product CTF conf • CTF dyn . The effect of CTF conf here is to amplify the signal that we seek which is CTF dyn more or less like an heterodyne amplification. The last term |CTF dyn | 2 can be neglected. In addition we see in the calculation that we collect variations of the signal near |CTF conf | which can be positive or negative. This way we are sensitive to the field.

Otherwise the ICTF would be |CTF dyn | 2 which would be different than the signal we want to collect. For instance, the even harmonics would disappear. There is also a technical advantage with this configuration: the signal received by the photodiode is more intense compared to the situation with the original pattern where the flux would be close to zero. This means that the photodiode would be used near zero flux where the noise is more important than close to saturation as it can be used with a complementary pattern.

As a consequence the image at the carrier frequency is more or less identical to the confocal image since the first term dominates at this frequency. Although with this type of pattern we benefit from the focusing, the drawback is that the resulting CTF is sensitive to the decreasing gain of CTF conf for high spatial frequencies. However, the multiplexing effect highlighted in this article makes it possible to isolate those components with a sensitivity relatively high compared to the noise.

III. NUMERICAL SIMULATION A. Principle

Using relation [START_REF] Corle | Confocal Scanning Optical Microscopy and Related Imaging Systems[END_REF] in the Fourier space, the time-dependent CTF can be computed from the pattern. The illumination and collection PSFs correspond both to the 2D Fourier transform of the pattern M . From a stack of images to be displayed on the DMD, the temporal CTF can be computed:

CTF(fx, fy, t) = M (fx, fy, t) ⊗ M (fx, fy, t) ≡ M 2πx λf , 2πy λf , t ⊗ M 2πx λf , 2πy λf , t (23) 
textcolorredTu es sûr des 2 π ici? On n'est pas en train d'écrire en fréquence spatiale? Then the PSF can be computed with a 2D Fourier transform. However it is not necessary to compute the PSF to get the predicted images, the CTF can be multiplied with the object in the Fourier domain to obtain Im. The inverse Fourier transform then gives the image Im(x, y, t). The harmonic images can be obtained using the temporal Fourier transform and then filter around nΩ or, more straightforwardly, by computing the coefficients of the Fourier series. On Figure 13 we show an example of a numerically computed image of the 244 nm lines for comparison with the experimental data showed in the third figure of the main text. We see the qualitative agreement with the experimental images at ±Ω as shown on the third figure of the main text. We also witness that the data at ±2Ω from the simulation is qualitatively different from the experimental data.

B. Predicted images

IV. EXPERIMENT & RESULTS

A. Experimental setup

The full experimental setup is depicted in Figure 14. It is made using a polarized turquoise laser Coherent Sapphire SF NX @ 488 nm with a narrow-linewidth of 1.5 MHz (equivalent to 30 m of coherence length). The beam is enlarged with beam expanders, filtered using a pinhole (P1), sent to a Vialux DMD with 1920 × 1200 pixels and then to the sample using an Olympus MPLFLN40X microscope objective of numerical aperture NA = 0.75 with a magnification adapted to use the full numerical aperture of the objective. The sample is also illuminated by white light (Kohler illumination) in a conjugated plane of a camera (C1) for sample positioning. By adjusting the light polarization with waveplates and polarizing beam splitters, the flux can be sent to one or the other photodiode (Pd1 and Pd2) to build dynamic confocal images. The Thorlabs PDA10A2 photodiodes are placed behind pinholes whom equivalent size in the object plane is approximately 1 Airy unit. The current from the photodiodes is amplified by a tunable transimpedance amplifier and recorded by a Picoscope electronic oscilloscope. The backscattered field can also be observed with or without the DMD filtering using camera C1 or C2. To compensate for the aberrations induced by the surface of the DMD [START_REF] Popoff | Setting up a DMD: Diffraction effects, www[END_REF] a Meadowlark liquid-crystal spatial light modulator (SLM) with 127 hexagonal pixels is placed in a conjugated plane of the DMD. The DMD is more or less equivalent to a configurable blazed grating, this explains the two intersecting equiphase planes at the DMD level on Figure 14 of the main text. see [START_REF] Popoff | Setting up a DMD: Diffraction effects, www[END_REF] for a detailed tutorial. 

B. Aberration correction

The aberrations come from the DMD surface and are smoothly varying. Hence, by reducing the surface of the DMD used it is possible to mitigate this effect. This is equivalent to a phase mask that makes the illumination & collection PSFs different from the Airy spot. See [START_REF] Popoff | Setting up a dmd/slm: Aberration effects, www[END_REF] for a complete tutorial. In this tutorial, the pattern shown on the DMD is modified to retrieve a nice focal spot. Here, since we wish to use the DMD surface to project a time-varying pattern we preferred to add a SLM. To compensate for this we place the Meadowlark SLM in a conjugated plane. By varying the voltage and thus the phase difference of each pixel one after the other it is possible to maximize the intensity in a small zone and to retrieve a nice Airy spot as shown in Figure 15. The pixels of the SLM are hexagonal, this introduces some high frequencies in the Fourier plane of the sample. They remain visible in the sample's/camera plane when saturating the camera in the form of an hexagonal modulation (Figure 15 The resolution is determined roughly using experimental full-field and confocal images shown on Figure 16.

D. Choice of the rotating sequence

We consider different patterns to be displayed on the DMD as shown on Figure 17. The first one corresponds to the most intuitive choice for reproducing the acoustic experiment. As explained in II G, this choice is naive as it leads to a week illumination on a large area. Furthermore it would necessitate to record the field to build an image. The solution is to use interference either with a reference beam or with a beam coming from the sample. The second one allows to perform intensity measurement only as the 2D Fourier transform of a symmetrical centered function is real) and to capture high frequencies of the sample. The last one makes maximum use of the pupil and thus preserves the optical sectioning. In this case the PSFs of the system are more complex (see II J). FIG. 18. Observation of the experimental vortices associated to a rotating sequence a) Illumination of the sample Ill, comparison of the experiment (field on camera C1) and numerical simulation with weighted phase.b) PSF2, comparison of the experiment (field on camera C2) and numerical simulation with weighted phase. c) Cross-section of the field at harmonic 0, with a comparison of the experimental values (crosses) and simulation (dotted lines).

E. Observation of the experimental vortices

To obtain an experimental proof that vortices can be obtained with a rotating sequence and to validate our model, we consider first a simple experiment. The sample is positioned in a homogeneous reflective area such as a glass plate. Then, the field collected by the camera C1 (resp. C2) is the sample's illumination Ill(r, θ, t) (resp. Ill(r, θ, t)•Ill(r, θ+π, t) = PSF2(r, θ, t)). The field on the first camera is the 2D Fourier transform of the DMD pattern whose reflection is collected by the objective in a full-field way. In a Fourier point of view, the pattern has necessarily a support limited by the numerical aperture, the full-field imaging operation is a multiplication by the aperture which has no effect here. The same explanation applies for the second camera with an additional multiplication by the DMD pattern.

In order not to saturate the camera and to observe an intensity pattern the pattern sent is a duplicated sector as depicted on Figure 17. As can be seen from Figure 18 there is a good agreement between the simulation and the experiment. For the signal recorded at ω0 by the second camera namely PSF2,0. An example of the typical data obtained is depicted on Figure 19. We see that the intensity and phase variations follow the pattern of the target but without appearing like a convolution with a vortex-like function in opposition to what is observed on the images of the third figure of the main text using complementary sequences. Our interpretation is that Equation 2 only makes sense when there is optical sectioning is present using relation ie. when the light/signal collected comes form a narrow diffraction-limited spot.

Although the images captured using the first photodiode where encouraging for large features no satisfying experimental data has been obtained for small features (Figure 20). We have no explanation for this. 

FIG. 1 .

 1 FIG. 1. Schematic view of the experimental process with simulated data. (a) Acquisition. A spatiotemporal image is acquired by scanning and temporally modulating the objective's pupil with a rotating mask. (b) Analysis. Thanks to a Fourier series decomposition, the information is gathered in harmonic complex images Imn. Each one is carried by a different frequency nΩ with n ∈ Z. (c) Reconstruction. Each image Imn is deconvolved using a computed PSF. A reconstruction of the sample ObjR exhibiting sharper details than the confocal image is obtained.

FIG. 2 .

 2 FIG. 2. PSF and CTF of the system associated to a given pattern decomposed as a Fourier series on the frequencies nΩ with n ∈ [[-2, 2]]. (a) The rotating pattern M sent to the DMD. (b) Decomposition of M (x d , y d , t). The pupil is a linear combination of vortex plates. (c) PSF in the sample's plane. (d) Coherent transfer functions (CT Fn) in the spatial frequency space. The dotted line represents the confocal resolution limit 2λ/NA (e) Cross section view of CT Fn modulus. The low spatial frequencies are not collected for values of n different than 0, CT F0 corresponds roughly to the classical confocal CTF.

FIG. 3 .

 3 FIG. 3. Illustration of the deconvolution procedure with experimental images of a ReadyOptics USAF resolution target group 11 element 1 (244nm). (a) Dynamic confocal images obtained with the pattern of Figure 2.a at different harmonic frequencies nΩ for n ∈ [[-2; 2]] with weighted phase and intensity. (b) Deconvolved confocal dynamic images with numerical pseudoinverse iP SFn. (c) Sum of Objn with n ∈ [[-1; 1]] to obtain a final reconstruction ObjR.

FIG. 4 .

 4 FIG. 4. Resolution limit. a) Regular confocal image of group 11 element 2 of USAF target, linewidth is 218nm. b) Deconvolution of the confocal image. c) Reconstruction obtained by summing the deconvolved dynamic confocal images obtained with our method. This is a 10% improvement in resolution.
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  FIG.5. Schematic view of the experimental setup. The DMD, depicted in transmission here for the sake of simplicity, is conjugated to the back focal plane of the microscope objective. Conjugated planes are shown using dotted lines of the same colors (orange or green). To pass from a plane indicated by one color to a plane indicated by the other color, a 2D Fourier transform plus a scaling operation are performed. Eventually, a filtering operation by the pupil's function is also achieved as it is the case for the high spatial frequency content filtered by the microscope objective.

FIG. 6 .

 6 FIG. 6. Situation of a rotating point-source in the plane of DMD and associated fields obtained by numerical simulation. a) Schematic view of the experimental configuration : a rotating point is displayed on the DMD, it corresponds to a plane wave in the focal plane. b) Representation of the first term of the Fourier series dMn and Illn for n ∈ [[0; 3]] in weighted phase representation for r d = R.

C

  . Field created by a rotating surface element on the DMD First, let us consider the case where the pattern dM on the DMD is a single rotating point at position-→ r d (t) = (x d (t), y d (t)) = (r d cos(Ωt), r d sin(Ωt)) equivalent to (r d , θ d (t)) = (r d , Ωt) receiving a plane wave directed by the optical axis. This point behaves a point-source as shown in Figure6.a). In cylindrical coordinates it writes dM ( -→ r , t| -→ r d ) = δ(r -r d ) • δ(θ -θ d )e iω 0 t . As it is a time-periodic pattern it can be decomposed as a Fourier series: dM

  where the carrier frequency ω0 is neglected. Using trigonometric properties, the elementary illumination dIll associated to dM can write: dIll(r, θ, t|r d , θ d ) = e 2πirr d λf (cos(θ) cos(θ d +Ωt)+sin(θ) sin(θ d +Ωt)) ∝ e 2πir d r λf sin(Ωt+θ d +θ) .

FIG. 7 .

 7 FIG. 7. Rotating sector displayed on the DMD a) Scheme of the DMD seen at time t, comparison with t = 0. b) Chronogram of the signal at different points on the DMD surface.

FIG. 8 .

 8 FIG. 8. PSF associated to a given pattern. a) The rotating pattern is a truncated 45°sector in order to collect only high spatial frequencies. It is shown here next to the numerical aperture (NA) of the microscope objective. b) Representation of the PSF on each photodiode with and without a second pass on the DMD respectively P SF1,n and PSF2,n for n ∈ [[0; 3]].

FIG. 9 .

 9 FIG. 9. Different patterns of the DMD with the associated wavevector in the sample planes and CTF a) Hypothetic configuration neglecting the reflection on the sample allowing to collect high frequencies component of the sample. b) Real configuration and associated CTF. c) Symmetrization of the pattern. High and low frequencies are collected.

FIG. 11 .

 11 FIG. 11. Use of a symmetric sequence. a) The sample is in the Fourier plane of 2 different DMD: in the illumination path (DM D1) and in the collection path (DM D2). If the two DMD (depicted here in transmission) display a single point, the sample receives a plane wave directed by -→ k1 and the transmitted field directed by -→ k2 is collected. b) In reflection, displaying a sequence with two points allows to explore the same frequency space, if the two points are placed symmetrically relatively to the axis the field is real.

FIG. 13 .

 13 FIG. 13. Predicted images from the numerical simulation with 244nm lines. a) Object. b) Confocal image. c) Dynamic images Imn obtained with the full pupil deprived of a rotating sector at different harmonic frequencies nΩ for n ∈ [[-2; 2]] with weighted phase and intensity.

FIG. 14 .

 14 FIG. 14. Final setup to produce dynamic confocal images. The images obtained with each photodiode are named |Im1| 2 or |Im2| 2 . The focal planes of each lense are iidcate by dotted lines. Conjugated planes are indicated by orange or green dotted lines. To go from one to the other using one lense 2D Fourier transform + scaling are performed. Distances are not to scale. L: lenses, C: CCD camera, PBS: polarizing beamsplitter, MO: Microscope objective, P: pinhole , Pd:photodiode behind a pinhole , BS: beamsplitter, λ/4: quarter waveplate, λ/2: half waveplate, DMD: digital micromirror device, SLM:spatial light modulator, I: adjustable iris.

  FIG.[START_REF] Noetinger | Superresolved imaging based on spatiotemporal wave-front shaping[END_REF]. Experimental resolution limit. Full-field image acquired with camera C1. Confocal image acquired with photodiode Pd2 using the full numerical aperture.

FIG. 17 .

 17 FIG.[START_REF] Weglein | Image resolution of the scanning acoustic microscope[END_REF]. Different kind of patterns to be displayed by the DMD a) A sector of 45 • truncated to collect only high spatial frequencies. b) The same duplicated pattern in order to do intensity only measurement. c) Complementary pattern to a), optical sectioning is preserved making the maximum use of the pupil, the same time-varying information is extracted as for a) and the signal is more powerful.

F. Experimental dynamic images FIG. 19 .

 images19 FIG. 19. Dynamic images of the first element of group 11 of the USAF target. Linewidth is 244 nm

FIG. 20 .

 20 FIG. 20. Dynamic images of the first element of group 11 of the USAF target. captured using the first photodiode Linewidth is 980 nm approximately.
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The pseudo-inverse is computed by applying the Tikhonov formula:

Then it is multiplied by a filter consisting of an annular aperture of width between (1 + fsuper) 2NA λ and NA 4λ where fsuper is a tunable positive factor allowing for superresolution or not and canceling high frequency inversion artifacts. Using this filter we mitigate high frequency artifacts and the low frequency background. In all the results presented here fsuper was set between 0.5 to 1. Hence we use all the upper part of the optical spatial bandwidth.

For each acquisition, the data are apodized using a 2D Tukey window in order to reduce the high frequencies associated to the edges. After this operation, the 2D Fourier transform of each image Imn is computed. It is then multiplied by CTFn to obtain Objn. The reconstruction Obj-1,Obj0,Obj1 are then summed. In order to obtain the best possible reconstruction, it is better to choose the highest value possible but to maintain a reasonable level of artifacts. That is why we choose the value of 0.01.

C. Deconvolution of static confocal images

The confocal images acquired without any modulation of the pupil are deconvolved using the theoretical classical confocal PSF known as:

A pseudo-inverse is computed also using Tikhonov inversion (formula 25). Then, the deconvolution is also performed by multiplying this pseudo-inverse with Im conf after apodizing the image and filtering the pseudo inverse above the cut-off frequency 3NA λ .