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Abstract

Molecular dynamics simulations and integral equation calculations of a simple equimolar mixture

of diatomic molecules and monomers interacting via attractive and repulsive short-range potentials

show the existence of pattern formation (microheterogeneity), mostly due to depletion forces away

from the demixing region. Effective site-site potentials extracted from the pair correlation func-

tions using an inverse Monte Carlo approach and an integral equation inversion procedure exhibit

the features characteristic of a short-range attractive and long-range repulsive potential. When

charges are incorporated into the model, this becomes a coarse grained representation of a room

temperature ionic liquid, and as expected, intermediate range order becomes more pronounced and

stable.
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I. INTRODUCTION

Spontaneous pattern formation is a feature present in a diverse collection of physical,

chemical and biological systems.1 In spite of the diverse nature of these systems, the appear-

ance of the emerging microphases is quite similar: in 2D systems circular droplets, stripes or

“bubbles” occur, and in 3D systems one may find spherical droplets, sheets or tubes. In some

cases the patterns appear as transient states due to energy or mass fluctuations that occur

in the process of spinodal decomposition, but sometimes these states can be stabilized due

to the presence of competitive interactions, in which one of the interactions is responsible

for inhibiting the phase separation.2,3

The understanding of this self-organizing capability of soft and fluid matter is critical for

a wide panoply of applications of great relevance nowadays. These self-assembly mechanisms

play a crucial role in processes involving protein solutions in food products,4,5 therapeutic

monoclonal antibodies,6–8 nanolithography9 or gelation processes.10

In the realm of colloidal science, systems with extremely short ranged repulsive inter-

actions are often used as an experimental realization of the hard sphere fluid,11 a system

notorious for its theoretical interest. On the other hand, the addition of non-adsorbing poly-

mers to the colloidal solution typically activates an attractive inter-particle interaction, due

to the depletion mechanism. Moreover, changing the concentration and molecular weight

of the polymer, the attraction range and strength of the colloid-colloid interaction can be

tuned. Clustering is to be expected due to the presence of the attractive forces,12,13 but

in principle it would correspond to meta-stable states and/or irreversible processes of ki-

netic nature. Nevertheless, microphases formed by clusters and percolating structures can

be stabilized in protein solutions and colloid-polymer mixtures both in experiment14 and in

theoretical descriptions15 due to the presence of additional repulsive interactions stemming

from electrostatic forces. An extreme example of the stabilizing role of charges is the nanos-

tructural organization that appears in room temperature ionic liquids (RTIL).16 In fact, it

has been shown, that long range repulsive interactions alone can give rise to nanostructural

order,17 the driving force of attractive interactions to induce spontaneous aggregation being

replaced by external forces (e.g. pressure).

In the case of colloidal systems, in which charged colloidal particles are screened by

ions in the solvent, the colloid-colloid interaction has been shown on theoretical grounds to
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be adequately represented by a Yukawa potential18,19 according to the Derjaguin-Landau-

Verwey-Oberbeek (DLVO) theory. Following this, numerous works have resorted to poten-

tials with a combination of short range attraction and a long range repulsion (SALR) in

the form a double Yukawa,20,21 or a Lennard-Jones (LJ) plus a Yukawa interaction2,22,23 in

order to model the spontaneous emergence of microstructured patterns in fluids. On the

other hand, back in 1999, Sear et al.,24 made use of an empirical two exponential form with

SALR characteristics in order to explain the experimental appearance of stable microphases

of nanoparticles at the air-water interface. This potential has been studied in depth in model

systems, both in bulk and in confinement,25–29 and as a rough approximation to account for

vegetation patterns in ecosystems with limited resources.30

In this work we will explore the possibility of pattern formation in a system in which

only short ranged forces are present. Our model system, composed of heteronuclear dimers

and monomers combines attractive and repulsive potentials, so as to mimic the interactions

present in RTILs, but without electrostatic forces. To that aim we have performed extensive

molecular dynamics simulations in the canonical and in the isothermal-isobaric ensembles.

We will address the emergence of intermediate range order (IRO) analyzing the behavior

of the partial, and concentration-concentration structure factors and performing a cluster

analysis for various degrees of asymmetry in the sites of the diatomic particles. Reference

Interaction Site Model (RISM) integral equation calculations have also been carried out, and

are shown to agree remarkably well with the simulations results. By means of an Inverse

Monte Carlo approach,31 we have extracted effective interactions from the pair correlation

functions of the simulated mixtures. For comparison, another set of effective potentials

has been obtained from the RISM results using an integral equation inversion procedure.

We will see, that despite the fact that all interactions at play are short ranged, their net

effect leading to the pattern formation (microheterogeneity, or microstructure segregation

at the nanoscale) translates into the appearance of effective interactions that agree with the

characteristic trends of a short range attraction and a long range repulsion, i.e. a SALR

potential. We have found that the effective potentials extracted from the simulation and

those derived by the theoretical approach agree remarkably well. Finally, we have analyzed

the role of charges on our model, which in fact by the addition of electrostatic site-site

interactions becomes a rough representation of a RTIL. As expected, charges will be shown

to enhance the pattern formation and the stability of the nanostructured phases.
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The rest of the paper can be sketched as follows. In the next section we introduce the

model in full detail and briefly summarize the methodology. In Section III we introduce our

most significant results. Conclusions and future prospects are to be found in Section IV.

II. MODEL AND METHODS

Our model consists in an equimolar fluid mixture of two different species, a two-site

dimer AB, and a monomer C. The dimers are represented by a two center Lennard-Jones

(LJ) site-site potential, in which the sites are separated by a distance l. Our monomers also

interact via LJ potentials. In all cases, the interactions are cut and shifted at a distance rc,

by which the explicit form of the site-site potentials is

uij(r) = 4ǫ

[

(σij

r

)12

−
(σij

r

)6

−

(

σij

rc

)12

+

(

σij

rc

)6
]

if r < rc, (1)

and uij(r) = 0 otherwise. Our model is to a certain degree inspired by the simple coarse-

grained model for imidazolium based RTIL of Merlet et al..32 We will see to what extent

a simple model, with just two sites and purely short ranged interactions can reproduce

the presence of nano-structural order as found in RTILs. To that aim we will however

preserve the attractive/repulsive character of the interactions in the RTIL. In our model

then, C monomers would correspond to anions, AB dimers to the molecular cations, with

the imidazolium ring that contains the positive charge, being represented by site A, and

the non-polar tail, by the larger site B. This implies that AA and CC interactions will be

repulsive, BB and AC are attractive, finally BC and AB interactions are also repulsive. For

the sizes of A and C particles we have chosen σAA = σCC = 4 Å , the elongation of the

dimer l = 8Å. The AB distances of the dimers are fixed as constraints of the equations of

motion. The LJ well is set to ǫ = 2.092 kJ/mol, identical for all interactions. Since the

size of the non-polar tail is essential to determine the nanostructural ordering,16 we have

considered various sizes for σBB (with σBB > σAA always). For the attractive interactions

we have truncated and shifted the LJ potential at rc = 3σBB . For the repulsive interactions,

we have simply used rc = 21/6σij , thus defining purely repulsive soft spheres following the

prescription of Weeks, Chandler and Andersen (WCA).33 The complete set of parameters for

all interactions is summarized in Table I. Finally, in order to analyze the effect of charges on

the intermediate range order, we have considered explicitly the same model with a positive
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charge +q on the A sites and a corresponding negative charge −q on the monomers. The

value of q is varied between 0 and 0.25e, where e is the elementary electron charge. Again

these values are of the same order as those considered in the model of Ref. 32.

A. Simulations and analysis

We have carried out extensive molecular dynamics simulations of the system previously

described using the LAMMPS package,34–36 in the canonical and isothermal-isobaric ensem-

bles using a Nose-Hoover thermostat and barostat.37 Our samples contained 16384 parti-

cles (samples of up to 65536 particles were investigated and no significant size dependence

was found). For simplicity we considered equal masses for the three interaction centers:

mA = mB = mc = 16 g mol−1. Initial thermalization runs at a temperature of 226 K were

2 × 106 steps long, with a time step of 1 fs. Production runs were 5 × 106 steps long, and

averages were carried out every 5000 steps.

One of the problems one can encounter when performing canonical simulations in this type

of system is the occurrence of phase transitions, either vapor-liquid equilibria or demixing.

In order to guarantee that the states under consideration correspond to thermodynamic

equilibrium conditions, and consequently any potential intermediate range order is not the

result of a spinodal decomposition, we have run additional isothermal-isobaric simulations

and analyzed the volume fluctuation of the samples. In this way one can avoid those states

that lie inside the liquid-vapor spinodal. Moreover, one can compute the partial structure

factors, defined as

Sij(k) = xiδij + xixjρ

∫

(gij(r)− 1) e−krdr, (2)

where ρ is the total number density, δij is a Kronecker δ, and xi is the molar fraction of

component i. Here sites A and B are considered as different particles and gij is the atom-

atom pair distribution function. Our samples are large enough to allow for an accurate

integration of the pair distribution functions, and the results are consistent with direct k-

sampling. Notice that as far as Eq.(2) is concerned, xA = xB = xC = 1/3, hence in the

large k limit all structure factors will tend to 1/3. From the partial structure factors it is

possible to evaluate the concentration-concentration structure factor introduced by Bathia

and Thornton,38 for which we have defined

Scc(k) = x2
ABSCC(k) + x2

CSAB−AB(k)− 2xABxCSC−AB(k), (3)
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where now one has to consider explicitly the structure factors corresponding to the molecular

species AB, and as a consequence xC = xAB = 1/2. We can simply approximate gAB−AB =

gBB and gC−AB = gCB, as if the scattering length or form factor of A sites was negligible

compared to that of B sites. This is in principle not unreasonable given the much larger size

of the B sites, but in a realistic situation one should take explicitly into account the true

scattering lengths or form factors of sites A and B. Now one has to correct for the different

values of the molar fraction when AB is considered as a single species and Eq. (2) is used

in (3). In this way, limk→∞ Scc(k) = xcxAB = 1/4. With all this in mind, the presence of a

divergence when k → 0 in Scc(k) is a signal of a demixing transition, so this quantity will

be essential to assess the stability of the thermodynamic states chosen for our simulations.

Finally, back to the vapor-liquid transition, one can analyze the corresponding k-

dependent linear response susceptibility in density fluctuations, namely39

ρkBTχT (k) =
|S(k)|

∑

ab(xaxb)|S(k)|ab
, (4)

whose k = 0 limit is precisely the isothermal compressibility. In Eq. (4) kB is Boltzmann’s

constant, T the absolute temperature, and the elements of the matrix Sij are just the partial

structure factors as defined in Eq. (2). | . . . | denotes the matrix determinant and | . . . |ab

the corresponding minor of the matrix S(k). The presence of a divergence –or a substantial

increase in χT (0)– is a clear indication of the vicinity of a vapor-liquid transition. A careful

monitoring of this quantity together with the use of NPT simulations provides a reliable

assessment of the stability of the state points under consideration during the simulation

runs.

All systems and conditions studied in this work are summarized in Table II. In the case

of system 8, when increasing the charge from 0.10e to 0.25e the conditions of temperature

and density corresponding to systems 3, 6, and 7 lie in the two-phase region. Consequently

we resorted to an isothermal-isobaric simulation at low positive pressure to achieve thermo-

dynamic equilibrium conditions in our system with q = 0.25e. The final value of the total

particle density achieved in this way is indicated in Table II.
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B. Inverse Monte Carlo method

With the pair correlation functions produced along the simulation runs and the cor-

responding statistical uncertainties calculated using block averages, we have used the In-

verse Monte Carlo (IMC) procedure proposed by Almarza and Lomba31 in order to pro-

duce single component site-site effective potentials able to reproduce the microscopic struc-

ture exhibited by our mixture model. The procedure starts from a simple approximation

βueff
in (r) = − log g(r) and proceeds to modify the pair potential along the simulation run in

such a way that the calculated geff(r) matches the input g(r). Explicit details of the method

can be found in Ref. 31. In our case, we have used a total of 4000 particles. The procedure

of inversion was carried out in 20 stages. In the last stages the effective potentials hardly

varied, and the convergence between input and calculated g(r)’s according the prescription

of Ref. 31 was achieved succesfully in all the cases.

In this way, one can use as input of the IMC procedure either gAA(r), gBB(r), or gCC(r),

and obtain a corresponding set of ueff
AA (r), ueff

BB(r),and ueff
CC (r), which will obviously be

different, but in the case of emergence of intermediate range order should exhibit some

common features.

C. RISM integral equation

The site-site correlations are obtained by solving the usual set of 2 equations, the site-

site Ornstein-Zernike equation (SSOZ) and the closure equation, which we choose here to

be the site-site hypernetted equation (SS-HNC). The SSOZ equation for the present system

is explicitly given in the matrix form

(W +
ρ

3
H)(W−1 −

ρ

3
C) = I, (5)

where the 3× 3 matrix H (or C) has for elements Hij = h̃ij(k)(or Cij = c̃ij(k)), the Fourier

transform (FT) of the site-site pair correlation functions hij(r) = gij(r) − 1 (or the direct

correlation function cij(r)), where the index i, j stand for one of the sites A,B,C. The

matrix W represents the intra-molecular correlations, which for the present system gives:
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W =











w̃AA w̃AB w̃AC

w̃AB w̃BB w̃BC

w̃AC w̃BC w̃CC











=











1 j0(kl) 0

j0(kl) 1 0

0 0 1











, (6)

where j0(x) is a spherical Bessel function. The matrix I is the identity matrix. The SS-HNC

equations are written as

gij(r) = exp

[

−
uij(r)

kBT
+ hij(r)− cij(r)

]

, (7)

and there are 9 such independent equations to solve.

Both equations are approximate ones, and their respective inconsistencies have been dis-

cussed many times in the past literature.39,40 Based on empirical evidence from the literature,

we expect that the correlations obtained through these equations for the present systems,

both charged and uncharged, should be relatively good for the short range part, but perhaps

not at long range. We are particularly interested to see if the correlations related to the

appearance of the local structures can be reproduced by this theory. The structure factor

defined in Eq.(3) is the appropriate function for this purpose, as illustrated in the Results

section.

The practical solution of these equations consists in discretizing all the functions on an

equidistant grid, both in r and k space. We use 2048 points with a r-grid of ∆r = 0.01σA,

which is enough for the present case to properly describe the asymptotic behavior of the

correlations in direct and reciprocal space. The set of two equations are solved iteratively

following techniques well documented in the literature.

It is also possible to obtain the effective potentials which would correspond to the equiv-

alent one-component representation of the system. This is achieved by imposing the pair

correlation function to be the desired site-site correlation, namely g(r) = gXX(r), in the set

of the two integral equations for the 1-component system, and solve these equations for the

direct correlation function and effective pair interaction. The direct correlation function can

be obtained through the OZ equation for 1-component system (which is an exact relation):

(1 + ρSh̃(k))(1− ρS c̃(k)) = 1, (8)

where h(r) = g(r) − 1 = hXX(r) = gXX(r) − 1, and the density ρS is that of the effective
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1 component made solely of sites X . Once c(r) is obtained, one solves the HNC closure,

which has the same form as Eq. (7), but now for the effective interaction ueff(r) one gets:

ueff(r) = −kBT [ln gXX(r) + hXX(r)− c(r)] (9)

III. RESULTS

A. Pair structure.

Here we have analyzed the effect of the molecular geometry on the nanostructure for-

mation changing the diameter of σBB . We have first considered, σBB = 8 Å , 9 Å , 10 Å,

and 12 Å . Some snapshots of configurations for varying σBB are depicted in Figure 1. We

have found that for σBB > 9Å clustering or microheterogeneity of C particles can only be

appreciated when the packing of the B sites is so high that it resembles that of a solid. In

fact in this case, the height of the first peak of SBB(k) exceeds 2.7, which according to the

Hansen-Verlet rule41 indicates that freezing conditions have been reached. Moreover, the

prepeak in the structure factor characteristic of the presence of IRO is absent from SBB(k).

The clustering of C particles results from a merely steric effect, since these are restricted

to occupy the holes between the large B particles. These effects can be appreciated in the

snapshots of Figure 1, where the dense packing of B sites (red spheres) is readily apparent.

For the reason mentioned above, we will concentrate on the results for σBB = 8 Å , and 9

Å . Already in the corresponding snapshot of Figure 1 one can appreciate the formation of a

bicontinuous network of percolating clusters, connecting both AB dimers and C monomers.

By bicontinuous network, we mean that the clusters formed by B-sites and C particles will

be seen to both span practically the whole sample, forming two continuous interpenetrated

percolating microphases. This can be analyzed from a more quantitative perspective by first

taking a look at the corresponding pair distribution functions and partial structure factors,

which are depicted in Figures 2 and 3 respectively for Systems 1 to 6. Focusing first on the

gAA pair distribution function, one first appreciates the large exclusion hole after the first

layer, which is a simple consequence of the large size of B-sites. Obviously the exclusion

hole grows with the size of the B-sites, as can be seen when comparing Figures on the left

and right columns. Correlations between A-sites extend up to five σAA, and the width of the
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gCC correlation is ≈ 2σCC . These features hint at the presence of some degree of IRO. B-B

correlations (graphs in the middle row) behave like those of a dense fluid, and no apparent

sign of clustering or IRO is evident. In contrast, the wide first peak of gCC is characteristic

of clusters of particles confined in cavities, in this case formed by B-sites. This effect, as

mentioned before is maximized for the largest σBB . We will see later, that these clusters of

partly occluded C-particles are connected, forming a three dimensional percolating structure.

If we take now a look at the partial structure factors, we immediately appreciate a feature

characteristic of the emergence of IRO, namely the presence of a prepeak at 0.25Å−1. This

corresponds to correlations in the range of 25Å , the distance at which any sign of structure

of the pair distribution function dies out. Interestingly, the prepeak is almost absent in

SAA, except for a small maximum visible for the σBB = 9 Å and the highest density. This

quantity shows otherwise very little structure for k > 0.5 Å−1. As seen in the gAA’s, the

most relevant feature in the AA correlations is the exclusion hole due to the presence of the

B-sites. In contrast, SBB does exhibit a prepeak, even when no evidence of IRO was visible

in gBB. This prepeak is more apparent in the monomer structure factor SCC . When the

density is lowered the prepeak in the B-site structure factor shifts to lower k-values, and

vanishes at ρ = 0.001Å−3. In the case of SCC , the position of the prepeak is preserved,

but its magnitude decreases. In Figure 4 the corresponding concentration-concentration

structure factor is displayed. The prepeak at k0 ≈ 0.25Å−1 is preserved, although its mag-

nitude decreases when the total density is lowered. In contrast no increase when k → 0 is

visible. This implies that we are encountering concentration fluctuations inducing spatial

inhomogeneities, but no demixing transition. In Figure 5 we have plotted the k-dependent

susceptibility corresponding to density fluctuations. The prepeak is visible except for the

lowest density, which implies that density inhomogeneities with a spatial patterns are also

correlated with the corresponding concentration inhomogeneities. But now, the k → 0

behavior is different. As density is decreased the susceptibility (i.e. the isothermal com-

pressibility) grows, an indication of the vicinity of a vapor-liquid transition. This means,

that lowering the density from the value of ρ = 0.001Å−1 at the same temperature could

move the system across the spinodal curve into the two-phase region. Our analysis indi-

cates that the thermodynamic conditions we have simulated can be considered equilibrium

states. Moreover, we have confirmed that the results do not have a significant sample size

dependence, by which metastability can also be ruled out.
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The site-site correlation functions and structure factors obtained from the RISM theory

are represented in dashed lines in Figs.2-3. It is seen that the agreement is excellent in most

cases, particularly in what concerns the BB and CC correlations. The AA correlations are

systematically underestimated near contact and overestimated at larger distances. The most

significant differences are seen for the structure factors in Fig.3. Integral equations tend to

exaggerate concentration fluctuations, and often tend to interpret small aggregate formations

as such42,43 . We observe here a similar trend for the low density case ρ = 0.001Å−3, for which

fluctuations compete the most with aggregate formation. The prediction of aggregation,

through the pre-peak is in very good agreement with simulations for the highest density

ρ = 0.0015Å−3, precisely when the denser packing tends to favor aggregation. This is also

in line with previous observations of similar type of behavior for model ionic liquids. These

features are a direct consequence of the fact that the HNC closure approximation misses

high order correlations, hence high order cluster contributions, which are represented in the

bridge term bij(r) that is neglected in the exponential of Eq. (7). We observe that in all

cases, the k=0 behavior of the RISM structure factor always overestimates the concentration

fluctuations.

B. Effective pair potentials

In Figure 6 we present the effective potentials obtained from the site-site pair distribution

functions. By construction, using these effective potentials in a simulation for a single

component system will lead to a pair distribution function coincident with the original site-

site correlation of the mixture. This is one of the possible alternatives to reduce the behavior

of a complex system to a simpler one component system. Other alternatives, such as the

force-matching approach44 will lead to quantitatively different results, but certainly retaining

the essential features of the effective potentials found here. Among these features, we see

that in all cases the effective potential has a short range (extremely short in the case of AA

potentials) attractive well and this is followed by a long range repulsive region, which extends

to 20-30 Å . The repulsive region of Ueff
CC is much less visible and is illustrated in the inset.

The repulsive range is more influenced by the change in the total density. The attractive part

of AA and CC effective interactions is due to depletion forces (in this case the plain site-site

interactions are repulsive). In the case of AA interactions, most of the attractive well is

11



masked by the excluded volume effect of the B sites in the AB molecules (the large repulsive

potential between 5-15 Å corresponds to the exclusion hole in gAA). Note that even if in

gBB long range correlations due to nanostructure organization are clearly not visible, there

are long range repulsions in the BB effective potential, which are reflected in the prepeak in

SBB as an indication of IRO. The long range repulsion vanishes for ρ = 0.001Å−3, which we

have seen is a state approaching the gas-liquid transition.

Fig. 6 shows the effective pair potentials as obtained by the integral equation approach

outlined in Section C. the comparison with the simulations is overall quite good in all cases.

However, it is seen that the repulsive shoulder -which is the signature of the clustering

ability- is always systematically underestimated by the theory. This is a direct consequence

of the weaker tendency of the IET to predict clustering.

Taken into account that B-sites are much larger that A-sites, we can think of our model

as a system of B particles in a “sea” of C monomers, just like colloids in solution. Following

Mani et al.23 we can use a functional form of the type

U(r)/kBT = 4a0

[

(σBB

r

)12

−
(σBB

r

)a1
]

+
a2a3
r

e
−

r

a3 (10)

to represent the BB effective interactions. Note that given the large size of the B-sites,

we have retained the repulsive part of the bare LJ interaction in order to account for the

repulsive component of the effective potential. One can see that the fits of the effective

interactions Ueff
BB /(kBT ) to Eq. (10) represented in Figure 7 are fairly accurate except for

the minor inflection of the curve around 13 Å . The parameters of the fit are collected in Table

III. Notice that the exponent of the attractive LJ component, a1 deviates substantially from

the standard value of 6, being its range shorter as density increases. The range parameter a3

grows considerably with the density, reflecting the increase of intermediate range ordering

as the total density is increased. We observe that a single component representation of

our system can be well performed by a standard SALR potential in which the long range

repulsion has the form a Yukawa interaction, even when the original bare interactions in the

mixture are relatively short ranged LJ potential.
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C. Cluster analysis

In order to go beyond the mere qualitative information provided by simulation snap-

shots and the two-body level information furnished by pair distribution functions or site-site

structure factors, we have also performed a geometric cluster analysis on the B sites and

the C monomers, using different values for the link distance rcl. Essentially this distance

defines two particles as linked, and in this work it has been defined in terms of the position

of the inflection point of the corresponding effective potentials depicted in Figure 6. We will

use various values of rcl in the range 10-12 Å , for B-sites and C monomers, and 6-8 Å for

A-sites. The effects of the particular choice of rcl on the cluster distribution will be analyzed.

Specifically, we have calculated the normalized cluster size distribution N(s), as proposed by

Stauffer.45 This quantity is defined as the fraction of particles contained in clusters of size s,

i.e. N(s) = n(s)(s/N), where n(s) is the number of clusters of size s. With this definition,
∑

N(s) = 1. Of all the systems analyzed, in Figure 8 we have chosen to plot the results

of System 6, which exhibits a significant prepeak in its partial structure factors. We ob-

serve that the normalized cluster size distributions of both A, and, B-sites and C monomers

present the same qualitative features: first one finds a maximum for isolated particles which

decays monotonously to zero at a value of cluster size, s, that strongly depends on rcl. This

is a typical behavior of a non-associating fluid, in which instantaneous clusters are created

and destroyed as particles explore their configurational space. If stable finite clusters were

formed, the cluster size distribution should exhibit the corresponding maxima for the pre-

ferred sizes. On the other end of the s-axis, interestingly one finds large clusters that span

all the simulation cell. Here N(s) shows little dependence on rcl, particularly for the B-sites

and C monomers. Finally, the cluster size distribution of A and B sites is qualitatively very

similar, which is understandable taking into account that both sites are linked into single

molecular units. In the next section we will see that this symmetry is broken by the presence

of charges and a new symmetry between A-sites and C particles emerges.

Thus from our analysis, a more clear picture shows up, in which we have a large portion

of the sample linked into microsegregated clusters forming bicontinuous structures, with a

remnant of disconnected particles that form short lived structures up to tens or hundreds of

particles depending on the choice of rcl, as one would expect in a non-associating fluid..
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D. The effect of charges

Our previous results have shown that microheterogeneity, or stable intermediate range

order can be induced by competing short range interactions in a simple mixture model of

dimers and monomers. Our model was somehow inspired by a coarse grained representation

of ionic liquids, which are in reality characterized by the presence of Coulombic interactions,

absent from our model. An immediate question that deserves to be answered is then,

how would the presence of charges affect the stability of the aforementioned bicontinuous

structures ? To that aim we have carried out the corresponding analysis on systems 7

and 8, that, as mentioned, correspond to system 3 with charges +q added to sites A and

−q to the C monomers. For q = 0.1e, standard canonical molecular dynamics simulations

were run. Recall that in the case of q = 0.25e, density had to be increased in order to

move out of the vapor-liquid coexistence region. This was simply achieved by means of an

isothermal-isobaric simulation run at the same T as the original system and a pressure of

0.61 MPa, leading to a total ρ = 0.00195 Å−3. In the snapshots of Figure 9 one can readily

see that the charges enhance the formation of microstructural order, and particularly for the

highest charge one see very well defined stripes of C particles, stripes that now appear to

be finite. A more clear picture emerges when taking a look at the partial structure factors,

presented in left panels of Figure 10. Now the prepeak is perfectly defined even for the

SAA structure factor for the lowest charge, in contrast with the uncharged system SAA. The

extremely large values of Sαβ(k0) for k0 ≈ 0.25 Å−1, resemble Bragg peaks, and indicate

the presence of quasi-periodic order in the microstructural domains. Moreover, if now one

looks at the cluster size distributions plotted on the right panels of Figure 10, together

with the percolating clusters, one finds now a maximum centered at s ≈ 20 for q = 0.25e

for C and A-sites, which indicates the presence of finite clusters of monomers and A-sites.

This maximum is preserved in the results obtained for other charges up to q = 0.2e (not

shown for the sake of brevity), to disappear for weaker Coulombic interactions. It is obvious

that the net effect of charges on the microstructuring of our model mixture is to enhance

the formation of nanostructures, also giving rise to the formation of finite size clusters for

sufficiently high charges. In contrast, B-sites form a percolating bicontinuous structure

coexisting with some disconnected B-sites or short lived aggregates. A-sites and C monomer

form aggregates embedded in the percolating network of B-sites. All this suggests that the
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network of B-sites forms cavities, with the A-sites pointing inside the cavity. This in turn

is filled by C monomers. This configuration is favored both by steric effects and by the net

attraction between the positively charge A sites and negatively charged C monomers.

On the other hand, despite the fact that A-sites form part of the AB dimers and C

monomers are independent particles, due to the symmetry of the electrostatic interactions

and the symmetry in shape and density –σAA = σCC , ρA = ρC–, as the charges increase, AA

and CC correlations become extremely similar –compare SAA and SCC in Figure 10–, as one

would encounter in a simple fully symmetric electrolyte.

The next question is how this is all reflected on the effective potentials. These are plotted

on Figure 11. In all cases one observes the characteristic SALR structure, obviously being the

CC and AA effective interactions those that are most affected by the introduction of charges.

In spite of the fact that these two effective interactions result from the coarse graining of

many body effects, the dominant role of electrostatic interactions already reflected in the

partial structure factors leads to surprisingly similar effective potentials when charges are

present. On the other hand the changes in Ueff
BB are just quantitative. The attractive part is

hardly influenced by the charges, since it results mostly from the depletion interactions and

the bare attractive uBB. The long range repulsion is enhanced, and as the charge reaches

q = 0.25e oscillations appear. These oscillations recall the Friedel oscillations characteristic

of effective cation-cation potentials in liquid metals.46 In the latter instance, the oscillations

result from the quantum nature of the electrons. Here they result from the interplay of the

Coulombic interactions and depletion forces. Thus for sufficiently large charges the long

range attractive interaction between C, and A sites propagates through the AB bonds and

induces the attraction well around 30Å as a result of a many body effect.

IV. CONCLUSIONS

In summary, we have shown that a simple mixture of heteronuclear AB dimers and C

monomers, with short range attractive and repulsive interactions designed so as to mimic

the interactions present in RTILs, can give rise to the presence of nanostructural order

in the form of micro-segregation in bicontinuous structures. This in turn translates into

the characteristic presence of a prepeak in the site-site structure factors. These features

are found both in simulation and in the integral equation results. The effective site-site
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potentials extracted from the pair distribution functions by means of an IMC and integral

equation approach, display the characteristic features of the SALR interactions, with the

repulsive long range increasing as the total density (and hence the ordering) increases. The

addition of charges to the model enhances the nanostructural order. When charges are large

enough, one finds well structured phases in which bicontinuous structures coexist with finite

size aggregates of monomers, caged in cavities formed by a network of the large uncharged

sites, and with the cationic sites facing the inner part of the cavity. The effect of charges

on our simple and rather symmetric model induces the symmetrization of the correlations

of the anionic monomers and the cationic sites. The microscopic structure formed by the

uncharged sites (apolar head in the RTILs) retains its bicontinuous nature and even if it is

stabilized and enhanced by the charges is still mostly dominated by depletion effects and the

bare short range attraction of the B-sites. In this regard, it is interesting to note that the

appearance of a pre-peak in the wide angle scattering experiments and computer simulations

of RTILS have been a subject of much investigations47,48 and has been related to the charge

ordering and the subsequent appearance of segregated charged and uncharged molecular

domains. Our work presents a unified view of microsegregated bi-continuous domains, pre-

peaks in structure factors and SARL type interactions, which are common to many complex

systems.

Obviously a much richer variety of structures would result from longer attractive un-

charged tails, beyond the single B-site model used here. On the other hand, our simple

model when reduced to two dimensions most likely will also give rise to more complex struc-

tures, which in three dimensions are hindered by entropic effects. This is certainly a problem

relevant to the behavior at interfaces which we intend to address in the future.
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TABLE I. Lennard-Jones potential parameters.

Particle i Particle j Interaction ǫ (kJ/mol) σij rc

A A repulsive 2.092 4.0 Å 21/6 · σAA

A B repulsive 2.092 (σAA + σBB)/2 21/6 · σAB

A C attractive 2.092 4.0 Å 3 · σBB

B B attractive 2.092 σBB 3 · σBB

B C repulsive 2.092 (σBB + σCC)/2 21/6 · σBC

C C repulsive 2.092 4.0 Å 21/6 · σCC

TABLE II. Potential parameters and thermodynamic state variables for the systems under study.

Potential Thermodynamic state

|q|(e) σB (Å) ρ(Å−3) T(K) P(MPa)

System 1 0 8.0 0.001 226.4 27.05

System 2 0 8.0 0.00125 226.5 39.5

System 3 0 8.0 0.0015 226.5 59.4

System 4 0 9.0 0.001 226.5 30.4

System 5 0 9.0 0.00125 226.4 53.2

System 6 0 9.0 0.0015 226.4 96.7

System 7 0.1 8.0 0.0015 226.4 39.4

System 8 0.25 8.0 0.00195 226.3 0.61
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TABLE III. Parameters of tha SALR effective interaction (10) between B sites fitted to the data

extracted from the IMC procedure. Note that the potential is scaled with kBT , by which a0 is

dimensionless.

a0 a1 a2(Å) a3(Å)

System 1 1.788 8.185 3.749 4.297

System 2 2.066 8.667 0.843 7.282

System 3 3.578 9.927 0.231 14.816

(a)σBB = 8Å (b)σBB = 12Å

FIG. 1. Snapshots of configurations for total particle density ρ = 0.00125Å−3 and temperature

T = 226.45K for two B-site diameters. As the size of B-sites grows C monomers cluster in the

cavities formed by the B-sites due to excluded volume effects. All other diameters and total density

are kept fixed, σAA = σCC = 4.0 Å .
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0.6

0.8

1

1.2

1.4

g
A

A
(r

)

ρ = 0.001 molec/Å
ρ = 0.00125 molec/Å
ρ = 0.0015 molec/Å

0.5

1

1.5

2

2.5

g
B

B
(r

)

0 5 10 15 20 25 30 35 40
r /Å

1

1.5

2

g
C

C
(r

)

(b)σBB = 9Å

FIG. 2. The figures show the radial distribution functions for A, B and C particles respectively.

Column (a) corresponds to σBB = 8Å for system 3 (theory vs. simulation) and column (b) presents

the simulations results for systems 4 to 6 for σBB = 9Å . Total density is indicated in the legend.

Simulation results are represented by solid lines and dash-dotted curves correspond to integral

equation calculations.
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FIG. 3. The figures show the structure factors for A, B and C particles respectively. Column

(a) corresponds to σBB = 8Å for system 3 (theory vs. simulation) and column (b) presents the

simulations results for systems 4 to 6 for σBB = 9Å . Total density is indicated in the legend.

Simulation results are represented by solid lines and dash-dotted curves correspond to integral

equation calculations.

22



0 0.5 1 1.5 2 2.5
k (1/Å)

0.2

0.25

0.3

0.35
S

cc
(k

)
ρ = 0.001 Å

-3

ρ = 0.00125 Å
-3

ρ = 0.0015 Å
-3

FIG. 4. Concentration-concentration structure factor for the Systems 1, 2 and 3.

23



0 0.5 1 1.5 2 2.5

k (1/Å)

0.2

0.4

0.6

0.8

1

1.2

ρk
B
T

χ T
(k

)

ρ = 0.001 Å
-3

ρ = 0.00125 Å
-3

ρ = 0.0015 Å
-3

FIG. 5. Isothermal compressibility as a function of k for the Systems 1, 2 and 3.

24



0

0.2

0.4

0.6

0.8

U
A

Aef
f 
 / 

k B
T MD simulation

RISM theory

-0.8

-0.6

-0.4

-0.2

0

0.2

U
 B

B
ef

f  / 
k B

T

0 5 10 15 20 25 30 35 40
r /Å

-0.6

-0.4

-0.2

0

U
 C

C
ef

f 
/ k

B
T

10 15 20 25
-0.1

0

0.1

(a)σBB = 8Å
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(a)qA = 0.10e; qC = −0.10e

(b)qA = 0.25e; qC = −0.25e

FIG. 9. Snapshots of the equimolar mixture of AB dimers and C monomers with embedded charges

(indicated on the figures).
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FIG. 10. (a) Charge dependence of the partial structure factors for A (top), B(middle) and C

(bottom) particles (b) Charge dependence of the cluster size distribution. Charge magnitudes are

specified in the legend.
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