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ABSTRACT

Recent advances in the field of generative models and in particular generative adversarial networks
(GANs) have lead to substantial progress for controlled image editing, especially compared with the
pre-deep learning era. Despite their powerful ability to apply realistic modifications to an image,
these methods often lack properties like disentanglement (the capacity to edit attributes independently).
In this paper, we propose an auto-encoder which re-organizes the latent space of StyleGAN, so that
each attribute which we wish to edit corresponds to an axis of the new latent space, and furthermore
that the latent axes are decorrelated, encouraging disentanglement. We work in a compressed version
of the latent space, using Principal Component Analysis, meaning that the parameter complexity of
our autoencoder is reduced, leading to short training times (∼ 45 mins). Qualitative and quantitative
results demonstrate the editing capabilities of our approach, with greater disentanglement than
competing methods, while maintaining fidelity to the original image with respect to identity. Our
autoencoder architecture simple and straightforward, facilitating implementation.

1 Introduction

Since the advent of deep generative models, it has been possible to create random examples of synthetic, photorealistic
images. Some of the most popular methods are Variational Auto-encoders [1], normalizing flows [2], diffusion
models [3] or Generative Adversarial Networks [4] (GANs). In particular, style-type GANs such as BigGAN [5] or
StyleGAN [6] have distinguished themselves for their capacity of high resolution synthesis. These generative models all
rely on an internal latent space which is learned to represent high-dimensional image data. Given the synthesis power
of these different methods, it is quite natural to use them for editing. Indeed, once the latent space is learned, as has
been observed in the literature, it is natural to suppose that moving a point in a well-chosen direction in the latent space
will correspond to completing a high-level editing task. In the case of face images, for example, this will correspond to
modifying attributes such as expression, age, glasses etc. of the face. The goal of deep generative model-based editing
is to find this direction, given an input image and an editing goal. In order for such a method to be used in a practical
setting by digital artists, several requirements must be met:

• Disentanglement: by modifying one attribute, we do not modify any other attribute;

• Controllability: we require a direct, meaningful control over the attributes. In particular, we want to create a
latent representation of an image where each axis corresponds to an attribute;

• Fidelity: when we edit an image, we do not wish to change the identity of a face or other non-labelled attributes,
or navigate away from the original latent space.
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Imposing all of these constraints simultaneously is the main challenge of image editing methods using deep generative
networks.

In this paper, we propose a method for image editing which targets these three goals. Our method is based on a re-
organisation of the latent space of a GAN, by using an autoencoder. In this work, we concentrate on the StyleGAN2 [7]
model due to its great performance, however, the approach is very general and can be applied to any GAN. We start by
observing that most latent spaces of GANs are over-parametrized, and can thus be further compressed. We do this using
Principal Component Analysis [8] carried out on StyleGAN2’s latent space. We navigate only in this compressed latent
space, which also makes sense if we wish to stay as close to the original latent space as possible, thus encouraging
fidelity (as defined above). We then train an autoencoder to transform this compressed space to another latent space
where each of the attributes corresponds to a given axis. This is achieved via a training loss function. We split up our
new latent code in two parts: the first containing the attributes which we want to edit, and the second containing free
components that allow for diversity in the image (face identity, lighting etc). We impose disentanglement between the
axes of the first code by minimising their correlation during training, with a well-chosen loss function. The result is a
new latent space where we can directly modify the numerical value of attributes.

We show in qualitative and quantitative results that our method indeed gives disentangled editing results, while
maintaining fidelity to other elements of the original image, such as face identity. Finally, we propose as simple and
compact an architecture as possible for the autoencoder, in the interest of clarity and efficiency of the method. This is
evidenced by our very short training times (∼45 mins).

2 Related work

Given the great power of StyleGAN-type models, it is natural to manipulate its latent space W to achieve image editing.
One of the first to propose such an approach was InterfaceGAN [9], which finds linear editing directions by training a
SVM in W for every single attribute. Following this idea, [10] trains a network to determine a direction for every single
latent vector in W+. Another approach, named GANSpace [8], proposes to apply PCA in the StyleGAN’s latent space
to analyse qualitatively its principal components and find attribute editing directions. This is done in an ad-hoc manner,
and certain attributes may be missed.

A series of works [11, 12, 13] have extended W to a space W+ by applying a different style vector w for each
scale of the generator of StyleGAN. In effect, this allows editing to leave the original latent space W of StyleGAN.
Image2StyleGAN [11] was the first to propose such an approach, which was then improved to Image2StyleGAN++ [14].
Other methods in W+ have been proposed, such as StyleFlow [12] which proposes to auto-encode latent vectors using
a normalizing flow network or Latent2Latent [13] which modifies vectors using a dense network. Unfortunately, the
use of the space W+ is contrary to the goal of our work: indeed wish to stay in the same native latent space of the
GAN. A further drawback of such an approach is that it only applies to style-type networks and cannot be generalised
to any GAN. Also, many of these approaches use loss functions in both latent and image spaces. This implies high
algorithmic costs during training (an image generation is required during training), which we wish to avoid. We also
note that other spaces have been investigated such as the S space introduced by Wu et al [15] where the authors try to
find which dimensions correspond to some given attributes with the help of segmentation masks.

Finally, we note that several StyleGAN encoders exist which project images into the W+ latent space. Some of these
include e4e [16] and pSp [17].

3 Method

StyleGAN2 and notation: Since we use the StyleGAN2 model in our work, we first explain it here briefly, and
also introduce some of our notation. To generate an image with StyleGAN2, a vector z is sampled in a first latent
space Z following a multidimensional normal distribution. This vector z ∈ Z is then transformed into a second
space, denoted W , passing through a mapping network M : Z → W made of an 8-layer MLP. The central idea of
StyleGAN and StyleGAN2 is that this intermediate latent space W represents the “style” of images better than the
original, probabilistic, latent space. The style is controlled by inserting the new vector w = M(z), with w ∈ W , into
the generative network G, at different scales, in order to produce the final output image y = G(w). The vector w
is inserted using an Adaptive Instance Normalization (AdaIn [18]). For a good visual illustration of the StyleGAN2
model, we refer the reader to the original paper [7]. An image synthesis using StyleGAN2 can thus be summarised as
y = G(M(z)), with z ∼ N (0, Id).
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Figure 1: Architecture of our editing pipeline for an image sampled from Z ∼ N (0512, I512). Note that the networks M
and G are the pre-trained networks of StyleGAN2. The networks trained in our method are E and D (the autoencoder).

Figure 2: Left: image generated with a w ∈ W . Right: image generated with w projected onto WPCA, corresponding
to the 60 dimensions of greatest variability according to the PCA. We observe that the restriction to this sub-space has a
very small influence on the resulting synthesised image.

3.1 Creating an image/attribute database

The essence of our method is an autoencoder which transforms StyleGAN’s latent space into another space where each
attribute corresponds directly to one axis. In order to train such an autoencoder, we first require a labelled database of
images to train it on. We generate a database of synthetic images using StyleGAN. Let y = G(M(z)) represent one
such image. To label this image, we associate it with an attribute vector a = (a1, ..., aK). The attributes are determined
with a pre-trained classification network F . In our case, we will take K = 40 attributes. We then create a dataset (w, a)
by sampling in Z , with:

w = M(z) and a = F ◦G(w). (1)

We can now proceed to describe our architecture.

3.2 Architecture

As mentioned above, the goal of our approach is to transform the latent space W such that each (labelled) semantic
attribute of the generated image corresponds to a dimension of the transformed latent space. If we can achieve this,
then editing becomes a simple matter of moving each axis independently, as a digital artist would move a slider. This
disentanglement is crucial in image editing: the artist usually wants to be able to modify a single semantic factor in the
image.

3.2.1 A sub-space for extracting attributes

Previous work [8] has noted that in W , dimensions have an unequal influence on the generated images. Indeed, most
GANs are deliberately over-parametrised. By applying the elbow method on the Principal Component Analysis (PCA)
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of W , we can see that 60 dimensions are sufficient to correctly reconstruct an image and keep almost 80 % of the space
variability. We show an experiment to demonstrate this in Figure 2, where we have set the rest of the dimensions to 0.
The impact of this operation is minimal, meaning that we can safely ignore these dimensions.

Thus, we decide to apply our auto-encoder in the sub-space corresponding to the first 60 dimensions of greatest
variability, according to the PCA. We note this sub-space WPCA. This choice has two main advantages: it allows
our auto-encoder to avoid performing editing trajectories in W dimensions of low variance, avoiding the appearance
of artifacts and it also greatly reduces the parameter complexity of our auto-encoder. Let us note such a latent code
transformed with the PCA as

[
wPCA, w

⊥
PCA

]
. We will not modify the second vector wPCA

⊥, since we consider that
it contains elements such as small texture variations. Note that we do not set the elements of wPCA

⊥ to 0 as in the
experiment of Figure 2.

3.2.2 An autoencoder for controllable attributes

Contrary to the work of InterfaceGAN [9] or GANspace [8], which suppose that a linear direction is sufficient to
achieve latent space attribute editing, we assume here that the editing path of an image can be more general. Thus,
we propose to train an auto-encoder in WPCA that extracts attributes from a latent code wPCA, so that they can be
modified individually in the manner of a slider. However, it is clear that wPCA contains more information than just
the attributes; it will contain such elements as identity etc. Therefore, our autoencoder will project of code wPCA to a
space where the first K elements directly correspond to the desired attributes, and the rest are left free. In our case, we
have K = 40 and dim(C) = 60. Please note that the size of the latent space of our autoencoder is the same as WPCA:
we do not compress latent codes, rather we re-organise them.

We will call the latent space of this auto-encoder C and c = (c1, . . . , cdim(C)) a latent vector in this space. We denote
the encoder with E and the decoder with D. Thus, c = E(wPCA). Note that this definition assumes that dim(C) > K.
This makes sense: an image must have greater latent dimensionality than its controllable attributes. The specific
architecture of our autoencoder is given in Section 4.1.

In order to control the values of each attribute ak, we set as a goal for our encoder E to match the latent codes to the
attributes:

ck = ak for k ∈ [[1;K]] (2)

The rest of the elements cK+1,...,dim(C) will not be modified, since we assume that it contains all other information
which we do not want to modify (face identity, lighting etc).

To summarize, we carry out the following auto-encoding process: first we use PCA to project our vector w ∈ W into
WPCA. In this way, we keep only the information strictly necessary for our network. Then, we proceed to the encoding
of the vector wPCA by a multilayer perceptron to obtain a vector c. This vector represents a different attribute on the
first K dimensions and leaves the remaining dimensions free. At this point, we can edit the image attributes individually
by modifying these first K dimensions of c. Once this is done, the resulting vector is passed to the decoder D to obtain
ŵPCA. Finally, we apply the reverse operation of the PCA to return to the original space W and obtain our edited latent
vector ŵ. A summary scheme of the architecture is proposed in Figure 1.

3.3 Training

To train our auto-encoder, we use a latent code/attribute database. As mentioned in Section 3.1, this database can be
built from a pre-trained classification network F . For the loss function, we use a weighted sum of three terms during
training:

• A reconstruction term. Since we have an auto-encodeur, we want to be able to retrieve the original vector
passed to our network if no modification is applied in the latent space C. So we take the classical ℓ2 norm
between input and outputs vectors for this task:

Lrecons(wPCA, ŵPCA) = ||wPCA − ŵPCA||22 (3)

• A loss function on the attributes. Since our goal is to edit image attributes, we want to fix the ck as being equal
to ak:

Lattr =

K∑
k=1

(ak − ck)
2 (4)
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• A correlation term. The motivation behind this term is to enforce the disentanglement of C, which corresponds
to independence between the dimensions of our latent space. For that, we try to set the autocorrelation matrix
of the latent codes Corr to a reference matrix Γref = IK :

Lcorr =

K,K∑
i,j

|Corr(i, j)− Γref (i, j)| (5)

Note that the matrix Corr is computed over a batch. Therefore, we need the batch size to be large enough during
training in order to have a good estimate of this matrix. Additionally, since we aim at improving disentanglement, we
set Γref = IK , but it is important to keep in mind that we can use another matrix if we would like the latent space to
take the correlations into account.

Therefore, our final loss function is the following:

Ltotal = Lrecons + αLattr + βLcorr (6)

Please note that none of our loss functions require a forward pass of the generator to create an image, contrary to
some of the previous works [13, 12], whereas we carry out the entire training in the compressed space WPCA, greatly
reducing training time (around 45 mins, see Table 2).

4 Experiments and metrics

4.1 Implementation details

To train our network, we set α = 10−5 and β = 10−5. Both encoder and decoder have the same architecture, an
8-layer MLP where each hidden layer is of size of 512, with the input and output size being of 60. Note that this indeed
temporarily increases the size of the code, which we found gave good results. We use LeakyReLU activations, with
parameter 10−2. Training is done for 150 epochs with a batch size of 256.

Our database is made of 200 000 latent vectors and their corresponding attributes which are obtained using an
EfficientNet-B0[19] network pretrained on CelebA[20]. In general, the range of values for image attributes is [0, 1],
which is made possible by the use of a sigmoid as the activation of the classifier network. Unfortunately, this leads
to an under-representation of values close to 0.5. Because of this, the network may learn a bimodal distribution for
every latent code and might not be able to produce realistic results for ck near to 0.5. To avoid such a behavior, we
decide to "gaussianize" the attributes values of our database. In other words, for each attribute, we process a histogram
equalization of its values and then apply the inverse cumulative distribution function of the normal law. In this way, we
can always manipulate the attribute values in a known range and solve the issue.

4.2 Our autoencoder variants

As mentioned in the introduction, disentanglement of attributes is usually a key goal of image editing. However, in
some situations, a digital artist may instead wish to impose certain correlations, which may come from observation of a
database. This is completely possible in our method, since we directly control the attribute correlations via the loss
function Lcorr. Indeed, we can set the reference correlation matrix Γref to whatever we choose. Therefore, we present
three variants of our approach:

• variant A: no correlation loss is imposed. We use this as an ablation study of Lcorr;

• variant B: Γref is the correlation matrix of the attributes of the database;

• variant C: Γref = Id (disentanglement).

Variant B means that we accept the correlations present in the database.

4.3 Qualitative evaluation

We compare our method to two previous works, InterfaceGAN [9] and GANSpace [8], since they are the only state-of-
the-art methods processing in W , the latent space in which we work. In the Figures 3 & 4, we show visual comparisons
between the three different variants of our method and the competing methods. It is clear that our editing gives much
better disentanglement of attributes in the case of variant C, which is the desired behaviour.
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Figure 3: Editing comparison between the variants of our method, InterfaceGAN and GANSpace. It is clear that variant
C of our method achieves attribute editing in a disentangled manner. Variant B also achieves editing, but allows for
correlated attributes.

4.4 Quantitative evaluation

Since our goal is to improve disentanglement while keeping an editing quality comparable to state-of-the-art methods,
we use 3 different quantitative metrics to evaluate our method: identity conservation during an edit, attribute variation
during an edit to quantify disentanglement and finally well-edited image rate (which is defined below). In this section,
we only present the results of our method, variant C, since it corresponds to our initial goals.

To compute these three metrics for a given edited attribute k, we sample N = 1024 images in W and keep only samples
with this attribute k being negative: (wk−

1 , ..., wk−
N ). The attribute k is then edited toward positive values. For this, we

apply the edit at different amplitudes and we measure its target attribute value. When its value reaches 0.9 or above, we
consider the edit done and keep the corresponding latent vectors: (wk+

1 , ..., wk+
N ). Thanks to these pairs of vectors, we

can now measure the attributes and identity differences during the edit of attribute k.

In the interest of readability, we choose to apply our metrics to 7 out of 40 target attributes: bangs, eyeglasses, gender,
beard, skin tone, smile and age (these attributes are common in the litterature). Note that for GANSpace, there is no
principal component allowing us to edit skin tone [8]. Hence, we did not take into consideration this attribute for our
experiments on this method.

Well-edited image rate (↑)
Edited attribute our method InterfaceGAN GANSpace
Bangs 0.924 0.980 0.635
Eyeglasses 0.999 0.995 0.933
Gender 0.975 0.979 0.990
No_Beard 0.997 1. 1.
Pale_Skin 0.902 0.887 XXX
Smile 1. 0.998 0.906
Age 0.950 0.961 0.603

Table 1: Percentage of well-edited images for our method and other approaches.
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Figure 4: Further editing comparison on the “age” and “smile” attributes. Again, it is clear that our variant C achieves
the best disentanglement. Both InterfaceGAN and GANSpace heavily correlate attributes and modify the identity
greatly.

Since disentanglement requires that a single semantic factor is modified during an edit, our goal is to minimize all
attributes variations except the target one. To visualize this property, we plot a matrix (figure 5) where each coefficient
corresponds to the average variation of the column-attribute along a row-attribute edit:

Matk,l =
1

N

N∑
i=1

(Fl ◦G(wk+
i )− Fl ◦G(wk−

i )) (7)

where Fl is the the network F ’s estimate of the attribute l value.

For the well-edited image rate, we simply take the rate of images that have reached a 0.9 target attribute value along the
edits. This quantity is shown at table 4.4 where we can see that our proposed method is as good as InterfaceGAN and
GANSpace.

Furthermore we show in appendix that our network allows us to preserve the identity equivalently to state-of-the-art
methods. Hence, the proposed method improves the disentanglement property while keeping an equivalent fidelity
of editions. Finally, we provide in table 2 some informations about the computational ressources needed to train our
network.

Computational impact (on a Nvidia RTX3090)
Number of parameters Training time Energy consumption
3 553 520 45 min 36s 0.128 kW.h

Table 2: Computational impact and complexity of our model
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Figure 5: Attribute variation matrices. Each row corresponds to the edit of an attribute and indicates the variations of all
the attributes. In other words, the coefficient (k, l) corresponds the variation of the attribute l when we edit the kth

one. We see that our method outperforms the others in terms of off-diagonal sum (which can be seen as a meaure of
entanglement). Note that for all sums of off-diagonal coefficients, we did not take into account the Pale_Skin row which
GANSpace is not able to modify.

5 Conclusion

We have proposed a method to edit facial image attributes which uses an autoencoder applied to the latent space of
StyleGAN2. This autoencoder transforms the latent space into another space in which attributes correspond to a single
axis, allowing for direct editing, in the manner of a slider for each attribute. Furthermore we encourage these axes to
be decorrelated, ensuring a disentangled representation. These goals are achieved by two well- chosen loss functions.
Furthermore, we encourage image fidelity by working in a sub-space of the latent space, found using a PCA. We have
shown qualitative and quantitative results which demonstrate that our method indeed edits the desired attributes in a
disentangled fashion, while maintainting fidelity to the identity of the person. Our autoencoder is quite compact, with
around 3.5 million parameters, and is very straightforward to implement.
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6 Appendix

6.1 Identity preservation

To quantify identity preservation for a given attribute edit, we use the library [21] which consist in embbeding a face
image into the hidden layers of a face recognition network H . Hence, the identity similarity is set as the cosine distane
between the embeddings:

Dk
id =

1

N

N∑
i=1

< H(wk−
i )|H(wk+

i ) >

||H(wk−
i )||.||H(wk+

i )||
(8)

We recall that there is no satisfying direction for editing the ’Pale_skin’ attribute with GANSpace in W .

Identity preservation (↑)
Edited attribute InterfaceGAN GANSpace our method
Bangs 0.949 0.907 0.950
Eyeglasses 0.932 0.917 0.950
Gender 0.939 0.933 0.926
No_Beard 0.951 0.950 0.945
Pale_Skin 0.895 XXX 0.908
Smile 0.964 0.930 0.968
Age 0.900 0.910 0.910

Table 3: Identity preservation between original images and attribute-edited ones for each method.

As we can see in the table 6.1, our method achieves equivalent results compared to InterfaceGAN while outperforming
GANSpace.

6.2 FID

In order to confirm that our method achieves at least equal edit stability compared to InterfaceGAN and GANSpace, we
also propose here to compute the Frechet Inception Distance [22] (also known as FID) between the two sets of images
(original and edited ones):

Dk
FID = FID({wk−

i |∀i ∈ [[1, N ]]}, {wk+
i |∀i ∈ [[1, N ]]}) (9)

Indeed, since FID consist in quantifying the average visual difference between two sets of images, it means that the
better FID, the closer to original images we are. In other words, the editing method introduces less perceptual changes
while achieving the desired edit.

FID (↓)
Edited attribute InterfaceGAN GANSpace our method
Bangs 67.6 137.9 62.9
Eyeglasses 53.0 85.0 44.9
Gender 67.5 108.1 65.4
No_Beard 50.5 48.1 52.2
Pale_Skin 98.9 XXX 86.8
Smile 29.8 67.0 26.6
Age 67.6. 85.1 42.4

Table 4: FID between original images and attribute-edited ones for each method.
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