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Deterministic particle method for Fokker-Planck equation with strong

oscillations

Anäıs Crestetto* Nicolas Crouseilles� Damien Prel*

December 13, 2023

Abstract

The aim of this paper is to investigate a deterministic particle method for a model containing a Fokker-
Planck collision operator in velocity and strong oscillations (characterized by a small parameter ε) induced
by a space and velocity transport operator. First, we investigate the properties (collisional invariants and
equilibrium) of the asymptotic model obtained when ε → 0. Second a numerical method is developed to
approximate the solution of the multiscale Fokker-Planck model. To do so, a deterministic particle method
(recently introduced for the Landau equation in [8]) is proposed for Fokker-Planck type operators. This particle
method consists in reformulating the collision operator in an advective form and in regularizing the advection
field in such a way that it conserves the geometric bracket structure. In the Fokker-Planck homogeneous case,
the properties of the resulting method are analysed. In the non homogeneous case, the particle method is
coupled with a uniformly accurate time discretization in ε that enables to capture numerically the solution of
the asymptotic model. Numerous numerical results are displayed, illustrating the behavior of the method.

Keywords. Vlasov equation, Fokker-Planck collision operator, highly oscillatory systems, multiscale numerical
schemes, Particle method.

MSC codes. 65M25, 65M75, 35Q83.

1 Introduction

When modelling charged particles systems, a kinetic description is often used to take into account non equilibrium
phenomena. The unknown is a distribution function f(t, x, v) ≥ 0 depending on time t, space x and velocity v.
The dynamics of f is driven by the so-called Vlasov models involving a (nonlinear) transport part in phase space
(x, v) which may induced high oscillations due to the presence of a strong magnetic or electric field. Collisional
effects can also be taken into account to describe binary interactions between charged particles through collisional
operators acting on the velocity variable only. Collisional effects make the system relax towards a space dependent
equilibrium (typically with a Maxwellian shape in velocity). One example is the Landau operator but due to
its complexity (it is a nonlinear integro-differential operator), simpler operators, sharing similar properties, are
preferred such as the Fokker-Planck or the Bhatnagar–Gross–Krook (BGK) operators.

The goal of this work is to investigate numerically the interplay between oscillation effects (arising from the
transport part) and collisional effects, in the spirit of recent works [4–6, 16]. In particular, in the limit ε → 0
(where ε denotes the period of the oscillations), an asymptotic (or averaged) model can be derived, involving the
collision operator. As a consequence, the equilibria of the averaged collision operator are modified, which leads
to fluid models that are different from the usual ones. However, even if some explicit expressions of the averaged
system can be found for some given collision operators (see [4–6]), these derivations require a huge amount of
computations and leads to very complicated models. Moreover, in these works, the finite Larmor radius scaling
was considered which involves a large number of phase space variables (2 in space and 2 in velocity) and thus
making the numerical simulations very costly. In the present work, we rather consider a simplified model which
contains the main ingredients, that is oscillations in phase space (1 dimension in space and 1 dimension in velocity)
and collisions in the velocity direction. This enables us to better understand the interplay between oscillations

*Nantes Université, CNRS, Laboratoire de Mathématiques Jean Leray, LMJL, UMR 6629, F-44000 Nantes, France & Inria (MIN-
GuS), France

�Univ Rennes, Inria (MINGuS) & IRMAR UMR 6625 & ENS Rennes, France

1



and dissipation effects which drives the system to modified equilibria of the collisional operator and to simulate
the multiscale models using dedicated numerical schemes.

The model we considered in this work shares some similarities with the highly oscillatory charged particles
beam models used in [17, 22–25, 31, 33], but here collisional effects are taken into account through a nonlinear
Fokker-Planck operator (or Lenard-Bernstein collision operator). Thus, this model may serve as a basis for the
understanding of more complex models like the ones arising in strongly magnetized plasmas under the finite
Larmor radius approximation [6, 16] coupled with the full Landau collision operator. Even if the situations in
which oscillations and collisions interplay can be found in many applications (in plasma physics, it turns out that
the litterature is not abondant ; let us quote however [1, 3, 4, 6, 26,27]).

First, one has to study the averaged model of our beam-collision model. To do so, denoting by ε a parameter
characterizing the period of oscillations (2πε) induced by the transport part, a change of variables (usually called
filtering step) is performed to get the filtered system ; then, the (strong) limit ε→ 0 can be performed leading to
the averaged model (see [6, 14, 15]). This asymptotic model corresponds to an averaging of the filtered collision
operator on one oscillation period. Using [6] in which a quite general framework is presented, we can identify the
equilibria of the averaged collision kernel, without having to compute explicitly the averaged collision kernel. In
particular, the equilibrium has Maxwellian shape not only on velocity (as in the usual case) but also on the space
variable due to the oscillations occurring in phase space (x, v)

Second, our goal is to derive new numerical schemes to approximate the averaged model. But as its explicit
expression is difficult, one may prefer to approximate the stiff filtered problem with a multiscale (uniformly accurate
UA) numerical method [9–13,17,19]. Indeed, for such UA methods, the error does not depend on the value of the
stiffness parameter ε and as such the schemes are asymptotic preserving. This UA approach is dedicated to the
time approximation. Regarding the phase space approximation, which involves a transport part and a diffusion
part, particle methods will be used in this work. Indeed, particle discretizations (such as Particle-In-Cell (PIC)
method) are very popular in the computational plasma community since they are very efficient in high dimensions
compared to Eulerian methods and they are able to capture filamentations with a reasonable computation cost.
Moreover, they are easy to develop for transport equation [2,35]. However, their extensions to the approximation of
collisional operators (which involves diffusion operators) are more tricky. One way consists in solving a stochastic
differential equation (SDE) associated to the diffusion term. However, these methods are low order in time and
the conservation properties are not guaranteed. Recently, a deterministic particle method has been developed
to discretize diffusion operators [7]. This method consists in interpreting the diffusion operator as a nonlinear
advection operator and then in regularizing the advection field with a mollifier making the advection field well
defined for particles unknown. A variant of this method has been developed for Landau operator [8, 28, 36]: it
consists in regularizing the entropy associated to the operator. By doing this, the geometric bracket structure of
the equation is preserved, which directly implies the decreasing of the regularized entropy and the conservation of
the invariants. Let us remark that similar ideas were also developed in [20,21].

In this work, due to its simpler form, the Fokker-Planck operator is considered. Since it also enjoys a geometric
structure (bracket and entropy), we propose to adapt the formalism from [8, 28, 36], which requires some specific
developments due to the presence of macroscopic moments in the definition of the Fokker-Planck operator. We
also mention a recent paper [30] in which the authors derive a different regularization technique that enables to
preserve mass, momentum and energy. It turns out that the deterministic particle method is well adapted to
our context since it enables to reproduce at the semi-discrete level (discretization in space and velocity) the main
steps of the derivation of the averaged system. In particular, the deterministic particle method can naturally take
into account the filtering step so that it can be combined with the two-scale framework developed in [9–13,17,19].
As a result, a uniformly accurate method (with respect to ε) can be constructed. The error of this scheme is
independent of the oscillation period ε, and then the scheme is consistent with the asymptotic averaged model
obtained when ε goes to 0.

This numerical framework enables us to numerically illustrate the modified equilibrium (called gyromaxwellian)
of the averaged collision operator and also to investigate the difference between the so-called filtered Maxwellian
and the gyromaxwellian. This difference has already been discussed in [16] in the finite Larmor radius scaling.
Some numerical tests are also performed for the Fokker-Planck operator (in the homogeneous case) to discuss the
performances of the deterministic particle method in this context. And finally, some tests involving oscillations
and collisional effects are performed.

The outline of the paper is the following. In Section 2, we present our model and study the associated
gyrokinetic model. In particular, we focus on characterizing equilibriums and collisional invariants of the filtered-
averaged collision operator. In Section 3, we present the particle discretization of the Fokker-Planck equation,
and some properties associated. Section 4 is devoted to the presentation of the uniformly accurate scheme for the

2



Fokker-Planck equation with oscillations. Numerical results illustrating the particle method for Fokker-Planck
equation are presented in Section 5 whereas numerical results for full model and beam model are presented in
Section 6. Some proofs are given in Appendices A and B.

2 Model and properties

In this section, we consider a collisional kinetic model composed of two parts: a highly oscillatory (in phase space)
transport term and a Fokker-Planck collision operator acting only in the v-direction. In Subsection 2.1, we present
more precisely the model and derive the asymptotic model (i.e. when the period ε of the oscillations goes to zero).
This asymptotic requires a change of variables called filtering step and averaging procedure which have to be
applied to the Fokker-Planck operator. Thus, Subsection 2.2 is devoted to the study of some properties of the
filtered-averaged Fokker-Planck operator.

2.1 Presentation of the Fokker-Planck equation with oscillations

We are interested in a kinetic model with a Fokker-Planck collision operator and strong oscillations in space and
velocity. We set f(t, x, v) ≥ 0 the particles distribution function depending on time t ∈ R+, space x ∈ R and
velocity v ∈ R. We denote z = (x, v) ∈ R2 the phase space variable and introduce ε > 0 which denotes a small
parameter (typically a ratio between two characteristic lengths). The model we are interested in is the following

∂tf −
1

ε
Jz · ∇zf = ∂v ((v − u)f + T∂vf) (1)

where J denotes the symplectic matrix

J =

(
0 −1
1 0

)
and the macroscopic quantities ρ (density), u (mean velocity) and T (temperature) are defined from the moments
of f by

ρ =

∫
f dv, ρu =

∫
vf dv, ρ

(
u2

2
+
T

2

)
=

∫
v2

2
f dv. (2)

The model (1) is equipped with a smooth initial condition f(t = 0, x, v) = f0(x, v) which is fastly decreasing at
infinity.

In the following, we will use this notation for the Fokker-Planck collision operator

Q[f ] = ∂v ((v − u)f + T∂vf) = ∂v (Tf∂v log (f/M)) , (3)

whereM is the Maxwellian associated to f (through the moments (2))

M[f ](t, x, v) =
ρ√
2πT

e−
|v−u|2

2T . (4)

It is interesting to know how the distribution function f behaves as ε → 0, i.e. when the frequency of the
oscillations becomes infinite. To study this limit, we consider the filtered distribution function

F (t, Z) = f(t, z), where Z = e
t
εJz, z = (x, v), Z = (X,V ),

which satisfies the filtered problem
∂tF (t, Z) = Qfilt[F ](t, t/ε, Z), (5)

where Qfilt[F ](t, s, Z) denotes the filtered collision operator (obtained by applying the change of variables to (3))

Qfilt[F ](t, s, Z) = ∇Z · (TA(s)∇ZF ) +∇Z · (A(s) (Z − a(s)u)F ) , (6)

with

A(s) =
(

sin2(s) − sin(s) cos(s)
− sin(s) cos(s) cos2(s)

)
, a(s) = (− sin(s), cos(s))T , b(s) = (cos(s), sin(s))T ,
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such that x = b(t/ε) · Z and v = a(t/ε) · Z.

This filtering step is important to identify the asymptotic limit. Indeed, under some assumptions, F solution
of (5) is known to strongly converge to F solution of the averaged model (see [14,15,19]) given by

∂tF (t, Z) =
〈
Qfilt

〉
[F ](t, Z), (7)

where
〈
Qfilt

〉
is the averaged of Qfilt on the fast variable s, which is present in u, T , A and a. It is defined by

〈
Qfilt

〉
[F ](t, Z) =

1

2π

2π∫
0

Qfilt[F ](t, s, Z) ds. (8)

Due to the nonlinear character of the collision operator, the filtered-averaged collision operator is not explicit.
However, as we shall see in the next subsection, some properties can be derived.

Let us remark that the filtered collision operator Qfilt[F ] given by (6) can also be expressed in the following
divergence form

Qfilt[F ](t, s, Z) = ∇Z ·
(
TA(s)F∇Z log

(
F/Mfilt[F ](s)

))
,

where Mfilt[F ] denotes the Maxwellian sharing the same three first moments of f , but expressed in the filtered
variables

Mfilt[F ](t, s, Z) =
ρ√
2πT

exp

(
− 1

2T
|a(s) · Z − u|2

)
. (9)

In the definition of Qfilt and Mfilt, the macroscopic quantities ρ, u, T have to be computed from the moments
(2) of the unfiltered function f associated to F , and then these x-dependent quantities are evaluated at b(s) · Z
(which corresponds to x for s = t/ε). For example, we have the following relations: ρ(x) = ρ(b(s) · Z) but also
Qfilt[F ](t, t/ε,X, V ) = Q[f ](t, x, v) andMfilt[F ](t, t/ε,X, V ) =M[f ](t, x, v). We also define the filtered-averaged
Maxwellian 〈

Mfilt
〉
[F ](t, Z) =

1

2π

2π∫
0

Mfilt[F ](t, s, Z) ds. (10)

Remark 1. In some applications, one can assume u = 0 and T = 1 in (3) which corresponds to the interactions
of the particles with a bulk with a given mean velocity and temperature. In this case, the Fokker-Planck operator
is linear and the filtered-averaged operator can be explicitly computed as a 2-dimensional Fokker-Planck operator.

Indeed, in this case, we have 1
2π

2π∫
0

A(s) ds = 1
2 Id and then

〈
Qfilt

〉
[F ] = 1

2 (T∆ZF +∇Z · (ZF )) .

2.2 Properties of the asymptotic model

We recall that, for a collision operator Q, a collisional invariant is a function c(x, v) such that for all distribution
function f ,

∫∫
Q[f ]c(x, v) dx dv = 0. Moreover, it is known that for the Fokker-Planck collision operator (3),

the exponential of collisional invariants are the equilibriums. This comes from the entropic structure (see [6] for
details). In the following, some properties of the filtered-averaged operator

〈
Qfilt

〉
are given such as its collisional

invariants and equilibrium. Several techniques to compute them have been introduced in [6] but we have to adapt
this framework to our specific context.

We introduce the notation Cs(Z) = C(esJZ) for a function C : R2 7→ R2 (similarly Fs(Z) = F (esJZ) for
F : R2 7→ R).

Proposition 1. Let F : R2 → R be a function, Q be the Fokker-Planck operator (3) and
〈
Qfilt

〉
be the filtered

Fokker-Planck operator (8). Then we have the following assertions.

1. F is an equilibrium of
〈
Qfilt

〉
if and only if Fs is an equilibrium of Q, ∀s ∈ R.

2. C is a collisional invariant of
〈
Qfilt

〉
if and only if Cs is a collisional invariant of Q, ∀s ∈ R.

3. If C is a collisional invariant of
〈
Qfilt

〉
, then V ∂XC −X∂V C is a collisional invariant of

〈
Qfilt

〉
.

4. F is an equilibrium of
〈
Qfilt

〉
if and only if log(F ) is a collisional invariant of

〈
Qfilt

〉
.
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Proof. The proof of the two first points is similar to [6] and will not be given. Let consider the third assumption.
We first remark that

d

ds
Cs(Z) =

d

ds
C(esJZ) = JesJZ·(∇ZC)(e

sJZ) = JesJZ·(∇ZC)s(Z) = (JZ · ∇ZC)s (Z) = (−V ∂XC+X∂V C)s(Z).

Assuming C is a collisional invariant of
〈
Qfilt

〉
, then by the second assertion, it is equivalent to say Cs is a collisional

invariant of Q for all s ∈ R. Thus for all h > 0, Cs+h−Cs

h is also a collisional invariant by linearity and considering

the limit h → 0 gives d
dsCs = (−V ∂XC +X∂V C)s is a collisional invariant of Q for all s ∈ R. According to the

second assertion, this is equivalent to say that (−V ∂XC +X∂V C) is a collisional invariant of
〈
Qfilt

〉
.

We prove now assumption 4. Let F be an equilibrium of
〈
Qfilt

〉
. From assumption 1, it means that Fs is an

equilibrium of Q for all s ∈ R. It is equivalent to say that log(Fs) is a collision invariant of Q and, using
assumption 2, it means that log(F ) is a collision invariant of

〈
Qfilt

〉
.

The following theorem enables us to derive the invariants and the equilibrium of
〈
Qfilt

〉
.

Theorem 1. The collisional invariants of
〈
Qfilt

〉
are linear combinations of 1, X, V,X2, XV and V 2. Let the

mass ϱ > 0, the mean velocity U ∈ R2 and the symmetric positive-definite temperature tensor T ∈ R2×2, defined
from the gyromoments of F :

ϱ =

∫
R2

F (X,V ) dX dV, (11a)

ϱU = ϱ

(
UX
UV

)
=

∫
R2

(
X
V

)
F (X,V ) dX dV, (11b)

ϱT = ϱ

(
TXX TXV

TXV TV V

)
=

∫
R2

(
X − UX
V − UV

)
⊗
(
X − UX
V − UV

)
F (X,V ) dX dV. (11c)

Then the only equilibrium sharing the same gyromoments as F is given by an anisotropic Maxwellian (called
gyromaxwellian)

G[F ](Z) = ϱ√
det(2πT)

e−
1
2 (Z−U)TT−1(Z−U), Z = (X,V ) ∈ R2, (12)

that is,
∫
R2 C(X,V )(F (X,V )− G[F ](X,V )) dX dV = 0, for C(X,V ) = (1, X, V,X2, XV, V 2)T .

Proof. First, we determine the collisional invariants. Let C(X,V ) be an invariant of
〈
Qfilt

〉
. From the second

assertion of Proposition 1, we know that Cs is an invariant of Q for all s ∈ R. In particular for s = 0 we have that
C = C0 is a collisional invariant of Q. So

C(X,V ) = α(X)V 2 + β(X)V + γ(X), (13)

where α, β and γ are smooth functions. From the third assertion of Proposition 1, V ∂XC − X∂V C is also a
collisional invariant of

〈
Qfilt

〉
, and thus of Q. This means that

V ∂XC(X,V )−X∂V C(X,V ) = α̃(X)V 2 + β̃(X)V + γ̃(X), (14)

where α̃, β̃ and γ̃ are three other smooth functions. Plugging (13) in (14), we get

α′(X)V 3 + (β′(X)− α̃(X))V 2 + (γ′(X)− 2Xα(X)− β̃(X))V − (γ̃(X) +Xβ(X)) = 0.

The coefficients of this polynomial function in V should vanish, so that

α′(X) = 0, (15a)

β′(X) = α̃(X), (15b)

γ′(X) = 2Xα(X) + β̃(X), (15c)

γ̃(X) = −Xβ(X). (15d)

From (15a), we deduce that α is constant, and so the coefficient in front of V 2 in (13) is constant. Since C represents
any invariant of

〈
Qfilt

〉
, all of its invariants will have a constant coefficient in front of V 2. Since V ∂XC−X∂V C is

an invariant of
〈
Qfilt

〉
, α̃ is constant. We can thus deduce from (15b) that β(X) is a polynomial of degree 1 (and
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thus the same for β̃). From (15c), we deduce in the same way that γ (and γ̃) is a polynomial of degree 2. We have
now the generic form of collisional invariants of

〈
Qfilt

〉
by replacing α, β and γ in (13) and one can conclude they

are linear combinations of 1, X, V,X2, XV and V 2. We verify that this is indeed collisional invariants by using
Proposition 1: compose a linear combination of these invariants with the change of variable Z 7→ esJZ for all s
gives an invariant of Q.
From the fourth assertion of Proposition 1, the equilibrium are exponential of collisional invariants which are linear
combinations of 1, X, V,X2, XV and V 2. Since this is the case for the function (12), it remains to show that G[F ]
and F share the same gyromoments and T is positive definite. This can be done using classical computations and
is postponed in Appendix A.

Remark 2. It is well known (see [6]) that strong oscillations bring dissipation also in space, so it is not surprising
to get Maxwellian-type equilibrium which depends on both space and velocity.

Remark 3. We can define an operator G : F → G[F ] defined by (11) and (12). We can do the same with
the filtered-averaged Maxwellian

〈
Mfilt

〉
: F →

〈
Mfilt

〉
[F ] defined by (10). It is worth to note that G[F ] and〈

Mfilt
〉
[F ] are different except when F is a gyromaxwellian. This is related to the non-commuting limits t → ∞

and ε→ 0 in the filter model (5), this has been discussed in [16]. We detail this point further in Section 6.1.

It is worth to note that gyromoments (11) are also conserved when F solves the filtered equation (5) for all
ε > 0. Indeed, from Assertion 2 of Proposition 1, the collisional invariants of

〈
Qfilt

〉
are also collisional invariants

of Q when they are unfiltered form.

Proposition 2. ∀ε ≥ 0, the gyromoments (11) are conserved ( d
dt (ϱ, ϱU , ϱT) = 0) and d

dtG[F ] = 0.

Proof. First, we have
∫
Q[f ]c(z) dz = 0 for c(z) = (1, x, v, x2, xv, v2) and we recall that Z = e

t
εJz,∀ε > 0 so

1, X, V,X2, XV, V 2 are linear combinations of 1, x, v, x2, xv, v2 (with coefficients depending on t/ε). Then, we get∫
Qfilt[F ]c(Z) dZ =

∫
Q[f ]c(e

t
εJz) dz = 0 by linearity. Integrate (5) against c(Z) directly proves the conservation

of gyromoments. As the gyromaxwellian G[F ] depends on time only through gyromoments, we get d
dtG[F ] = 0.

For ε = 0, c(Z) is the vector of collisional invariants of
〈
Qfilt

〉
(from Theorem 1) so the conservation is obtained

by definition.

3 Particle discretization for the Fokker-Planck operator

In this section, for the sake of clarity, we first focus on the Fokker-Planck operator in the velocity direction and
discuss its numerical approximation using particle methods which is well adapted for the coupling of the transport
part that will be described in the next section. Without adding complexity, we consider v ∈ Rd where d is the
dimension, and all the integrals are considered over Rd. As mentioned above, we consider particle methods in
this work and will adapt the numerical method developed for the Landau operator in [8, 28, 36] to the Fokker-
Planck operator. To do so, some properties of the Fokker-Planck operator will be recalled in Subsection 3.1. In
particular, the use of a metric bracket and an entropy enables us to define a regularized Fokker-Planck operator
and to study its properties in Subsection 3.2. Then, this regularized operator will pave the way of deterministic
particles method presented in Subsection 3.3 whereas Subsection 3.4 presents conservation properties at the fully
discrete level (including time discretization), and finally Subsection 3.5 is devoted to the presentation of a variant
of the method allowing parallelization.

3.1 The Fokker-Planck collision operator and its properties

Here, we focus on the collisional operator so we consider a density f(t, v) solution of

∂tf = Q(f) = T∆vf +∇v ·
(
(v − u)f

)
, f(t = 0, v) = f0(v), v ∈ Rd. (16)

As there is no transport in (16), the moments
∫
f(t, v)(1, v, |v|2)dv are conserved with time, so are the mean

velocity u and temperature T which are defined from the moments of the initial condition f0(v). In view of the
deterministic particle method, we start with a reformulation of (16) using a metric bracket and a driven entropy
(see also [28,32]). In the Fokker-Planck case, the bracket is given by, for two functionals F and G depending on f ,

(F ,G) (f) = −
∫
fT∇v

δF
δf
· ∇v

δG
δf

dv, (17)
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where δF
δf is the Fréchet derivative of F . The driven entropy SM is the relative entropy to the MaxwellianM:

SM[f ] =

∫
f log(f/M) dv.

The evolution of any functional F of f is thus given by

∂tF(f) = (F ,SM) (f). (18)

For example, (16) can be recovered using the following functional F(f)(v) =
∫
δ(v − v′)f(v′) dv′ where δ(v)

denotes the Dirac distribution. We also define the physical entropy

S[f ] =
∫
f log(f) dv. (19)

The following Theorem recalls some standard properties of the Fokker-Planck operator which will be proven using
the metric bracket formalism.

Theorem 2. (Properties of the collision operator)
Let M be a Maxwellian characterized by ρ, u and T and let f be the solution of (16) which has the same mass,
mean velocity and temperature asM. We have the following properties

d

dt

∫
f dv = 0,

d

dt

∫
vf dv = 0,

d

dt

∫
|v|2

2
f dv = 0,

d

dt
SM ≤ 0.

Moreover, the only equilibrium of the Fokker-Planck operator Q is f =M.

Proof. The proof, using bracket formulation (18), is given in Appendix B.1.

We then consider (16) in the following advective form

∂tf = ∇v · (fT∇v log(f/M)) = ∇v ·
(
fT∇v

δSM
δf

)
, (20)

where the advective field is the functional derivative of the relative entropy T δSM
δf = T∇v log(f/M).

3.2 Regularized Fokker-Planck operator

In view of using particle methods, (20) is not well adapted due to the presence of the logarithm. The idea is to
regularize the distribution function using convolutions with a mollifier [7, 8, 28,36] given by

ψµ(v) =
1

(2πµ)
d/2

e−
|v|2
2µ , (21)

where µ > 0 is the regularization parameter. In order to keep the metric bracket structure (which implies the
dissipation of relative entropy), we apply the regularization directly on the relative entropy. In other words, we
replace SM by the regularized relative entropy SµM given by

SµM[f ] =

∫
f ∗ ψµ log(f ∗ ψµ/M) dv, (22)

which is now well defined for particle densities, as we shall see in the next subsection. The evolution equation
associated to is given by (the notation f is kept for the unknown)

∂tf = ∇v ·
(
fT∇v

δSµM
δf

)
= ∇v ·

[
fTψµ ∗ ∇v log(f ∗ ψµ/M)

]
. (23)

We can observe that the drift part is not affected by the regularization. Indeed, we have ∇v log(M) = −(v−u)/T
so using properties of Gaussian, we have

−ψµ ∗ ∇v log(M) = − 1

T

(∫
w ψµ(v − w) dw − u

∫
ψµ(v − w) dw

)
= −v − u

T
.
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Consequently, (23) can be equivalently written as

∂tf = (f,SµM) = ∇v ·
[
f
(
Tψµ ∗ ∇v log(f ∗ ψµ) + (v − u)

)]
. (24)

As we have modified the collision operator, we can naturally ask if the new operator shares the same properties
as the original one. Even if mass and momentum are preserved, this is not the case for the energy which is
dissipated, so is the temperature. As a consequence the temperature of the Maxwellian and the temperature of f
will differ, this is why, in the following, we introduce different notations for these two quantities, namely TM and
T f . Temperature T in the bracket (17) is replaced by TM so that we recover (24) with T = TM.

Proposition 3. (Properties of the regularized collision operator)
LetM be a Maxwellian characterized by ρ, u and TM and let f be the solution of (24) with mass ρ, mean velocity
u and temperature T f = 1

dρ

∫
|v − u|2f dv. Initially, we assume T f = TM at t = 0. Then we have the following

properties
d

dt

∫
f dv = 0,

d

dt

∫
vf dv = 0,

d

dt
SµM ≤ 0, (25)

and
d

dt

∫
|v|2

2
f dv = dρ

(
TM − T f

)
+ µTMD(f), with D(f) =

1

TM (S,S) (f ∗ ψµ). (26)

Moreover, the only equilibrium of the regularized Fokker-Planck operator is characterized by f ∗ ψµ =M.

Proof. The proof, using bracket formulation, is given in Appendix B.2.

During the evolution of (24), TM(t) = TM(0) whereas T f is not conserved. This is due to (26): the energy is
not preserved by the regularized collision operator. However, we have an explicit expression of its evolution which
motivates the following modification.

Indeed, we propose a technique to get the energy conservation. Instead of considering a constant (Maxwellian)
temperature TM, we choose it in such a way that the time derivative of the energy in (26) equals 0. We thus take

TM =
dρ

dρ+ µD(f)
T f . (27)

Remark 4. D(f) is independent from TM and is negative from the negativity of the bracket.

The following Proposition and Corollary present a different way to express D(f). This new formulation will be
cheaper and easier to compute when considering particle discretization (detailed in Subsection 3.3). Suppose that
g solves the heat equation, which means, using the bracket formulation and the physical entropy S given by (19),
that ∂tg = (g,S)(g). We deduce that the time evolution of the entropy S[g] is then given by ∂tS[g] = (S,S)(g).
To compute D(f) = (S,S)(f ∗ ψµ), it is tempting to choose g = f ∗ ψµ, but f is not the solution of the heat
equation on v ∈ Rd (with vanishing condition at infinity). However, the following Proposition enlightens us.

Proposition 4. Let gt(τ, v) be the solution of the heat equation ∂τgt = ∆vgt (v ∈ Rd), with initial condition

gt(τ = 0, v) = (f ∗ ψµ)(t, v). Then D(f) =
d

dτ
S[gt]|τ=0.

Proof. Remark that since we have divided the bracket by TM, we consider TM = 1 in the proof without loss
of generality. Since the function gt solves the heat equation, we have equivalently ∂τgt = (gt,S)(gt) and the
evolution of S[gt(τ, ·)] is given by d

dτ S[gt(τ, ·)] = (S,S)(gt(τ, ·)). Thanks to the choice of the initial condition

gt(τ = 0, v) = (f ∗ ψµ)(t, v), taking τ = 0 in the latter equation gives d
dτ S[gt(τ, ·)]|τ=0 = (S,S)(gt(τ = 0, ·)) =

(S,S)((f ∗ ψµ)(t, ·)) = D(f).

Thanks to Proposition 4, we can deduce an explicit expression for D(f) defined in (26).

Corollary 1. D(f) satisfies D(f) =
∫
(f ∗∆vψµ) log(f ∗ ψµ) dv with ∆vψµ = 1

µ

(
|v|2
µ − d

)
ψµ.

Proof. Let gt defined in Proposition 4, then we have

d

dτ
S[gt] =

∫
Rd

∂τgt(log(gt) + 1) dv =

∫
Rd

∆vgt log(gt) dv.

Evaluating at τ = 0 and using the initial condition gt(τ = 0, v) = (f ∗ ψµ)(t, v) from Proposition 4 leads to

D(f) =
d

dτ
S[gt]|τ=0 =

∫
(f ∗∆vψµ) log(f ∗ ψµ) dv.

Using the expression (21) of ψµ directly gives ∆vψµ.
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3.3 Particle discretization

In this part, we present the particle method. Starting from (24), we approximate the continuous distribution
function f by a particle density given by

fNp
(t, v) =

ρ

Np

Np∑
p=1

δ(v − vp(t)), (28)

where ρ =
∫
f0(v)dv is the total mass of the initial distribution function, Np is the number of particles and vp is

the velocity of the p-th particle. Inserting (28) into (24) leads to the following set of ODEs for each p = 1, . . . , Np,

v̇p(t) = −Uµ[fNp ](t, vp(t)), with Uµ[fNp ](t, vp) = Tψµ ∗ ∇v log
(
fNp ∗ ψµ

)
(vp) + (vp − u). (29)

The particle density is solution in the sense of distribution of the regularized equation (24). In this work, we choose
to take particles with same weights ρ/Np but the method also works with non constant weights. The computation
of the regularized part of the advection field Uµ[fNp

](t, vq) can be done using a Gauss-Hermite quadrature. Indeed,
using a change of variable, the first part can be written as

ψµ ∗ ∇v log
(
fNp ∗ ψµ

)
(vp) = (∇vψµ) ∗ log

(
fNp ∗ ψµ

)
(vp)

=

√
2

µπd

∫
Rd

e−|w|2w log
(
fNp
∗ ψµ

)
(vp +

√
2µw) dw =

∫
Rd

e−|w|2g(w) dw,
(30)

where g(w) =
√

2
µπdw log

(
fNp
∗ ψµ

)
(vp +

√
2µw). The form of the integral motivates the use of Gauss-Hermite

quadrature: ∫
Rd

e−|w|2g(w) dw ≈
Nq∑

i1,i2,...,id=1

ωi1ωi2 . . . ωidg(ci1 , ci2 , . . . , cid),

where Nq denotes the number of weights and points, ωi and ci respectively denote the weights and points of the
quadrature. Other quantities (like the entropies S and SM) will be approximated using Gauss-Hermite quadrature
using similar computations. Another example is the calculation of the correction (27): we need Corollary 1 and
with f = fNp

and second point of Lemma 1 in Appendix B.2, we get

D(fNp) =
ρ

Np

Np∑
p=1

(
∆vψµ ∗ log

(
fNp
∗ ψµ

))
(vp),

where the first convolution is approximated using Gauss-Hermite quadrature.

3.4 Time discretization

In this section, we investigate the impact of a forward Euler time discretization applied to (29). Let us mention
that implicit integrators are used in [36] for Landau operator and [30] for Lenard-Bernstein operator where similar
strategies are employed. Let consider vnp ≈ vp(tn) with tn = n∆t and ∆t > 0 the time step, and fnNp

given by (28)

where vp(t) are replaced by vnp . Then we consider the following time discretization

vn+1
p − vnp

∆t
= −TM∇vψµ ∗ log

(
fnNp
∗ ψµ

)
(vnp )− (vnp − u). (31)

Theorem below shows conservation (or non-conservation) of discrete moments. We consider that the convolutions
are computed exactly (and not approximated with Gauss-Hermite quadrature).

Theorem 3. For n ∈ N, let define the discrete mass, momentum and energy as

ρn =

∫
Rd

fnNp
(v) dv, Pn =

∫
Rd

fnNp
(v)v dv =

ρ

Np

Np∑
p=1

vnp , En =

∫
Rd

fnNp
(v)
|v|2

2
dv =

ρ

Np

Np∑
p=1

∣∣vnp ∣∣2
2

,
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and consider that particles evolution is given by numerical scheme (31). Suppose that initially, ρ0 = ρ and
P 0 = ρu. Then ∀n ∈ N we have

ρn = ρ, Pn = ρu,
En+1 − En

∆t
= dρ

(
TM − T f,n

)
+ µ (S,S) (fnNp

∗ ψµ)−
∆t

2
TM (SµM,SµM) (fnNp

), (32)

where T f,n is defined by En = ρ
(
|u|2 + dT f,n

)
/2, TM is the constant temperature ofM and the bracket, S and

SµM are respectively defined by (17), (19) and (22).

Proof. It is clear that the mass ρ is preserved. For momentum, apply ρ
Np

Np∑
p=1

on (31) gives

Pn+1 − Pn

∆t
= −TM ρ

Np

Np∑
p=1

∇vψµ ∗ log
(
fnNp
∗ ψµ

)
(vnp )− (Pn − ρu)

= −TM
∫
Rd

fnNp
∇vψµ ∗ log

(
fnNp
∗ ψµ

)
(v) dv − (Pn − ρu)

= −TM
∫
Rd

(
fnNp
∗ ψµ

) ∇vf
n
Np
∗ ψµ

fnNp
∗ ψµ

dv − (Pn − ρu) = − (Pn − ρu) .

Since P 0 = ρu, we show by induction Pn = ρu for all n ∈ N.
Regarding the energy, we multiply (31) by (vnp + vn+1

p )/2 and sum over p to get

En+1 − En

∆t
= −TM ρ

2Np

Np∑
p=1

(
vnp + vn+1

p

)
· ∇vψµ ∗ log

(
fnNp
∗ ψµ/M

)
(vnp )

= −TM ρ

Np

Np∑
p=1

vnp · ∇vψµ ∗ log
(
fnNp
∗ ψµ/M

)
(vnp ) + ∆t

(TM)2

2

ρ

Np

Np∑
p=1

∣∣∣∇vψµ ∗ log
(
fnNp
∗ ψµ/M

)
(vnp )

∣∣∣2
= −TM

∫
Rd

fnNp
v · ∇vψµ ∗ log

(
fnNp
∗ ψµ/M

)
(v) dv +∆t

(TM)2

2

∫
Rd

fnNp

∣∣∣∇vψµ ∗ log
(
fnNp
∗ ψµ/M

)
(v)
∣∣∣2 dv.

The first term is the same as in the regularized case (see Appendix B.2). For the second term, we recognize the
bracket (SµM,SµM) (fnNp

). Eventually, we get (32).

In conclusion, the time discretization adds an extra term which also contributes to energy dissipation. As in
the semi-continuous case, we will use (32) in order to propose a modification that enables to conserve energy at
the fully discrete level. This brings a new correction of TM which will be computed at each iteration (and thus
denoted by TM,n). We define

Dn =
1

TM (S,S) (fnNp
∗ ψµ) and D̃n =

1

TM (SµM,SµM) (fnNp
). (33)

The division by TM makes Dn independent of TM whereas D̃n still depends on TM only throughM.

Proposition 5. Scheme (31) conserved the energy (En = E0 with En defined in Theorem 3) under the following
correction of the Maxwellian temperature

TM,n =
dρ+ µDn −

√
(dρ+ µDn)

2 − 2dρ∆tT f,nD̃n

∆tD̃n
. (34)

Proof. Using (33), (32) can be reformulated as

En+1 − En

∆t
= −∆t

2
D̃n(TM)2 + (dρ+ µDn)TM − dρT f,n,
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and the energy is preserved if TM is defined as the root of the second order polynomial

TM
± =

dρ+ µDn ±
√

(dρ+ µDn)
2 − 2dρ∆tT f,nD̃n

∆tD̃n
.

Notice that the discriminant is positive since D̃n ≤ 0 due to the property of the bracket. We select a positive
solution TM

− (the numerator and the denominator are negative in this case).

Remark 5. It is clear from (32) that when ∆t→ 0 or µ→ 0, the energy preservation is recovered. We can also
observe that when µ → 0, the energy is preserved up to the time discretization error, and it is actually also true
for the temperature correction. Indeed, from (34), we get TM = T f,n +O(∆t) since

√
(dρ)

2 − 2dρ∆tT f,nD̃n = dρ

√
1− 2

∆tT f,nD̃n

dρ
= dρ−∆tT f,nD̃n +O(∆t2),

so that

TM
− =

dρ− dρ+∆tT f,nD̃n

∆tD̃n
+O(∆t) = T f,n +O(∆t).

Remark 6. Actually, the correction (34) is implicit since D̃n, given by (33), also depends on TM,n through M.

We propose to approximate D̃n by D̂n (which will be discussed below) in (34) ; even if the energy will not be
preserved exactly with this approximation, the correction (34) will become explicit and will lead to an improved

conservation. Now, let discuss how D̂n is computed.
From bracket properties, we have (SµM,SµM) (fNp

(tn)) = d
dtS

µ
M[fNp

]|t=tn ; then, we approximate the time derivative

by (SM[fn+δt
Np

]−SM[fnNp
])/δt where δt is a small time step and where fn+δt

Np
is obtained by advancing the particles

from tn to tn + δt. This step requires the knowledge of TM (that we are looking for), hence we take TM =

TM,n−1 during this step (and TM = T f at t = 0). Then, we set D̂n = 1
TM,n−1 (SM[fn+δt

Np
] − SM[fnNp

])/δt as an

approximation of D̃n in (34) so that TM,n can be computed explicitly.
Of course, solving the nonlinear relation (34) to get a more accurate approximation of TM,n is possible at the
price of a fixed point procedure which turns out to be very costly. The previous procedure actually corresponds to
one iteration of a fixed point procedure which already leads to a good energy preservation. Close to the equilibrium,
definition of correction TM,n becomes numerically stiff (since D̃ becomes small). In this regime, we replace
correction (34) by the semi-continuous one (27) since the extra term in (32) vanishes.

3.5 Clustering method

Even if the particles approach introduced in [8] is very attractive, a direct numerical implementation is quite
expensive since its complexity is in O(N2

p ) with Np the number of particles. More precisely, for each particule
p, one has to compute ∇vψµ ∗ log (f ∗ ψµ) (vp): the first convolution is computed using a d-dimensional Gauss-
Hermite quadrature with Nq points and f ∗ ψµ is computed with a sum over the Np particles. Finally, the
complexity is O(Nd

qN
2
p ) where d is the phase space dimension. Some attempts to accelerate have been proposed

using treecode in [8] or GPU programming in [36]. Here, to reduce the complexity, we propose the following
clusterization technique. The idea is to consider only a part of the set of particles to reconstruct f ∗ ψµ in the

logarithm convolution part. Indeed, let introduce Ñp < Np. We then split the set of Np particles into M clusters

of Ñp particles (Np = MÑp). Let call Ci the i-th cluster for i = 1, . . . ,M and the corresponding regularized
unknown in each cluster writes

f i
Ñp
∗ ψµ(v) =

ρ

Ñp

∑
q∈Ci

ψµ(v − vq).

Thanks to this definition, we replace (29) by the following time evolution of the particles velocities

v̇p(t) = −T∇vψµ ∗ log
(
f i
Ñp
∗ ψµ

)
(vp)− (vp(t)− u(t)) , ∀p ∈ Ci.

For this equation, the complexity becomes O(Nd
qNpÑp). Moreover, each cluster can be treated separately which

is well adapted for parallel calculation.
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This clustering approach does not destroy the conservation of mass and momentum. It is obvious for the mass since
ρ is just a constant number in the scheme. For momentum, denote ρui the momentum of cluster Ci (momentum
computed with f i

Ñp
). As ui ̸= u a priori, this momentum is not conserved and we have

∂t (ρui) = ρ(ui − u). (35)

Equation (35) can be deduced from proof of Theorem 3 presented in Appendix B.2 by considering a density with
mean velocity ui instead of u. Moreover we have,

1

M

M∑
i=1

ui =
1

M

M∑
i=1

1

Ñp

∑
q∈Ci

vq =
1

Np

Np∑
q=1

vq = u.

Thus, we get

∂tρu = ∂t
ρ

Np

Np∑
q=1

vq =
1

M

M∑
i=1

∂t
ρ

Ñp

∑
q∈Ci

vq =
1

M

M∑
i=1

ρ(ui − u) =
1

M

M∑
i=1

ρui − ρu = 0.

As for the classical method presented in previous subsection, the energy is not conserved but correction of TM

similar as (27) can be derived to conserved energy.

4 Discretization for full model

The aim of this part is to deal with the discretization of the non homogeneous model (1) involving high oscillations
in time and the collisional part. After a change of variable involving the main oscillation, we obtained the filtered
formulation (5) where Qfilt[F ] is given by (6). To apply the particle method on (6), we introduce similarly as in
the previous section the regularized version of the filtered Fokker-Planck operator (with Z = (X,V ) ∈ R2)

Qfilt,µ[F ](t, s, Z) = ∇Z · (TA(s)F∇Zψµ ∗ log(F ∗ ψµ)(Z)) +∇Z · (A(s) (Z − a(s)u)F ) . (36)

The choice of particles approximation is motivated by the fact that the filtering operation commutes with the
regularization step. This will be detailed in subsection 4.1. Then, Subsection 2 is devoted to the derivation of the
time discretization which is uniformly accurate with respect to ε, using techniques from [9,17,19].

4.1 Particle approximation for the non homogeneous model

First, as the space and velocity variables are mixed in the filtered formulation, the particle unknown has also to
be smoothed in space with a mollifier so that we consider in the sequel ψµ : w ∈ R2 → ψµ(w) ∈ R given by (21)
with d = 2. Secondly, we notice that the filtration preserves the regularization. In other words, the regularization
and the filtration steps commute so that we can apply equivalently a particle method on the regularized version
of (1) or on the filtered regularized formulation (36). This is explained in the Proposition below.

Proposition 6. Consider f and F two densities such that F (Z) = f(e−
t
εJZ). Then we have the following

equalities (with z = (x, v) ∈ R2)

ψµ ∗ log (f ∗ ψµ) (z) = ψµ ∗ log (F ∗ ψµ) (Z), Qµ[f ](t, z) = Qfilt,µ[F ](t, t/ε, Z).

Proof. The proof relies on the change of variable ξ = e
t
εJζ which preserves the volume. Indeed, from the first

convolution, we have

f ∗ ψµ(w) =

∫
f(w − ζ)ψµ(ζ) dζ =

∫
f(e−

t
εJW − ζ)ψµ(ζ) dζ

=

∫
f(e−

t
εJ(W − ξ))ψµ(ξ) dξ =

∫
F (W − ξ)ψµ(ξ) dξ = F ∗ ψµ(W ).

Consequently, the double convolution becomes

ψµ ∗ log(f ∗ ψµ)(z) =

∫
ψµ(z − w) log (f ∗ ψµ(w)) dw =

∫
ψµ(e

− t
εJZ − w) log (f ∗ ψµ(w)) dw

=

∫
ψµ(Z −W ) log (F ∗ ψµ(W )) dW = ψµ ∗ log(F ∗ ψµ)(Z).

The second equality is directly deduced from the first one.

12



Consider the particle density fNp
and the regularized particle density FNp

defined by

fNp
(t, z) =

ϱ

Np

Np∑
p=1

δ(z − zp(t)) and FNp(t, Z) =
ϱ

Np

Np∑
p=1

δ(Z − Zp(t)), (37)

where the filtered particles are given by Zp(t) = e
t
εJzp(t) and ϱ is the total mass of the densities. The ODE

system satisfied by zp(t) = (xp(t), vp(t)) obtained by inserting (37) in (1) where Q is replaced by its regularization
version (24) gives

żp(t) = −
1

ε
Jzp(t)− Uµ[fNp ](t, vp(t)).

Since filtration and regularization steps commute, performing either the filtering procedure on this latter system
or inserting (37) into (36) both gives

Żp(t) = −Ufilt
µ [FNp ](t, t/ε, Zp(t)), (38)

where
Ufilt
µ [FNp

](t, s, Zp(t)) = TA(s)∇Zψµ ∗ log
(
FNp
∗ ψµ

)
(Zp) +A(s)(Zp − a(s)u).

Remark 7. From the relation (26) of Proposition 3, kinetic energy is dissipated locally in space which implies
that quadratic gyromoments (i.e. those associated to X2, XV and V 2) are not conserved. It is possible to use the
correction (27) to preserve the quadratic gyromoments. Other gyromoments (i.e. those associated to 1, X, V ) are
conserved up to the quadrature error.

4.2 Time integration

We are interested in this part by the time approximation of (38). To do so, we first observe that it is a multiscale
problem where the fast variable t/ε is periodic of period 2π, which enables to use the double scale strategy
introduce in [9, 17, 19]. The main idea is to consider the fast scale t/ε as an independent variable s so that the
original solution is recovered by an evaluation on the diagonal s = t/ε. By an abuse of notation, we still denote
Zp(t, s) the double scale unknown which satisfies the following set of PDEs

∂tZp +
1

ε
∂sZp = −Ufilt

µ [FNp
](t, s, Zp).

We set Sp(t, s) = −Ufilt
µ [FNp

](t, s, Zp). Since Zp is periodic with respect to s, Fourier expansion is used in this

direction: Zp(t, s) =
∑

ℓ e
iℓsẐp,ℓ(t). We then get the following ODE on the Fourier modes Ẑp,ℓ (Ŝp,ℓ(t) denotes

the Fourier modes associated to Sp(t, s))

∂tẐp,ℓ(t) +
iℓ

ε
Ẑp,ℓ(t) = Ŝp,ℓ(t), ℓ ∈ Z⋆,

and ∂tẐp,0(t) = Ŝp,0(t) (which actually corresponds to the averaged model (7)).

Now we introduce the discrete unknown Ẑn
p,ℓ ≈ Ẑp,ℓ(t

n), tn = n∆t, with ∆t > 0 the time step. Applying the
Duhamel formula combined with exponential integrators [29] finally gives a first order scheme

Ẑn+1
p,ℓ = e−

iℓ
ε ∆tẐn

p,ℓ +∆tφ1

(
− iℓ
ε
∆t

)
Ŝn

p,ℓ, (39)

whereas a second order scheme is given by

Ẑn+1
p,ℓ = e−

iℓ
ε ∆tẐn

p,ℓ +∆tφ1

(
− iℓ
ε
∆t

)
Ŝn

p,ℓ +∆tφ2

(
− iℓ
ε
∆t

)(
Ŝn

p,ℓ − Ŝn−1
p,ℓ

)
, (40)

where the φ1, φ2 functions are given by

φ1(z) =
1

z
(ez − 1) , φ2(z) =

1

z2
(ez − 1− z) ,

where Ŝn
p,l is the Fourier transform of −Ufilt

µ [Fn
Np

](tn, s, Zn
p ). To compute −Ufilt

µ [Fn
Np

](tn, s, Zn
p ), the moments u

and T need to be computed at time tn. To do so, we unfilter Fn
Np

and approximate them using second order

spline interpolation on a sufficiently large space grid [xmin, xmax] with Nx points. Let remark that for the second
order scheme (40), the first iteration can be done with the first order scheme (39). Finally, the original particles

are reconstructed following zn+1
p = e−

tn+1

ε JZn+1
p (s = tn+1/ε), Zn+1

p (s) is reconstructed using a Fourier truncated
series. For more details, we refer to [9, 16,17,19].
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5 Numerical results for the particle method applied to the Fokker-
Planck operator

In this section, we focus on the homogeneous model to discuss the behavior and properties of the particle numer-
ical method applied to the Fokker-Planck operator. Section 5.1 considers a relaxation test whereas Section 5.2
highlights the noise that the method can produce according to the time step ∆t and the regularization parameter
µ. Section 5.3 is devoted to the conservation properties of the scheme and the temperature correction method.
Finally, Section 5.4 illustrates the clustering method. In this section, we consider the following initial density

f0(v) =
1

2
√
2π

(
e−

(v−u1)2

2 + e−
(v−u2)2

2

)
, (41)

with u1 = −2.6, u2 = 3.4.

5.1 Relaxation to equilibrium test

In this part, we study a relaxation test starting initially from the bi-Maxwellian (41) which is known to converge
towards its Maxwellian equilibrium. The following numerical parameters are chosen: ∆t = 10−3, µ = 0.02, the
number of quadrature points is Nq = 50 and the number of particles is Np = 250 or 103.

We initialize Np particles by a random draw of the initial condition f0, using a rejection sampling method.
Let us remark that the so-obtained particle density fNp(t = 0) has not the same moments of f0 (except mass).
To determine the Maxwellian equilibrium, we compute the moments u and T of fNp

(t = 0). Figure 1 shows the
results of relaxation test for different times using Np = 250 (left column) and Np = 103 (right column). The
red plot corresponds to the Maxwellian equilibrium M, the blue dots (on the horizontal axis) represents the
particles vp whereas the blue line represents the regularized particles function fNp ∗ ψµ. At t = 0, the dashed
blue line represents the initial condition f0. We can see at t = 0 the noise due to the initial sampling on the
regularized particle function (which is less important when Np = 103) but after very short time, the solution
becomes smoother. The plot corresponding to the final time t = 1 shows that fNp

∗ ψ has almost reached the
Maxwellian equilibrium. To quantify this convergence, we plot in Figure 2 the difference in L1, L2 and L∞ norms
between fNp

∗ ψµ and M as a function of time in semi-log scale. We observe the (exponential) convergence for
small time but a plateau is reached (the level of which is smaller using more particles). The explication is the
following: in low density regions, the regularization of isolated particles makes appear the gaussian ψµ centered
at the (isolated) particle velocity. We thus observe a bump around the particle as illustrated in Figure 3. These
bumps can not disappear, however this effect can be decreased using more particles Np = 103.

5.2 Noise of the method

In this part, we investigate the noise effect according to the numerical parameters ∆t and µ. To do so, we
consider the same test as in Subsection 5.1 (the initial condition is given by (41)). In Figure 4, the regularized
solution fNp

∗ ψµ is plotted at t = 1.5 with Np = 250 (µ = 0.02 and Nq = 50) and for different time steps:
∆t = 10−2, 1.2× 10−2, 1.5× 10−2, 2× 10−2. One observes that when the time step is too large, the level of noise
becomes large, which does not allow for a good representation of the solution. In particular, the presence of noise
will deteriorate the quality of the Gauss-Hermite quadrature in the convolution terms, but also the conservation
properties. Finally, in Figure 5, the time history of a given particles vp is plotted for different time steps. As
discussed above, when the time step is too large, the particle does not converge to a right quantity and presents
a chaotic behavior.

5.3 Conserved properties

Here, we investigate the preservation of the moments according to the numerical parameters ∆t and µ (the other
parameters are Np = 250, Nq = 50 and the final time is t = 0.5). We focus on the momentum P = ρu and the
energy E preservation. To do so, we give in Tables 1, 2 and 3 the following quantities

Perr = max
n=0,...,N

∣∣Pn − P 0
∣∣, Eerr = max

n=0,...,N

∣∣En − E0
∣∣,

for ∆t = 10−3, 10−4 and µ = 10−1, 10−2 for the three different variants of the method presented in Section 3
(without correction, with correction (27) and with correction (34)). Since the initialisation procedure (rejection
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Figure 1: fNp
∗ ψµ as a function of v for different time steps: relaxation of the bi-Maxwellian initial condition

towards the Maxwellian. Left: Np = 250. Right: Np = 103. From top to bottom, t = 0, t = 0.15, t = 0.35, t = 1.
∆t = 10−3, µ = 0.02, and Nq = 50.

sampling) used to sample the particles according to the initial condition is an important source of noise in the
method, we applied a minimization algorithm on the sampled particles before the time loop, in order to reduce
the Gauss-Hermite quadrature error at the first time steps. One example to reduce the initial noise is to minimize

the functional
∥∥fNp

∗ ψµ − f0
∥∥2
L2 on particles.

According to the variant, the amplitude of the energy error Eerr depends on ∆t and µ. When no correction for
TM is applied (see Table 1), the momentum is preserved (up to some error due to the Gauss-Hermite quadrature)
but not the energy, as expected from Theorem 3.3. In Table 2, the error from the correction proposed for the
regularized Fokker-Planck operator is shown. As expected, the energy is not preserved, but one can see an
important improvement compared to Table 1, and in particular the error is divided by 10 when the time step is
divided by 10. Finally, in Table 3, the error from the correction proposed in (34) is displayed. The correction is able
to preserve the error up to about 10−7 (almost independently of the time step). The reason why machine accuracy

is not reached relies on the approximation of D̃ (see Remark 6) in addition with Gauss-Hermite quadrature.
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Figure 2: Time evolution of ∥fNp ∗ ψµ −M∥ for Np = 250 (left) and Np = 103 (right).

Figure 3: fNp
∗ ψµ for v ∈ [6, 10]: illustration of the bumps around isolated particles.

Perr µ = 10−1 µ = 10−2

∆t = 10−3 8.7714× 10−9 5.4729× 10−10

∆t = 10−4 8.7443× 10−9 5.3233× 10−10

Eerr µ = 10−1 µ = 10−2

∆t = 10−3 9.2179× 10−2 4.3004× 10−2

∆t = 10−4 9.2882× 10−2 4.3799× 10−2

Table 1: Conservation of momentum and energy without correction of TM.

Perr µ = 10−1 µ = 10−2

∆t = 10−3 8.4644× 10−9 5.5386× 10−10

∆t = 10−4 8.4531× 10−9 5.3865× 10−10

Eerr µ = 10−1 µ = 10−2

∆t = 10−3 2.5359× 10−3 2.3464× 10−3

∆t = 10−4 2.5235× 10−4 2.3337× 10−4

Table 2: Conservation of momentum and energy with the semi-discrete correction (27) of TM.

Perr µ = 10−1 µ = 10−2

∆t = 10−3 8.4758× 10−9 5.5325× 10−10

∆t = 10−4 8.4542× 10−9 5.3858× 10−10

Eerr µ = 10−1 µ = 10−2

∆t = 10−3 1.7000× 10−7 3.5123× 10−7

∆t = 10−4 4.9941× 10−8 1.7070× 10−7

Table 3: Conservation of momentum and energy with the correction (34) of TM, using Remark 6.

5.4 Behavior of clustering method

The aim of this part is to give some preliminary results obtained with the clustering method presented in Section
5.4. On Figure 6, we plot the solution for t = 0.5 (µ = 0.04, ∆t = 10−3) in different configurations: Figure 6a
displays the solution of the classical method with Np = 60, whereas Figure 6b displays the classical method with

Np = 1200, Figure 6c corresponds to the clustering method with Np = 1200 split in 20 clusters of Ñp = 60 particles
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(a) ∆t = 10−2 (b) ∆t = 1.2× 10−2

(c) ∆t = 1.5× 10−2 (d) ∆t = 2× 10−2

Figure 4: fNp
∗ ψµ as a function of v for different time steps: influence of the time step on the level of noise.

Np = 250, µ = 0.02, and Nq = 50.

Figure 5: Time history of one particule vp for different time steps. Np = 250, µ = 0.02, and Nq = 50.

(each cluster is kept unchanged during the simulation) and Figure 6d corresponds to the clustering method with
Np = 1200 split in 20 clusters of Ñp = 60 particles (each cluster is randomly chosen at each iteration). As expected,
the runtime observed for cases 6c and 6d is shorter than 6b even if there is the same number of particles (the

computation of advection field is almost 20 times faster, as expected with complexity in O(N2
qNpÑp) instead of

O(N2
qN

2
p )). Even if the quality of the solution is not as good as the one obtained with the classical method using

Np = 1200 particles, in particular in the tail of the solution where there are few particles, the clustering method
may be interesting for configurations where a lot of particles are required (for the transport part for example)
and where the effect of the collision part is not too important ; this approach is able to strongly decrease the
computational cost.

6 Numerical results for the Fokker-Planck equation with oscillations

In this section, we focus on the model (1) and on the numerical method presented in Section 4, which couples a
Fokker-Planck operator in velocity and oscillations in phase space. The section is organized as follows: Subsection
6.1 investigates numerically the differences and links between the filtered-averaged Maxwellian

〈
Mfilt

〉
and the
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(a) Classical method for Np = 60. (b) Classical method for Np = 1200.

(c) Clustering method for Np = 1200 split in 20 clusters of 60
particles.

(d) Random clustering method for Np = 1200 split in 20
clusters of 60 particles.

Figure 6: Comparaison between the classical method and the clustering method.

gyromaxwellian G. Subsection 6.2 presents some numerical results obtained with (40) to study the relaxation
towards the gyromaxwellian equilibrium. In Subsection 6.3, some uniform accuracy results are provided and
Subsection 6.4 presents a nonlinear charged particles beam test.

6.1 Difference between filtered-averaged Maxwellian and gyromaxwellian

The goal of this section is to illustrate numerically the differences and links between the gyromaxwellian G[F ]
defined by (12) and the filtered-averaged Maxwellian

〈
Mfilt

〉
[F ] defined by (10), both being associated to a density

F . Moreover, we illustrate numerically the fact that G[F ] is a fixed point of the operator
〈
Mfilt

〉
: F 7→

〈
Mfilt

〉
[F ].

First, we recall that computing G[F ] from (12) requires to compute the gyromoments (11) of F . Second,
computing

〈
Mfilt

〉
[F ] requires to computeMfilt[F ](s) for all s ∈ [0, 2π] and then to take the average over s as in

(10). To computeMfilt[F ](s), we first unfilter F by setting f(z) = F (esJz), so that we can compute the moments
(2) of f , which determine the Maxwellian M given by (4). Finally, Mfilt[F ](s) given by (9) is nothing but the
MaxwellianM expressed in the filtered variables Z = e−sJz.

Now, for all m ∈ N⋆, we recursively define
〈
Mfilt

〉◦m
[F ] by〈

Mfilt
〉◦m

[F ] =
〈
Mfilt

〉◦(m−1)
[ 〈
Mfilt

〉
[F ]
]
.

Below, we will illustrate the fact that
〈
Mfilt

〉◦m
[F ] converges towards G[F ] when m goes to infinity, and estimate

the associated rate of convergence. We start by describing a procedure to compute G[F ] and
〈
Mfilt

〉◦m
[F ] for a

given density F (Z), Z = (X,V ) ∈ R2.
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We consider the following function (which is bi-Maxwellian in this example)

F (X,V ) =
1

2π
√
TX1

TV1

e
− |X−uX1 |

2

2TX1 e
− |V −uV1 |

2

2TV1 +
1

2π
√
TX2

TV2

e
− |X−uX2 |

2

2TX2 e
− |V −uV2 |

2

2TV2 ,

with uX1
= −3, uV1

= −2.5, uX2
= 2.5, uV2

= 3 and TX1
= 1.75, TV1

= 1.25, TX2
= 1.5, TV2

= 1.25. On the
one side, as discussed before, the gyromaxwellian G[F ] (given by (12)) requires the gyromoments of F defined
by
∫
F (X,V )C(X,V )dXdV with C(X,V ) = (1, X, V,X2, XV, V 2)T . On the other side, the filtered-averaged

Maxwellian is defined and approximated as follows:

〈
Mfilt

〉
[F ](X,V ) =

1

2π

2π∫
0

Mfilt(s)[F ](X,V ) ds ≈ 1

Ns

Ns−1∑
j=0

Mfilt(sj)[F ](X,V )∆s, (42)

where the integral is approximated using Ns quadrature points sj = j∆s, j = 0, ..., Ns−1 and ∆s = 2π/Ns. Now,
it remains to compute the filtered-averaged Maxwellian Mfilt(sj)[F ](X,V ). To do so, we first apply the inverse
change of variable on F for each sj (j = 0, . . . , Ns − 1) to get fj(z) = F (esjJz), z = (x, v) and then compute
the moments

∫
fj(x, v)(1, v, v

2)T dv of fj . Once these moments are computed, the Maxwellian Mj(x, v) can be
constructed for j = 0, . . . , Ns − 1 following (4) and finally, we apply the change of variable

Mfilt(sj)[F ](Z) =Mj(e
−sjJZ), j = 0, . . . , Ns − 1.

We then compute the average using (42). We repeat this procedure iteratively to compute
〈
Mfilt

〉◦m
[F ] form ≥ 1.

In Figure 7, we plot the level set of F,
〈
Mfilt

〉◦m
[F ] (for m = 1, 2, 3, 4, 8, 12) and G[F ] in the filtered phase

space (X,V ). We can see in particular that
〈
Mfilt

〉◦m
[F ] is far from the gyromaxwellian shape G[F ] for small

m. However, when m increases, the shape of
〈
Mfilt

〉◦m
[F ] becomes closer and closer to the one of G[F ]. This

is confirmed by the error curves displayed on Figure 8 in which we plot
〈
Mfilt

〉◦m
[F ] − G[F ] (using different

discrete norms L1, L2 and L∞) as a function of m, in semi-log scale. The exponential rate of convergence (with
a rate estimated at about 0.25, dashed line) clearly appears. An interpretation of these results would be that
the gyromaxwellian G[F ] is a fixed point of the averaged filtered Maxwellian operator F 7→

〈
Mfilt

〉◦m
[F ], that is〈

Mfilt
〉
[G[F ]] = G[F ]. In terms of operators, we have limm→∞

〈
Mfilt

〉◦m
= G where G denotes the gyromaxwellian

operator F → G[F ].

6.2 Relaxation towards a gyromaxwellian

The goal of this part is to illustrate the capability of the second order scheme (40) to capture the relaxation of the
solution F of the averaged model (7) towards the gyromaxwellian equilibrium G[F ]. To do so, instead of solving
the averaged model (7), we solve the filtered model (5) with a small ε (with a bi-Maxwellian initial condition).
Indeed, since the error between the averaged model (7) and the filtered model (5) is O(ε) (and then negligible)
and since our scheme is uniformly accurate in ε, the error is O(∆t2)+O(ε). The numerical parameters are chosen
as follows: ∆t = 0.0133, ε = 10−10, µ = 0.075, Nq = 20, Np = 200, Ns = 32.
On Figure 9, we plot the particles used to approximate the filtered unknown F for t = 0, t = 0.4933, t = 1 and
t = 4. We also plot the level set of the gyromaxwellian G[F ] associated to the initial condition F (t = 0). We can
observe that the particles enjoy some diffusion in both velocity and space directions as expected. Moreover, the
particles spread out with time to reach the shape of the gyromaxwellian G[F ] for large time. More quantitative
results would be required but there are quite difficult to obtain since a large number of particles would be required
to decrease the noise. However, the method enables us to illustrate the relaxation phenomena even with a low
number of particles.

6.3 Order of the method

In this part, we show that the scheme (40), solving equation (38), is of the second order and uniformly accurate
in ε for sufficiently enough Fourier modes. To reduce the numerical cost we consider Np = 10 particles. The
reference solution is computed using the same solver but with a smaller time step. We take µ = 1 and Nq = 20
whereas the space mesh (used to compute the moments) is defined by xmin = −10, xmax = 10 and Nx = 100. We
consider the final time t = 1. We plot the order for different ε = 10−1, . . . , 10−8 and for different Ns on Figure
10a. We can observe that for Ns = 64 Fourier modes, the error does not decrease with a second order for large ε
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Figure 7: Level set of the functions F (top left),
〈
Mfilt

〉◦m
[F ] for different m (from top right to bottom left,

m = 1, 2, 3, 4, 8, 12), and G[F ] (bottom right).

(second order is well recovered for small ε). However, if we increase the number of Fourier modes to Ns = 1024,
second order accuracy is observed uniformly in ε (see Figure (10b)). These results may indicate the solution is
not smooth enough, which may prevent the spectral convergence of the Fourier method used in the s direction.
Similar behavior was observed in [18]. This lack of smoothness can be imputed to the projection/interpolation
during the computation of moment’s step. It mixes a nonlinearity (when we compute u and T from moments)
with low regularity function space (splines space). To illustrate this, we consider the linear Fokker-Planck operator
with u = 0 and T = 1 so that we do not compute the moments anymore. On Figures 10c and 10d, we can observe
second order accuracy for all ε, even for Ns = 64.

6.4 A beam of particles with collisions

We consider a particle beam test as studied in [18, 34], but here, a collisional operator is added to investigate its
interaction with the transport part. Here, we consider a self-consistent electric field Ef (computed from a Poisson
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Figure 8: ∥
〈
Mfilt

〉◦m
[F ]− G[F ]∥ as a function of m (semi-log scale).

(a) t = 0 (b) t = 0.4933

(c) t = 1 (d) t = 4

Figure 9: Relaxation of the filtered unknown F (red particles) towards its associated gyromaxwellian G[F ].

equation) in the transport part so that the model satisfied by f(t, r, v) (t ≥ 0, r, v ∈ R) is

∂tf −
1

ε
Jz · ∇zf + Ef∂vf = νQ[f ], (43)
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(a) Ns = 64 (b) Ns = 1024

(c) Ns = 64 and u = 0, T = 1 (d) Ns = 1024 and u = 0, T = 1

Figure 10: Numerical order for the second order scheme.

where z = (r, v), ν ≥ 0 denotes the collision frequency. Moreover, the electric field Ef solves a Poisson equation
in polar coordinates

∂r (rEf ) = r

∫
R
f dv.

The radial variable r > 0 plays the same role as x. By symmetry, we can consider r ∈ R imposing that Ef (−r) =
−Ef (r) and f(−r,−v) = f(r, v). The aim of this test is to investigate the effect of the collision operator on the
thin structures (as filamentation) created by the nonlinear transport part (due to the presence of the self-consistent
electric field Ef ). From a numerical point of view, the scheme (40) can be easily extended to this nonlinear case
and will be compared to a reference solution obtained with a direct method (spectral in r and v combined with a
time splitting method and refined numerical parameters) to solve (43). We impose T = 1 and u = 0 in the Fokker-
Planck operator in order to avoid the moment computation step and consider Ns = 16. Finally, we will consider
two values for ν to illustrate the effect of the Fokker-Planck operator (ν = 0 and ν = 0.1) on the filamentation.

For this test, we consider the following initial condition

f0(x, v) =
n0√
2πv2th

e−
1
2 (v/vth)

2

I[−rmax,rmax](x),

where rmax = 1.85, vth = 0.1, n0 = 12 (ρ = 2rmaxn0) and I is the indicator function. The numerical parameters
are chosen as follows: Np = 1600, ε = 0.001, µ = 0.005, Nq = 20 and ∆t = 0.02666.

In Figure 11, the solutions f(t = 2, x, v) obtained by our particle scheme and by the spectral scheme are
plotted with ν = 0 and ν = 0.1. First, in the collisionless regime, the results obtained by the particle method
and the reference method are very close and also similar to the ones obtained in the litterature [18, 34]. Indeed,
thin filaments are created which are well reproduced by the particle method. Second, when ν = 0.1, the filaments
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are dissipated and an equilibrium is reached. Again, the results obtained by the two methods are in very good
agreement.

Figure 11: Snapshots of the solution of the beam problem (43). First line: particle method Np = 1600, ν = 0
(left) and ν = 0.1 (right). Second line: reference (spectral) method ν = 0 (left) and ν = 0.1 (right).
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A End of the proof of Theorem 1

In this Appendix, we prove the last points of Theorem 1, which consists in establishing that T defined by (11c) is
symmetric positive definite and that∫

R2

C(X,V )(F (X,V )− G[F ](X,V )) dX dV = 0, with C(X,V ) = (1, X, V,X2, XV, V 2)T . (44)

We start by proving (44). To do so, we prove that the gyromoments of G[F ] are equal to the gyromoments of F
denoted by (ϱ, ϱU , ϱT ) as in (11). First, denoting Z = (X,V ) and using the notations of Theorem 1, we have

−1

2
ZTT−1Z =

−TXX

2 det(T)

(
V − TXV

TXX
X

)2

− 1

2TXX
X2. (45)

To prove (11a), the change of variable Z ← (Z − U) together with (45) give∫
R2

G[F ](Z) dZ =
ϱ√

det(2πT)

∫
R2

e−
1
2Z

TT−1Z dZ = ϱ.
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Regarding (11b), we have, still using the change of variable Z ← (Z − U) and (45)∫
R2

ZG[F ](Z) dZ =
ϱ√

det(2πT)

∫
R2

Z exp

(
−1

2
ZTT−1Z

)
dZ + ϱU

=
ϱ√

det(2πT)

∫
R
e

−1
2TXX

X2
∫
R
Ze

−TXX
2 det(T)

(
V−TXV

TXX
X

)2

dV dX + ϱU .

For Z = X, the integral above is zero by oddness in X. For Z = V , the integral above in V is proportional to
(TXV /TXX)X which also gives an odd function in X, so that the integral is also zero in this case.
Finally, for (11c), we first have∫

R2

(Z − U)⊗ (Z − U)G[F ](Z) dZ =
ϱ√

det(2πT)

∫
R2

Z ⊗ Z exp

(
−1

2
ZTT−1Z

)
dZ. (46)

Let focus on the diagonal terms. For the X2 term, we have

ϱ√
det(2πT)

∫
R2

X2 exp

(
−1

2
ZTT−1Z

)
dZ =

ϱ√
det(2πT)

∫
R
X2e

−1
2TXX

X2
∫
R
e

−TXX
2 det(T)

(
V−TXV

TXX
X

)2

dV dX

=
ϱ√
TXX

∫
R
X2e

−1
2TXX

X2

dX = ϱTXX ,

(47)

and symmetrically, for the V 2 term, we obtain
∫
R2 V

2G[F ](Z) dZ = ϱTV V . For the extra-diagonal terms, we have

ϱ√
det(2πT)

∫
R2

XV exp

(
−1

2
ZTT−1Z

)
dZ =

ϱ√
det(2πT)

∫
R
Xe

−1
2TXX

X2
∫
R
V e

−TXX
2 det(T)

(
V−TXV

TXX
X

)2

dV dX

= ϱ
TXV

TXX

∫
R
X2e

−1
2TXX

X2

dX = ϱTXV ,

which enables to get (11c). Let remark that using the above calculations, we also have
∫∫

R2 Z ⊗ ZG[F ](Z) dZ =
ϱ (U ⊗ U + T).
We conclude the proof by showing that T is positive definite. As T is symmetric, it is diagonalizable in R. Using
Cauchy-Schwarz inequality, we get(∫∫

(X − UX)(V − UV )F dX dV

)2

<

∫∫
(X − UX)2F dX dV

∫∫
(V − UV )2F dX dV,

and so det(T) > 0 (the equality case is not reached because (X−UX)
√
F and (V−UV )

√
F are linearly independant).

Moreover, we have tr(T) ≥ 0. We deduce that the two eigenvalues are positive and thus, T is symmetric positive
definite.

B Conservation properties of Fokker-Planck and regularized Fokker-
Planck equations

B.1 Proof of Theorem 2

We prove here Theorem 2. Even if the proof is classical, we use here the properties of bracket (17) and the
reformulated equation (18) satisfied by any functional F of f , in particular the moments and the entropy. For the
entropy inequality, as the bracket is negative, we deduce it immediately from d

dtSM = (SM,SM) ≤ 0.

For the mass conservation, we have δρ
δf = 1 and the mass is conserved from (ρ,SM) = 0.

For momentum, we have δ(ρui)
δf = vi. It follows that

(ρui,SM) = −
∫
Rd

Tf (∇vvi · ∇v log(f/M)) dv = −
∫
Rd

Tf∂vi log(f/M) dv

= −
∫
Rd

T∂vi
f + f(vi − ui) dv = −

∫
Rd

fvi dv +

∫
Rd

f dv ui = 0.
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For energy, from the relation δ(ρ|u|2+dρT )
δf = |v|2, we get

1

2
(ρ(|u|2 + dT ),SM) = −1

2

∫
Rd

Tf
(
∇v|v|2 · ∇v log(f/M)

)
dv = −

d∑
i=1

∫
Rd

Tvif∂vi log(f/M) dv

= −
d∑

i=1

∫
Rd

Tvi∂vif + fvi(vi − ui) dv = dTρ− ρ
(
|u|2 + dT

)
+ ρ|u|2 = 0.

Let us focus on the equilibrium. It is clear that M satisfies Q[M] = 0. Suppose now that f satisfies Q[f ] = 0.

Thus we have
∫
Rd

Q[f ] log(f/M) dv = 0 ; using (20) and an integration by part, we get

0 =

∫
Rd

Q[f ] log(f/M) dv = −
∫
Rd

Tf

∣∣∣∣∇v
δSM
δf

∣∣∣∣2 dv = (SM,SM) =
d

dt
SM.

It remains to prove that if d
dtSM[f ] = 0, then f =M. As f > 0 and T > 0, then

∣∣∣∇v
δSM
δf

∣∣∣2 has to be zero so that

∇v
δSM
δf

=
∇vf

f
+
v − u
T

= 0.

The solution are f(v) = Ce−
|v−u|2

2T with C ∈ R determined by integrating on v ∈ Rd.

B.2 Proof of Theorem 3

We prove here Theorem 3 presented in Section 3.2, establishing some properties of the regularized Fokker-Planck
collision operator. To prove the Theorem, we need the following technical and classical Lemma.

Lemma 1. For all functions f, g : Rd 7→ R, we have the following relations:

�

∫
f (ψµ ∗ g) dv =

∫
(f ∗ ψµ) g dv,

�

∫
f (∆vψµ ∗ g) dv =

∫
(f ∗∆vψµ) g dv,

�

∫
f ∗ ψµ dv =

∫
f dv,

�

∫
(f ∗ ψµ) v dv =

∫
fv dv,

�

∫
(f ∗ ψµ) |v|2 dv =

∫
f |v|2 dv + dµ

∫
f dv,

�

∫
v (f ∗ g) dv =

∫
((vf) ∗ g) dv +

∫
(f ∗ (vg)) dv.

Proof of Theorem 3.
The mass conservation in (25) is obtained similarly as for the original Fokker-Planck operator. For the momentum
conservation (25), we replace f by

∫
fvi dv (i = 1, . . . , d) in the the bracket form (24) to get

∂t(ρui) =
(∫
Rd

fvi dv,SµM
)
= −TM

∫
Rd

f∂vi (ψµ ∗ log (f ∗ ψµ/M)) dv

= −
∫
Rd

TMf∂vi (ψµ ∗ log (f ∗ ψµ)) dv +

∫
Rd

f(vi − ui) dv =

∫
Rd

TMf

(
ψµ ∗

∂vif ∗ ψµ

f ∗ ψµ

)
dv

=

∫
Rd

TM (f ∗ ψµ)

(
∂vif ∗ ψµ

f ∗ ψµ

)
dv =

∫
Rd

TM∂vif ∗ ψµ dv = 0.
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Considering now the energy relation, we proceed as follows (replacing f by
∫
f |v|2/2 dv in (24)) to get

1

2
∂t

(
ρ(|u|2 + dT f )

)
=

(∫
Rd

f
|v|2

2
dv,SµM

)
= −TM

d∑
i=1

∫
Rd

fvi∂vi (ψµ ∗ log(f ∗ ψµ/M)) dv

= −TM
d∑

i=1

∫
Rd

fvi∂vi (ψµ ∗ log(f ∗ ψµ)) dv −
d∑

i=1

∫
Rd

fvi (ψµ ∗ (vi − ui)) dv

= −TM
d∑

i=1

∫
Rd

fvi∂vi (ψµ ∗ log(f ∗ ψµ)) dv −
d∑

i=1

∫
Rd

fvi(vi − ui) dv. (48)

As for the original Fokker-Planck operator, the second term is equal to −dT fρ after an integration by part.
Regarding the first term, we have

d∑
i=1

∫
Rd

fvi∂vi (ψµ ∗ log(f ∗ ψµ)) dv =

d∑
i=1

∫
Rd

fvi

(
ψµ ∗

∂vif ∗ ψµ

f ∗ ψµ

)
dv =

d∑
i=1

∫
Rd

((fvi) ∗ ψµ)
∂vif ∗ ψµ

f ∗ ψµ
dv

=

d∑
i=1

∫
Rd

vi (f ∗ ψµ)
∂vif ∗ ψµ

f ∗ ψµ
dv −

d∑
i=1

∫
Rd

(f ∗ (viψµ))
∂vif ∗ ψµ

f ∗ ψµ
dv

=

d∑
i=1

∫
Rd

vi∂vif ∗ ψµ dv +

d∑
i=1

∫
Rd

(f ∗ (µ∂viψµ))
∂vif ∗ ψµ

f ∗ ψµ
dv = −dρ+ µ

∫
Rd

|∇vf ∗ ψµ|2

f ∗ ψµ
dv

= −dρ+ µ

∫
Rd

(f ∗ ψµ) |∇v log (f ∗ ψµ)|2 dv = −dρ− µ

TM (S,S) (f ∗ ψµ) = −dρ− µD(f),

where we used the definition of the bracket (17), the entropy (19) and the definition of D(f) in the last line.
Gathering the two terms in (48) finally gives (26).

We end the proof of Theorem 3 by looking for the equilibrium of the regularized operator. Following the proof
of the original Fokker-Planck operator, we have to solve

∇vψµ ∗ log(f ∗ ψµ/M) = 0,

which is equivalent to

∇vψµ ∗ log(f ∗ ψµ) = −
v − u
TM .

Integrating with respect to v gives

TMψµ ∗ log(f ∗ ψµ) = −
|v|2

2
+ u · v + C, (49)

which is more complicated to solve than in the original case. However, using Fourier techniques and following the
lines in [8], it is possible to compute the solution f of (49). Let denote F [f ] the Fourier transform in v of f

F [f ] (ξ) =

∫
Rd

f(v)e−iv·ξ dv.

Using the properties of the Fourier transform, we can isolate f ∗ ψµ in (49)

f ∗ ψµ = exp

(
F−1

[
F

[
1

TM

(
−|v|

2

2
+ u · v + C

)]
/F [ψµ]

])
.

We compute now the right hand side step by step. First, applying F to (49) gives

TMF [log(f ∗ ψµ)] =
1

F [ψµ]
F

[
−|v|

2

2
+ u · v + C

]
=

(2πµ)
d/2

ψ1/µ

(
∆

2
+ iu · ∇+ C

)
δξ=0.
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Applying the inverse Fourier transform F−1 to this latter equation gives

TM log(f ∗ ψµ) = (2πµ)
d/2

(
1

2π

)d ∫
Rd

(
2π

µ

)d/2

e
µ|ξ|2

2 eiv·ξ
(
∆

2
+ iu · ∇+ C

)
δξ=0 dξ

=

∫
Rd

(
∆

2
− iu · ∇+ C

)
e

µ|ξ|2
2 eiv·ξδξ=0 dξ

=

∫
Rd

(
1

2

(
dµ+ µ2|ξ|2 − |v|2 + 2µiξ · v

)
+ u · (v − iµξ) + C

)
e

µ|ξ|2
2 eiv·ξδξ=0 dξ

=
1

2

(
dµ− |v|2

)
+ u · v + C = −1

2
|v − u|2 +

(
dµ

2
+ C +

|u|2

2

)
.

Taking the exponential on both sides leads to f∗ψµ = C̃ exp
(
−(|v − u|2)/2TM

)
where C̃ = exp

(
1

TM

(
dµ
2 + C + |u|2

2

))
is determined by integrating the equality

C̃(2πTM)d/2 =

∫
Rd

C̃e−
|v−u|2

2TM dv =

∫
Rd

f ∗ ψµ dv =

∫
Rd

f dv = ρ.

We finally find f ∗ ψµ =M. If we continue computation to isolate f using the same technic, we find that f is a
Maxwellian characterized by ρ, u and TM − µ.
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[9] P. Chartier, N. Crouseilles, M. Lemou, and F. Méhats. Uniformly accurate numerical schemes for highly
oscillatory Klein-Gordon and nonlinear Schrödinger equations. Numerische Mathematik, 129(2):211–250,
2015.
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[24] E. Frénod, F. Salvarani, and E. Sonnendrücker. Long time simulation of a beam in a periodic focusing channel
via a two-scale pic-method. Mathematical Models and Methods in Applied Sciences, 19(02):175–197, feb 2009.
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