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Cooperative architecture using air and ground vehicles for the search
and recognition of targets

M. Theunissen, H. Pousseur, P. Castillo, A. Correa Victorino,

Abstract— A cooperative navigation architecture for the search
and recognition of targets using aerial and ground vehicles is
proposed in this paper. The architecture allows to manage aerial
and ground vehicles to autonomously perform different tasks in
an independent or cooperative way. For our application, two
main tasks are conceived; aerial monitoring of a surface to
search for targets, and target ground recognition. In the target
aerial detection task, the aerial drone tracks autonomously a
trajectory, computed to cover all the surface to monitoring,
to search for targets using vision algorithms. Once one of
them is detected its relative position is sent to the cooperative
architecture. After the aerial drone has covered the entire area,
the architecture computes and assigns to each ground vehicle
the closest target found. Then, each ground vehicle navigates
autonomously avoiding obstacles (if presents) to its assigned
target. For verifying the success of the mission, the aerial vehicle
flies following the dynamic center of mass of the ground vehicles.
Real-time experiments are carried out to validate the proposed
architecture. Main results, depicted in some graphs, corroborate
the good performance in closed loop.

I. INTRODUCTION

In recent years, works on cooperation between heteroge-
neous multi-robot systems have multiplied. By sharing their
capacities, such systems aim to gain in flexibility, efficiency
and robustness and tend to achieve total autonomy in dy-
namic environments. Some frameworks for cooperative air
and ground vehicles have been mostly used for collaborative
path-planning and obstacle avoidance [1]-[2], target tracking
[3], exploration and mapping missions [4] and surveillance
applications [5].

A cooperative robot system for target searching and recog-
nition in an unknown environment is an open challenge that
requires a close cooperation between robots. Some works
to address this problem use a preliminary exploration step
to map the environment. For example, in [6], the authors
proposed to take advantage of the UAV (unmanned aerial
vehicle) aerial view to detect, by image processing, obstacles
that are mapped. A path planning algorithm then determines
a clear path that will be follow by a UGV (unmanned ground
vehicle) to reach a target point. In this work, the navigation
of the ground robot depends entirely on the created map. It is
also assumed that the UAV can see the environment entirely
which is difficult to do in real scenarios.

Other works, such as [4] or [7], suggest a cooperative
environment exploration. In [4], the authors proposed a team
of UAV and UGV with LiDARs performing active exploration

This work has been partially supported by ROBOTEX 2.0 (Grants ROBO-
TEX ANR-10-EQPX-44-01 and TIRREX ANR-21-ESRE-0015) - France,

M. Theunissen, H. Pousseur, A. Correa Victorino, P. Castillo are
with Université de technologie de Compiègne, CNRS, Heudiasyc (Heuris-
tics and Diagnosis of Complex Systems) CS 60319 - 60203 Com-
piègne Cedex. (mathilde.theunissen, hugo.pousseur,
castillo,acorreav)@utc.fr

to build a 3D map of an unknown environment. However, the
proposed scenario is performed sequentially thus weakening
the cooperation: a first map is constructed by a UGV that is
refined by the UAV. [7] improved this concept by proposing
a cooperative framework to gain in efficiency and robustness,
reducing drastically the robots’ movements. The environmen-
tal scan merges sensors from different natures: a stereo camera
and a LiDAR that benefit the mapping.

In [8], the authors proposed to make ground robots naviga-
tion in a GPS denied environment thanks to a semantic map
built by a UAV. This work highlights the importance of the
UGVs’ local planner to avoid obstacles in real experiments.
Otherwise, the success of the mission cannot be guaranteed.
This point raises the question of the necessary accuracy of the
map built during the exploration and the long time allocated
to this step. In [3], a target tracking framework is proposed. A
UAV is used to detect and track a target, and send the ground
vehicle to the detected location. In this work, communication
has been reduced to a minimum. Obstacles avoidance is
only performed by a local planner without the help of the
aerial robot. In [9], the authors have developed a cooperative
navigation between one UGV and one UAV for targets search
in an unknown environment with obstacles. The UAV first
scans the environment with a constant altitude to find all
targets that are sent to the ground robot. The UGV then reaches
the targets on a first-come-first-served basis thanks to an
online trajectory generator to avoid obstacles. This work has
the advantages of reducing communication between robots.
However, the proposed scenario is not optimized in terms of
navigation time and is not compatible with multiple ground
robots to speed up the mission.

This work focuses on air-ground cooperative systems for
targets search and recognition. The main interest comes from
the great complementarity between the capacities (payload
capacity, speed, stability, detection, communication, etc.) of
UAVs and UGVs which make them powerful to complete
complex tasks. Nevertheless, perception and control issues
are still open for both systems (aerial and ground) to have
a good performance and guarantee the success of the mission.
In addition, in this work, we propose a cooperative architecture
to ensure the coherence of the robots’ activities to optimize the
mission. Our architecture involves an unmanned aerial drone
and several independent unmanned ground robots. In addition,
this platform has been designed to make common navigation
possible in an unmapped environment. In our work, we make
sure to cover, in an aerial mode, all the surface to be monitored
in order to find all the unknown targets. Moreover, the found
targets location is sent to the cooperative architecture to assign
tasks to each ground vehicle to reach the closest target. Our



cooperative architecture is validated on a physical twin in real-
time experiments.

The paper is organized as follows: the problem statement
and main dynamics equations for aerial and ground vehicles
are presented in section II. In section III, the cooperative nav-
igation architecture is explained in details. The experimental
setup and the obtained results are shown in section IV. Finally,
conclusions and some future works are given in section V.

II. PROBLEM STATEMENT AND PRELIMINARIES

For success of some civil missions, the cooperation between
aerial and ground vehicles is necessary. For example, to find
and track targets using homogeneous robots (for example,
humans lost in the forest or in sand dunes), the mission
success is sometimes hard (or takes a lot of time) or never
achieved. Therefore the challenge to use an heterogeneous
robots cooperation scheme is to avoid targets’ occlusions
(produced by obstacles) and develop the mission in a short
time. Some works in literature propose solution for this kind of
civil applications using only one kind of robots, others include
both configurations but some solutions are only validated
numerically.

Our solution proposes to use heterogeneous robots (aerial
and ground) to perform monitoring tasks for the search and
recognition of targets. The validation scenario is presented
in Figure 1, where an aerial vehicle must cover an area to
find specific targets (whose position is unknown), later, the
architecture computes closest target position from each ground
vehicle presented in the scenario awarding the task of going
to recognize the objective. The monitoring, searching and
recognition tasks are done by the robots in autonomous mode.

Fig. 1: Search and recognition of targets using heterogeneous
vehicles.

Communication between ground and aerial vehicles is nec-
essary for the success of the mission. In this work, three robots
are used; one aerial vehicle with a four rotors configuration
and two ground vehicles as shown in Figure 2. The dynamic
or kinematic models of each vehicle will be introduced in the
following.

A. Aerial dynamic model

For the aerial mission, a quadcopter vehicle is considered.
This vehicle can be represented as a rigid body evolving in
three dimensions thanks to external actions: a main thrust

Fig. 2: Ground and aerial robots used in the cooperation
system.

uq and three torques τq = [τψ, τθ, τφ] [10]. Its mathematical
equations can written using the quaternion representation as

mq ξ̈q = q ⊗ Fth ⊗ q∗ +mq

00
g

+ ζp (1)

J Ω̇ = τq −Ω× J Ω + ζΩ (2)

where

Fth :=

 0
0
uq

 (3)

is the vehicle’s thrust force vector in the body frame; its
magnitude is often considered as a control input (uq), however,
note its effect in the inertial frame directly depends on the
system’s attitude. ξq = [xq, yq, zq]

T denotes the aerial vehicle
position in the inertial frame I, mq the mass of the aerial
vehicle and g the gravity force. The term q ∈ H is the
system’s orientation in unit quaternion form and q∗ denotes its
conjugate term. J is the inertia matrix, Ω denotes the angular
velocity and the terms ζp and ζΩ are the external disturbances.

B. Ground kinematic model

Ground unicycle-type robots are used for the mission. Each
ground vehicle i is represented using the following kinematic
equations and assuming that their altitude zgi is not changing.[

ξ̇gi
ψ̇gi

]
=

cosψgi 0
sinψgi 0

0 1

U (4)

where ξgi = [xgi , ygi ]
T denotes the position of the ith ground

robot in I and ψgi its orientation. The linear and angular
velocities are considered as control inputs of the vehicle, i.e.,
U = [vgi , ωgi ]

T .

The wheel speeds (φg1i and φg2i ) of the ground robot i are
related with the linear and angular vehicle velocities using the
following expression[

φ̇g1i
φ̇g2i

]
=

1

r

[
1 L
1 −L

]
U (5)

with r is the wheels’ radius and L the center distance between
the wheels. We consider two grounds vehicles with the same
structure and dimensions. In addition, we assume that all
robots know their position in a shared global reference frame
and that all robots are connected to the same functional
network in order to communicate.



III. COOPERATIVE NAVIGATION ARCHITECTURE

Our cooperative navigation architecture is composed of two
main parts, one dedicated to aerial monitoring for targets’
search and an other one for targets’ reaching. Each part is
further divided into subroutines aimed at achieving the final
goal of their main part. They are described in the following.

A. Aerial monitoring

Three main tasks compose this part and they are performed
only by the aerial drone; trajectory generation for scanning
all the surface, the trajectory tracking and the target detection.
The two last one are done at the same time. In this work,
targets are represented by specific markers scattered in the
environment.

1) Trajectory generation: To scan the area to be monitored,
a trajectory must first be designed using the shape and
measurements of the surface, in order to cover the entire
search area. To simplify further computations and streamline
its practical validation, we have chosen a rectangular area

of size Lx × Ly centered in pc =

[
cx
cy

]
, see Figure 3.

Nevertheless, other types of surfaces can also be used for the
trajectory design.

Fig. 3: Path-planning proposed to monitor the entire environ-
ment in a constant altitude.

Without loss of generality, the area covered by the camera
can be modeled as a rectangle of size lx × ly where

lx =
zq.rx
f.Dx

ly =
zq.ry
f.Dy

with f represents the focal length, (rx, ry) the camera’s
resolution and Dx and Dy are the number of pixels per unit
length along respectively x and y axis, in the camera frame.
We consider that the drone flies at a desired altitude zqd , i.e.
zq → zqd .

Then, the waypoints (meeting points ξmi
) for the drone can

be computed as

ξmi =


pc − 1

2
.

(
Lx

Ly

)
+ 1

2
.

(
lx(1 + i)

ly

)
− 1

2
.

(
δr.i
0

)
if i is even

pc − 1
2
.

(
Lx

−Ly

)
+ 1

2
.

(
lx.i
−ly

)
− 1

2
.

(
δr.(i− 1)

0

)
else

for i : 0 : n with n is the number of waypoints required to
scan the entire zone and δr > 0 a small overlapping constant
to make possible targets detection close to the border of the
vision area. These points compose the desired trajectory to be
tracked by the aerial drone.

2) Trajectory tracking: Once the meeting points ξmi are
computed, trapezoidal speed profile trajectories are generated
to connect them. These trajectories are defined by desired
points ξqd(ξmi

, t) = [xd(t), yd(t), zd] and velocities ξ̇qd that
will be used for the aerial vehicle controller.

The aerial drone’s controller is given by

Fu = mq g −Kdt ςβd

(
ξ̇e

)
−Kpt ςβp

(
Kdt ξe + ξ̇e

)
τq = Ω× J Ω−Kdϑ Ωe −Kpϑ (2 ln qe)

(6)
where Kpt ,Kdt ,Kpϑ ,Kdϑ ∈ R3×3

+ are constant gain matrices,
g =

[
0 0 g

]T
. In addition, Fu → Fth when q → qd.

Moreover ςβ (·) defines a saturation function defined as ςβ (·) :
Rn → Rn for a vector ~λ ∈ Rn and a positive constant scalar
β ∈ R+ as

ςβ

(
~λ
)
:=

 ~λ ,
∥∥∥~λ∥∥∥ < β

β sgn
(
~λ
)

,
∥∥∥~λ∥∥∥ ≥ β (7)

where the sign function sgn (·) : Rn → Rn is defined
element-wise. The stability analysis of this controller was
demonstrated in [15]. This control algorithm will assure the
position errors converge to zero, i.e. ξe → 0 and which
implies that ξq → ξqd . Moreover, we will bound the desired
velocity, |ξ̇qd |≤ ε with ε > 0 small assuring that zq = zqd and
(xq, yq)‖(x, y).

During the trajectory tracking the target detection algorithm
is being executed online and the position of the found targets
is estimated ξ̂Tj

.

3) Targets’ detection: ArUco markers are square-based
fiducial markers with binary codes. We chose these markers
as targets for easy practical implementation and because this
method is robust against false detections.

We have improved work in [11] by proposing a robust
candidate detection method, which takes into account the
specific features of aerial images. In the cited method, a good
separation of the marker from its environment is required and
a dark object, even of small size, present on the margin of
the marker prevents the detection. In our method, once the
length of the marker edges, d, is known and with the fact that
the controller ensures that the aerial drone is parallel to the
ground, i.e., (xq, yq)‖(x, y), then the marker to be detected in
the image frame will be a square of size a = f. dzq , in pixels.

Our algorithm, see Figure 4, for contour extraction and
filtering can be summarized as follows:



1) Binarization of the image using a local adaptive thresh-
old.

2) Image segmentation by connected component labeling.
This step is necessary to avoid the fusion of connected
components during the morphological operations that
follows.

3) Filtering to remove too small connected components.
4) Morphological operations taking into account the

marker’s size : these operations are a morphological
closing operation with a disk shape structuring element
of diameter 2.a

b , followed by an opening operation with
a disk shape structuring element of diameter a

b being
b the size of the marker in bits. Morphological opera-
tions are processed on each segmented component taken
separately to prevent their fusion. The closure ensures
that the integrity of the marker is maintained during the
morphological opening operation which removes small
objects present on the margin of the marker.

5) Contour extraction and polynomial approximation.
6) Filtering to get only square marker candidates of size a.

The advantage to use this algorithm is that it is possible to
detect markers even in presence of an object of size smaller
than a

b on the white margin of the marker.

Fig. 4: Markers detection flowchart

The four corners’ positions of the detected marker in the
image frame [ui, vi]

T , i : 1 : 4 are used as inputs for the
pose estimation algorithm. The relation between a 3D corner
pose in the camera frame, CξTcj , and its 2D projection in the
image frame is given by :uivi

1

 = A.Π

[
CRm

C ξ̂Tj

[0]3×1 1

] [
mξTci

1

]
(8)

where CRm and C ξ̂Tj
represent the unknown rotation and

translation vectors from the marker to the camera frame. A is
the camera intrinsic parameters matrix and Π the perspective
projection model. From those four points and using equation
(8), the optimization function solvePnP [16] is able to estimate
CRm and C ξ̂Tj

that minimize the retro-projection error.

The computed position is then projected in the inertial
frame, I, using the following relation[

I ξ̂Tj

1

]
= ITB.

BTC

[
C ξ̂Tj

1

]
(9)

Observe that the precision of ξ̂Tj
in I is related with the

camera parameters (intrinsic and extrinsic) and the detection
quality (related with the camera’s resolution, the marker size
and the sharpness of the image).

The position of ξ̂Tj
is then sent from the aerial drone to the

ground station via a wifi protocol. This information is stored
for beginning the allocation task.

B. Targets’ reaching

Once the aerial vehicle has covered all the surface, it goes
to the center of mass of the ground vehicles, for activating the
targets’ reaching task.

1) Allocation task: We have inspired our task allocation
algorithm from the Auction Based Algorithm [12]. The ad-
vantage of our algorithm is that it is computed on-line and
on-board of the aerial vehicle. It computes the task for each
ground robot considering distance between each one of them
to the nearest target. The allocation method is summarized in
Algorithm 1.

2) Ground and aerial vehicles navigation: From Algorithm
1, D is the distance matrix of size n×m and is defined as

D = (di,j)1≤i≤n, 1≤j≤m

with di,j =
∥∥∥ξgi − ξ̂Tj

∥∥∥ representing the Euclidean distance
between the robot i and the target j, n the number of robots
and m the number of tasks.

Notice that this allocation algorithm is iterative and linked
to the robots’ position and reached tasks (targets). Therefore,
it is necessary to update the whole allocation each time a robot
reaches an assigned target.

Ground robots are placed in random positions and they do
not know the environment (i.e., there is no map or knowledge
about the area). Nevertheless, they known their position.

Algorithm 1 Continuous task allocation algorithm

Require: List of robots and list of tasks
Compute D
while D is not empty do

Search minimal distance in D
i← index row of min(D)
j ← index column of min(D)
Send the jth task to the robot ith

Remove the jth column and ith row of D
end while



Fig. 5: Framework of the cooperative system. A module UGV is on-boarded on each ground robot.

We propose a reactive local planner with an online collision
strategy to reach the target points. The method used here is
inspired by the Dynamic Window Approach (DWA) algorithm
[13]. Our main idea is to reduce the complexity of the original
DWA algorithm, which will decrease of the execution time.
Therefore, the objective function G(v, ω) has been modified.
In the DWA, the goal is to choose at each time step a pair
of angular and linear velocity among the admissible velocities
that maximizes G(v, ω) defined in the following equation

G(v, ω) = α.heading(v, ω) + δ.dist(v, ω)

+γ.velocity(v, ω) (10)

The function heading quantifies whether the robot will be
close to the goal or not, the function dist quantifies whether
the robot will be far from obstacles or not and the function
velocity quantifies whether the robot is close to the desired
speed. The algorithm’s complexity is O(n ×m) with n and
m the size of the search space of admissible velocities. This
leads to find a compromise between the discretization step of
the velocities and the execution time.

We have modified equation (10) by changing the functions
heading(v, ω), dist(v, ω) and velocity(v, ω) to convex loss
function [17]. The new objective function L(v, ω) defined
in equation (11) is as well a convex function that must be
minimize. The couple of linear and angular velocity that
minimize L(v, ω) can be obtained by applying a gradient
descent on L(v, ω).

L(v, ω) = α.headingloss(v, ω) + δ.distloss(v, ω)

+γ.velocityloss(v, ω) (11)

The original concept of search space is not modified.
The gradient descent is limited in the search space. This
modification enable us to reduce by four approximately the
number of calculation.

IV. EXPERIMENTAL RESULTS

A. Experimental platform

The experimental setup consists of two ground robots
Turtlebot3 equipped with a LiDAR to detect obstacles. They
are programmed using ROS. The aerial drone is a quadcopter
Parrot AR.Drone 2.0 equipped with a downward-facing cam-
era running at 15 fps with a 320x240 pixels resolution. It
has also an internal Inertial Measurement Unit (IMU) and an
ultrasonic sensor. Its firmware has been modified to work with

the open source software FL-AIR (Framework Libre Air) [14],
used for its programming. The UAV communicates with the
ground robots via a TCP socket. An OptiTrack motion capture
system is used to estimate the robots’ position at 100Hz with
a precision of 1 mm. The robots’ velocities are calculated by
differentiating the position and filtering.

The platform includes also a remote computer called
Ground Control Station (GCS) used as human-uav interface.
The GCS is connected to the Optitrack software and commu-
nicates robots’ position and flight parameters to the UAV. It
is also used to graph in real time the states of the UAV for
analysis purposes. This remote computer is also responsible
for processing the drone images that are sent via TCP sockets.
Figure 5 summarizes the proposed framework.

Figure 6 illustrates the experimental environment. Five
ArUco markers of size 10 cm × 10 cm have been printed on
sheets of paper and placed randomly in the search area. Each
marker encodes a unique identifier facilitating the position
estimation merging. The final estimation of the jth marker’s
position ξ̂Tj

is the mean of the position estimations ξ̂Tj
.

Unmapped obstacles have been placed between targets, across
the way of the ground vehicles.

Fig. 6: Experimental environment.

B. Results

Experimental tests in real time were conducted to validate
the proposed architecture. Firstly, the perception part (for
detecting markers) was carried out for validating the good
markers’ detection. Secondly, the drone control was tested for
tracking the desired trajectory and verifying that it covers the
whole surface to be monitored while detecting the targets.
Finally, the whole system was validated including ground ve-
hicles and obstacle avoidance navigation for reaching targets,
see Figure 6. In the following the results when testing the
proposed control architecture.



1) Aerial monitoring and targets’ searching: In this part,
the goal was to verify the well performance of the control and
vision algorithm. For the vision algorithm, we use markers
with a blank margin (Figure 7) and we add black splines in
the markers’s margin for perturbing the algorithm.

Fig. 7: (Above) Example of markers with black splines in their
margin used for the tests. (Below) Pose estimation results.

In Table I, the accuracy of the marker position estimation
algorithm is presented. We note that all the 5 markers were de-
tected by using our method. When using the original detection
algorithm, in [11], we observed that the markers detection was
impossible. During the aerial monitoring, the drone follows,
with pretty good precision, the desired trajectory scanning the
entire area, see Figure 8 and 10. At the end of the aerial mon-
itoring task, all markers are detected with an estimation error
smaller than 10 cm. This error is mainly due to the estimation
of the camera’s intrinsic parameters. In fact, we observed that
the most accurate markers’ placement estimations are those
positioned close to the scan path. We have also observed that
the height of the drone and the camera resolution also impacts
the results: for z > 2m, the marker is no longer readable.
The accuracy of the pose estimation is not impacted by the
presence of splines on the markers’ margin, which are removed
by morphological operations.

Presence of an ob-
ject in the markers’
margin

Markers detected Mean pose estima-
tion error (mm)

No 5/5 85

Yes 5/5 78

TABLE I: Markers’ detection and pose estimation results
during one scan of the search area.

2) Targets’ reaching: As explained before, to verify the
target locations, two ground vehicles must navigate in au-
tonomous mode to their nearest target avoiding obstacles if
they are present. During this ground navigation, the aerial
vehicle monitors the ground mission performance by flying
in the center of mass of both vehicles.

In Figure 9 robots’ trajectories during the targets-reaching
step are shown. As expected, ground robots reach targets in
a straight line. However, their trajectories become curved to
avoid obstacles. In this figure, we can also observe that the
drone tracks the motion of the robots well. When the ground
vehicle is in the vicinity of the target (previously defined), the
drone considers that the target is reached and the tasks are
then immediately updated.

Fig. 8: Real-time results when the UAV follows a desired
trajectory during the searching mission for finding targets.

Fig. 9: Robots trajectories during the targets reaching task.

Fig. 10: UAV trajectory performance along x, y and z axis

The flight performance of the aerial vehicle is presented in
Figure 10. Notice on this figure that the drone follows well
the desired trajectory while its altitude remains constant.

Notice from Figures 6 - 10 the good performance of the
proposed architecture for searching and reaching unknown
targets. A video of this experiment can be see at :
https://youtu.be/Mu-w_kA5dNw.



V. CONCLUSION AND FUTURE WORKS

In this paper, a centralized cooperative architecture for
searching and reaching unknown targets was proposed. The
whole robotic system is composed of one aerial vehicle and
two ground vehicles. An aerial target detection algorithm was
first developed to estimate the relative position of the unknown
targets. This information was then used to the cooperative
architecture to assign tasks to the ground vehicles in order to
reach their closest target. The robots navigation was done in
autonomous mode and the ground vehicle control was capable
to avoid obstacles. Real-time experiments corroborated the
good performance of the whole system.

This solution can potentially be used as a basis for target
recognition applications. Further works will take into account
communication and localization hazards to increase robust-
ness. Possible extensions in dynamic environments will be
studied and will require improving the cooperation between
robots to make the system more flexible and adaptable.
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