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Abstract-A cooperative navigation architecture for the search and recognition of targets using aerial and ground vehicles is proposed in this paper. The architecture allows to manage aerial and ground vehicles to autonomously perform different tasks in an independent or cooperative way. For our application, two main tasks are conceived; aerial monitoring of a surface to search for targets, and target ground recognition. In the target aerial detection task, the aerial drone tracks autonomously a trajectory, computed to cover all the surface to monitoring, to search for targets using vision algorithms. Once one of them is detected its relative position is sent to the cooperative architecture. After the aerial drone has covered the entire area, the architecture computes and assigns to each ground vehicle the closest target found. Then, each ground vehicle navigates autonomously avoiding obstacles (if presents) to its assigned target. For verifying the success of the mission, the aerial vehicle flies following the dynamic center of mass of the ground vehicles. Real-time experiments are carried out to validate the proposed architecture. Main results, depicted in some graphs, corroborate the good performance in closed loop.

I. INTRODUCTION

In recent years, works on cooperation between heterogeneous multi-robot systems have multiplied. By sharing their capacities, such systems aim to gain in flexibility, efficiency and robustness and tend to achieve total autonomy in dynamic environments. Some frameworks for cooperative air and ground vehicles have been mostly used for collaborative path-planning and obstacle avoidance [START_REF] Kandath | Autonomous Navigation and Sensorless Obstacle Avoidance for UGV with Environment Information from UAV[END_REF]- [START_REF] Chen | Motion Planning for Heterogeneous Unmanned Systems under Partial Observation from UAV[END_REF], target tracking [START_REF] Su | A Framework of Cooperative UAV-UGV System for Target Tracking[END_REF], exploration and mapping missions [START_REF] Qin | Autonomous Exploration and Mapping System Using Heterogeneous UAVs and UGVs in GPS-denied Environments[END_REF] and surveillance applications [START_REF] Reardon | Air-ground robot team surveillance of complex 3D environments[END_REF].

A cooperative robot system for target searching and recognition in an unknown environment is an open challenge that requires a close cooperation between robots. Some works to address this problem use a preliminary exploration step to map the environment. For example, in [START_REF] Lakas | A Framework for a Cooperative UAV-UGV System for Path Discovery and Planning[END_REF], the authors proposed to take advantage of the UAV (unmanned aerial vehicle) aerial view to detect, by image processing, obstacles that are mapped. A path planning algorithm then determines a clear path that will be follow by a UGV (unmanned ground vehicle) to reach a target point. In this work, the navigation of the ground robot depends entirely on the created map. It is also assumed that the UAV can see the environment entirely which is difficult to do in real scenarios.

Other works, such as [START_REF] Qin | Autonomous Exploration and Mapping System Using Heterogeneous UAVs and UGVs in GPS-denied Environments[END_REF] or [START_REF] Wang | A Collaborative Aerial-Ground Robotic System for Fast Exploration[END_REF], suggest a cooperative environment exploration. In [START_REF] Qin | Autonomous Exploration and Mapping System Using Heterogeneous UAVs and UGVs in GPS-denied Environments[END_REF], the authors proposed a team of UAV and UGV with LiDARs performing active exploration to build a 3D map of an unknown environment. However, the proposed scenario is performed sequentially thus weakening the cooperation: a first map is constructed by a UGV that is refined by the UAV. [START_REF] Wang | A Collaborative Aerial-Ground Robotic System for Fast Exploration[END_REF] improved this concept by proposing a cooperative framework to gain in efficiency and robustness, reducing drastically the robots' movements. The environmental scan merges sensors from different natures: a stereo camera and a LiDAR that benefit the mapping.

In [START_REF] Miller | Stronger Together: Air-Ground Robotic Collaboration Using Semantics[END_REF], the authors proposed to make ground robots navigation in a GPS denied environment thanks to a semantic map built by a UAV. This work highlights the importance of the UGVs' local planner to avoid obstacles in real experiments. Otherwise, the success of the mission cannot be guaranteed. This point raises the question of the necessary accuracy of the map built during the exploration and the long time allocated to this step. In [START_REF] Su | A Framework of Cooperative UAV-UGV System for Target Tracking[END_REF], a target tracking framework is proposed. A UAV is used to detect and track a target, and send the ground vehicle to the detected location. In this work, communication has been reduced to a minimum. Obstacles avoidance is only performed by a local planner without the help of the aerial robot. In [START_REF] Shen | Collaborative Air-Ground Target Searching in Complex Environments[END_REF], the authors have developed a cooperative navigation between one UGV and one UAV for targets search in an unknown environment with obstacles. The UAV first scans the environment with a constant altitude to find all targets that are sent to the ground robot. The UGV then reaches the targets on a first-come-first-served basis thanks to an online trajectory generator to avoid obstacles. This work has the advantages of reducing communication between robots. However, the proposed scenario is not optimized in terms of navigation time and is not compatible with multiple ground robots to speed up the mission. This work focuses on air-ground cooperative systems for targets search and recognition. The main interest comes from the great complementarity between the capacities (payload capacity, speed, stability, detection, communication, etc.) of UAVs and UGVs which make them powerful to complete complex tasks. Nevertheless, perception and control issues are still open for both systems (aerial and ground) to have a good performance and guarantee the success of the mission. In addition, in this work, we propose a cooperative architecture to ensure the coherence of the robots' activities to optimize the mission. Our architecture involves an unmanned aerial drone and several independent unmanned ground robots. In addition, this platform has been designed to make common navigation possible in an unmapped environment. In our work, we make sure to cover, in an aerial mode, all the surface to be monitored in order to find all the unknown targets. Moreover, the found targets location is sent to the cooperative architecture to assign tasks to each ground vehicle to reach the closest target. Our cooperative architecture is validated on a physical twin in realtime experiments.

The paper is organized as follows: the problem statement and main dynamics equations for aerial and ground vehicles are presented in section II. In section III, the cooperative navigation architecture is explained in details. The experimental setup and the obtained results are shown in section IV. Finally, conclusions and some future works are given in section V.

II. PROBLEM STATEMENT AND PRELIMINARIES

For success of some civil missions, the cooperation between aerial and ground vehicles is necessary. For example, to find and track targets using homogeneous robots (for example, humans lost in the forest or in sand dunes), the mission success is sometimes hard (or takes a lot of time) or never achieved. Therefore the challenge to use an heterogeneous robots cooperation scheme is to avoid targets' occlusions (produced by obstacles) and develop the mission in a short time. Some works in literature propose solution for this kind of civil applications using only one kind of robots, others include both configurations but some solutions are only validated numerically.

Our solution proposes to use heterogeneous robots (aerial and ground) to perform monitoring tasks for the search and recognition of targets. The validation scenario is presented in Figure 1, where an aerial vehicle must cover an area to find specific targets (whose position is unknown), later, the architecture computes closest target position from each ground vehicle presented in the scenario awarding the task of going to recognize the objective. The monitoring, searching and recognition tasks are done by the robots in autonomous mode. Communication between ground and aerial vehicles is necessary for the success of the mission. In this work, three robots are used; one aerial vehicle with a four rotors configuration and two ground vehicles as shown in Figure 2. The dynamic or kinematic models of each vehicle will be introduced in the following.

A. Aerial dynamic model

For the aerial mission, a quadcopter vehicle is considered. This vehicle can be represented as a rigid body evolving in three dimensions thanks to external actions: a main thrust Fig. 2: Ground and aerial robots used in the cooperation system.

u q and three torques τ q = [τ ψ , τ θ , τ φ ] [10]. Its mathematical equations can written using the quaternion representation as

m q ξq = q ⊗ F th ⊗ q * + m q   0 0 g   + ζ p (1) 
J Ω = τ q -Ω × J Ω + ζ Ω (2) 
where

F th :=   0 0 u q   (3) 
is the vehicle's thrust force vector in the body frame; its magnitude is often considered as a control input (u q ), however, note its effect in the inertial frame directly depends on the system's attitude. ξ q = [x q , y q , z q ] T denotes the aerial vehicle position in the inertial frame I, m q the mass of the aerial vehicle and g the gravity force. The term q ∈ H is the system's orientation in unit quaternion form and q * denotes its conjugate term. J is the inertia matrix, Ω denotes the angular velocity and the terms ζ p and ζ Ω are the external disturbances.

B. Ground kinematic model

Ground unicycle-type robots are used for the mission. Each ground vehicle i is represented using the following kinematic equations and assuming that their altitude z gi is not changing.

ξgi ψgi =   cos ψ gi 0 sin ψ gi 0 0 1   U (4) 
where ξ gi = [x gi , y gi ] T denotes the position of the i th ground robot in I and ψ gi its orientation. The linear and angular velocities are considered as control inputs of the vehicle, i.e., U = [v gi , ω gi ] T .

The wheel speeds (φ g1 i and φ g2 i ) of the ground robot i are related with the linear and angular vehicle velocities using the following expression

φg1 i φg2 i = 1 r 1 L 1 -L U ( 5 
)
with r is the wheels' radius and L the center distance between the wheels. We consider two grounds vehicles with the same structure and dimensions. In addition, we assume that all robots know their position in a shared global reference frame and that all robots are connected to the same functional network in order to communicate.

III. COOPERATIVE NAVIGATION ARCHITECTURE

Our cooperative navigation architecture is composed of two main parts, one dedicated to aerial monitoring for targets' search and an other one for targets' reaching. Each part is further divided into subroutines aimed at achieving the final goal of their main part. They are described in the following.

A. Aerial monitoring

Three main tasks compose this part and they are performed only by the aerial drone; trajectory generation for scanning all the surface, the trajectory tracking and the target detection. The two last one are done at the same time. In this work, targets are represented by specific markers scattered in the environment.

1) Trajectory generation:

To scan the area to be monitored, a trajectory must first be designed using the shape and measurements of the surface, in order to cover the entire search area. To simplify further computations and streamline its practical validation, we have chosen a rectangular area of size L x × L y centered in p c = c x c y , see Figure 3.

Nevertheless, other types of surfaces can also be used for trajectory design. Without loss of generality, the area covered by the camera can be modeled as a rectangle of size l x × l y where l x = z q .r x f.D x l y = z q .r y f.D y with f represents the focal length, (r x , r y ) the camera's resolution and D x and D y are the number of pixels per unit length along respectively x and y axis, in the camera frame. We consider that the drone flies at a desired altitude z q d , i.e. z q → z q d . Then, the waypoints (meeting points ξ mi ) for the drone can be computed as

ξ mi =          pc -1 2 . Lx Ly + 1 2 . lx(1 + i) ly -1 2 . δr.i 0 if i is even pc -1 2 . Lx -Ly + 1 2 . lx.i -ly -1 2 .
δr.(i -1) 0 else for i : 0 : n with n is the number of waypoints required to scan the entire zone and δ r > 0 a small overlapping constant to make possible targets detection close to the border of the vision area. These points compose the desired trajectory to be tracked by the aerial drone.

2) Trajectory tracking: Once the meeting points ξ mi are computed, trapezoidal speed profile trajectories are generated to connect them. These trajectories are defined by desired points ξ q d (ξ mi , t) = [x d (t), y d (t), z d ] and velocities ξq d that will be used for the aerial vehicle controller.

The aerial drone's controller is given by

F u = m q g -K dt ς β d ξe -K pt ς βp K dt ξ e + ξe τ q = Ω × J Ω -K d ϑ Ω e -K p ϑ (2 ln q e ) (6) where K pt , K dt , K p ϑ , K d ϑ ∈ R 3×3 + are constant gain matrices, g = 0 0 g T . In addition, F u → F th when q → q d .
Moreover ς β (•) defines a saturation function defined as ς β (•) : R n → R n for a vector λ ∈ R n and a positive constant scalar β ∈ R + as

ς β λ :=    λ , λ < β β sgn λ , λ ≥ β (7) 
where the sign function sgn (•) : R n → R n is defined element-wise. The stability analysis of this controller was demonstrated in [START_REF] Carino | A Fully-Actuated Quadcopter Representation using Quaternions[END_REF]. This control algorithm will assure the position errors converge to zero, i.e. ξ e → 0 and which implies that ξ q → ξ q d . Moreover, we will bound the desired velocity, | ξq d |≤ with > 0 small assuring that z q = z q d and (x q , y q ) (x, y).

During the trajectory tracking the target detection algorithm is being executed online and the position of the found targets is estimated ξTj .

3) Targets' detection: ArUco markers are square-based fiducial markers with binary codes. We chose these markers as targets for easy practical implementation and because this method is robust against false detections.

We have improved work in [START_REF] Garrido-Jurado | Automatic generation and detection of highly reliable fiducial markers under occlusion[END_REF] by proposing a robust candidate detection method, which takes into account the specific features of aerial images. In the cited method, a good separation of the marker from its environment is required and a dark object, even of small size, present on the margin of the marker prevents the detection. In our method, once the length of the marker edges, d, is known and with the fact that the controller ensures that the aerial drone is parallel to the ground, i.e., (x q , y q ) (x, y), then the marker to be detected in the image frame will be a square of size a = f. d zq , in pixels. Our algorithm, see Figure 4, for contour extraction and filtering can be summarized as follows:

1) Binarization of the image using a local adaptive threshold. 2) Image segmentation by connected component labeling.

This step is necessary to avoid the fusion of connected components during the morphological operations that follows. 3) Filtering to remove too small connected components. 4) Morphological operations taking into account the marker's size : these operations are a morphological closing operation with a disk shape structuring element of diameter 2.a b , followed by an opening operation with a disk shape structuring element of diameter a b being b the size of the marker in bits. Morphological operations are processed on each segmented component taken separately to prevent their fusion. The closure ensures that the integrity of the marker is maintained during the morphological opening operation which removes small objects present on the margin of the marker. 5) Contour extraction and polynomial approximation. 6) Filtering to get only square marker candidates of size a.

The advantage to use this algorithm is that it is possible to detect markers even in presence of an object of size smaller than a b on the white margin of the marker. The four corners' positions of the detected marker in the image frame [u i , v i ] T , i : 1 : 4 are used as inputs for the pose estimation algorithm. The relation between a 3D corner pose in the camera frame, C ξ T cj , and its 2D projection in the image frame is given by :

  u i v i 1   = A.Π C R m C ξTj [0] 3×1 1 m ξ T ci 1 ( 8 
)
where C R m and C ξTj represent the unknown rotation and translation vectors from the marker to the camera frame. A is the camera intrinsic parameters matrix and Π the perspective projection model. From those four points and using equation ( 8), the optimization function solvePnP [START_REF] Marchand | Pose Estimation for Augmented Reality: A Hands-On Survey[END_REF] is able to estimate C R m and C ξTj that minimize the retro-projection error.

The computed position is then projected in the inertial frame, I, using the following relation

I ξTj 1 = I T B . B T C C ξTj 1 (9) 
Observe that the precision of ξTj in I is related with the camera parameters (intrinsic and extrinsic) and the detection quality (related with the camera's resolution, the marker size and the sharpness of the image).

The position of ξTj is then sent from the aerial drone to the ground station via a wifi protocol. This information is stored for beginning the allocation task.

B. Targets' reaching

Once the aerial vehicle has covered all the surface, it goes to the center of mass of the ground vehicles, for activating the targets' reaching task.

1) Allocation task:

We have inspired our task allocation algorithm from the Auction Based Algorithm [START_REF] Lozenguez | Punctual versus continuous auction coordination for multi-robot and multi-task topological navigation[END_REF]. The advantage of our algorithm is that it is computed on-line and on-board of the aerial vehicle. It computes the task for each ground robot considering distance between each one of them to the nearest target. The allocation method is summarized in Algorithm 1.

2) Ground and aerial vehicles navigation: From Algorithm 1, D is the distance matrix of size n × m and is defined as

D = (d i,j ) 1≤i≤n, 1≤j≤m
with d i,j = ξ gi -ξTj representing the Euclidean distance between the robot i and the target j, n the number of robots and m the number of tasks.

Notice that this allocation algorithm is iterative and linked to the robots' position and reached tasks (targets). Therefore, it is necessary to update the whole allocation each time a robot reaches an assigned target.

Ground robots are placed in random positions and they do not know the environment (i.e., there is no map or knowledge about the area). Nevertheless, they known their position. We propose a reactive local planner with an online collision strategy to reach the target points. The method used here is inspired by the Dynamic Window Approach (DWA) algorithm [START_REF] Fox | The dynamic window approach to collision avoidance[END_REF]. Our main idea is to reduce the complexity of the original DWA algorithm, which will decrease of the execution time. Therefore, the objective function G(v, ω) has been modified. In the DWA, the goal is to choose at each time step a pair of angular and linear velocity among the admissible velocities that maximizes G(v, ω) defined in the following equation

G(v, ω) = α.heading(v, ω) + δ.dist(v, ω) +γ.velocity(v, ω) (10) 
The function heading quantifies whether the robot will be close to the goal or not, the function dist quantifies whether the robot will be far from obstacles or not and the function velocity quantifies whether the robot is close to the desired speed. The algorithm's complexity is O(n × m) with n and m the size of the search space of admissible velocities. This leads to find a compromise between the discretization step of the velocities and the execution time.

We have modified equation ( 10) by changing the functions heading(v, ω), dist(v, ω) and velocity(v, ω) to convex loss function [START_REF] Pousseur | Gradient Descent Dynamic Window Approach to the Mobile Robot Autonomous Navigation[END_REF]. The new objective function L(v, ω) defined in equation ( 11) is as well a convex function that must be minimize. The couple of linear and angular velocity that minimize L(v, ω) can be obtained by applying a gradient descent on L(v, ω).

L(v, ω) = α.heading loss (v, ω) + δ.dist loss (v, ω) +γ.velocity loss (v, ω) (11) 
The original concept of search space is not modified. The gradient descent is limited in the search space. This modification enable us to reduce by four approximately the number of calculation.

IV. EXPERIMENTAL RESULTS

A. Experimental platform

The experimental setup consists of two ground robots Turtlebot3 equipped with a LiDAR to detect obstacles. They are programmed using ROS. The aerial drone is a quadcopter Parrot AR.Drone 2.0 equipped with a downward-facing camera running at 15 fps with a 320x240 pixels resolution. It has also an internal Inertial Measurement Unit (IMU) and an ultrasonic sensor. Its firmware has been modified to work with the open source software FL-AIR (Framework Libre Air) [START_REF] Sanahuja | Fl-AIR -Framework libre AIR[END_REF], used for its programming. The UAV communicates with the ground robots via a TCP socket. An OptiTrack motion capture system is used to estimate the robots' position at 100Hz with a precision of 1 mm. The robots' velocities are calculated by differentiating the position and filtering.

The platform includes also a remote computer called Ground Control Station (GCS) used as human-uav interface. The GCS is connected to the Optitrack software and communicates robots' position and flight parameters to the UAV. It is also used to graph in real time the states of the UAV for analysis purposes. This remote computer is also responsible for processing the drone images that are sent via TCP sockets. Figure 5 summarizes the proposed framework. 

B. Results

Experimental tests in real time were conducted to validate the proposed architecture. Firstly, the perception part (for detecting markers) was carried out for validating the good markers' detection. Secondly, the drone control was tested for tracking the desired trajectory and verifying that it covers the whole surface to be monitored while detecting the targets. Finally, the whole system was validated including ground vehicles and obstacle avoidance navigation for reaching targets, see Figure 6. In the following the results when testing the proposed control architecture.

1) Aerial monitoring and targets' searching: In this part, the goal was to verify the well performance of the control and vision algorithm. For the vision algorithm, we use markers with a blank margin (Figure 7) and we add black splines in the markers's margin for perturbing the algorithm. In Table I, the accuracy of the marker position estimation algorithm is presented. We note that all the 5 markers were detected by using our method. When using the original detection algorithm, in [START_REF] Garrido-Jurado | Automatic generation and detection of highly reliable fiducial markers under occlusion[END_REF], we observed that the markers detection was impossible. During the aerial monitoring, the drone follows, with pretty good precision, the desired trajectory scanning the entire area, see Figure 8 and 10. At the end of the aerial monitoring task, all markers are detected with an estimation error smaller than 10 cm. This error is mainly due to the estimation of the camera's intrinsic parameters. In fact, we observed that the most accurate markers' placement are those positioned close to the scan path. We have also observed that the height of the drone and the camera resolution also impacts the results: for z > 2m, the marker is no longer readable. The accuracy of the pose estimation is not impacted by the presence of splines on the markers' margin, which are removed by morphological operations. 2) Targets' reaching: As explained before, to verify the target locations, two ground vehicles must navigate in autonomous mode to their nearest target avoiding obstacles if they are present. During this ground navigation, the aerial vehicle monitors the ground mission performance by flying in the center of mass of both vehicles.

In Figure 9 robots' trajectories during the targets-reaching step are shown. As expected, ground robots reach targets in a straight line. However, their trajectories become curved to avoid obstacles. In this figure, we can also observe that the drone tracks the motion of the robots well. When the ground vehicle is in the vicinity of the target (previously defined), the drone considers that the target is reached and the tasks are then immediately updated. 

V. CONCLUSION AND FUTURE WORKS

In this paper, a centralized cooperative architecture for searching and reaching unknown targets was proposed. The whole robotic system is composed of one aerial vehicle and two ground vehicles. An aerial target detection algorithm was first developed to estimate the relative position of the unknown targets. This information was then used to the cooperative architecture to assign tasks to the ground vehicles in order to reach their closest target. The robots navigation was done in autonomous mode and the ground vehicle control was capable to avoid obstacles. Real-time experiments corroborated the good performance of the whole system. This solution can potentially be used as a basis for target recognition applications. Further works will take into account communication and localization hazards to increase robustness. Possible extensions in dynamic environments will be studied and will require improving the cooperation between robots to make the system more flexible and adaptable.
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 6 Figure 6 illustrates the experimental environment. Five ArUco markers of size 10 cm × 10 cm have been printed on sheets of paper and placed randomly in the search area. Each marker encodes a unique identifier facilitating the position estimation merging. The final estimation of the j th marker's position ξTj is the mean of the position estimations ξTj . Unmapped obstacles have been placed between targets, across the way of the ground vehicles.
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