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Soft Error Assessment of Attitude Estimation
Algorithms Running in a Resource-constrained

Device under Neutron Radiation

J. Gava, T. Sartori, A. Hanneman, R. Garibotti, N. Calazans, H. Fourati, R. Possamai Bastos, R. Reis and L. Ost

Abstract—This paper assesses the soft error reliability of
attitude estimation algorithms running on a resource-constrained
microprocessor under neutron radiation. Results suggest that the
EKF algorithm has the best trade-off between reliability and
runtime overhead.

Index Terms—Neutron Radiation, attitude estimation algo-
rithms, Edge Devices.

I. INTRODUCTION

Unmanned Aerial Vehicles (UAVs), also known as drones,
are an inherent part of prominent roles in civilian and mil-
itary aviation domains. UAVs are employed to accomplish
different tasks ranging from monitoring the reef for signs of
degradation [1] to enhancing public security and safety [2].
The UAVs can operate with distinct levels of autonomy [3]
and rely on different types of navigation systems, which may
use GPS/GNSS receivers, accelerometers, ultrasonic sensors,
depending on the purpose they are designed for. For instance,
an inertial navigation system (INS) uses accelerometers and
gyroscopes to measure the acceleration and rotation of the
UAV, which are further used to determine its position, velocity,
and attitude. The error in the attitude estimation can cause
unstable UAV navigation (e.g., pitch or roll oscillations), which
may require more power to maintain its desired flight path [4].

Although most UAVs operate at low-level airspace, their
components (e.g., INS sensors) are exposed to radiation-
induced soft errors such as single event effects (SEEs) [5], and
tackling their occurrence in underlying devices is a mandatory
and substantial challenge. The occurrence of SEEs in INS
sensors or during the execution of an attitude estimation
algorithm can, ultimately, lead to dangerous situations since
underlying systems share airspace with civil air traffic [4].
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Previously in [6], authors assessed the impact of neutron-
induced soft error in the execution of the novel quaternion
Kalman filter (NQKF) algorithm when running in a general-
purpose multi-core Arm processor. Differently, this paper con-
tributes by assessing the soft error reliability of three attitude
estimation algorithms, which differ in terms of performance
efficiency, running on an Arm Cortex-M4 microprocessor
under neutron radiation. Gathered results suggest that the
extended Kalman filter (EKF) algorithm provide the best
MWTFcritical result, which is about 3× more than the
indirect Kalman filter (IKF) and 1.5× more w.r.t. the NQKF.

II. ADOPTED ATTITUDE ESTIMATION ALGORITHMS

The purpose of an attitude estimation (AE) algorithm is to
determine the position or alignment of an object in relation to
a known point of reference, utilising measurements obtained
from sensors. A simplified model for these sensors is depicted
in Equation (1). 

w = w0 + bw + vw

a = CB
N [q].g + va

m = CB
N [q].h+ vm

(1)

Equation (1) describes the measurements obtained from
the gyroscope, accelerometer, and magnetometer, respectively.
Theoretically, if the starting position is known, the gyroscope
data alone would be sufficient to determine the attitude. How-
ever, the estimation error gradually increases over time due to
factors such as gyroscope bias (bw) added to the actual angular
velocity (w0) and inaccuracies introduced during integration
[7], thus, additional sensors are utilised to mitigate these
errors.

According to [6], the rotation matrix CB
N [q] in Equation (1)

is a nonlinear function of the attitude quaternion. This matrix
is capable of converting a vector defined in the navigation
frame (N), such as gravity, into the body frame (B). It is
important to consider each sensor’s inherent measurement
noise, represented by vw, va, and vm in Equation (1). Various
approaches have been proposed to filter out such noise and
merge sensor data to estimate the attitude. One commonly
used technique is the Kalman filter (KF), which is an optimal
recursive algorithm used for state estimation of linear systems.
The KF algorithm operates under the assumption that the



sensor noise follows a Gaussian normal distribution with a
mean of zero and a specific standard deviation based on the
sensor in question.

A. Algorithms Description

The four AE algorithms assessed in this work are:

• EKF: the EKF algorithm is widely used for real-time
spacecraft attitude estimation [8], [9]. However, the al-
gorithm is designed for linear systems, which requires
linearisation of the measurement equations (such as those
for the accelerometer and magnetometer shown in Equa-
tion (1)) to enable appropriate utilisation in the estimation
of the attitude quaternion.

• IKF: in [7], Suh Soo proposed an adaptive KF approach to
offset external accelerations (other than gravity). Rather
than estimating the quaternions directly, the algorithm
estimates the attitude quaternion error, which depends on
the gyroscope bias and noise. The error estimation is then
converted into quaternions.

• NQKF: the process of linearization required for the EKF
algorithm may lead to undesirable outcomes, including
sensitivity to initial conditions and a rise in computa-
tional workload. Choukroun et al. [10] presented a novel
algorithm to address these issues. This approach involves
a pseudo-measurement linear equation that can be used
along with the KF, removing the need for linearization
and reducing sensitivity to initial AE errors.

The KF based algorithms possess some parameters that need
to be adjusted according to the respective sensors’ noises. It is
necessary to set three covariance matrices, one for each sensor
being used (gyroscope, accelerometer, and magnetometer),
based on the standard deviation of the sensors’ measurement
noise.

B. Input and Output datasets

To test the soft error reliability of processing AE algorithms
under radiation, we generated an input dataset consisting of
333 input vectors. Each input vector comprises nine compo-
nents that represent the sensors’ measurements stacked for a
specific moment in time. These sensors include an accelerom-
eter, magnetometer, and gyroscope, each providing a three-
dimensional physical measurement of acceleration, magnetic
field, and angular velocity, respectively. To generate the output
data, the AE algorithm under evaluation process the input
dataset and estimate the quaternion qk/k or simply q using four
components. As the input dataset contains 333 input vectors,
the output dataset also contains 333 vectors.

III. RADIATION TEST METHODOLOGY

This Section describes the methodology used to collect and
present the results obtained with a 14MeV neutrons generator,
which was used to assess the soft error resilience of attitude
estimation algorithms running on a resource-constrained de-
vice under neutron radiation.

A. Radiation Test Flow

Figure 1 shows the test flow schematic. The Universal Asyn-
chronous Receiver Transmitter (UART)-based communication
between the device under test (DUT) and the control computer
(CC) has been verified via checkers (i.e., checksum) to isolate
radiation-induced failures in the UART peripheral and the data
communication channel between the DUT and the CC.
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Fig. 1: Test set-up used in the radiation testing campaign.

The steps to run the test are shown below:
1) Board programming using the Open On-Chip Debugger

(openocd).
2) Synchronise both DUT and CC devices before the algo-

rithm main function execution, i.e., send a message from
CC to DUT and awaits the correct response. If the DUT
takes more than 5 seconds to respond, the board is then
reprogrammed;

3) Check the input checksum. The checksum is calculated
in the DUT and sent to the CC for checking against the
golden reference. If there is a mismatch in the input data,
the board is reprogrammed. If the reprogramming fails,
the relay is actioned, and a power cycle is done;

4) Algorithm main function execution;
5) Synchronise DUT and CC after the algorithm computa-

tion, i.e., send a message from CC to DUT and awaits
the correct response;

6) Send output and output checksum from DUT to CC. The
checksum is calculated in DUT and sent to CC. If there
is a mismatch in the output, the procedure is the same as
for the input data;

B. Radiation Test Set-Up

The 14-MeV neutron radiation test campaign was performed
at the Laboratory of Subatomic Physics & Cosmology (LPSC,
Grenoble, France) in February 2023 using the neutron gen-
erator GENEPI2 (GEnerator of NEutrons Pulsed Intense). It
generates a 14-MeV neutron beam with a maximum flux
greater by a factor of 1010 than the 14-MeV neutron flux at
40,000 ft. A total fluence > 5.85 × 1011 neutron/cm2 was
chosen to achieve statistical significance. The average flux
during the experiment was 1× 107 neutron/cm2/s.

The STM32 NUCLEO-L476RG board [11] was selected as
the target device. The AE algorithms were compiled using
Clang/LLVM 6.0.1 with O3 optimisation level. The DUTs



were placed in the first boards row of the neutron generator
at a distance of 50mm. The flux was calibrated remotely to
fit a proper operation of the DUTs, which is connected to a
CC outside the radioactive chamber through a USB cable. The
whole system (CPU, memory, communication peripherals) was
under the beam. Figure 3 illustrates the set-up assembled at
the LPSC.

Fig. 3: DUTs mounted at LPSC facility in February 2023.

C. Adopted Fault Classification and Reliability Metrics
Radiation results are classified as follows: Silent Data

Corruption (SDC): the algorithm execution is done normally
but the output is incorrect; critical fault: is a SDC sub-
classification taking into account the Euler angles’ mean
absolute error (MAE) between the radiation testing data and
the golden reference data. We chose 0.5 degree as the Euler
angle’s MAE threshold (see Figure 2); crash: the algorithm
suffers from abnormal termination or hang. The communi-
cation between CC and DUT is lost during the algorithm
execution, indicating that radiation effects have upset the DUT.
In this situation, the board must be restarted.

The following metrics are used to compare the reliability of
the AE algorithms. The Failure in Time (FIT) metric shows

how many failures occur in a billion hours. It depends on both
the device sensitivity and the particle flux to which it will be
exposed. Lower FIT is better. The JEDEC JESD89 standard [5]
suggests to uses 13n/cm2/h as flux at sea level. The cross
section of the device for a singular test was calculated using
the Equation (2), where σ is the per-bit cross section, Ne is
the number of errors, and ϕ is the neutron fluence.

σ =
Ne

ϕ
(2)

This work also uses the Mean Work to Failure (MWTF)
metric, which measures the tradeoff between reliability im-
provement and runtime overhead. Equation (3) shows how it
is calculated.

MWTF = (σ × flux× execution time)
−1 (3)

IV. RADIATION RESULTS

Figure 4 shows the radiation experiment results considering
three attitude estimation algorithms, as detailed in Section III.
Each bar represents an event type (SDC, critical, crash)
associated with the left y-axis. The red dots represent the
sea-level FIT metric for each event, associated with the right
y-axis. During the radiation experiment, a total of 241 events
were observed. The number of SDCs is similar across all three
algorithms. However, EKF and NQKF exhibited around 60-
70% fewer critical faults than IKF, whereas IKF presented
three times more crashes than the other algorithms. This is
mainly due to the longer radiation exposure (see column 3 in
Table I).

By utilising the radiation exposure time, the FIT rate can
determine which algorithm is the most reliable when executed
in a resource-constrained device. Note that a lower FIT rate
indicates higher reliability. Despite having a similar number
of SDCs, the FITSDC for IKF is almost 2× better than the
other algorithms. However, the FITcrit for EKF is 32% lower
than NQKF and 70% lower than IKF. This means that, for
the same radiation exposure time, IKF presents fewer SDC
events, but a greater proportion of these errors become critical.
Furthermore, EKF and NQKF have similar FITcrash, which
is about 35% lower than the IKF algorithm.

(a) EKF (b) IKF (c) NQKF

Fig. 2: Sub-figures (a,b,c) show examples of critical faults observed during the radiation experiment for each algorithm.



TABLE I: Summary of the neutron radiation experiment results.

Case-Study Runtime Fluence Events (FIT [Failures/109 h]) *MWTF (σ[10-11 cm2 ]) Memory Usage [kB]
Scenarios [s] [1011 neutrons/cm2 ] SDC Critical Crash Critical Crash RAM Flash

EKF 163 1.52 61 (5.22) 4 (0.34) 8 (0.68) 3.08 (2.64) 2.85 (5.28) 4.3 174
IKF 296 2.90 59 (2.64) 13 (0.58) 24 (1.07) 1.00 (4.48) 1.00 (8.27) 4.3 173

NQKF 183 1.43 54 (4.90) 5 (0.45) 8 (0.73) 2.07 (3.50) 2.38 (5.60) 4.3 199

* Normalised MWTF
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Fig. 4: Radiation-induced failures in each case-study scenario.

Table I presents a summary of the data collected from
the radiation experiment. Despite a slight variation in the
number of runs, the effective fluence ranges from 1.43× 1011

neutrons/cm2 to 2.90× 1011 neutrons/cm2. This difference is
due to the varying execution time of each run, which ranges
from 163s to 296s. While EKF and NQKF have similar
execution times, IKF takes twice as long. Therefore, metrics
that consider both reliability and execution time are crucial
for a fair comparison. In this regard, Table I also shows
the normalised MWTF metric values for critical and crash
occurrences. Note that the higher the value, the better the
algorithm. For critical events, NQKF and EKF show a 2×
and 3× improvement, respectively, compared to IKF when
scaled to the level of terrestrial radiation flux. For crash
events, the MWTF improvement values range from 2.38×
for NQKF to 2.85× for EKF. The cross-section is another
widely used metric. For critical faults, EKF shows the lowest
value of 2.64× 10−11 n/cm2, while IKF has the highest value
of 4.48 × 10−11 n/cm2. For crashes, the values range from
5.28×10−11 n/cm2 (EKF) to 8.27×10−11 n/cm2 (IKF). RAM
and flash memory usage is similar for all algorithms, with the
exception of NQKF’s flash memory usage. However, radiation
has a minimal impact on flash memory, and no errors were
detected in input checks performed on flash memory during
all runs. The findings indicate that the IKF algorithm is more
resilient to SDCs caused by soft errors induced by neutron
particles. However, IKF takes almost twice as long to run
compared to the other algorithms. Relying solely on the FIT
metric may result in incorrect conclusions. With that in mind,
the MWTF metric was employed, revealing that EKF provides

the best trade-off between reliability improvement and runtime
overhead against critical faults and crashes. Note that the
algorithms were exposed to radiation for a long time in each
run (i.e., 3-5 min), leading to the accumulation of multiple bit-
flips until the end of each run. One of the factors contributing
to the low performance is that the Arm Cortex-M4 processor
does not support some floating-point operations, requiring the
use of inefficient math libraries. Further investigations are
ongoing to determine the potential benefits of adopting a
board with an Arm Cortex-M7 processor that directly supports
performing these operations in hardware.

V. CONCLUSION

This paper assessed the soft error resilience of three atti-
tude estimation algorithms running on a resource-constrained
device under neutron radiation. Results suggest that EKF is
the best algorithm in terms of MWTFcritical, i.e., about 3×
more than IKF and 1.5× more than NQKF. For future work,
a board with more floating-point resources will be evaluated
using the same AE algorithms.
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