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ABSTRACT

Integrated Division of Focal plane (DoFP) cameras have recently been developed for polarimetric imaging. These
sensors use a grid composed of four different pixels with four different polarizers engraved on them. Four of these
different pixels form a superpixel which enables the estimation of the linear Stokes vector with a single acquisition.
Estimation of the full Stokes vector can be done by adding a retarder in front of the DoFP camera and performing
at least two acquisitions with two different angular positions of the retarder.

As a drawback, DoFP sensors are particularly sensitive to the spatial variations of the scene within a super-
pixel. Therefore, if these variations are non-negligible compared with the measurement noise, the estimation of
the state of polarization is corrupted. We propose a method to map the superpixels in which the estimation can
be trusted.

As an example of application, we demonstrate the benefit of using such a mapping to perform dynamic
autocalibration of the retardance of the retarder placed in front of the camera for full Stokes imaging. Thanks
to measurement redundancy, calibration of the retardance and estimation of the Stokes vector can be jointly
performed provided three acquisitions for three different orientations of this retarder are made. However, this
method may be perturbed by the spatial variations of a complex scene, and the proposed mapping enables to
wisely choose the superpixels that are appropriate for calibration.
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1. INTRODUCTION

Polarization imaging systems lead to contrasts that are invisible in conventional intensity images.1–4 Such imaging
system needs to acquire several analyses of the polarization in order to derive the polarimetric information.
DoFP sensors enable to obtain these different analyses in a single acquisition. The existing DoFP are composed
of four different pixels with different linear polarizers engraved on them. They allow the estimation of the linear
polarization with a single acquisition and thus enable real time polarization imaging.5–9 In order to measure
the full Stokes vector, one can add a rotating retarder in front of this DoFP camera and perform at least two
acquisitions for different orientations of the retarder.10–13 With three acquisitions with a rotating retarder, the
retardance can be calibrated alongside the estimation of the Stokes parameters.11,14–16

As a downside, with a DoFP sensor the different pixels used for the estimation of a Stokes vector are not
localized at the same place and thus are not seeing the same part of the scene. Therefore, if the scene contains fast
spatial variations there will be a strong difference between the polarization seen by each pixel and the estimation
will be wrong.

Thus we describe here a method to detect whether or not the variations of the scene within a super-pixel
are too important to lead to a reliable estimation. This method uses the redundant information within the
measurements of the super-pixel and an estimation of the spatial variations of the intensity in the scene. By
combining these two criteria one can obtain an error map which tells where the estimation is not reliable.17 We
then use this error map to help the calibration of a retarder.



2. METHODOLOGY

2.1 DoFP polarization sensor

DoFP sensors are composed of an array of “super-pixels”. Each one contains four pixels with linear polarizers
with four different angle at 0°, 45°, 90° and 135°. The four measurements obtained with a super-pixel enable
the estimation of the linear Stokes vector. To estimate the full Stokes vector one can use a rotating retarder
and perform at least two acquisitions with two different orientations of the retarder. With Nacq acquisitions, a
super-pixel leads to Nmes = 4×Nacq measurements. These measurements are gathered in the vector I and this
acquisition is modeled as:

I = WS, (1)

where S = (S0, S1, S2, S3)
T is the incident Stokes vector. It is of length K = 4 in the general case, but if we

only estimate the linear polarization then we consider only its first 3 component and its length is K = 3. W is
a Nmes × K matrix called measurement matrix of the super-pixel and describes the acquisition process of the
super-pixel. The incident Stokes vector is estimated with:

Ŝ = W+I, (2)

with Ŝ the estimated Stokes vector and the superscript + denotes the Moore-Penrose pseudo-inverse. This
estimation model considers a homogeneous incident polarization state on the super-pixel. Unfortunately, the
different pixels of the super-pixel usually receive different incident polarizations due to the spatial variations
of the scene. If this variations are greater than the measurement noise, it may lead to a significant bias on
the estimation of the polarization. We describe here a method to detect the super-pixels which lead to such
unreliable estimations.

2.2 Redundancy criterion

Within a super-pixel, the number of measurements used for the estimation of the Stokes vector is larger than the
number of parameters to estimate. This leads to redundancy between these measurements. The light intensity
incident on the super-pixel can be estimated with S0 a = I0+I90 and S0 b = I45+I135. In the ideal case, with no
noise and a constant incident Stokes vector on the super-pixel, S0 a = S0 b. But if there is inconsistency between
the measurements, we may have: Rlin = I0 + I90 − (I45 + I135) ̸= 0. This criterion provides a quantitative
evaluation of the inconsistencies between the measurements acquired by the super-pixel. But it does not take
into account the calibration of the sensor and it is not applicable to imaging systems composed of a sensor and
a rotating retarder used to measure the full Stokes vector.

We thus propose a generalization of this criterion. Using the singular value decomposition (SVD) of the
measurement matrix W, one has:

W = UDVT , (3)

where U and V are unitary matrices of dimensions Nmes × Nmes and K × K. D is a Nmes × K matrix with a
K × K first block which is diagonal and contains the singular values of the measurement matrix W. The last
Nmes −K rows of D contains only zeros. The superscript T denotes the transposition. By substituting Eq. 3 in
Eq. (2) we have:

UT I = DVTS. (4)

The last Nmes − K elements of the vector UT I are null, due to the properties of D, in the ideal case when
considering a homogeneous incident Stokes vector and in absence of noise. We then define the matrix UR

composed of the last Nmes −K columns of the matrix U and compute:

R = UT
RI. (5)

The vector R is null in the ideal case with a homogeneous incident Stokes vector and without noise. Furthermore,
in this conditions and in the case of the sensor used alone for linear polarization estimation, the criterion R is a
scalar and is proportional to Rlin.

In practice, we mostly have Poisson noise, but with a mean value high enough to consider it as an additive
Gaussian random variable which variance is equal to the mean value of the signal. We can derive from this



consideration that the elements of the vector R are centered Gaussian random variables. One can thus obtain a
vector of standard Gaussian random variable T whose elements are defined with:

T(i) =
R(i)√

VAR[R(i)]
. (6)

Then, if the noise is the only perturbation affecting the measurements, the Euclidean norm of the vector T
follows a χ2 law and a threshold can be applied with a constant false alarm rate.17 This criterion based on
the redundant information is then able to detect whether the inconsistencies between the measurements are
significant in front of the noise.

This detector suffers a flaw. It does not detect the intensity variations within the super-pixel. This is
highlighted on Figure 1 where are displayed the estimated intensity S0 with the detected inconsistencies displayed
in red and the estimated degree of linear polarization (DoLP). The scene acquired is a blank cardboard with large
black letters printed on it. We used the DoFP sensor alone to estimate only the linear polarization state. We
observe, on the estimated DoLP, estimation artifacts located on the intensity edges of the scene: estimated DoLP
is significantly higher on these edges without physical explanation. However the detector defined in Equation (6)
does not detect these edges as problematic even though there is clearly an error of estimation. Thus, we need to
use a separate intensity variation detector to help this redundancy based criterion.
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Figure 1. An example of error map and estimated DoLP on a scene composed of a blank cardboard with large black
letters printed on it. The intensity estimated in gray level with the error map displayed in red (left) and the estimated
DoLP (right). The error map used here uses only the redundancy criterion to detect the inconsistencies between the
measurements within a super-pixel.

2.3 Intensity Variation detection

We designed an intensity variation detector with constant false alarm rate. Doing so, we only need to set one
parameter, the false alarm rate, to apply thresholds to both the redundancy based criterion and the intensity
variation criterion.

This intensity variation detector uses the intensity estimations on neighboring super-pixels, as shown Figure 2,
so that it is independent from the polarization states. This detector uses the log-likelihood ratio between the
two following hypotheses:

• There is no intensity variation and the signal is mostly Poisson noise of constant mean over the super-pixels.

• There is an intensity variation within this array and we consider four regions within the 4× 4 pixels array
selected. The signal within the four regions follows four different Poisson laws of parameters λa, λb, λc and
λd as shown on Figure 2.
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Figure 2. A 4 × 4 pixels array. The four pixels at the center form the super-pixel of interest. The four super-pixels
highlighted by the color squares are used to measure the four parameters λa, λb, λc and λd corresponding to the sum of
the measured intensities within these super-pixels.

Then the log-likelihood ratio can be computed as:17

ln(R) = 4

[
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4
ln

(∑
k λ̂k

4

)]
. (7)

where the λ̂k are the estimation of the parameters λk for the four different super-pixels surrounding the super-pixel
of interest. We demonstrated17 that this log-likelihood ratio is proportional to a χ2 law when the measurement
noise is the only perturbation. Thus a threshold can be applied with a constant false alarm rate to detect an
intensity variation.

The error map obtained with this intensity variation detector is then combined with the error map based on
the redundancy based criterion. An example is shown on Figure 3 where we use the same cardboard scene as
for 1. In green is displayed the error map obtained with the redundancy criterion and in red the error map given
by the intensity variation detector for a false alarm rate Pfa = 10−3. In yellow we display the pixels for which
both criteria detect anomalies. As we can see the intensity variation detector detects well the edges of the black
letters where we observed estimation artifacts. Thus it is a good complement to the redundancy based criterion.

3. APPLICATION

We demonstrate the utility of such error map for the dynamic calibration of a retarder placed in front of the DoFP
camera for the estimation of the full Stokes vector. Such calibration is possible when at least three acquisitions
are performed for different orientations of the retarder.

3.1 Autocalibration

Dynamic calibration (we usually call it autocalibration) is performed by jointly estimating the retardance δ of
the retarder and the Stokes vector S from the measurements of a super-pixel by using the redundancy between
the intensity measurements within a super-pixel. To do so, we optimize the criterion F(δ):

δ̂ = argmin
δ

[F(δ)], (8)

with
F(δ) =

∥∥[Id −W(δ)W(δ)+]I
∥∥2 , (9)



Figure 3. The error map obtained by combining the redundancy criterion and the intensity variation detector. The
intensity is displayed in gray level, the redundancy criterion based detector in green and the intensity variation detection
in red. In yellow appear the pixels detected by both detectors as problematic.

where I is the vector of the measured intensities, Id the identity matrix and W(δ) the measurement matrix
of the super-pixel considering the several acquisitions for the several orientations of the retarder of retardance
δ.16 Then the estimated retardance δ̂ is introduced in the measurement matrix W(δ) which is substituted in
Equation 2:

Ŝ = W(δ)+I, (10)

Only one super-pixel is needed to perform this autocalibration. However, using a set of several super-pixels
reduces the uncertainty on this estimation. In order to wisely choose the super-pixels used for this autocalibration,
it has been shown16 that, in the presence of additive Gaussian noise, we must consider the super-pixels which
maximize the value of the reduced signal to noise ratio SNRδ = SNR×DoLP. Furthermore, there is the constraint
that SNRδ > 8, otherwise the autocalibration is not possible. In practice we thus choose the super-pixels which
maximize the estimated ˆSNRδ and respect ˆSNRδ > 8.

3.1.1 Error mapping

However as seen on Figure 1, it often happens that the estimated DoLP, and then ˆSNRδ, is over estimated due
to artifacts of estimation where there is significant spatial variations in the scene. This may lead to select super-
pixels for the autocalibration which are not reliable. This scenario is shown on Figure 4 where are displayed
the intensity image of the scene used with the set of super-pixels selected by maximizing the estimated ˆSNRδ

displayed in red (left), and the histogram of the estimated retardances for this set of super-pixels plotted in red
(right). We are using a quarter wave-plate (QWP) so we expect a retardance close to 90°. The super-pixels
selected are mainly located on intensity edges for which we have seen that the estimated DoLP is biased. These
super-pixels lead to huge errors on the estimated retardances which are not gathered around the expected value.

Then we compute the error map for this scene which is displayed on Figure 5 in yellow on the gray level
intensity image. Then we use this error map to select the super-pixels which maximize the value of ˆSNRδ outside
of the set of super-pixels which have been detected as unreliable. This lead to the set of super-pixels displayed
in green on Figure 4 (left). They are located mostly on a smooth area of the scene where the estimation is
more reliable. The histogram of the values of estimated retardances using this set of super-pixels is plotted in
green (right). We see that this histogram is centered around the expected value for the retardance with a mean
value of 87.6◦ and a standard deviation of 4.6◦. This set of super-pixels thus gives a suitable estimation of the
retardance for the used wave-plate (90°).

4. CONCLUSION

In conclusion, the generalized redundancy criterion R provides information about the inconsistencies between
the measurements within a super-pixel and can take into account the calibration of the sensor as well as being
able to work with full Stokes imaging system. We derived a CFAR detector from this criterion and as it is
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Figure 4. The histogram of the estimated retardance value for the N chosen super-pixels. Without using the error map
(in red) and with excluding the pixels detected by the error map (in green)

Figure 5. The error map which combine the two criteria based respectively on the redundant information and on the
variation of intensity. It is displayed in yellow on the gray level image of intensity.

not able to detect errors which are due to intensity edges we proposed another CFAR detector to detect these
intensity variations. The error map obtained by combining these two detectors enables to have a map of the
super-pixels for which we can not trust the estimation. We demonstrated that such mapping makes it possible
to perform dynamic calibration of the retardance of a wave-plate used within a full Stokes imaging system even
with a complex scene. Such error mapping may be useful for other applications such as demosaicing strategies.
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