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ABSTRACT:

Paramuricea clavata  is an ecosystem engineer, structuring hard bottom communities in

the Mediterranean Sea, from 10 to 200m depth. For more than two decades, shallow pop-

ulations of P. clavata have been impacted by marine heatwaves, resulting in massive mor-

tality events. Recently, a new dense population characterised by the tallest colonies ever
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recorded (up to 1.80m) in the Mediterranean Sea was discovered between 50 and 60m

depth. Here, we analyzed the size and genetic structure of this “deep giant population” and

conducted  a  reciprocal  transplant  experiment  with  a  shallow population  inhabiting  the

same area to test for local adaptation. The experiment showed no significant difference in

the survival rate despite the high temperatures registered in the shallow area. Neverthe-

less, we observed a significant differentiation by depth in this area, with low estimates of

gene flow. The particular local oceanographic conditions could lead to a relative isolation

of the “deep giant colony” population. In conclusion, the reduced connectivity of this newly

discovered giant populations with shallower ones, question its potential role as a climate

refuge. Additionally, this population constitutes a unique natural heritage site that should

be effectively protected from physical impacts and other direct consequences of anthro-

pogenic activities.

Key Words:  Paramuricea  clavata,  Mediterranean Sea,  Climate  refugee,  Environmental

adaptation; transplant experiment; RAD-Seq.

1. INTRODUCTION

Gorgonians are present in the world’s ocean, from the surface to the bathyal zones. These

anthozoans  are  ecosystem  engineers,  structuring  their  habitats  (Boudouresque  et  al.

2016). Among the gorgonian species present in the Mediterranean Sea, the populations of

red gorgonian  Paramuricea clavata  (Risso, 1826) constitute noteworthy submarine land-

scapes (Carpine & Grasshoff 1975, Grasshoff 1992, Linares 2006). This Mediterranean

endemic species, living from 10m to 200m depth (Boavida et al. 2016; Coelho et al. 2023;

Fourt et al. 2017), has a long life span (decades) and a slow growth rate (mean values:

from 1.8 to 3 cm/yr in colony height) (Mistri & Cecherelli, 1994; Coma et al. 1998; Coma et

al., 2001; Cupido et al., 2012).  Paramuricea clavata is a gonochoric species with low re-
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cruitment rates (Coma et al. 1995, 2001). Asexual reproduction is negligible and the main-

tenance  of  the  population  is  based  on  the  recruitment  of  sexually  produced  offspring

(Coma et  al.  1995,  Pilczinska et  al.  2017).  A late  first  reproductive age depending to

Mediterranean region (3 to 13 years old) characterizes this species (Coma et al. 1995; Cu-

pido et al., 2012). Paramuricea clavata is a suspension feeder, feeding on a large range of

particles and this species constitutes a major interface for the transfer of carbon between

pelagic and benthic components (Coma et al.  1994, Gili  & Coma 1998,  Linares et al.

2007). The presence of P. clavata enhances the hard bottom biodiversity and reduces the

sedimentation impacting benthic habitats (Ponti et al. 2016, Valisano et al. 2015). 

Paramuricea clavata is an emblematic species of the coralligenous habitat and its popula-

tions are of major interest for recreational scuba divers (Coma et al. 2004, Linarès 2006).

They can be impacted by different physical pressures (anchoring, SCUBA diving, fishing

nets) (Ballesteros 2006, Betti et al. 2020). In addition, shallow populations until 40 to 50

meters depth have been affected by several mass mortality events linked to marine heat -

waves in recent decades (Perez et al. 2000, Garrabou et al. 2022). These thermal anom-

alies, which occur in late summer and autumn periods, are characterized by long periods

of high seawater temperatures (Romano et al.  2000,  Crisci  et  al.  2011, Pairaud et  al.

2014).  The  consequences  are  a  partial  or  complete  necrosis  of  living  tissues  (co-

enenchyme and polyps) surrounding the skeleton, which can result in the death of gorgoni-

ans (Garrabou et al. 2009, 2021). Unfortunately, P. clavata has overall low resilience ca-

pacity (Garrabou et al. 2001, Cerrano et al. 2005, Linarès et al. 2005; Gomez-Gras et al.,

2022) even if locally this species seems to recover faster (Cupido et al., 2009; Ruffaldi

Santori et al., 2021). Therefore, recurrent marine heat waves are a major threat for the

sustainability of shallow gorgonian populations in the Mediterranean Sea (Pairaud et al.

2014).
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Therefore, the study of the genetic diversity of P. clavata populations and of their thermo-

tolerance is crucial in order to assess: (i) how unimpacted populations can contribute to

the resilience of populations affected by mortality events through genetic connectivity and

(ii)  whether or not  the newly established populations are adapted to  the local  thermal

regime, and could cope with warming. These questions started to be addressed focusing

on three Mediterranean gorgonians affected by thermal anomalies: the red coral (Coral-

lium rubrum) (Ledoux et al. 2015), the white gorgonian (Eunicella singularis) (Pey et al.

2013) and the red gorgonian (Paramuricea clavata) (Arizmendi-Meija et al. 2015a). Re-

garding  P.  clavata,  the  genetic  structure  was  studied  in  different  regions  and  depths

(Mokhtar-Jamaï et al. 2011, Padrón 2015, Padrón & Guizen 2016, Arizmendi-Meija et al.

2015b, Pérez-Portela et al. 2016, Ledoux et al. 2018). It has been shown that significant

genetic structure exists at short distances (a few hundred meters) and, occasionally, differ -

ences between depths can be observed within the same site (Mokhtar-Jamaï et al. 2011,

Pilczynska et al. 2019). However, the limited number of genetic markers used in these

studies did not provide a clear understanding of the adaptation of this species to local envi-

ronmental conditions (but see Crisci et al. 2017). On the other hand, shallow populations

of  P.  clavata (between 20 and 40m depth)  have been more  extensively  studied  than

deeper ones, which remain poorly understood, apart from the study of Pérez-Portela et al.

(2016).

In the last decade, new populations of P. clavata have been discovered between 50 and

60 m depth in the Natura 2000 site “Côte Bleue marine” (north of Marseille) (Astruch et al.

2011).  These  populations  settle  on  rocky  outcrops  sparsely  covering  2300  hectares

("Catchoffs" site). This site is influenced by the flow of the Rhône River and remarkable

seasonal upwelling (Fraysse 2014). By their exceptional size (up to 1.80m high) and den-

sity, the gorgonians that form the Catchoffs site stand out from the colonies usually ob-

served (see Results). Such gigantic morphologies could correspond to a phenotypic plas-
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ticity linked to environmental conditions and/or particular genetic characteristics.  Finally,

unlike the shallow populations, these deep populations do not appear to be affected by

marine heat waves. In this context, the main objective here is to test whether these deep

populations of gigantic  P. clavata constitute potential  climatic refuge populations in the

face of current global warming. Could they contribute to the resilience of neighboring and

shallower populations impacted by mass mortalities? To answer this question, the environ-

mental conditions and size structure of  P. clavata  populations in the Catchoffs site were

characterized and compared to a shallower population from the same geographical area.

Next, we analyzed the differentiation between this deep population and neighboring shal-

lower populations at the genomic level using restriction site associated DNA sequencing

(RAD-Seq). Finally, the local adaptation signals of the populations to their local environ-

ment (especially to the thermal regime) were tested using experimental (reciprocal in situ

transplantation) and genomic (RAD-Seq) approaches.

2. MATERIAL AND METHODS

2.1. Studied area

Two populations of P. clavata were considered along the “Côte Bleue”, north of Marseille

(France), near the Rhône Delta. The first one (Catchoffs - COF) is located two nautical

miles south of Carry-le-Rouet (Fig. 1). This population is included in a large Natura 2000

site (Leleu et al. 2014). This site is characterized by rocky outcrops emerging from the

sediment on a surface covering 2300 ha. Giant colonies of  P. clavata  (between 1.5 and

1.8m high) can be observed on these outcrops (Astruch et al.  2011). Other gorgonian

species also occur at this site: Eunicella cavolini (Koch, 1887), Eunicella singularis (Esper,

1791),  Eunicella  verrucosa  (Pallas,  1766), Leptogorgia sarmentosa  (Esper,  1791),  and

Corallium rubrum (Linnaeus, 1758). The marine habitat is characterized by a high turbidity

5

13

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

14
15



of water and by sandy-muddy sediments around rocky outcrops due to the proximity of the

Rhône Delta and the impact of associated river plume (Fraysse 2014). In this Natura 2000

site, two stations were selected at: (i) 60 m (COF-station A) and (ii) 58 m depth (COF-sta-

tion B) (Fig. 1a; Table 1). A third station was studied at 30 m depth (Yeux de chat - ODC),

4,500 m away from COF, it is an inshore site characterized by a rocky peak colonized by a

dense population of P. clavata with some large isolated colonies of Eunicella cavolini. As

for the previous COF sites, the ODC station is strongly impacted by the Rhône River (Fig.

1a; Table 1).

2.2. Characterization of marine environment and gorgonian populations

We monitored the temperature and current regime of both habitats (ODC station and COF-

station A) continuously for 13 months between the 1st of July 2019 and the 31st of July

2020. Temperature was recorded every 30 minutes with a HOBO water temp pro V2 sen-

sor (@Prosensor). A Tilt Current Meter Model 1 (TCM-1) (@Lowell Instruments) was used

to characterize the current  regime (speed and orientation of  current)  among the giant

colony populations (60 m depth) (Fig. S1). Measurements were also made every 30 min-

utes. We also characterized the density and size structure of the  P. clavata  populations

studied (COF-site A, B and ODC station) (Table 2). According to Linares et al. (2008), we

used 20 open quadrats  (50x50 cm) per  station (total  surface:  5m²)  (Fig.  S2).  In  each

quadrat, the number of colonies was counted and their height was measured with centime-

ter precision. In gorgonians, the characterization of the demographic structure of a popula-

tion is challenging. Indeed, the annual growth rate decreases with the age of the consid-

ered colonies (Coma et al., 1998; Sartoretto & Francour, 2012; Viladrich et al., 2016). In P.

clavata, annual growth rates values were almost exclusively estimated on small and young

colonies (e.g. Mistri & Cecherelli, 1994; Coma et al., 1998; Cupido et al., 2012). In this

context and considering the maximal size of P. clavata observed in Catchoff site (180cm
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high), we only focused on the characterization of the size structure of the populations. Fol-

lowing Linares et al. (2008), we defined 16 size classes, each corresponding to a 10 cm

range.

2.4. Experimental design

To test the potential for local adaptation of P. clavata populations according to depth, we

performed a reciprocal transplant experiment between the two localities (COF-station A

and ODC station) from 1st July 2019 to 3rd June 2020. The transplant experiment included

one control (colonies transplanted at their native depth) and one transplant (colonies trans-

planted at the foreign depth) in both locations. Sixty 10 cm long apical tips (two per colony)

were randomly sampled with scuba diving from each population. For each population, 30

fragments were attached to experimental plates (Fig.  S2) and installed at their original

depth (control transplants). Plates with the remaining 30 fragments were installed at a for -

eign depth (reciprocal transplants; i.e. 30 m to 60 m and 60 m to 30 m). Each sampled

colony was genotyped as explained below. Photographic monitoring of each transplant

was carried out every two months depending on meteorological conditions.

2.3. Genomic analysis

We aimed to characterize the genetic make-up of the COF deep site and to involve these

results in a wider context. Therefore, we sampled  P. clavata  colonies in different areas:

Northern Marseille Bay (COF station A and ODC), Calanques (Grand Congloue (GOC)

and Impérial (IMP) stations) and Porquerolles (Sec du Petit Langoustier (SPL) and Cap

d’Armes (CAA) stations), at increasing distance from COF (from 5 km up to 94 km) (Fig.

1b). In each area we sampled sites corresponding to different depths: around 30 m deep

(hereafter "shallow"), and below 50-55 m ("deep"). Details of the sampling sites are pre-
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sented in Table 2. It should be noted that we analyzed more individuals from the Northern

Bay of Marseille (including the deep COF site) which was our main study area.

2.3.1. Library preparation and sequencing

DNA from the samples was extracted using the Macherey-Nagel NucleoSpin DNA RapidL-

yse extraction kit. After DNA quantification, the extracted DNA samples were sent to the

MGX platform (https://www.mgx.cnrs.fr/) for RAD library preparation and sequencing. We

included in the batch of individuals four replicates with two DNA extractions from the same

colony. Library preparation followed the protocol of Baird et al. (2008) with the PstI restric-

tion enzyme. The library was sequenced on an Illumina NovaSeq 6000. We obtained a

mean of 6,426,012 raw sequences per sample (minimum: 618,725; maximum: 9,181,838;

Fig. S3).

2.3.2. Analysis of RAD sequencing data

We checked the quality of sequences with FastQC (Andrews 2019). In a preliminary analy-

sis we included an individual of the congeneric species Paramuricea placomus (Linnaeus,

1758) from Tjärnö (Sweden). A first Principal Component Analysis on this dataset led to

the main separation of P. placomus and P. clavata (Fig. S4). As this analysis did not lead

us to suspect the presence of different cryptic lineages among the P. clavata samples, we

removed the  P. placomus sample for further analyses. This allowed us to increase the

number of SNP loci (from 45,251 to 65,726 SNPs before further filtering), and to improve

the characterization of the genetic structure within  P. clavata. At that stage we also re-

moved a  P. clavata individual with a very low number of reads (618,725). We then re-

moved potential contaminant sequences with Kraken 2 (Wood et al. 2019) with the stan-
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dard database including references from archae, bacteria, human, plasmid, and viral se-

quences. The sequences identified by Kraken 2 were filtered with KrakenTools (Lu 2020).

The assembly of RAD loci was done with ipyrad 0.9.79 on these filtered sequences (Eaton

& Overcast, 2020). We used the genome of P. clavata as a reference (Ledoux et al. 2020).

We then performed a first PCA which showed the main separation of two samples of COF

with  high  rates  of  heterozygous  loci.  The  inbreeding  coefficient  F  computed  with

VCFTOOLS 0.1.15 (Danecek et al.  2011) for these two samples was -0.24 and -0.08,

compared to a mean value of 0.13 and a minimum of -0.03 for other samples. We re-

moved these two samples for further analyses. We used the output of ipyrad to build a ma-

trix of pairwise p-distances among samples with VCF2Dis 1.45 (https://github.com/BGI-

shenzhen/VCF2Dis.git). We then compared the pairwise distance observed among differ-

ent samples with those observed among sequencing replicates. This last analysis led us to

identify four sample pairs which showed the same distance than the distance observed be-

tween replicates (Table S1). For each pair, we removed the sample with the lowest num-

ber of reads, resulting in a total of 82 individuals. We then filtered SNPs with the following

filters: two alleles, a maximum of 25% of missing data, in Hardy-Weinberg equilibrium, not

in linkage disequilibrium, and one SNP per locus. Filtering on the basis of Hardy-Weinberg

equilibrium is useful to remove problematic markers, such as paralogous loci for example.

and previous studies based on microsatellites did not suspect any asexual reproduction in

this species (Mokhtar-Jamai et al., 2011; 2013). The filter based on linkage disequilibrium

aims at retaining only independent loci. The filtering was performed with vcftools 0.1.16

and the GBS_SNP_filter 1.17 pipeline (Alexander 2020, Danecek et al. 2011).

We used the GENEPOP R package (Rousset 2008) to compute gene diversity within indi-

viduals (1-Qintra; corresponding to observed heterozygosity) and among individuals within

sampling sites (1-Qinter; corresponding to expected heterozygosity), and F statistics (Weir

& Cockerham 1984).  We tested the pairwise differentiation among sampling sites with
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1,000 permutations with Arlequin 3.5 (Excoffier & Lischer 2010). We analysed the genetic

structure among samples with a Principal Component Analysis (Jombart et al. 2010), and

a clustering analysis followed by a Discriminant Analysis of Principal Components (DAPC;

Jombart et al. 2010), with the adegenet 2.1.5 R package (Jombart & Ahmed 2011). We

tested  for  the  presence  of  loci  potentially  involved  in  local  adaptation  with  three  ap-

proaches: Arlequin (Excoffier et al. 2009, Excoffier & Lischer 2010), OUTFLANK (Whitlock

& Lotterhos, 2015), and PCADAPT (Luu et al. 2017). 

We performed demographic inferences to estimate effective size and gene flow among

populations in COF and ODC populations for which we obtained the highest sample sizes.

We used the dataset obtained from the assembly of these two populations only. We used

fastsimcoal2 for demographic inferences (Excoffier et al. 2013, 2021), under a model of di -

vergence with gene flow (Fig. S5). The site frequency spectrum (SFS) was computed with

easySFS (https://github.com/isaacovercast/easySFS). The inference was first performed

on the basis of 100 replicated analyses of this initial dataset, and the run with the highest

estimated likelihood was retained to estimate demographic parameters. We performed 50

non-parametric bootstraps of the original dataset:  each bootstrapped dataset was ana-

lysed with 10 replicates and we retained the best run to get a confidence interval of the es-

timated parameters.

3. RESULTS

3.1. Characterization of the marine environment

3.1.1. Temperature

At the ODC station (-30 m), the range of values of seawater temperature values extended

from 23.2°C during autumn 2019 to 13.1°C during winter 2019-2020. In summer and au-

tumn, temperature trend showed successions of  warm water peaks (21-23°C at  30 m

10

28

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

29
30

https://github.com/isaacovercast/easySFS


depth). These peaks were observed during short time periods (less than a week) in July

and August (Fig. 2). Between September and November 2019, two longer periods (two

and three weeks) were observed with temperatures reaching 20°C and 23°C. In the COF

station (-60 m), temperature values ranged from 22.54°C in autumn 2019 to 13.40°C in

winter 2019-2020. During the summer, the same sequence of temperature increases as at

the ODC station was observed with lower maximum values (16-17°C). During the autumn,

the warm water periods were also the same as at the ODC station with the same maxi-

mum values (20°C to 23°C) but of a shorter duration (two weeks) (Fig. 2).

3.1.2. Current regime

The current regime in the COF station is characterized by low speed values (< 0.09 m.s -1).

During spring and summer, we observed a maximal period of time with a current speed of

less than 0.03 to 0.04 m.s-1. (Fig. 3A). During autumn and winter, the current speed values

are more unstable, ranging from 0.01 to 0.09 m.s -1. The current orientation shows a uni-

modal pattern in spring and summer with a predominance of the southeast direction (bear-

ing: 220°). In autumn and winter, this pattern is bimodal with: (i) southeast predominance

(bearing: 230°) and (ii) to a lesser extent northeast predominance (bearing: 50°) (Fig. 3B). 

3.2. Size structure 

The shallow population studied (ODC station, -30m) is characterized by a density of 26 ±

7.3 colonies.m-2. The size structure of this population shows a unimodal distribution of size

classes. The small (10 to 20 cm) and average sized gorgonians (20 to 50 cm) represent 67

% of the total (Fig. 4). The tallest colonies (50-110 cm) represent 23 % with only 1 % of the

colonies belonging to the class size 110-120 cm.

Compared to the ODC station, the COF-station A (-60m) shows a lower value for density

with 18.05 ± 7.29 colonies.m-2. The gorgonian population is characterized by a bimodal
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size structure with a predominance of average sized colonies (20 to 50 cm) representing

50 % of total  and high colonies (100-130 cm), representing 23 % of the colonies. Tall

colonies (130 to 150 cm) and giant (>150 cm with a maximum of 180 cm) represent re-

spectively 9 % and 6 % of the total (Fig. 4). In the COF-station B (-58m), the density value

is 23.6 ± 7.4 colonies.m-2, with small (10-20 cm) and average sized colonies (20 to 50 cm)

representing 17% and 39% of the total number of colonies. Tall colonies (130-150 cm) and

giant (>150 cm with a maximum of 160 cm) represent 13 % and 2 % of the observed

colonies.

3.3. Transplantation experiments and genomic analysis

3.3.1. Monitoring of transplants

At 60 m depth (COF-Station A), 24 fragments from the control transplant (60 to 60 m) died

one month after their installation. Ten months later, all fragments were dead. Regarding

the reciprocal transplants from ODC (30 to 60 m), the survival rate was higher than for the

control transplant with 11 dead fragments 5 months after the beginning of the experiment.

One year later, 14 fragments were dead (47 %) and the remaining ones showed between

25 % and 75 % of tissue necrosis. At 30 m depth (ODC station), after four months the sur-

vival rate reached 96.67 % for the control transplants (30 to 30 m), and 83.33 % for the re-

ciprocal transplants from COF (60 to 30 m). After 12 months, these values respectively

reached 60 % and 40 % (Fig. 5). At the end of the experiment, no significant differences

(Wilconson Rank Sum Test, p =1) in final necrosis levels was observed between control

transplants and reciprocal  transplants coming from COF. The majority of colonies pre-

sented a mean necrosis level lower or equal to 50 %. In June 2020 (end of experiment), 90

% of COF transplants and 92 % ODC transplants presented fertile polyps. Finally, the kep-

toparasitic annelid Haplosyllis chamaeleon (Pola et al. 2020) was observed on 28.6 % of

the reciprocal transplants from COF and 22 % of the control transplants (ODC).
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3.3.1. Genetic diversity and genetic structure

After the different filtering steps, statistical analyses were performed with 82 individuals

and 49,215 SNPs. The number of loci retained at each stage of the analysis is shown in

Tables S2 and S3. The levels of diversity were roughly similar between samples, with 1-

Qintra around 0.06 and 1- Qinter around 0.07 (see Table 2). We did not observe any regu-

lar increase or decrease of genetic diversity along depth. The FIS estimates indicated a sig-

nificant heterozygous deficit for all populations, varying from 0.08 for SPL to 0.13 for CAA. 

When computed over all sites and loci, the observed F statistics were 0.094 for FIS, 0.044

for FST, and 0.135 for FIT. The pairwise FST, averaged over all loci, are presented in Table 3.

The highest FST value (0.053) was observed for the comparison between the two sites in

the northern bay of Marseille, Catchoffs (COF) and Yeux de Chat (ODC), and between

COF and GCO (different depths, Marseille North and Calanques). The mean FST value for

the comparisons between depths within a given area was 0.032. Between areas, the mean

FST value was 0.038, 0.044 and 0.030 considering all sites, shallow sites and deep sites,

respectively. All pairwise differentiation tests were significant according to the permutation

tests (highest p-value: 0.014 for the CAA/IMP comparison).

The result of the PCA analysis on all loci is presented in Fig. 6A. The first axis mainly sep-

arated populations COF and ODC (2.1 % of variance), while the second axis was driven

by a few individuals from SPL (2 % of variance). The DAPC analysis did not indicate a

clear cut-off for the choice of the number K of clusters (Fig. S6). The clustering at K= 2

separated ODC from other populations, and the clustering at K= 3 further separated COF

from ODC and other populations (Fig. S7). The clustering at K= 4 separated COF, ODC,

the two Calanques populations (GCO and IMP), and the two Porquerolles populations

(SPL and CAA; Fig. 7) with high membership probabilities (near 1 in all cases). One can
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note that one individual from Porquerolles was assigned to the Calanques cluster, and one

individual from Calanques was assigned to the Porquerolles cluster.

We identified 267 potentially selected outlier loci with PCADAPT, 25 with Arlequin and

none with OUTFLANK. None of the outliers has been identified with both methods simulta-

neously.

We performed a separate PCA analysis with the outlier loci identified by each method.

With PCADAPT, the first axis of this last PCA separated a small group of individuals from

various populations, whereas the second axis mainly separated ODC from other popula-

tions (Fig. 6B). The third axis separated the COF population, and the fourth axis mainly

separated the two Porquerolles populations (CAA and SPL; Fig. 6C). With the Arlequin

outliers, there was no clear signal of differentiation in the PCA (results not shown).

The results of demographic inferences are presented in Table S4. Estimates of effective

size indicate a much higher population size for the 30 m population (ODC) compared to

the 58 m population (COF), with non-overlapping distributions based on bootstraps. Gene

flow estimates indicate very low levels of connectivity between these two populations, but

gene flow from ODC to COF appears higher than in the reverse direction (0.0041 com-

pared to less than 0.0001; non-overlapping distributions).

4. DISCUSSION

4.1. Size structure

At the two stations of COF site, mean values for colony height of  Paramuricea clavata

reached 71.08 ± 47.9 cm (site A) and 57.39 ± 39.1 cm (site B), respectively. These values

are higher than those reported in the ODC station (32.44 ± 22.54 cm), and, more gener -

ally, higher than those reported from the same depth in the northwestern Mediterranean

basin (Linares et al. 2008, Pérez-Portela et al. 2016). Surprisingly, the presence of tall
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(1.25-1.50 m) and giant colonies (>1.50 m) is associated with density values close to those

noted in shallower sites with smaller colonies (Harmelin & Garrabou 2005, Linarès 2008,

Ibora et al. 2022). By referring to the growth rate value estimated by Mistri & Ceccherelli

(1994), Cerrano et al. (2005) and Cupido et al. (2012) on small colonies (2.7 to 3.7 cm.yr -

1), the highest P. clavata (1.8 m) could be 50 to 70 years old. Nevertheless, the smallest

(and youngest) gorgonians usually show hight values of annual growth rate (Coma et al.,

1998; Viladrich et al., 2016). Based on the growth rate value calculated by Coma et al.

(1998) on higher colonies (from 3 to 55cm), they could be around 100 years, old even

though the authors underline the great variability of the growth rate within and between the

colonies of P. clavate. This age is well above the upper limit of this gorgonian's previously

estimated life span (50 years). Nevertheless, this astonishing size could be also due to a

growth rate boosted by environmental conditions. Indeed, the Catchoff study area is char-

acterized by a low current and the proximity of the Rhône River induces high input of or-

ganic matter with a high productivity (chlorophyll a) potentially beneficial to the growth of

colonies (Cocito et al. 1997, Linares 2008, Fraysse 2014). Further studies are needed to

formally estimate the age of the highest colonies of P. clavata. To date, it should be noted

that these giant deep-sea populations of P. clavata are not only unique but also constitute

a natural heritage in the north-western Mediterranean basin deserving special attention in

terms of conservation and management.

4.2. Transplant experimentation

At 30 m, the survival rate of transplants was similar to the percentage obtained in other ex-

periments  with  different  methods and gorgonian species  (Weinberg  1979,  Fava et  al.

2010,  Villechanoux  et  al.  2022).  The  presence  of  the  kleptoparasite  Haplosyllis

chamaeleon after one year did not cause injuries or any malformation on transplants as

usually observed on colonies of P. clavata (Pola et al. 2020). A majority of fertile polyps at
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the end of the experiment was a sign of a good adaptation of reciprocal and control trans-

plants to the 30 m habitat. On the contrary, the high mortality rate at 60 m was surprising.

The factors explaining this mortality are probably of different origins such as handling dur-

ing experimental set up or environmental conditions. At 60 m, the high level of sediments

falling on the experimental disposal could strongly impact transplants (Cocito et al. 1995,

Rowley 2014).  Identifying their relative impacts on the mortality rates is challenging, yet

the high level of sediments on experimental disposal observed at 60 but not at 30 m may

be a prominent factor. 

4.3. Genetic originality of the deep population of Paramuricea clavata

With nearly 50,000 SNPs genotyped, our results confirm the interest of RAD-sequencing

for population genetics in non-model species. This number of loci is comparable to results

with  the  same  restriction  enzyme  by  Quattrini  et  al. (2022)  on  different  Paramuricea

species (almost 30,000 SNPs), and by Pratlong et al. (2021) on C. rubrum with more dis-

tant populations (more than 25,000 SNPs). Within P. clavata, we observed significant dif-

ferentiation between sampling sites. When considering our three replicate comparisons

between depths, clustering analysis indicated grouping first by sampling area and then by

depth. This is consistent with the results obtained with microsatellites by Pérez-Portela et

al. (2016) focusing on populations around 50-60 m depth, and by Mokhtar-Jamaï  et al.

(2011) for shallower populations (mainly above 40 m). There is then a local differentiation

along depth,  rather  than the presence of  deep and shallow lineages,  which would be

shared among sites. The highest FST value (0.053) was observed for the comparison be-

tween the deep population of giant colonies and the nearest population at around 30 m

depth (30 m). This differentiation also corresponded to the first axis of the PCA. It can be

noted that with microsatellite loci, Mokthar-JamaÏ et al. (2011) also observed a clear differ-

entiation with a shallow population from the Côte Bleue where the ODC site is located. The
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particular oceanographic conditions of the Côte Bleue (Fraysse 2014) could lead to a rela-

tive isolation of this area explaining our results.  The deep population of giant colonies

(COF) therefore corresponds to a unique population well differentiated from shallower pop-

ulations from the same area, as well as from the populations of the Southern Calanques

area. The results of demographic inferences support this distinction with very low gene

flow between COF and ODC, but higher from COF and ODC. Indeed, these populations

are 4,500 m apart and currents are very low (<0.1 m.s-1), limiting the dispersal of planula

with  a  short  life  span before  their  transformation  into  new colonies  (around  48h,  see

Linares et al. 2008, Coma et al. 1995). This may explain the relatively high FST observed

between these two spatially close sites. The observed FST between COF and ODC is also

similar to the FST estimated between P. clavata populations below 50 m and above 30 m

with microsatellites by Perez-Portela et al. (2016; FST 0.049-0.066). The FST observed here

is nevertheless lower than most pairwise FST observed for C. rubrum in the Marseille area

using RAD-sequencing (variation between 0.03 and 0.10; Pratlong et al. 2021): this would

indicate either lower gene flow or higher drift for C. rubrum compared to P. clavata. For P.

clavata, with respect to effective population size, the estimated value with RAD-Seq, is

much higher for the shallow ODC population compared to the deep COF population. This

result is in contradiction with the analyses of Pilczynska et al. (2019), who observed an in-

crease of genetic diversity with depth, a pattern not observed here. To take demographic

inference analyses further, it would be necessary to test the impact of additional connectiv-

ity with other neighboring populations, and of variations in census population size on the

inferred patterns of effective population size.

4.4. Local adaptation to depth

The P. clavata populations from COF and ODC occur under contrasting ecological condi-

tions, including different thermal regimes with higher and more variable temperatures in
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ODC compared to COF. Nevertheless, it can be noted that the deep population in COF

was exposed to temperatures above 22°C during our survey. We could not formally test

the hypothesis of local adaptation in our reciprocal transplant experiment due to the loss of

the samples at the COF site. Indeed, a full test of local adaptation would require a compar-

ison of fitness in both habitats (Kawecki & Ebert 2004, Ledoux et al. 2015). Nevertheless,

the treatment at 30 m depth including reciprocal transplantation (from COF) and control

transplantation (ODC) can be considered as a common garden experiment. Interestingly,

we did not observe any significant difference in necrosis rates between colonies from COF

and ODC, despite the high temperatures in this shallower habitat (especially in July-Au-

gust 2019). This result would indicate a lack of local adaptation, which is at odds with the

differences in tolerance capacity towards warm water, observed between 20 and 40 m

depth in C. rubrum (Oriol Torrent 2007, Ledoux et al. 2015) and E. cavolini (Pivotto et al.

2015). In an ex-situ common garden, Crisci et al. (2017) observed no difference in thermo-

tolerance between  P. clavata colonies of different depths (20 m vs 40 m) from the Mar-

seille area (Calanques). The same lack of phenotypic differences was observed in Corsica

and Catalonia when comparing gorgonians populations along a depth gradient. This result

could be the consequence of genetic drift blurring the result of local selection (Crisci et al.

2017). In line with this apparent lack of local adaptation at the phenotypic level, the search

for outlier loci has identified loci that confirm the geographical separation of populations,

but without a clear link to environmental variables and local adaptation. Such a RAD-se-

quencing based approach may miss locally selected alleles (e.g., due to reduced genome

representation), or may be limited especially when local adaptation is based on a combina-

tion of loci with small effect (Hoban et al. 2016). 

4.4. Conservation aspects
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The results of demographic inferences indicate that the deep population of giant P. clavata

is isolated and unique with a reduced effective size compared to the shallower popula-

tions. Our results, and previous ones on such deep populations (Pérez-Portela et al. 2016)

do not support the hypothesis of deep refugia for P. clavata, at least for the studied areas.

This also strengthens the need to protect such a deep population which is original, both

from a genetic and demographic point of view. This need is reinforced by the major impact

of anchoring and use of fishnets on the giant populations of  P. clavata in a Marine Pro-

tected Area, with up to 100 boats per day (Leleu et al.  2014, Charbonnel et  al.  2020,

PMCB 2022) (Fig. S8). In this, the Marine Park of the ‘Côte Bleue’ (manager of the Natura

2000 site) has proposed a new technical disposal to the recreational fishermen in order to

prevent the impact of anchoring (Fig. S8). Despite the fact that the deeper populations are

less impacted by warming (Cupido et al. 2008), proper management of this human activity

is strongly needed to help preserve these populations (Betti  et  al.  2020).  Indeed, gor-

gonian forests enhance  α and  β diversity, and their loss replaces a structurally complex

habitat dominated by long-lived species with a simplified habitat (turf forming species) with

a loss of biodiversity (Verdura et al. 2019, Piazzi et al. 2021).
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TABLES

Table 1. Studied sites with tasks performed. TM: temperature monitoring, CM: current

monitoring, TRE: Transplant experimentation, DS: Density of colonies and size structure,

G: Genomic analysis.

Area Station Geographical coordinates Depth Task

Marseille north Catchoff – Station A 43°17.640 N/05 11.151 E 60m TM, CM, DS, TRE, G

Marseille north Catchoff – Station B 43°17.840 N/05 11.009 E 58m DS

Marseille north Yeux de Chat 43°11.640 N/05°11.151 E 30m TM, CM, DS, TRE, G

Calanques Grand Congloue 43°10.582 N/05°24.185 E 33m G

Calanques Impérial du large 43°10.177 N/05°23.694 E 54m G

Porquerolles Sec Petit Langoustier 42°59.895 N/06°09.612 E 30m G

Porquerolles Cap d’Arme 42°58.692 N/06°12.250 E 54m G
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Table 2. Characteristics of the sampling sites for the genetic analyses. N initial, N all and N Marseille North indicate the initial number of

samples, the number of samples retained for the complete analysis and the number of samples for the analysis focused on the two sites

in the North of the Bay of Marseille respectively. The last columns present the estimates of gene diversity within ( 1-Qintra) and among in-

dividuals (1-Qinter), and of FIS computed with all samples and averaged over 49 215 loci. The lines with a grey background indicate the

populations around 30 m depth.

Station Code Sampling date N initial N all N Marseille North 1-Qintra 1-Qinter FIS

Yeux de chat ODC 01/07/19 32 27 27 0.060 0.066 0.091
Catchoff - Station A COF 01/07/19 32 28 28 0.061 0.067 0.087

Grand Congloue GCO 30/04/19 7 6 - 0.058 0.064 0.099
Impérial du large IMP 30/04/19 7 6 - 0.059 0.067 0.115

Sec Petit Langoustier SPL 22/05/19 8 8 - 0.063 0.068 0.080
Cap d’Arme CAA 22/05/19 8 7 - 0.058 0.066 0.127

97

778

779

780

781

782

783

784

785

786

787

788

789

98



Table 3. Pairwise FST for the whole dataset averaged over all loci. Grey areas highlight the comparisons between depths in the same

area. ODC: Yeux de chat; COF: Catchoff – Station A; GCO: Grand Congloue; IMP: Imperial du large, SPL: Sec Petit Langoustier; CAA:

Cap d’Arme.

ODC COF GCO IMP SPL CAA
ODC -
COF 0.053 -
GCO 0.046 0.053 -
IMP 0.039 0.030 0.024 -
SPL 0.044 0.041 0.043 0.027 -
CAA 0.050 0.039 0.023 0.020 0.020 -
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FIGURES

 A

 B

Fig. 1. Location of studied  Paramuricea clavata populations. A: Catchoff-station A, Yeux

de  Chat  (temperature  and current  monitoring,  transplant  experiment,  density  and size

structure) and Catchoff-station B (density and size structure). B: Additionnal sites selected

for the genomic analysis of Paramuricea clavata populations.
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Fig. 2. Temperature of sea water surrounding Paramuricea clavata populations studied.
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Fig. 3. Characterisation of the courantology in Catchoff-Station A (High: bearing in degree,

Low: speed in cm.s-1). A: summer period; B: winter period. 
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Fig. 4. Characterisation of Paramuricea clavata populations: size structure (up) and den-

sity of colonies (down).
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Fig. 5. Survival rate of Paramuricea clavata transplants after one year of experiment. COF:

Catchoff-Station A; ODC: Yeux de Chat station.
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Fig. 6. Plots of individual colonies with the PCA analysis. The numbers in brackets indicate

the percentages of inertia for the corresponding axes. A) PCA on all 49 215 loci; B) PCA

on the 267 outlier loci identified with pcadapt; C) PCA on the 267 outlier loci identified with

pcadapt. COF: Catchoff – Station A; GCO: Grand Congloue; IMP: Impérial du large; SPL:

Sec du Petit Langoustier; CAA: Cap d’Arme.
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Fig. 7. Barplot of the results of the DPAC analysis for K= 4 clusters. ODC: Yeux de Chat;

COF: Catchoff – Station A; GCO: Grand Congloue; IMP: Impérial du large; SPL: Sec du

petit langoustier; CAA: Cap d’Arme.
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SUPPLEMENTARY TABLES

Table S1. Pairs of sequencing replicates (with grey background) and of samples separated

by  p distance similar  or lower than distances observed for  replicates (on the basis of

51 439 RAD loci obtained with ipyrad; see table S3). The read numbers correspond to the

number of reads after the Kraken analysis. For each sample pair, we retained the sample

with the highest number of reads for further analyses. See main text for details. PCCOF:

Catchoff – Station A; PCODF: Yeux de chat; PCIMP: Impérial du large; PCGCO: Grand

Congloue.

Sample 1 Reads Sample 2 Reads p distance
PCCOF58-17 7708166 PCCOF58-17-2 6,380,908 0.018
PCCOF58-8 6733912 PCCOF58-8-2 9,117,315 0.022
PCODC30-25 5057861 PCODC30-25-2 4,444,312 0.027
PCODC30-9 6613213 PCODC30-9-2 4,153,968 0.022
PCODC30-21-2 4365254 PCODC30-5 6,556,789 0.020
PCODC30-18 9148556 PCODC30-20-2 5,220,776 0.018
PCIMP54-18 6264317 PCIMP54-13 5,090,699 0.020
PCGCO33-8 6548623 PCGCO33-4 6,513,661 0.025
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Table S2. Number of loci retained at each filtering step for all populations, with the soft-

ware used at each step. The final dataset included 49,215 SNPs for 82 samples.

retained loci software

total_prefiltered_loci 109,1960 ipyrad

filtered_by_rm_duplicates 109,1960 ipyrad

filtered_by_max_indels 109,1960 ipyrad

filtered_by_max_SNPs 109,1081 ipyrad

filtered_by_max_shared_het 108,7331 ipyrad

filtered_by_min_sample 51,439 ipyrad

max 75 % of missing data, 2 alleles 
per SNP, no LD, one SNP per locus

49,215 vcftools and GBS_SNP_filter
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Table S3. Number of loci retained at each filtering step for the analysis of the two sites in

the North of the Bay of Marseille, with the software used at each step. The last two lines

correspond  to  the  dataset  Mars_1  and  Mars_2  respectively,  with  55  samples  in  both

cases.

retained loci software

total_prefiltered_loci 757,308 ipyrad

filtered_by_rm_duplicates 757,308 ipyrad

filtered_by_max_indels 757,308 ipyrad

filtered_by_max_SNPs 756,695 ipyrad

filtered_by_max_shared_het 751,168 ipyrad

filtered_by_min_sample 62,313 ipyrad

max 75% missing data per locus, 2 
alleles per SNP, no LD, one SNP per 
locus

49,215 vcftools and GBS_SNP_filter

no missing data per locus, 2 alleles 
perSNP, no LD, one SNP per locus

7,653 Vcftools and GBS_SNP_filter
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Table S4. Demographic inferences for the ODC (Yeux de Chat) and COF (Catchoffs – Sta-

tion A) populations. The model used for inferences is presented in Figure S2. The esti -

mated parameters are effective sizes N_COF and N_ODC for COF and ODC respectively,

the gene flows M_ODC_COF (from ODC to COF in forward time) and M_COF_ODC (from

COF to ODC), and the divergence time (TDIV in generations). The first line presents the

value estimated for the best run (over 100 replicates) for the analysis of observed data.

The following lines indicate the statistics describing the distribution of the parameters over

50 non-parametric bootstraps: median, standard deviation, minimum and maximum val-

ues. The computation was performed with a mutation rate of 2.9 x 10 -8 / site / generation

as estimated in Acropora corals by Mao et al. (2018).

N_COF N_ODC M_ODC_COF M_COF_ODC TDIV

Best run 5,378 1,247,133 0.0041 < 0.0001 1987
Median 12,507 1,710,848 0.0018 < 0.0001 5004
Standard deviation 5,879 714,299 0.0053 < 0.0001 2161
Minimum 954 183,719 0.0010 < 0.0001 384
Maximun 20,015 2,651,810 0.0251 < 0.0001 7815
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SUPPLEMENTARY FIGURES

Fig. S1. Temperature sensor (left) and current meter (right) used to characterize the envi -

ronment in the Catchoff site (Annex).

Fig. S2. Open quadrat used to characterize the size structure (50x50cm) (A) and Experi-

ment design for the transplantation of Paramuricea clavata colonies (samples of colonies

are fixed on a plastic plate and numbered) (B).
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Fig. S3.  Distribution of the number of raw reads per individuals obtained with RAD-se-

quencing.

Fig. S4. Results of the preliminary PCA including P. clavata and P. placomus (one individ-

ual). The analysis is based on 45 251 SNPs.
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Fig. S5. Model of evolution used for demographic inferences with fastsimcoal2. This is is a

model  of  divergence  with  gene  flow.  T_DIV  indicates  the  time  of  divergence,

M_ODC_COF and M_COF_ODC the gene flow (forward in time) between the two popula-

tions, N_COF and N_ODC the effective size of populations COF and ODC respectively.

Fig. S6. Evolution of the BIC parameter according to the number of clusters for the DAPC

analysis.
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A)

B)

Fig. S7. Barplot of the results of the DPAC analysis for A) K= 2, and B) K = 3 clusters.

ODC: Yeux de Chat; COF: Catchoff – Station A; GCO: Grand Congloue; IMP: Impérial du

large; SPL: Sec du petit langoustier; CAA: Cap d’Arme.
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Fig. S8. Impact of anchoring on giant Paramuricea clavata populations. A: Giant colony of

Paramuricea clavata (h: 170cm) ripped appart by an anchor belonging to a small fishing

boat; B: Giant colony of  P. clavata  (h: 152cm) brought to the Marine Park of the ‘Côte

Bleue’ by a recreational fisherman; C: Group of fishing boats anchored on gorgonian popu-

lation (15th November 2016); D: Mooring droped with a sliding buoy on the Catchoff site

by a recreational boat. When the fisherman uses his boat to pull it, the buoy stop the an -

chor at the surface. E: User instructions for the blocker used for a mooring with a sliding

buoy (disposal implemented by the Marine Park of the ‘Côte Bleue’ to prevent the damage

on the giant gorgonians). What is a blocker ? this is a reinforced wooden plate which can

block the sliding buoy in order to keep straight the rope and the chain. How to use it ? the
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blocker can be installed by a person. In a first step, the mooring with the sliding buoy is

droped until the anchor touch the bottom. In the next step, the mooring is pulled. When the

anchor begins to take off from the bottom, the blocker is fixed on the rope keeping away

the chain from the rocky substrate.
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