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Abstract

Active learning increases the effectiveness of labeling
when only subsets of unlabeled datasets can be processed
manually. To our knowledge, existing algorithms are de-
signed under the assumption that datasets are balanced.
However, many real-life datasets are actually imbalanced
and we propose two adaptations of active learning to tackle
imbalance. First, we modify acquisition functions to select
samples by taking advantage of a deep model pretrained on
a source domain. Second, we introduce a balancing step
in the acquisition process to reduce the imbalance of the
labeled subset. Evaluation is done with four imbalanced
datasets using existing active learning methods and their
modifications introduced here. Results show that our adap-
tations are useful as long as knowledge from the source do-
main is transferable to target domains.

1. Introduction
The availability of large annotated datasets is a central

requirement to train robust deep learning models. Although
large scale image collections are now available, for instance
on the Web, their manual labeling remains time-consuming.
Active learning (AL) algorithms [30] are designed to select
representative subsets of unlabeled datasets for manual la-
beling and thus reduce the cost of the annotation process.
The topic has recently re-emerged in the context of deep
learning [1, 8, 11, 21, 29, 33, 35]. However, to our knowl-
edge, none of the proposed approaches tackles the problem
of dataset imbalance, which affects wide array of datasets
built for real-life applications. Imbalance also appears for
research datasets, even if they are built with strong supervi-
sion. ImageNet [7] and Open Images [16] (built for object
recognition and detection), Google Landmarks [19] (tourist
landmarks recognition) or MS-CELEB-1M [9] (face recog-
nition) are all imbalanced. For instance, classes from the
full ImageNet dataset are represented by 648 images on
average with a standard deviation of 527. In contrast, the

ILSVRC subset of ImageNet [27], widely used in the com-
munity, is nearly perfectly balanced.

In AL, an acquisition function is used to select samples
for manual labeling, given an annotation budget. Most clas-
sical AL works [30] assume that access is provided to a
manually labeled subset which includes all classes of the
unlabeled dataset at the start of the process. This assump-
tion is made to kick start the AL procedure by first training
a model on the labeled subset and then using this model to
select more images from the unlabeled dataset. Then, the
model can be updated until the whole budget is spent. An
important drawback of this classical scenario is that the ac-
quisition functions select images based on features learned
on a small subset, which might be weak or unstable [30].
This problem is stringent for deep representations which are
data-intensive by nature.

Inspired by more recent works [1, 36, 8], we assume to
have access to a deep model pretrained on a source domain
but no access to a seed labeled subset. Also inspired by
these approaches, we work with a one shot active learn-
ing scenario. Images are selected by acquisition functions
based on features provided by the pretrained model. The
AL models are only created after labeling the full subset al-
lowed by the AL budget. This scenario is more realistic than
the classical one because it does not suppose that the total
number of classes is known in advance. It is also interest-
ing because an iterative training of deep model to include
each new labeled sample would be time consuming. The
existence of a pretrained model is also a realistic hypothesis
which is extensively exploited in transfer learning [15, 25].

Learning from imbalanced datasets leads to a prediction
bias towards majority classes over minority classes for clas-
sical machine learning algorithms [10, 13]. A similar con-
clusion was recently presented in [3], where the authors
study the effect of data imbalance on deep learning algo-
rithms. Our hypothesis is that existing active learning ap-
proaches tend to reproduce or even worsen the majority
bias. This bias is particularly important for the acquisi-
tion of samples for manual labeling, the key AL step which



should find a representative subset of the unlabeled dataset.
The first contribution is to modify acquisition functions

in order to adapt them to the one-shot scenario. To do this,
we exploit two related outputs of a deep model trained on a
source domain to select useful samples for labeling. Top-1
predictions of source classes are used to privilege samples
for which the source model is highly confident. Then, a
memory stores source classes which are associated to sam-
ples which were already labeled in order to obtain a seman-
tically diversified subset. A new sample is labeled only if
its associated source class was not already encountered.

The second contribution is to introduce a sample balanc-
ing step which reduces the propagation of imbalance of the
unlabeled to the labeled dataset. A part of the labeling bud-
get is annotated with a classical acquisition approach. A
criterion which depends on the budget and on the degree of
imbalance in the labeled dataset created so far is proposed
to switch toward the balancing step. During balancing, pri-
ority is given to classes which are underrepresented among
the samples that were already labeled. Note that the switch
between the two acquisition modes is transparent for the hu-
man annotator and the required labeling effort is identical.

Evaluation is done with imbalanced versions of four pub-
lic datasets designed for different visual tasks and three AL
labeling budgets. The modified acquisition functions are
compared to their original formulation, to random selection
and to core− set [29], a recent geometric-based approach,
with and without the balancing step. Results indicate that
both the modified acquisition functions and sample balanc-
ing are useful for three out of four. An analysis of source
knowledge transferability is provided to explain why the
proposed approach does not work for the fourth dataset.

2. Related Work
Active learning is a well-studied problem in classical

machine learning literature and has recently been inves-
tigated in a deep learning context. Our contribution is
to examine the fitness of existing methods for imbalanced
datasets and to propose adaptations for such datasets.

An overview of classical AL approaches is provided
in [30]. A first class of methods based on informativeness
exploits the uncertainty of the classifier predictions to se-
lect informative examples. The most common measures to
estimate the uncertainty of samples are based on least con-
fidence first [5], margin sampling [28] or entropy [32]. In
all cases, the least certain samples which are often at the
borders between classes are favored. However, while they
can help in improving the decision boundary of the classi-
fier, they are not representative for the data distribution as
a whole [30]. A second class of methods is based on den-
sity and was proposed to improve the representativeness of
the selected samples. Information density is an early exam-
ple of such strategy [31], while k-centers and core sets were

tested more recently [29]. Algorithms were also devised
to combine sample informativeness and representativeness.
K-means and hierarchical clustering based approaches were
explored in [18] and [6]. QUIRE [12] is an example of such
algorithm which deploys a min-max view of AL. In [4], en-
tropy and KL-divergence are combined to obtain uncertain
and representative examples. None of these functions were
explicitly tested with imbalanced datasets and our hypoth-
esis is that adaptations of them are needed in this context.
We focus on functions which can be modified with our ap-
proach.

Recent works on active learning include a deep learning
component. The authors of [21] use a flow of belief over
a graph version of the unlabeled dataset to select samples
which minimize joint entropy of nodes and select a non-
uniform number of samples per AL batch. In [11], the
manual labeling effort is analyzed and labels are progres-
sively pruned as the process advances in order to simplify
it. Very recently, an algorithm which learns a loss func-
tion specifically for AL was proposed in [35]. Inspired
by uncertainty-based functions, samples which are likely
to produce wrong predictions are suggested for annotation.
Monte Carlo (MC) dropout [8] exploits the softmax predic-
tions of a deep model with random dropout masks to gen-
erate uncertainty predictions of the model. An ensemble
approach which combines multiple snapshots of the same
network training was proposed in [1]. Coupled with a vari-
ation ratio function [14], ensembles are shown to outper-
form MC dropout. MC-dropout and ensembles increase the
computational complexity of the AL process since multiple
inferences are needed for each image. They can be applied
to any acquisition function. The works cited above usu-
ally need a labeled seed set of samples to initialize the AL
process. With low budgets, the initial deep learning mod-
els are likely to be suboptimal or even not trainable. As
an alternative, we take inspiration from works in transfer
learning [25, 15] and exploit a model pretrained on a source
domain.

Active incremental fine-tuning (AIFT) [36] proposes to
use iterative fine tuning in order to improve AL for bio-
medical images. The main advantage is that the labeled seed
samples are no longer needed. Instead, a network learned on
an external and independent dataset is used for fine-tuning.
Image patches are used to calculate entropy and diversity
over image regions and thus select relevant examples. AIFT
is the existing work which is closest to ours since we also
make the assumption that a pretrained model exists and can
be exploited to remove the need for a labeled seed set. How-
ever, important differences arise from: (1) our focus on im-
balance, (2) the acquisition functions used to select AL can-
didate samples and (3) the criterion used to select candidate
samples.

Also relevant are works from imbalanced learning [3],



which we use to test their impact on results.

3. Active Learning for Imbalanced Datasets

3.1. Problem Description

We propose a formalization of AL in an imbalanced set-
ting. We consider a source domain DS represented by DLS
a labeled dataset with xi, yi ∈ X × YS for i = 1..nS , i.i.d
realizations of random variables X ,YS ∼ PS where PS is
the source domain data distribution, X is the instance space
(in our case the image data), YS is the set of N class la-
bels {y1, ..., yN} of the source domain and nS the number
of annotated instances. We now consider a target domain
DT only represented by an unlabeled dataset DUT : xi ∈ X
for i = 1..nT for a target domain distribution PT with nT
the number of samples in the target domain. The objective
of Active Learning is to select the best subset DLT of DUT of
cardinal b (the budget) for manual labeling in order to max-
imize the performance of its associated model over the test
set DtT . We also consider that DUT is imbalanced, i.e. tar-
get classes can be under or over represented. The level of
imbalance can be defined, for instance, by using a combina-
tion of mean (µ) and standard deviation (σ) of the number
of samples per class. The higher the ratio between σ and µ
is, the stronger the imbalance of the dataset will be.

The proposed AL scenario encompasses three steps.
First, a deep modelMS is learned over the source domain
and includes two main components. The first is a feature ex-
tractor FS : xi → Rd, with d the size of the feature vector.
The second is a classifier followed by a soft-max function
PS : Rd → P (YS) which outputs the probability distri-
bution over the N classes of the source domain. The two
components of the modelMS are used to extract features f
and predictions p(ys) for all samples xi from DUT .

Second, a labeled dataset DLT is obtained via the appli-
cation of an acquisition function AF [30] which raises two
challenges. The model used to extract features and proba-
bilities of the target dataset is trained on the source domain,
classical uncertainty-based AF might be sub-optimal due
to dataset shifts [24]. Also the target dataset contains im-
balance which gets propagated to DLT . Minority classes are
likely to be underrepresented or not represented at all, es-
pecially for low AL budgets. We introduce: (1) adaptations
of uncertainty-based AF by diversifying samples based on
source dataset predictions and (2) a two step acquisition
process which first uses AF to discover classes and then
focuses on balancing the number of samples per class.

Third, a modelMT is trained over DLT to test AL perfor-
mance. This model can be built either by transferring rep-
resentations from the initial model or by fine-tuning it. The
usefulness of each of the two approaches is determined by
the AL budget b and the transferability of features between
DLS and DLT . We perform cross-validation on the training

set to determine which of the options is better in each con-
figuration. Finally, we apply thresholding, which uses the
prior class probabilities to augment the scores of minority
classes and is shown to out-perform a large array of data
sampling and classifier level methods for object recognition
using deep learning models [3]. Optionally, weakly super-
vised learning could be then applied to expand DLT into a
larger subset DST but this part of the process is not in focus
here.

3.2. Acquisition Functions

As discussed in Section 2, a wealth of AL acquisition
functions were proposed which focus either on uncertainty,
representativeness or a combination of them. We briefly
describe the most representative AF as reported in recent
papers [1, 8, 29]. In our AL scenario, no manual annotation
of the target dataset is available at the start of the process
and uncertainty measures are computed using the outputs
of the source model MS . Their usefulness is thus subject
to the degree of representation transferability between the
source and the target domains.

3.2.1 Uncertainty-based Functions

Uncertainty-based methods allow an AL method to query
the instances which lie close to the decision boundary of
the model. In deep AL contexts [1], these methods exploit
the classifier predictions obtained with the pretrained model
MS . The hypothesis is that these instances are the ones on
which the model is most likely to be uncertain and hence
the most informative to fine-tune the decision boundary.
Several uncertainty measures have been proposed in liter-
ature [30] and we selected the most influential ones here,
namely: entropy, margin sampling, least confidence.

Entropy Sampling is a concept borrowed from informa-
tion theory and is based on the global shape of class predic-
tions ofMS . It is defined as:

ent = invsort∀x∈DU
T
(H(x)) (1)

with: invsort a function which sorts samples x in de-
creasing order based on H(x), the entropy of x as calcu-
lated overMS predictions. This AF method selects sam-
ples with highest entropy from the top of the list ent pro-
vided by Equation 1.

Margin Sampling is an effective active learning method
which computes the uncertainty of an instance x by com-
paring its top 2 predictions of the model. It is defined as:

ms = sort∀x∈DU
T
(max(p(ys))−max2(p(ys)) (2)

with: max(p(ys)) and max2(p(ys)) are the top 2 predicted
classes for the sample x and sort a sorting function. This
AF favors samples which minimize the difference between



the top two predictions of samples from the list ms. Note
that ms can be seen as a truncated form of ent, computed
only over the top predictions of each sample.

Least Confidence Sampling is another uncertainty-
based approach which selects instances on which the model
MS is least confident, i.e. favors the lowest probabilities
available. It is defined as:

lc = sort∀x∈DU
T
(max(p(ys))) (3)

Values from the lc list are sorted from lowest to maximum
predicted value from the set of top-1 softmax probabilities
p(ys) for each sample x in DUT .

The presented uncertainty-based AF only exploit the
class predictions provided by the pretrained model MS .
They are thus likely to be suboptimal for imbalanced dataset
because, due to their definition, majority classes might be
favored and the initial imbalance of the unlabeled datasets
might be reinforced. As a result, the overall efficiency of
active learning will be reduced.

3.2.2 Diversified Certainty-based Functions

As discussed in Section 2, acquisition functions can be de-
signed to select informative or representative samples or
even a combination of both [12]. To take full advantage of
the initial model, we propose a sample diversification strat-
egy based on MS top predictions. This strategy operates
under the assumption that, due to transferability, a mapping
between classes in the source and target domains occurs.
Even if imperfect by nature, class mapping might help to
partially counter the effects of imbalance and to discover
a broader range of classes compared to uncertainty-based
methods. The AF presented in Equations 1, 2, 3 are first
inverted so as to put the most certain examples at the top of
the sampling lists. The final form of the functions is thus:

entdivinv = div(sort∀x∈DU
T
(H(x))) (4)

msdivinv = div(invsort∀x∈DU
T
(max(p(ys))−max2(p(ys))))

(5)

lcdivinv = div(invsort∀x∈DU
T
(max(p(ys)))) (6)

with: div a diversification function discussed below.
Inversion is necessary to sort the samples according to

certainty. div assigns every unlabeled sample to its pre-
dicted source class. The selection of samples is performed
by iterating over the source classes, selecting one example
per source class, till the budget is filled. The underlining as-
sumption is that the samples assigned to different source
classes with high certainty would be different from each
other. Further, a diverse set of images is selected by giving
equal representation to samples from all the source classes.

3.2.3 Geometric-based Functions

Geometric approaches are based on building a subset us-
ing the feature extractor FS of the pretrained model MS

on the unlabeled dataset. One recent method [29] creates a
core− set of the unlabeled dataset by solving the greedy k-
center problem. It tries to minimize the distance between
any unlabeled point in the unlabeled target dataset to its
closest labeled point in the source dataset. Hence at ev-
ery step, it selects the point which is at a maximum distance
from its closest labeled point. We implement this method by
randomly selecting the first labeled point and then solving
Equation 7:

max
∀xu∈DU

T

min
xl∈DL

T

d(f(xu), f(xl)) (7)

with d(f(xu), f(xl) the distance between the labeled point
xl from labeled set DLT and unlabeled point xu from unla-
beled set DUT . Note that we tried to apply the diversification
procedure to the coreset too but results were inconclusive.
This negative finding is probably explained by the fact that
geometric-based functions live in the feature space, and di-
versification is applied to the classifier predictions.

3.3. Active Learning with Balancing

The switch from classical AL to balancing step needs
to be done in order to ensure a good balance between dis-
covery and balancing steps of AL. If switching is done too
early, balancing is applied to a large number of samples but
the number of found classes is likely to be low. Inversely,
if the class discovery step is too long, a larger number of
classes might be discovered but at the expense of signif-
icant imbalance in DLT . The switch between the two AL
steps needs to be linked to the imbalance profile of the tar-
get dataset. It is activated using the following rule:

b−m <= cur × (µ(or)− µ(ur)) (8)

with: cur - the number of under-represented classes; µ(or)
and µ(ur) - the mean number of samples for over- and
under-represented classes when m samples were labeled in
DLT (under- and over-representation are defined w.r.t. the
mean number of class samples after labeling m images).

For every m value, Equation 8 tests if there are enough
samples left until b to fill in the gap between the samples
of under-represented and over-represented classes. Ideally,
all samples labeled between m and b would be attributed
to under-represented classes in order to have a completely
balanced distribution of class samples. In practice, even
if under-represented classes are favored during balancing,
some imbalance will subsist because: (1) ur classes sim-
ply might not have enough samples in DUT and (2) some of
the samples attributed during balancing will be directed to-
wards other classes than intended. The stronger the imbal-



ance of a dataset, the earlier the switch proposed in Equa-
tion 8 will be activated. Note that balancing in Equation 8
is designed for imbalanced datasets but it might also affect
AL for balanced datasets.

Once the switch is activated, under-represented classes
which have the lowest number of associated samples are pri-
oritized. Samples from DUT are represented in feature space
Rd defined by the initial modelMS . The mean feature rep-
resentation is computed for each class using its manually
labeled samples in DLT . The imbalance profile of the la-
beled subset DLT and the mean representations of its known
classes are updated after each manual labeling. Given the
targeted rarest class Cminur , we propose the next sample for
labeling using:

xnext = min
∀i∈{1,n−m}

(
d(µ(FS(C

min
ur )), FS(xi)

max∀j∈{1,cor}(d(µ(FS(Cj)), FS(xi))
)

(9)

with xi any of the unlabeled n −m samples at moment
m; d(., .) - the L2-distance in the feature space Rd; cor is
the number of over-represented classes; µ(FS(.)) - mean
features of a class as represented by its samples in the cur-
rent labeled subset DLT .

The numerator in Eq. 9 favors unlabeled samples which
are close to the target class Cminur . The denominator favors
samples which are furthest away from any majority class.
We also tested with a version of Eq. 9 in which the denom-
inator was not used and obtained lower performance.

3.4. Training Strategies

The training of a modelMT over the manually labeled
subset DLT can be done by transferring deep features from
MS or by fine-tuning this model. The first option seems
preferable for small AL budgets because fine-tuning a deep
architecture might be suboptimal or even impossible. Trans-
fer is implemented using a classical approach [25] which
learns shallow classifiers over the features provided by the
feature extractor FS . Inversely, fine-tuning becomes viable
if b is larger or if source and target domains are distant
from one another. CNN models are shown to be particularly
prone to imbalance and provide prediction scores biased to-
wards majority classes [3]. Following the conclusions of
this prior work, a post processing based on prior probabil-
ities is used to calibrate the scores and improve overall ac-
curacy. The choice between the two strategies is done via
cross-validation over DLT . 10 folds are created and we test
both shallow classifiers and fine tuned models for each fold.
Accuracy is averaged over all folds and the strategy which
has better performance is selected.

Dataset Class Images Mean(µ) Std(σ) ir
Food-101 101 22956 227.28 180.31 0.793

CIFAR-100 100 17168 171.68 126.98 0.740
IMN-100 100 18558 185.58 137.16 0.739
MIT-67 67 14281 213.15 168.16 0.789

Table 1. Dataset statistics. ir is the imbalance ratio

4. Experiments
4.1. Datasets

The proposed methods are evaluated on four imbalanced
datasets and we consider ILSVRC [27] as source domain.
We induce imbalance in the publicly available Food-101 [2]
(fine-grained food recognition), CIFAR-100 [17] (object
recognition), MIT Indoor-67 [23] (indoor scene recogni-
tion). In addition, we create IMN-100 a subset of ran-
domly selected 100 leaf classes from ImageNet which are
not present in ILSVRC. This last dataset is created to test
transfer among classes from the same large collection of
images. An imbalance induction procedure was applied to
all datasets using a target imbalance ratio to guide the prun-
ing process. The imbalance ratio is defined as ir = σ

µ , with
σ standard deviation and µ the mean of images per class in
the dataset. The main statistics of the obtained datasets are
provided in Table 1. Imbalance is similar across datasets to
facilitate comparability of results.

4.2. Implementation Details

The Pytorch [20] pretrained ResNet-18 model is used as
MS . The choice of this model is guided by two criteria: (1)
the AL labeled subsets are small and deeper models might
not converge and (2) the number of experiments to run is
large and a relatively quick training is needed. A classi-
cal fine-tuning strategy is applied when CNNs are used to
create MT over the labeled subset DLT . Parameters of the
source training are kept, except for the initial learning rate
which is divided by 10. Linear SVMs from scikit-learn [22]
are used to create shallow model when transfer learning is
used. Their parameters are optimized using 10-fold cross
validation over the labeled subset DLT . The choice between
SVMs and CNNs to create AL models is done by cross-
validation, as explained in Subsection 3.4.

4.3. Evaluation Methodology

The size of the budget b is the main criterion used to eval-
uate the performance of active learning methods [1, 29, 30]
and we test b = {500, 1000, 2000} for each of them. We
present results with existing AL acquisition functions and
their modified versions described in Subsection 3.2. Five
runs are launched for non-deterministic acquisition func-
tions (random and core − set) and their accuracy is aver-
aged to prevent accuracy bias. AL performance is evaluated
before and after balancing. We also provide details about



Dataset Food-101 CIFAR-100 IMN-100 MIT-67
Budget 500 1000 2000 500 1000 2000 500 1000 2000 500 1000 2000
random 23.02 30.63 38.68 27.31 33.66 39.78 47.24 56.62 63.87 34.99 44.56 53.33
ent 14.19 20.44 29.26 12.13 17.31 25.18 16.99 24.62 37.58 25.36 31.72 41.20
ms 8.49 14.31 28.48 23.70 25.25 35.76 28.46 41.29 38.98 28.91 34.64 46.50
lc 15.44 23.45 33.06 15.28 20.79 27.74 21.79 32.09 43.77 27.20 34.68 45.44

entinv 8.84 15.55 26.69 24.19 30.29 34.78 27.83 41.44 38.71 28.87 37.99 42.12
entdiv 13.93 20.24 30.34 23.96 29.35 35.97 24.25 42.99 55.45 27.07 39.01 44.35
entdivinv 19.71 25.60 34.11 32.13 38.94 43.94 53.65 61.21 66.79 39.17 46.79 52.09
msdivinv 16.05 24.26 32.62 24.61 31.46 39.13 39.47 51.68 61.02 31.46 40.99 49.13
lcdivinv 19.13 24.66 33.62 32.62 38.46 43.52 55.27 61.89 66.80 39.48 45.89 51.42

core− set 20.07 26.35 34.17 30.04 36.34 42.18 49.84 56.42 63.87 37.10 46.08 52.31
Full 65.85 59.49 70.20 72.43

GAL

-0.792
-1.308
-1.159
-1.191
-1.155
-1.077
-0.739
-0.928
-0.742
-0.790
-

Table 2. Accuracy of the acquisition functions from Subsection 3.2 before balancing. random and core − set are non deterministic and
their performance is averaged over five runs. Best results are presented in bold.

Dataset Food-101 CIFAR-100 IMN-100 MIT-67
Budget 500 1000 2000 500 1000 2000 500 1000 2000 500 1000 2000
random 23.53 30.52 37.95 28.86 37.29 44.32 53.79 62.59 68.31 42.36 54.14 60.16
ent 19.10 27.06 34.43 24.07 33.82 41.20 41.19 57.65 65.47 34.75 51.68 60.16
ms 17.98 29.61 35.40 25.44 35.18 41.71 45.57 51.56 65.73 40.52 48.62 57.17
lc 19.59 26.70 37.20 26.68 36.70 40.13 43.03 59.32 67.45 41.30 51.23 59.34

entinv 18.06 28.81 35.62 25.89 34.06 41.87 44.48 57.45 64.08 36.25 49.33 58.15
entdiv 20.08 26.82 33.57 24.43 34.26 43.20 42.25 55.53 63.33 38.99 51.83 60.01
entdivinv 23.20 27.43 38.00 34.32 40.78 45.34 56.98 64.12 68.21 47.80 53.74 60.39
msdivinv 20.51 27.91 37.50 27.40 37.32 45.70 50.48 60.75 66.12 44.67 52.42 59.12
lcdivinv 21.77 28.71 36.16 32.21 39.92 45.13 55.55 64.05 68.86 45.34 51.79 61.06

core− set 20.84 28.21 37.44 32.68 39.70 44.43 54.57 62.14 67.97 46.42 54.34 60.46
Full 65.85 59.49 70.20 72.43

GAL

-0.653
-0.792
-0.784
-0.744
-0.785
-0.783
-0.612
-0.690
-0.637
-0.640
-

Table 3. Accuracy of the acquisition functions from Subsection 3.2 after balancing. random and core − set are non deterministic and
their performance is averaged over five runs. Best results are presented in bold.

the number of classes discovered by eachAF and the asso-
ciated imbalance ratio.

The evaluation measure used in all experiments is top-
1 accuracy. It is calculated as an average over the entire
set of classes represented in the test set since the objective
is to evaluate the capacity of each AL method to deal with
imbalance. The computation includes classes which might
not have been discovered during AL.

Since the number of configurations for each AF is im-
portant, we also present a summarized evaluation of per-
formance. Inspired by recent works such as [26, 34], we
propose a global performance score in Equation 10:

GAL =
1

c
×

c∑
i=1

acci − accfull
accmax − accfull

(10)

where: c - number of configurations tested; acci - top-1
score for each configuration (individual values of each row
of Table 2 and Table 3; accfull - the upper-bound accuracy
of the dataset (full accuracy corresponds to fine-tuning
a model for each full imbalanced dataset with ILSVRC
as source dataset, followed by score calibration with prior
class probabilities as done in [3]); accmax - the maximum
theoretical value obtainable (accmax = 100 here).

GAL measures the performance gap between methods
which use a partial labeling of data and an upper-bound
which exploits a fully labeled dataset. The denominator is
introduced to avoid a disproportionate influence of individ-
ual datasets [34]. GAL has a negative value and the closer
its value to zero, the better the method is.

4.4. Performance of Acquisition Functions

A first important finding provided by Table 2 is that exist-
ingAF are not well adapted for imbalanced datasets. Their
performance, as measured by GAL and for individual con-
figurations, is lower than that of random sampling. This
is notably the case for uncertainty-based functions whose
GAL is consequently lower compared to random sampling.
Even the recent core− set method has global performance
equivalent to that of random sampling. Our results confirm
the conclusions of [29, 1] regarding the fact that random
sampling is a strong AL baseline.

A second important finding is that the proposed AF
adaptations are efficient since performance is improved for
all uncertainty-based methods when diversification is ap-
plied to their inversed definitions as discussed in Subsec-
tion 3.2. The performance gain is particularly interesting



Dataset Food-101 CIFAR-100 IMN-100 MIT-67
Budget 500 1000 2000 500 1000 2000 500 1000 2000 500 1000 2000

random
Classes 87.8 98.2 100.6 91 97 99 92.8 99 100 66 67 67
ir 0.936 0.849 0.820 0.837 0.785 0.757 0.864 0.798 0.772 0.857 0.796 0.784

ent
Classes 77 90 99 64 77 91 58 80 90 54 65 66
ir 1.758 1.528 1.328 2.480 2.079 1.556 2.947 2.304 1.735 1.280 1.148 1.031

entdivinv
Classes 85 92 100 97 98 99 99 99 100 64 67 67
ir 1.292 1.267 1.111 0.723 0.710 0.706 0.587 0.550 0.515 0.928 0.914 0.823

lcdivinv
Classes 84 92 99 95 98 99 99 100 100 63 65 67
ir 1.235 1.226 1.067 0.732 0.686 0.683 0.571 0.573 0.524 0.898 0.887 0.837

core− set Classes 84.8 95 100 93 99 100 98 100 100 65.2 67 67
ir 1.266 1.228 1.170 0.926 0.831 0.767 0.844 0.774 0.754 0.918 0.853 0.820

Full
Classes 101 100 100 67
ir 0.793 0.740 0.739 0.789

Average

88.8
0.821
75.917
1.765
89
0.844
88.41
0.827
89.03
0.929
92
0.765

Table 4. Number of classes found and imbalance ratio for the main acquisition methods before balancing. The number of classes is not an
integer for random and core− set because these methods are not deterministic and their performance is averaged over five runs.

Dataset Food-101 CIFAR-100 IMN-100 MIT-67
Budget 500 1000 2000 500 1000 2000 500 1000 2000 500 1000 2000

random
Classes 90.6 97.4 100.4 90.8 96.6 99.4 93.4 98 99.6 65.8 67 67
ir 0.803 0.820 0.841 0.750 0.677 0.635 0.491 0.357 0.241 0.586 0.297 0.264

ent
Classes 85 98 100 88 95 100 86 96 100 63 64 67
ir 1.236 1.035 1.058 0.998 0.891 0.815 1.511 0.975 0.821 0.789 0.476 0.363

entdivinv
Classes 88 98 101 95 100 100 95 100 100 64 67 67
ir 0.986 0.976 0.850 0.587 0.559 0.655 0.368 0.377 0.187 0.449 0.434 0.341

lcdivinv
Classes 85 98 100 95 98 100 93 100 100 62 66 67
ir 0.849 0.865 0.908 0.710 0.614 0.613 0.420 0.337 0.210 0.522 0.405 0.352

core− set Classes 89.8 96.8 100.8 91.4 99 99.800 97 99.4 100 65 66.6 67
ir 0.943 0.956 0.894 0.713 0.689 0.662 0.568 0.417 0.289 0.450 0.373 0.323

Full
Classes 101 100 100 67
ir 0.793 0.740 0.739 0.789

Average

88.83
0.563
86.83
0.914
89.58
0.564
88.66
0.567
89.38
0.606
92
0.765

Table 5. Number of classes found and imbalance ratio for the main acquisition methods after balancing. The number of classes is not an
integer for random and core− set because these methods are not deterministic and their performance is averaged over five runs.

for the modified versions of entropy entdivinv and least con-
fidence (lcdivinv) which gain 0.57 and 0.45 GAL points com-
pared to random. As shown by the intermediate results ob-
tained for entinv and entdiv , both the shift from uncertain
to representative images and the use of the diversification
scheme based on the predictions of the pretrained model
are beneficial.

The analysis of individual configurations, entdivinv and
lcdivinv indicates that they are clearly better compared to
random for CIFAR-100 and IMN-100 and also for the
lower budgets of MIT-67. Gains are more important for
lower budgets, i.e. the most difficult and interesting AL
configurations since they allow a larger reduction of the la-
beling effort. For b = 2000, the accuracy of the best meth-
ods tends to level because the chances to pick a good subset
of the training set are higher and the AL task becomes less
relevant. Interestingly, random is clearly the best method
for Food-101. This behavior underlines a limitation of deep
representation transferability, regardless of its implemen-
tation via transfer learning with shallow classifiers or by
fine-tuning the initial model. The result is explained by
the larger visual gap between Food-101 and ILSVRC which

translates into a significantly higher difference between AL
scores and the performance on the full dataset. We provide
further analysis of transferability in Subsection 4.6.

In Table 4, we complement the analysis of accuracy with
a presentation of the number of classes discovered by each
method and the standard deviation in the distribution of la-
beled samples. Only the main methods from Table 2 are
kept. An ideal method would discover all classes and have
a standard deviation as close as possible to zero in order to
give all classes similar chances of being recognized. Re-
sults are rather well correlated to accuracy, with entdivinv
having the best behavior for CIFAR-100 and IMN-100 and
random being best for Food-101. The low accuracy of
classical entropy is explained by its poor behavior both in
terms of class discovery and of imbalance ratio. Interest-
ingly, while random samples are more balanced for MIT-
67 compared to entdivinv , accuracy remains better for the lat-
ter method. This is probably an effect of the fact that the
labeled samples are more representative of each class for
entdivinv compared to a random selection. The results in Ta-
ble 4 also validate our hypothesis that the application of
acquisition functions worsens the global imbalance of DUT .



None of the acquisition functions has imbalance lower than
that of the full imbalanced datasets. This justifies the need
for a balancing step during the acquisition process.

4.5. Influence of Balancing

Balancing provides a consequent improvement for all
AF tested. The GAL scores after balancing (Table 5) are
clearly better than those obtained before balancing (Table
4). The GAL score for random moves from -0.792 to -
0.653, while that of entdivinv goes from -0.739 to -0.612.
lcdivinv remains second best but with an increased gap com-
pared to entdivinv . We note also that balancing improves per-
formance of acquisition function for the Food-101 dataset.
In particular, entdivinv is on par with random for b = 500
and b = 2000 but still lags behind for b = 1000. This result
indicates that even balancing is useful to some extent even
when feature transferability is low.

The comparison of imbalance ratios before and after bal-
ancing provided in Tables 4 and Table 5 shows that the pro-
posed procedure is useful. The reduction of imbalance con-
tributes to the improvement of accuracy compared to the
case when no balancing is applied. The average imbalance
ratio for random and entdivinv is 0.821 and 0.844 without
balancing compared to 0.563 and 0.564 with balancing to
be compared with 0.765 for the full imbalanced datasets.

The balancing process also provides a slight increase of
the number of classes discovered, which is another impor-
tant factor which contributes to accuracy. This can be ex-
plained by the fact that when switching between acquisition
modes, the acquisition strategy changes and a different sub-
space of the feature space is explored.

Figure 1. Distribution of number of target dataset images predicted
per source class. Source classes are ranked from left to right from
most to least frequent. To facilitate comparability, the raw number
of predictions is divided by the size of each target dataset. Best
viewed in color.

4.6. Analysis of Transferability

The distance from source to target domains conditions
the success of transfer learning [25]. The larger this dis-
tance is, the higher the chances for transfer to be inefficient
are. The differences of accuracy between the training with
the full dataset and with AL methods provided in Tables 2
and 3 indicate that the distance between the ILSVRC source
is highest for Food-101. We deepen this simple estimation
of transferability in Figure 1. It shows the mapping of top-
1 predictions for the training images in the target datasets
over the classes of the source dataset. Transfer is likely to
be successful if the mapping encompasses a large number
of ILSVRC classes and is rather balanced. Such a distribu-
tion would indicate that the target domain is richly repre-
sented in the source domain. Inversely, a distribution con-
centrated on a small number of classes indicates that the tar-
get is poorly represented and transfer would be less likely to
succeed. The distributions from Figure 1 are directly com-
parable for Food-101, CIFAR-100 and IMN-100 as these
datasets have a nearly identical number of classes. The dis-
tribution is the least balanced for Food-101, followed by
CIFAR-100 and IMN-100. This mirrors the accuracy re-
ported for each dataset in Tables 2 and 3. MIT-67 has fewer
classes and its distribution is naturally tighter. However, it
is still more evenly distributed than that of Food-101. This
analysis underlines that ILVSRC is a good source domain
dataset.

5. Conclusion

We adapt AL for imbalanced visual datasets by mod-
ifying acquisition functions and by introducing a balanc-
ing step during manual labeling. The modified acquisition
functions take advantage of a pretrained deep model to find
representative and diversified samples for manual labeling.
The balancing step focuses the labeling process on classes
which are underrepresented in the annotated subset. Both
adaptations have a positive effect as long as features are ef-
ficiently transferable between the pretrained model and the
target imbalanced datasets.

Obtained results are encouraging and we will pursue re-
search along three axes. First, we will attempt to propose
more elaborate diversification methods for the acquisition
functions. Second, we will consider a pretrained model
learned on a larger dataset to ensure transferability toward
a larger spectrum of target datasets. Finally, we will in-
vestigate methods to determine whether representations are
transferable between source and target datasets. If this is
not the case, it becomes preferable to run random sampling
followed by balancing instead of AL acquisition functions.
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