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Time-Optimal Point-To-Point Motion Planning and Assembly Mode
Change of Cuspidal Manipulators: Application to 3R and 6R Robots

Tobias Marauli1, Durgesh Haribhau Salunkhe2 , Hubert Gattringer1, Andreas Müller1,
Damien Chablat2 and Philippe Wenger2

Abstract— The kinematics of cuspidal 3R regional robots was
studied extensively in the past. Moreover, certain industrial
6R robots were found to be cuspidal (e.g. Fanuc CRX series,
Kinova GEN2), which makes cuspidal robots finally interesting
for practical applications. This necessitates optimal trajectory
planning, respecting the dynamics and technical limits of the
particular robot. In this paper, a method for singularity-free
time-optimal point-to-point trajectory (PtP) trajectory planning
is proposed. As a special case, this method is applicable to time-
optimal singularity-free assembly mode changing. Results are
shown for 3R robots and a 6R Fanuc CRX10iA/L.

Index Terms— Singularities, Cuspidality, Optimal Control,
Dynamics, Kinematics, Industrial Robots

I. INTRODUCTION

Motivation: The ability to change the assembly mode
(i.e. perform a motion that starts and ends with the same
end-effector (EE) pose but with different inverse kinematic
solution) without having to pass through a singularity is
referred to as singularity-free assembly mode change. Robots
having this ability are called cuspidal. Cuspidal robots thus
possess at least one singularity free connected region in
joint-space, called c-sheets [1] or aspects [2], with multiple
inverse kinematics solutions (IKS). This was first reported
in [3], [4]. Historically, the term cuspidal stems from the
fact that a projection of the critical values (the forward
kinematics map of the singularities) exhibits cusps, which
is a sufficient condition for 3R manipulators to be cuspidal.
This has triggered extensive research on cuspidal 3R serial
manipulators [5], [6], [7]. It was recently shown [8] that for
generic 3R robots the existence of cusps in workspace is
sufficient and necessary to be cuspidal. Research on robot
geometries satisfying the necessary cuspidality property was
originally pursued for 3R regional robots [5], [9]. A review
to the research in cuspidal robots is given by [10], including
also parallel mechanisms. Lately it was recognized that also
6R industrial robots are cuspidal, e.g. Fanuc CRX series
and Kinova Jaco gen2, which increases the significance of
cuspidality for practical applications. Consequently, to fully
exploit this feature, cuspidality should be included in the
motion planning process. Optimal trajectory planning based
on a dynamic robot model has not yet been addressed for
cuspidal robots. Moreover, cuspidality not only allows for
singularity-free assembly mode change, it is also enables
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planning singularity-free point-to-point (PtP) motions. In the
following, an example which further highlights the benefits
of considering cuspidality in the motion planning process is
discussed.

In the course of this paper n-DOF robotic manipula-
tors with only revolute joints are considered. Denote with
q(t) ∈ Tn the joint coordinate vector, and with z ∈ W the
end-effector pose, where W ⊆ SE (3) is the workspace.
Further denote with z = f(q) the forward kinematics map,
and with J the forward kinematics Jacobian. Kinematic
singularities are defined by the hyper-surface detJ(q) = 0,
which divides the joint-space into aspects.
For a conventional (non-cuspidal) wrist-partitioned robot, all
IKS for a given EE pose z belong to one aspect, and are
generally referred to as postures. For example, the elbow
up and elbow down configurations are the two postures
of a 2R robot. Similarly, wrist-partitioned robots possess
8 postures. The important point is that each IKS belongs
exactly one aspect, and that the robot must pass through
a singularity to change posture. Cuspidal robots, on the
other hand, have multiple IKS in one aspect. Fig. 1 shows
this for a 3R robot with DH parameters {a1, a2, a3} =
{0.5, 1, 0.75}m, {d1, d2, d3} = {0, 0.5, 0}m, {α1, α2, α3} =
{−π/2, π/2, 0}. The singularity loci, separating the aspects,
are shown as solid lines in joint and task space. For the EE
pose za there are four IKS, denoted with qa,1, . . .qa,4, and for
zb there are two IKS, denoted with qb,1,qb,2. Importantly, an
aspect contains different IKS. This allows to transit from one
IKS to another without leaving an aspect, i.e. not crossing
a singularity. The 3R robot can move from qa,1 to qb,1
corresponding to EE pose za and zb, respectively. If the
EE has to return to the initial za (e.g. in a pick and place
scenario), it could go to the IKS qa,2. This leads to a non-
singular assembly mode change. Another motivation is that
in this way collisions can be avoided with obstacles that were
not present during the forward motion. Also from a control
perspective, it may be more efficient or faster to move from
qb,1 to qa,2 instead to qa,1. Such a time-optimal trajectory
planning and assembly mode change is addressed in this
paper.

Contribution: An algorithm for time-optimal point-to-
point (PtP) trajectory planning in workspace is proposed in
Sec. II, and for time-optimal assembly mode change in Sec.
III, which is the special case where initial and terminal EE-
pose are identical. The approach solves the combinatorial
problem of identifying that pair of IKS corresponding to
the prescribed initial and terminal EE-pose which admits the



(a) path in joint-space (b) PtP path in workspace

Fig. 1: joint-space a) and spherical cut of the workspace b)
of a cuspidal 3R robot.

fastest trajectory connecting them, while taking all technical
limits of the robot into account. To this end, a set of
pairs of candidate IKS is determined, and for each pair,
a time-optimal trajectory planning problem is solved using
a multiple shooting algorithm. The results when applying
the method to a 3R robot (only EE positions are used)
and a 6R industrial robot are shown in the course of this
paper. To the best authors’ knowledge, this is the first paper
addressing singularity-free time-optimal trajectory planning
and assembly mode change of cuspidal robots. In addition
to the time-optimal motion, the algorithm enables checking
whether singularity-free motions are actually feasible given
the joint limits of real robots. The latter has never been taken
into account when discussing cuspidal robots.

II. OPTIMAL NON-SINGULAR TRAJECTORY PLANNING

A. Problem Statement

A major benefit of serial cuspidal manipulators is the
presence of regions in workspace with more than two IKS
that are connected by singularity-free curves in joint-space.
Denote with

Iz = {q ∈ Tn | z = f(q)} (1)

the set of IKS for given EE-pose z, which can be computed
using e.g. the HUPF-algorithm [11], the approach presented
in [8] or robot specific such as [12] for the Kinova Jaco
robot. For a non-redundant robot, i.e. dimW = dim im f ≤
n, the IKS set consist of a finite nz number of IKS
Iz = {q1, . . . ,qnz}. A necessary condition for two solutions
to belong to the same aspect is that the determinant of the
Jacobian has the same sign. This is not sufficient, however,
since the sign may change multiple times along the trajectory.
The set of candidate IKS for an initial solution q0 and EE-
pose z is introduced as

Rq0,z := {q ∈ Iz | sign(detJ(q0)) = sign(detJ(q))}.
(2)

Furthermore, the set of pairs of candidate IKS for a given
initial EE-pose z0 and EE-pose z is introduced as

Rz0,z := {(q0,q) ∈ Iz0
× Iz |

sign(detJ(q0)) = sign(detJ(q))}
= {(q0,q) ∈ Rq,z0

× Iz}
= {(q0,q) ∈ Iz0

×Rq0,z}.

(3)

Problem 1 (Time-Optimal Non-Singular PtP Trajectory
Planning in Task-Space): Given initial and terminal EE-
pose, z0 and zT . For all potentially valid IKS combinations
(q0,qT ) ∈ Rz0,zT

, find the optimal (q∗
0,q

∗
T ) that allows for

the fastest trajectory q∗ (t), with q∗ (0) = q∗
0, q

∗ (T ) = q∗
T ,

satisfying all kinematic and dynamic constraints of the robot.

B. Computational Algorithm

The time-optimal non-singular trajectory planning prob-
lem in workspace is to determine the optimal pair of candi-
date IKS that leads to the time-optimal non-singular trajec-
tory between z0 and zT . This corresponds to the problem
of finding an optimal index i ∈ N = {1, 2, . . . , n(Rz0,z)},
which leads to the optimal pair (q0,qT )

∗ = (q0,qT )i∗ with
the minimal duration time T ∗ between the two EE-poses.
This can be written as

i∗ = argmin
i∈N

{T1, T2, . . . } , (4)

where Ti = T ◦ (q0,qT )i denotes the duration time of a
time-optimal trajectory q∗(t) connecting q0,i and qT,i. To
this end, a time-optimal PtP control problem (OCP) is solved
∀ (q0,qT ) ∈ Rz0,zT

, to provide to the input data to (4).
1) Time-Optimal Trajectory Planning: For each candidate

pair (q0,qT ) ∈ Rz0,zT
, a time-OCP is solved that ensures

singularity-free motion. The robot dynamics is represented
by the equations of motion (EOM)

M(q)q̈+ h(q, q̇) = τ , (5)

where M(q) is the mass matrix and τ are the joint torques.
The Coriolis, centrifugal and gravitational terms as well as
the Coulomb and viscous friction are described by h(q, q̇).

Planning non-singular trajectories requires a measure of
distance to the singularity. To this end, the kinematic manip-
ulability µ =

√
detJWJT (where W is a scaling matrix)

is used [13]. While for 3R serial robots this is well-defined,
appropriate scaling is necessary for spatial robots to account
for disparate units of EE twists [14]. Denote with ε a
threshold on the ’distance’ to singularity. The condition on
q(t) being a singularity-free trajectory is

µ(q(t)) ≥ ε, sign(detJ(q0)) = sign(detJ(q(t))). (6)

The OCP is to find a joint trajectory connecting the IKS q0

and qT in minimum time, while satisfying the physical limits
of the robot and ensuring smooth joint trajectories. In most
applications it is sufficient to ensure continuous accelerations
q̈. A common strategy to this end is to use the so-called flat
system representation [15], [16]. Then the joint jerk

...
q is

used as control input, and the non-linear system dynamics



(5) serves as dynamic constraint. The integrator chain is
described as ODE represented by ẋ = f(x,u), with state
xT =

[
qT , q̇T , q̈T

]
and input u =

...
q . The objective is a

combination of terminal time T and a regularization term
for smooth joint jerk [17]. The OCP is then written as a
non-linear optimization problem

min
T,x,u

(
T + kj

∫ T

0

uTu dt

)
,

s.t. ẋ = f(x,u),

x(0) = x0, x(tT) = xT,

x ≤ x(t) ≤ x, u ≤ u(t) ≤ u,

τ ≤ τ (t) ≤ τ , conditions (6)
for t ∈ [0, tT], (7)

with xT
0 =

[
qT
0 ,0,0

]
and xT

T =
[
qT
T ,0,0

]
as initial

and terminal state. The limits on the joint coordinates,
velocities, accelerations, jerks, and generalized torques (5)
are expressed with the lower and upper bounds denoted
with (), (). The parameter kj defines the trade-off between
time-optimal and smooth joint jerk trajectories. Non-singular
trajectories are ensured by the constraints (6). The OCP is
solved with a multiple shooting approach [18] implemented
in MATLAB using CasADi [19] and Ipopt [20] as solver.

2) Selection of the Optimal Pair of IKS: The OCP (7) is
solved for all candidate pairs (q0,qT ) ∈ Rz0,zT

, and the
fastest solution is selected. The time-optimal solution is as-
sumed to be isotropic, i.e. Rz0,zT

is regarded as non-ordered
set. That is, if (q0,qT ) has been treated, the pair (qT ,q0)
obtained by swapping initial and terminal configuration is
not considered. This leads to the Algorithm 1.

Algorithm 1 Time-optimal non-singular trajectory planning
Require: EE-pose z0 and zT ⇒ IKS (q0,qT ) ∈ Rz0,zT

for all (q0,qT ) ∈ Rz0,zT
do

Solve OCP (7) ⇒ q∗
i (t), Ti

end for
With (4), i∗ ⇒ (q0,qT )

∗ and fastest trajectory q∗(t)

Above algorithm takes care of numerical difficulties en-
countered by the fact that different revolute joint angles
are equal modulo 2π. Since these joints can rotate freely
within their technological limits, clockwise as well as
counter clockwise rotations must be taken into account. The
joint coordinates are defined by a n-torus Tn. Therefore,
adding ±2kπ with k ∈ N0 does not change the IKS
i.e. z = f(q) = f(q± 2kπ). For practical applications only
solutions within the interval q ∈ [−2π, 2π] have to be
considered. As example consider planning singularity-free
trajectories for a 3R serial manipulator (DH parameters in
Sec. I) connecting the IKS in one aspect, as shown in Fig. 2a.
A non-singular trajectory between q1 and q2 is readily
found. On the other hand, planning a trajectory between
q3 and q4 without crossing a singularity is not possible,
since the OCP (7) does not consider the periodicity of the

(a) singular connection be-
tween IKS q3 and q4

(b) singularity-free connection
between IKS q3 and q4

Fig. 2: Example for considering clockwise and counter
clockwise rotations in the IKS.

joint coordinates. Therefore, adding ±2π element-wise to the
solution q4 is extended to the interval [−2π, 2π] as shown
in Fig. 2b. Thus, the IKS q3 and q4 can be connected by a
non-singular trajectory, with a counter clockwise rotation of
the third joint.

C. Examples

1) Non-orthogonal serial 3R: Consider a non-orthogonal
3R manipulator with DH parameters {a1, a2, a3} =
{1.178, 0.339, 1}m, {d1, d2, d3} = {0, 0.32, 0.67}m,
{α1, α2, α3} = {0, 1.55,−1.124}rad [21]. This synthetic
robot model was chosen because the aspects are more
complicated and consist of singularity encapsulated regions,
as can be seen in Fig. 3a. Since no dynamic parameters
and physical limits are available for this robot, the dynamic
parameters and limits of the UR10 (first three links) are
used to compute physically consistent results. The threshold
of the kinematic manipulability is chosen as ε = 10−3.
Exemplary a singularity-free time-optimal trajectory
between an EE-pose za in a 4-IKS region and zb in a 2-IKS
region, as shown in Fig. 3b, is planned. The corresponding
IKS qa ∈ Iza

and qb ∈ Izb
are illustrated in Fig. 3a.

Solving the time-optimal non-singular trajectory planning
problem (4) with Algorithm 1 leads to the optimal pair
(q0,qT )

∗
= (qa,1,qb,1) and the fastest singularity-free

time-optimal trajectory q∗(t), dashed line in Fig.3. It is
worth noting that all combinations including qa,2 lead to
an infeasible OCP (7) because the constraint (6) can not
be satisfied. This is due to the fact that qa,2 is within
an encapsulated region and therefore no singularity-free
trajectory exists. Since, the joint jerk

...
q is used as control

input in the OCP (7) and the torques τ are the optimal
feed-forward, their corresponding trajectories are shown
in Fig. 4. Typical for time-optimal solutions at least one
constraint is active. By viewing the trajectory ...

q 3 the latter
is true for nearly the whole trajectory. At the time steps,
where ...

q 3 is not limited, a joint velocity or acceleration
is limited by the constraints. Since the singularities are
independent of q1, the trajectory of the first joint is not
restricted as much, which results in lower joint jerks in



(a) joint-space (b) workspace

Fig. 3: Optimal IKS combination and fastest singularity-
free time-optimal trajectory between za and zb for the non-
orthogonal 3R manipulator.

Fig. 4: Normalized joint jerk
...
q = q(3) and motor torques

τ of the 3R manipulator traversing from za to zb.

this case. Further, the resulting motor torques are smooth
trajectories due to requiring smooth acceleration trajectories.

2) Serial 6R: For the serial 6R cuspidal manipulator
the collaborative robot Fanuc CRX10iA/L shown in Fig. 5a
is chosen, since it is known to be cuspidal. Visualiz-
ing the joint and workspace similar to the 3R cuspi-
dal robots becomes quite challenging, since the singulari-
ties det J(q) = g(q2, q3, q4, q5) depend on four coordinates
and the workspace has 6-DOF. Therefore, a slice of the
workspace with fixed orientation and y-coordinate is exem-
plarily shown in Fig. 5b. Again, the optimal pair of IKS
which lead to the time-optimal trajectory between an EE-
pose za, in a 12-IKS region, and zb, in a 8-IKS region has
to be found. The joint limits of the Fanuc are taken from the
datasheet available on the Fanuc website. Since, the dynamic
parameters of the robot are not known and the Fanuc
roughly shares a similar structure to the UR10, the dynamic
parameters of the UR10 are used again. The resulting fastest
time-optimal non-singular trajectory connecting za and zb is
shown in Fig. 6 as sequence of configurations. The optimal
joint jerk

...
q and torque τ trajectories are shown in Fig. 7.In

this case, different constraints are active. Due to lack of space
these plots can not be shown.

(a) Fanuc CRX 10iA/L (b) Slice of the workspace

Fig. 5: Fanuc CRX 10iA/L and a slice of its workspace for
y = 0.05m and orientation represented as Tait-Bryan angles
αo = 0.153◦, βo = 0.639◦, γo = 0◦.

q0

qT

za

zb

Base

EE-path

Fig. 6: Optimal IKS combination and fastest non-singular
trajectory between za and zb for the Fanuc CRX10iA/L
represented by the kinematic line model.

Fig. 7: Normalized joint jerk
...
q = q(3) and motor torques

τ of the Fanuc CRX10iA/L traversing from za to zb.



III. OPTIMAL SINGULARITY-FREE ASSEMBLY MODE
CHANGE

A. Problem Statement

Changing the IKS solution without crossing singularity
is a key feature of cuspidal robots. The problem of finding
the corresponding path, connecting two IKS in one aspect
without crossing a singularity is referred to as the connectiv-
ity problem. The latter problem can be defined in various
ways. Since this paper focuses on planning time-optimal
trajectories the latter problem is defined as time-OCP:

Problem 2 (Time-Optimal Assembly Mode Change Tra-
jectory Planning Problem): Given an IKS q0 to the EE-
pose z. Find q∗

T of all qT ∈ Rq0,z, which yields the fastest
trajectory q∗ (t), with q∗ (0) = q0, q

∗ (T ) = q∗
T , while

satisfying all kinematic and dynamic constraints of the robot.
This is a special case of the problem discussed in Sec. II.

If the EE-pose z0 and zT coincide i.e. z0 = zT = z and the
initial IKS q0 is fixed, Problem 1 degenerates to Problem 2.
Therefore, the same algorithm can be used for planning the
time-optimal assembly mode change trajectory.

B. Application to Verifying of Cuspidality

Furthermore, solving the time-optimal non-singular assem-
bly mode change problem gives raise to a different approach
for checking cuspidality. It is worth noting that the presented
approach can terminate without finding a connection between
two IKS. Since only one EE-pose z is checked, this does
not imply that the robot is not cuspidal. In order to decide
if a robot is cuspidal or not, the connectivity problem has
to be solved for the whole workspace until a connection of
at least two IKS is found. In [22] a certificated algorithm is
presented, which means that the algorithm always checks if
a robot is cuspidal or not. The downside of this algorithm is
that it is hard to implement and comes with high computa-
tional costs. Therefore, the strategy discussed in this paper
can be seen as practical counterpart for checking cuspidality
(locally). Moreover, the connectivity problem is solved by
considering joint limits in the OCP (7), which are normally
not considered for checking cuspidality. Also, collision con-
straints can be incorporated easily in the verification process
by extending the OCP (7) with the latter.

C. Examples

1) Non-orthogonal serial 3R: Consider again the 3R
manipulator of Sec. II-C.1. In the following, the singularity-
free time-optimal assembly mode change trajectory planning
problem is solved for the EE-pose za in a 4 IKS region,
as shown in Fig. 8b. In order to show the effect of the
threshold value ε on the trajectory planning, the problem is
solved for two values ε1 = 10−3 and ε2 = 30−3. Choosing
q0 = qa,1 as desired initial solution, results in the optimal
terminal IKS q∗

T = qa,3. The fastest non-singular time-
optimal solution is illustrated in Fig. 8 for either work- and
joint-space. Comparing the optimal trajectories of the two ε1
and ε2 a significant difference is already investigated, despite
the small increase of ε. The minimal time increases from

(a) joint-space (b) workspace

Fig. 8: Singularity-free time-optimal assembly mode change
of the non-orthogonal 3R manipulator from qa,1 to qa,3.

Fig. 9: Normalized joint jerk
...
q = q(3) and motor torques τ

of the 3R manipulator performing the non-singular assembly
mode change.

T1 = 0.971 s to T2 = 1.025 s, which is a loss of 5.6% in
time. It is worth noting that completely different trajectories
can be planned, depending on the shape of the aspects and
the value of ε. The corresponding control input

...
q as well as

the evolution of the feed-forward i.e. τ are shown in Fig. 9
for ε1. As can be seen, the joint jerk constraints are active
most of the time.

2) Serial 6R: Finally, the connectivity problem is solved
for the Fanuc CRX10iA/L. The non-singular time-optimal
assembly mode change is computed for the same EE-pose zb
as in Sec. II-C.2, which is in 8-IKS region. The threshold for
the singularity is chosen to be ε = 10−3. The resulting time-
optimal singularity-free assembly mode change is shown in
Fig. 10 as sequence of configurations. These results show that
the Fanuc CRX10iA/L is even cuspidal, when joint limits are
considered. For completeness, the optimal joint jerk

...
q and

torque τ trajectories are shown in Fig. 11. Here, the joint
torque and jerk ...

q 4 constraints are active most of the time,
what promotes the optimality of the non-singular IK change.

IV. CONCLUSION

A method for time-optimal PtP trajectory planning and
assembly mode change was proposed. The method selects the



q0

qT

zb

Base

EE-path

Fig. 10: Time-optimal singularity-free assembly mode
change of the Fanuc CRX10iA/L at the EE-pose zb.

Fig. 11: Normalized joint jerk
...
q = q(3) and motor torques

τ of the Fanuc CRX10iA/L performing the non-singular
assembly mode change.

optimal combination among all pairs of admissible candidate
IKS. To this end, time-optimal trajectories for all candidate
pairs are computed with a multiple shooting algorithm. An
important issue that is automatically taken into account is to
ensure that the non-singular trajectories (which may exist if
no restrictions of the joint-space is considered) are in fact
executable by a real robot given the specific joint limits.
Future work will incorporate collision avoidance, including
time-dependent obstacles in the trajectory planning. This is
when process, to further exploit the advantage of a non-
singular IKS change. Moreover, the fact that IKS can vanish
when following a path as addressed in [23] is a big issue,
since the initial IKS can not be chosen freely. This also

impacts the repeatability of closed EE-paths as required
for e.g. welding processes, because the initial and terminal
EE-pose are not necessarily equal. This briefly explained
problems are of high research interest and will be covered
also in future work.
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