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The kinematics of cuspidal 3R regional robots was studied extensively in the past. Moreover, certain industrial 6R robots were found to be cuspidal (e.g. Fanuc CRX series, Kinova GEN2), which makes cuspidal robots finally interesting for practical applications. This necessitates optimal trajectory planning, respecting the dynamics and technical limits of the particular robot. In this paper, a method for singularity-free time-optimal point-to-point trajectory (PtP) trajectory planning is proposed. As a special case, this method is applicable to timeoptimal singularity-free assembly mode changing. Results are shown for 3R robots and a 6R Fanuc CRX10iA/L.

I. INTRODUCTION

Motivation: The ability to change the assembly mode (i.e. perform a motion that starts and ends with the same end-effector (EE) pose but with different inverse kinematic solution) without having to pass through a singularity is referred to as singularity-free assembly mode change. Robots having this ability are called cuspidal. Cuspidal robots thus possess at least one singularity free connected region in joint-space, called c-sheets [START_REF] Smith | Design of solvable 6r manipulators[END_REF] or aspects [START_REF] Borrel | A study of multiple manipulator inverse kinematic solutions with applications to trajectory planning and workspace determination[END_REF], with multiple inverse kinematics solutions (IKS). This was first reported in [START_REF] Burdick | On the Inverse Kinematics of Redundant Manipulators: Characterization of the Self-Motion Manifolds[END_REF], [START_REF] Innocenti | Singularity-free evolution from one configuration to another in serial and fully-parallel manipulators[END_REF]. Historically, the term cuspidal stems from the fact that a projection of the critical values (the forward kinematics map of the singularities) exhibits cusps, which is a sufficient condition for 3R manipulators to be cuspidal. This has triggered extensive research on cuspidal 3R serial manipulators [START_REF] Wenger | Comments on "A classification of 3R regional manipulator geometries and singularities[END_REF], [START_REF] Wenger | A New General Formalism for the Kinematic Analysis of All Non-redundant Manipulators[END_REF], [START_REF]Cuspidal and noncuspidal robot manipulators[END_REF]. It was recently shown [START_REF] Salunkhe | Necessary and sufficient condition for a generic 3r serial manipulator to be cuspidal[END_REF] that for generic 3R robots the existence of cusps in workspace is sufficient and necessary to be cuspidal. Research on robot geometries satisfying the necessary cuspidality property was originally pursued for 3R regional robots [START_REF] Wenger | Comments on "A classification of 3R regional manipulator geometries and singularities[END_REF], [START_REF] Wenger | Classification of 3r positioning manipulators[END_REF]. A review to the research in cuspidal robots is given by [START_REF] Wenger | A review of cuspidal serial and parallel manipulators[END_REF], including also parallel mechanisms. Lately it was recognized that also 6R industrial robots are cuspidal, e.g. Fanuc CRX series and Kinova Jaco gen2, which increases the significance of cuspidality for practical applications. Consequently, to fully exploit this feature, cuspidality should be included in the motion planning process. Optimal trajectory planning based on a dynamic robot model has not yet been addressed for cuspidal robots. Moreover, cuspidality not only allows for singularity-free assembly mode change, it is also enables planning singularity-free point-to-point (PtP) motions. In the following, an example which further highlights the benefits of considering cuspidality in the motion planning process is discussed.

In the course of this paper n-DOF robotic manipulators with only revolute joints are considered. Denote with q(t) ∈ T n the joint coordinate vector, and with z ∈ W the end-effector pose, where W ⊆ SE (3) is the workspace. Further denote with z = f (q) the forward kinematics map, and with J the forward kinematics Jacobian. Kinematic singularities are defined by the hyper-surface det J(q) = 0, which divides the joint-space into aspects. For a conventional (non-cuspidal) wrist-partitioned robot, all IKS for a given EE pose z belong to one aspect, and are generally referred to as postures. For example, the elbow up and elbow down configurations are the two postures of a 2R robot. Similarly, wrist-partitioned robots possess 8 postures. The important point is that each IKS belongs exactly one aspect, and that the robot must pass through a singularity to change posture. Cuspidal robots, on the other hand, have multiple IKS in one aspect. Fig. 1 shows this for a 3R robot with DH parameters {a 1 , a 2 , a 3 } = {0.5, 1, 0.75}m, {d 1 , d 2 , d 3 } = {0, 0.5, 0}m, {α 1 , α 2 , α 3 } = {-π/2, π/2, 0}. The singularity loci, separating the aspects, are shown as solid lines in joint and task space. For the EE pose z a there are four IKS, denoted with q a,1 , . . . q a,4 , and for z b there are two IKS, denoted with q b,1 , q b,2 . Importantly, an aspect contains different IKS. This allows to transit from one IKS to another without leaving an aspect, i.e. not crossing a singularity. The 3R robot can move from q a,1 to q b,1 corresponding to EE pose z a and z b , respectively. If the EE has to return to the initial z a (e.g. in a pick and place scenario), it could go to the IKS q a,2 . This leads to a nonsingular assembly mode change. Another motivation is that in this way collisions can be avoided with obstacles that were not present during the forward motion. Also from a control perspective, it may be more efficient or faster to move from q b,1 to q a,2 instead to q a,1 . Such a time-optimal trajectory planning and assembly mode change is addressed in this paper.

Contribution: An algorithm for time-optimal point-topoint (PtP) trajectory planning in workspace is proposed in Sec. II, and for time-optimal assembly mode change in Sec. III, which is the special case where initial and terminal EEpose are identical. The approach solves the combinatorial problem of identifying that pair of IKS corresponding to the prescribed initial and terminal EE-pose which admits the fastest trajectory connecting them, while taking all technical limits of the robot into account. To this end, a set of pairs of candidate IKS is determined, and for each pair, a time-optimal trajectory planning problem is solved using a multiple shooting algorithm. The results when applying the method to a 3R robot (only EE positions are used) and a 6R industrial robot are shown in the course of this paper. To the best authors' knowledge, this is the first paper addressing singularity-free time-optimal trajectory planning and assembly mode change of cuspidal robots. In addition to the time-optimal motion, the algorithm enables checking whether singularity-free motions are actually feasible given the joint limits of real robots. The latter has never been taken into account when discussing cuspidal robots.

II. OPTIMAL NON-SINGULAR TRAJECTORY PLANNING

A. Problem Statement

A major benefit of serial cuspidal manipulators is the presence of regions in workspace with more than two IKS that are connected by singularity-free curves in joint-space. Denote with

I z = {q ∈ T n | z = f (q)} (1) 
the set of IKS for given EE-pose z, which can be computed using e.g. the HUPF-algorithm [START_REF] Husty | A new and efficient algorithm for the inverse kinematics of a general serial 6r manipulator[END_REF], the approach presented in [START_REF] Salunkhe | Necessary and sufficient condition for a generic 3r serial manipulator to be cuspidal[END_REF] or robot specific such as [START_REF] Gosselin | Polynomial inverse kinematic solution of the jaco robot[END_REF] for the Kinova Jaco robot. For a non-redundant robot, i.e. dim W = dim im f ≤ n, the IKS set consist of a finite n z number of IKS I z = {q 1 , . . . , q nz }. A necessary condition for two solutions to belong to the same aspect is that the determinant of the Jacobian has the same sign. This is not sufficient, however, since the sign may change multiple times along the trajectory. The set of candidate IKS for an initial solution q 0 and EEpose z is introduced as

R q0,z := {q ∈ I z | sign(det J(q 0 )) = sign(det J(q))}. (2) 
Furthermore, the set of pairs of candidate IKS for a given initial EE-pose z 0 and EE-pose z is introduced as

R z0,z := {(q 0 , q) ∈ I z0 × I z | sign(det J(q 0 )) = sign(det J(q))} = {(q 0 , q) ∈ R q,z0 × I z } = {(q 0 , q) ∈ I z0 × R q0,z }. (3) 
Problem 1 (Time-Optimal Non-Singular PtP Trajectory Planning in Task-Space): Given initial and terminal EEpose, z 0 and z T . For all potentially valid IKS combinations (q 0 , q T ) ∈ R z0,z T , find the optimal (q * 0 , q * T ) that allows for the fastest trajectory q * (t), with q * (0) = q * 0 , q * (T ) = q * T , satisfying all kinematic and dynamic constraints of the robot.

B. Computational Algorithm

The time-optimal non-singular trajectory planning problem in workspace is to determine the optimal pair of candidate IKS that leads to the time-optimal non-singular trajectory between z 0 and z T . This corresponds to the problem of finding an optimal index i ∈ N = {1, 2, . . . , n(R z0,z )}, which leads to the optimal pair (q 0 , q T ) * = (q 0 , q T ) i * with the minimal duration time T * between the two EE-poses. This can be written as

i * = arg min i∈N {T 1 , T 2 , . . . } , (4) 
where T i = T • (q 0 , q T ) i denotes the duration time of a time-optimal trajectory q * (t) connecting q 0,i and q T,i . To this end, a time-optimal PtP control problem (OCP) is solved ∀ (q 0 , q T ) ∈ R z0,z T , to provide to the input data to (4). 1) Time-Optimal Trajectory Planning: For each candidate pair (q 0 , q T ) ∈ R z0,z T , a time-OCP is solved that ensures singularity-free motion. The robot dynamics is represented by the equations of motion (EOM)

M(q)q + h(q, q) = τ , (5) 
where M(q) is the mass matrix and τ are the joint torques. The Coriolis, centrifugal and gravitational terms as well as the Coulomb and viscous friction are described by h(q, q). Planning non-singular trajectories requires a measure of distance to the singularity. To this end, the kinematic manipulability µ = √ det JWJ T (where W is a scaling matrix) is used [START_REF] Doty | Robot manipulability[END_REF]. While for 3R serial robots this is well-defined, appropriate scaling is necessary for spatial robots to account for disparate units of EE twists [START_REF] Angeles | Is there a characteristic length of a rigid-body displacement?[END_REF]. Denote with ε a threshold on the 'distance' to singularity. The condition on q(t) being a singularity-free trajectory is µ(q(t)) ≥ ε, sign(det J(q 0 )) = sign(det J(q(t))). [START_REF] Wenger | A New General Formalism for the Kinematic Analysis of All Non-redundant Manipulators[END_REF] The OCP is to find a joint trajectory connecting the IKS q 0 and q T in minimum time, while satisfying the physical limits of the robot and ensuring smooth joint trajectories. In most applications it is sufficient to ensure continuous accelerations q. A common strategy to this end is to use the so-called flat system representation [START_REF] Khalil | Nonlinear systems third edition[END_REF], [START_REF] Markus | Flat control of industrial robotic manipulators[END_REF]. Then the joint jerk ... q is used as control input, and the non-linear system dynamics (5) serves as dynamic constraint. The integrator chain is described as ODE represented by ẋ = f (x, u), with state x T = q T , qT , qT and input u = ... q . The objective is a combination of terminal time T and a regularization term for smooth joint jerk [START_REF] Gasparetto | A technique for time-jerk optimal planning of robot trajectories[END_REF]. The OCP is then written as a non-linear optimization problem min T,x,u

T + k j T 0 u T u dt , s.t. ẋ = f (x, u), x(0) = x 0 , x(t T ) = x T , x ≤ x(t) ≤ x, u ≤ u(t) ≤ u, τ ≤ τ (t) ≤ τ , conditions (6) for t ∈ [0, t T ], (7) 
with x T 0 = q T 0 , 0, 0 and x T T = q T T , 0, 0 as initial and terminal state. The limits on the joint coordinates, velocities, accelerations, jerks, and generalized torques (5) are expressed with the lower and upper bounds denoted with (), (). The parameter k j defines the trade-off between time-optimal and smooth joint jerk trajectories. Non-singular trajectories are ensured by the constraints [START_REF] Wenger | A New General Formalism for the Kinematic Analysis of All Non-redundant Manipulators[END_REF]. The OCP is solved with a multiple shooting approach [START_REF] Bock | A multiple shooting algorithm for direct solution of optimal control problems*[END_REF] implemented in MATLAB using CasADi [START_REF] Andersson | CasADi -A software framework for nonlinear optimization and optimal control[END_REF] and Ipopt [START_REF] Wächter | On the implementation of an interiorpoint filter line-search algorithm for large-scale nonlinear programming[END_REF] as solver.

2) Selection of the Optimal Pair of IKS: The OCP ( 7) is solved for all candidate pairs (q 0 , q T ) ∈ R z0,z T , and the fastest solution is selected. The time-optimal solution is assumed to be isotropic, i.e. R z0,z T is regarded as non-ordered set. That is, if (q 0 , q T ) has been treated, the pair (q T , q 0 ) obtained by swapping initial and terminal configuration is not considered. This leads to the Algorithm 1.

Algorithm 1 Time-optimal non-singular trajectory planning Require: EE-pose z 0 and z T ⇒ IKS (q 0 , q T ) ∈ R z0,z T for all (q 0 , q T ) ∈ R z0,z T do Solve OCP (7) ⇒ q * i (t), T i end for With (4), i * ⇒ (q 0 , q T ) * and fastest trajectory q * (t)

Above algorithm takes care of numerical difficulties encountered by the fact that different revolute joint angles are equal modulo 2π. Since these joints can rotate freely within their technological limits, clockwise as well as counter clockwise rotations must be taken into account. The joint coordinates are defined by a n-torus T n . Therefore, adding ±2kπ with k ∈ N 0 does not change the IKS i.e. z = f (q) = f (q ± 2kπ). For practical applications only solutions within the interval q ∈ [-2π, 2π] have to be considered. As example consider planning singularity-free trajectories for a 3R serial manipulator (DH parameters in Sec. I) connecting the IKS in one aspect, as shown in Fig. 2a. A non-singular trajectory between q 1 and q 2 is readily found. On the other hand, planning a trajectory between q 3 and q 4 without crossing a singularity is not possible, since the OCP [START_REF]Cuspidal and noncuspidal robot manipulators[END_REF] does not consider the periodicity of the joint coordinates. Therefore, adding ±2π element-wise to the solution q 4 is extended to the interval [-2π, 2π] as shown in Fig. 2b. Thus, the IKS q 3 and q 4 can be connected by a non-singular trajectory, with a counter clockwise rotation of the third joint.

C. Examples

1) Non-orthogonal serial 3R: Consider a non-orthogonal 3R manipulator with DH parameters {a 1 , a 2 , a 3 } = {1.178, 0.339, 1}m, {d 1 , d 2 , d 3 } = {0, 0.32, 0.67}m, {α 1 , α 2 , α 3 } = {0, 1.55, -1.124}rad [START_REF] Paganelli | Topological analysis of singularity loci for serial and parallel manipulators[END_REF]. This synthetic robot model was chosen because the aspects are more complicated and consist of singularity encapsulated regions, as can be seen in Fig. 3a. Since no dynamic parameters and physical limits are available for this robot, the dynamic parameters and limits of the UR10 (first three links) are used to compute physically consistent results. The threshold of the kinematic manipulability is chosen as ε = 10 -3 . Exemplary a singularity-free time-optimal trajectory between an EE-pose z a in a 4-IKS region and z b in a 2-IKS region, as shown in Fig. 3b, is planned. The corresponding IKS q a ∈ I za and q b ∈ I z b are illustrated in Fig. 3a. Solving the time-optimal non-singular trajectory planning problem (4) with Algorithm 1 leads to the optimal pair (q 0 , q T ) * = (q a,1 , q b,1 ) and the fastest singularity-free time-optimal trajectory q * (t), dashed line in Fig. 3. It is worth noting that all combinations including q a,2 lead to an infeasible OCP [START_REF]Cuspidal and noncuspidal robot manipulators[END_REF] because the constraint (6) can not be satisfied. This is due to the fact that q a,2 is within an encapsulated region and therefore no singularity-free trajectory exists. Since, the joint jerk ... q is used as control input in the OCP [START_REF]Cuspidal and noncuspidal robot manipulators[END_REF] and the torques τ are the optimal feed-forward, their corresponding trajectories are shown in Fig. 4. Typical for time-optimal solutions at least one constraint is active. By viewing the trajectory ... q 3 the latter is true for nearly the whole trajectory. At the time steps, where ... q 3 is not limited, a joint velocity or acceleration is limited by the constraints. Since the singularities are independent of q 1 , the trajectory of the first joint is not restricted as much, which results in lower joint jerks in ... q = q (3) and motor torques τ of the 3R manipulator traversing from z a to z b . this case. Further, the resulting motor torques are smooth trajectories due to requiring smooth acceleration trajectories.

2) Serial 6R: For the serial 6R cuspidal manipulator the collaborative robot Fanuc CRX10iA/L shown in Fig. 5a is chosen, since it is known to be cuspidal. Visualizing the joint and workspace similar to the 3R cuspidal robots becomes quite challenging, since the singularities det J(q) = g(q 2 , q 3 , q 4 , q 5 ) depend on four coordinates and the workspace has 6-DOF. Therefore, a slice of the workspace with fixed orientation and y-coordinate is exemplarily shown in Fig. 5b. Again, the optimal pair of IKS which lead to the time-optimal trajectory between an EEpose z a , in a 12-IKS region, and z b , in a 8-IKS region has to be found. The joint limits of the Fanuc are taken from the datasheet available on the Fanuc website. Since, the dynamic parameters of the robot are not known and the Fanuc roughly shares a similar structure to the UR10, the dynamic parameters of the UR10 are used again. The resulting fastest time-optimal non-singular trajectory connecting z a and z b is shown in Fig. 6 as sequence of configurations. The optimal joint jerk ... q and torque τ trajectories are shown in Fig. 7.In this case, different constraints are active. Due to lack of space these plots can not be shown. .. q = q (3) and motor torques τ of the Fanuc CRX10iA/L traversing from z a to z b .

III. OPTIMAL SINGULARITY-FREE ASSEMBLY MODE CHANGE

A. Problem Statement

Changing the IKS solution without crossing singularity is a key feature of cuspidal robots. The problem of finding the corresponding path, connecting two IKS in one aspect without crossing a singularity is referred to as the connectivity problem. The latter problem can be defined in various ways. Since this paper focuses on planning time-optimal trajectories the latter problem is defined as time-OCP: Problem 2 (Time-Optimal Assembly Mode Change Trajectory Planning Problem): Given an IKS q 0 to the EEpose z. Find q * T of all q T ∈ R q0,z , which yields the fastest trajectory q * (t), with q * (0) = q 0 , q * (T ) = q * T , while satisfying all kinematic and dynamic constraints of the robot. This is a special case of the problem discussed in Sec. II. If the EE-pose z 0 and z T coincide i.e. z 0 = z T = z and the initial IKS q 0 is fixed, Problem 1 degenerates to Problem 2. Therefore, the same algorithm can be used for planning the time-optimal assembly mode change trajectory.

B. Application to Verifying of Cuspidality

Furthermore, solving the time-optimal non-singular assembly mode change problem gives raise to a different approach for checking cuspidality. It is worth noting that the presented approach can terminate without finding a connection between two IKS. Since only one EE-pose z is checked, this does not imply that the robot is not cuspidal. In order to decide if a robot is cuspidal or not, the connectivity problem has to be solved for the whole workspace until a connection of at least two IKS is found. In [START_REF] Chablat | Deciding cuspidality of manipulators through computer algebra and algorithms in real algebraic geometry[END_REF] a certificated algorithm is presented, which means that the algorithm always checks if a robot is cuspidal or not. The downside of this algorithm is that it is hard to implement and comes with high computational costs. Therefore, the strategy discussed in this paper can be seen as practical counterpart for checking cuspidality (locally). Moreover, the connectivity problem is solved by considering joint limits in the OCP [START_REF]Cuspidal and noncuspidal robot manipulators[END_REF], which are normally not considered for checking cuspidality. Also, collision constraints can be incorporated easily in the verification process by extending the OCP (7) with the latter.

C. Examples

1) Non-orthogonal serial 3R: Consider again the 3R manipulator of Sec. II-C.1. In the following, the singularityfree time-optimal assembly mode change trajectory planning problem is solved for the EE-pose z a in a 4 IKS region, as shown in Fig. 8b. In order to show the effect of the threshold value ε on the trajectory planning, the problem is solved for two values ε 1 = 10 -3 and ε 2 = 30 -3 . Choosing q 0 = q a,1 as desired initial solution, results in the optimal terminal IKS q * T = q a,3 . The fastest non-singular timeoptimal solution is illustrated in Fig. 8 for either work-and joint-space. Comparing the optimal trajectories of the two ε 1 and ε 2 a significant difference is already investigated, despite the small increase of ε. The minimal time increases from Fig. 8: Singularity-free time-optimal assembly mode change of the non-orthogonal 3R manipulator from q a,1 to q a,3 .

Fig. 9: Normalized joint jerk ... q = q (3) and motor torques τ of the 3R manipulator performing the non-singular assembly mode change.

T 1 = 0.971 s to T 2 = 1.025 s, which is a loss of 5.6 % in time. It is worth noting that completely different trajectories can be planned, depending on the shape of the aspects and the value of ε. The corresponding control input ... q as well as the evolution of the feed-forward i.e. τ are shown in Fig. 9 for ε 1 . As can be seen, the joint jerk constraints are active most of the time.

2) Serial 6R: Finally, the connectivity problem is solved for the Fanuc CRX10iA/L. The non-singular time-optimal assembly mode change is computed for the same EE-pose z b as in Sec. II-C.2, which is in 8-IKS region. The threshold for the singularity is chosen to be ε = 10 -3 . The resulting timeoptimal singularity-free assembly mode change is shown in Fig. 10 as sequence of configurations. These results show that the Fanuc CRX10iA/L is even cuspidal, when joint limits are considered. For completeness, the optimal joint jerk ... q and torque τ trajectories are shown in Fig. 11. Here, the joint torque and jerk ... q 4 constraints are active most of the time, what promotes the optimality of the non-singular IK change.

IV. CONCLUSION

A method for time-optimal PtP trajectory planning and assembly mode change was proposed. The method selects the q 0 q T z b Base EE-path Fig. 10: Time-optimal singularity-free assembly mode change of the Fanuc CRX10iA/L at the EE-pose z b . Fig. 11: Normalized joint jerk ... q = q (3) and motor torques τ of the Fanuc CRX10iA/L performing the non-singular assembly mode change.

optimal combination among all pairs of admissible candidate IKS. To this end, time-optimal trajectories for all candidate pairs are computed with a multiple shooting algorithm. An important issue that is automatically taken into account is to ensure that the non-singular trajectories (which may exist if no restrictions of the joint-space is considered) are in fact executable by a real robot given the specific joint limits. Future work will incorporate collision avoidance, including time-dependent obstacles in the trajectory planning. This is when process, to further exploit the advantage of a nonsingular IKS change. Moreover, the fact that IKS can vanish when following a path as addressed in [START_REF] Salunkhe | Trajectory planning issues in cuspidal commercial robots[END_REF] is a big issue, since the initial IKS can not be chosen freely. This also impacts the repeatability of closed EE-paths as required for e.g. welding processes, because the initial and terminal EE-pose are not necessarily equal. This briefly explained problems are of high research interest and will be covered also in future work.
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 34 Fig. 3: Optimal IKS combination and fastest singularityfree time-optimal trajectory between z a and z b for the nonorthogonal 3R manipulator.

Fig. 5 :Fig. 6 :Fig. 7 :

 567 Fig. 5: Fanuc CRX 10iA/L and a slice of its workspace for y = 0.05 m and orientation represented as Tait-Bryan angles α o = 0.153 • , β o = 0.639 • , γ o = 0 • .
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