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Abstract. The inverse kinematics problem is ill-posed near kinematic
singularities leading to extremely large joint velocities. This classical
problem is addressed from a different perspective; instead of prescribing
the end-effector (EE) motion in terms of a path parameter, the motion
is parameterized in terms of the arc length in joint space. This allows
tackling the inverse kinematics problem when approaching kinematic sin-
gularities. Thereupon a singularity consistent sampling scheme can easily
be devised. A sampling of the arc length gives direct control over the joint
motion for prescribed EE motion. The arc length parameterization can
be used for solving the (time) optimal path following problem, avoiding
the ill-conditioning upfront.
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1 Introduction

A solution of the inverse kinematics problem is a relation of the EE-motion
and the joint motion. Near a kinematic singularity, small EE-velocities lead to
extremely large joint velocities, which is a well-known problem for the robot
control. To mitigate this problem, path planning strategies for avoiding singu-
larities exist [9]. The problem of large velocities (causing wear of mechanical
components and possibly reaching the rated actuator limits) remains, however,
even when the robot is only near a singularity. Moreover, often, a prescribed
EE-path is deduced from process requirement (e.g. welding, polishing) without
taking singularities into account. The velocity inverse kinematics map (defined
by the generalized inverse of the forward kinematics Jacobian) transforms EE-
velocities to joint velocities, and its metric properties change drastically near
singularities. The EE-motion along a prescribed path is described by a path
parameter σ. An equidistant sampling of the EE-path is translated to extreme
changes in the sampling intervals in joint space. The length of the corresponding
path in joint space is described by the arc length s. Now an obvious approach to
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avoid high joint velocities, i.e. large changes of s within a time step, is to adap-
tively reduce the EE-velocity, i.e. the change of σ, when traversing the path.
Moreover, the EE-motion could be described in terms of s, and thus be sampled
according to prescribed (e.g. equidistant) increments of s, allowing to prescribe
the joint velocity while following a given EE-path.

In this paper, the inverse kinematics problem is addressed for the 1) param-
eterization of an EE-path z (σ) in terms of the path parameter σ [3,7], and 2)
the parameterization of the joint motion q(s) in terms of the (kinetic) arc length
s. Each of these parameterizations gives rise to a particular inverse kinematics
problem. Both are derived in this paper, and computational methods for their
solution are proposed. The two parameterizations refer exclusively to the geom-
etry of motion, and are independent of the temporal execution of the motion.
Clearly, a smooth motion in terms of joint arc length s is desirable (rather than
in the path parameter σ, as it is the standard approach). It thus provides an
avenue for smooth singularity-robust optimal motion planning.

2 Kinematics in Terms of Path Parameter

2.1 Forward kinematics

Denote with q ∈ Rn the vector of joint variables, and with z ∈ SE(3) the
EE-pose. Throughout the paper, the EE-path z(σ) is assumed to be given, e.g.
from a path planning, and is parameterized in terms of a path parameter σ (t) ∈
[0, 1]. Since the joint motion is determined from the EE-motion, this induces a
parameterization of joint coordinates in terms of σ. The latter is usually used for
motion planning and control. Notice, that the relation of path parameter in work
space and joint space is generally not unique. With slight abuse of notation, the
same symbol is used throughout the paper. The geometric forward kinematics
map

z = f (q) (1)

determines the EE-pose for prescribed joint coordinates q [14]. The EE-twist,
containing the translation and angular velocity, is determined by the velocity
forward kinematics

V(q, q̇) =

(
v
ω

)
= J (q) q̇ (2)

where J (q) = ∂V/∂q̇ is the geometric Jacobian. As the EE-twist depends lin-
early on the joint rates, and since q̇ = q′σ̇, the velocity forward kinematics (2)
can be expressed in terms of σ̇ as

V =
∂V

∂σ̇
σ̇ = Jq′σ̇. (3)

This yields V(σ, σ̇) = h(σ)σ̇ and the relation

h(σ) = J(q(σ))q′(σ) (4)
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where h(σ) := ∂V/∂σ̇ is the partial path-velocity. The relation (4) is referred
to as the velocity forward path-kinematics problem, which will be central for the
singularity-robust adaptive sampling. Here z(σ(t)),h(σ), σ̇, and thus V(σ, σ̇) are
given from the trajectory planning (which is not the topic of this paper).

2.2 Inverse kinematics

The standard inverse kinematics problem consists in finding the joint coordinates
for given an EE-pose z. This can be solved analytically for particular robots, such
as wrist-partitioned serial manipulators [1]. In general, however, it can only be
solved numerically. Various different computational methods were discussed in
[1,6,11,15], including nonlinear root-finding, fixed point iteration, integration of
the joint velocity. In this paper, the numerical integration of the joint velocity is
pursued. This amounts to solving the relation (2) for q(t) with given EE-twist
V(t). When the path is parameterized with σ(t) the EE-twist is determined
by the partial path-velocity via (3). Then the curve, and thus q, is uniquely
determined by (4), where the partial path velocity h(σ) describes the motion
along the path.

The velocity inverse path-kinematics problem is to determine q′ for given
partial path velocity h. A solution to the velocity inverse path-kinematics is

q′ = J (q)
+
h (5)

where J (q)
+
is a generalized pseudo inverse [2,10]. The geometric inverse path-

kinematics problem is to determine the joint motion q(σ) in terms of the path
parameter σ. The solution of the inverse path-kinematics problem is the solution
of the initial value problem (IVP) (5) with q(0) = q0 as initial value. When
numerically solving the IVP (5), numerical drifts are unavoidable. In order to
reduce the drift, the partial path-velocity error is introduced as

e′ = hd − J (q)q′ (6)

with hd denoting the prescribed partial path-velocity. Therewith, the system (5)
is amended as

q′ = J (q)
+
(hd +Ke) (7a)

0 = e′ +Ke (7b)

where (7b) governs the error dynamics. The latter asymptotically converges to
zero for K > 0 [4]. The geometric error e in (7b) comprises the position error
and orientation error, and can be expressed as

e =

(
ep
eo

)
=

(
rd − r (q)

1

2
(ñ(q)nd + s̃(q)sd + ã(q)ad)

)
(8)

where rd is the prescribed EE-position, and Rd = [nd sd ad] the presdribed EE-
orientation , with columns n, s,a [13], and x̃ ∈ R3,3 is the skew symmetric (cross
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product) matrix associated to x ∈ R3. With these definitions and a proper choice
of K, the velocity inverse path-kinematics problem can be solved numerically
stable using time integration schemes. In summary, the solution of (5) yields a
parameterization of the joint coordinates q(σ) in terms of the parameter σ.

3 Kinematics in Terms of Arc Length

3.1 Arc length parameterization

The inverse path-kinematics problem is ill-posed near singularities which not
only leads to numerical problems, but also causes extremely fast and undesir-
able joint motions. Following a path with constant speed σ̇0, for instance, leads
to an EE-motion with a well-defined bounded EE-velocity. The corresponding
inverse kinematics solution q(t) will not have well-defined bounds, especially at
forward kinematics singularities, and the joint velocity q̇(t) tends to infinity.
As a consequence, when prescribing the EE-motion by an equidistant sampling
of the path parameter σ, the ’distance’ of joint coordinates q corresponding to
two consecutive values of σ tend to vary drastically. A measure of ’distance’
of two joint coordinate vectors is the arc length s defined by the line element
ds =

√
dqTMdq with metric M (using the generalized mass matrix M of the

robot would yield the kinetic line element and ensure homogeneity). The arc
length gives rise to a well-defined discretization of the curve in joint space in
terms of the step size. For the rest of this paper M is chosen as identity matrix.

The arc length path-kinematics problem is to determine the EE-motion z(s)
as a function of s, and thus to derive parameterizations σ = σ (s) and q = q (s).
It is known from the theory of metric curves that there is no such explicit rela-
tion in general. Therefore, the problem is formulated as an ordinary differential
equation (ODE). With the path-parameterization q(σ), the arc length in joint
space is [5]

s =

∫ σ

0

∥q′∥Mdξ (9)

with ∥q′∥M :=
√

q′TMq′ denoting the joint path speed. This leads to ∂s/∂σ =
∥q′∥M, and with (4) follows

∂σ

∂s
=

1

∥J+h∥M
=

1

∥q′∥M
,

∂q

∂s
=

J+h

∥J+h∥M
=

q′

∥q′∥M
(10)

with q′ as (5). This ODE system can be solved with given initial conditions σ0

and q0 for s = 0.

3.2 Numerical solution of the initial value problem

The system (10) can be solved for a given parameter intervall s ∈ [0, sT]. This
necessitates knowledge of the terminal arc length sT, which is unknown, however.
The condition on the terminal arc length is that

σ (sT) = 1. (11)
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This serves as indicator function to terminate the integration. That is, the system
(10) is solved numerically, until σ (s) = 1. This can be carried out numerically
stable using integration schemes with zero-crossing event detection using ad-
vanced root finding methods. For practical applications, the integration can be
stopped simply when σ > 1. Notice that the solution σ (s) merely serves for this
detection of terminal arc length.

As for the standard geometric inverse path-kinematics problem, the numeri-
cal drift of the arc length parameterized inverse path-kinematics subsystem (10)
must be stabilized. This is again achieved by introducing the path-velocity error

∂e

∂s
=

∂hd

∂s
− J

∂q

∂s
, (12)

with ∂hd/∂s = h′
d/∥q′∥M. The system (10) is amended as

∂q

∂s
=

J+h∥∥J+h
∥∥
M

+ J+Ke (13a)

0 =
∂e

∂s
+Ke (13b)

where (13b) governs the error dynamics. Asymptotically convergence to zero is
ensured for K > 0.

The numerical solution must take into account situations where q′ = 0,
due to the division by ∥q′∥M. This can happen for two reasons. The first case,
when h = 0 is avoided by assuming a regular EE-path so that always h ̸= 0.
Secondly, the partial path-velocity h is an element of the null space h ∈ kerJ+.
As a consequence, the corresponding EE movement has no effect on any joint
coordinates. This, then is a contradiction to the forward kinematics.

4 A singularity-consistent sampling scheme

The adaptive sampling strategy is based on the velocity inverse path-kinematics
problem. It is assumed that the EE-path using σ as parameter is equivalent to
the curve parameterized with the arc length s. As mentioned earlier, prescrib-
ing the EE-motion by an equidistant sampling ∆σ inevitably causes drastically
varying joint coordinates q, of two consecutive samples, when solving the inverse
path kinematics problem (5). The ’distance’ between consecutive values of q is
measured by the arc length (9). The latter is a nonlinear relation of s and σ. For
illustration purpose, Fig. 1a shows the mapping s(σ) for a 6-DOF Comau Racer3
robot following a straight line in the work space with constant orientation and
speed σ̇0, Fig. 1b. It can be seen that the manipulator passes near a singularity
at σ ≈ 0.15 . . . 0.25, indicated by the drastically increase of the joint arc length.

By parameterizing the prescribed path using the joint arc length s, Sec. 3,
the evolution of the joint coordinates q and the relation between s and σ is
maintained. Following the trajectory then with constant arc length speed ṡ0 and
equidistant sampling for s, a varying speed σ̇ due to the nonlinear mapping
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(a) Nonlinear map s(σ) (b) Comau Racer3 performing the task

Fig. 1: 6-DOF Comau Racer3 following a straight line in task-space with constant
orientation and nonlinear relation between s and σ.

(9) is induced. As a consequence of the relation, smaller speeds σ̇ are achieved
at higher rates ∂s/∂σ leading to more sampling points in σ (locally). Since
q̇ = q′σ̇, lower joint velocities are expected in such regions. Moreover, this can
be used as an adaptive sampling strategy for σ due to the nonlinear mapping.
This discretization scheme, then can be applied for solving time optimal path
following problems, e.g. [8,12,16].

5 Simulation results

Again considering the 6-DOF Comau Racer3 robotic arm manipulator follow-
ing a straight line with constant orientation, Fig. 1. In order to get compara-
ble results, the EE follows the prescribed path with 1) constant speed σ̇0 and
equidistant sampling in σ when using the velocity inverse path-kinematics (5),
and 2) constant arc length speed ṡ0 with equidistant discretization in s for the
arc length parameterized velocity inverse path-kinematics (10). As shown in Fig.
2, the same joint coordinate samples are obtained with both strategies. The arc
length parameterized solution in Fig. 1a shows an accumulation of sampling
points at σ ∈ [0.15, 0.25], which indicates the passing near a singularity (Sec. 4).

As previously discussed, for fixed step size ∆s (which means fixed time step
size due to constant ṡ0), higher sampling rates of the joint coordinates in this
area are induced and hence lower joint velocities q̇ = q′σ̇ as Fig. 3 shows. This
is particularly pronounced for q̇4. The arc length parameterized velocity inverse
path-kinematic solution yields a joint velocity q̇4 more than 10 times lower than
the solution obtained with (5).

6 Conclusion and outlook

The inverse kinematics problem was expressed in terms of the arc length s in
joint space when the EE-motion is parameterized by a path parameter σ. This
leads to an ODE system for q (s) and σ (s) which is solved for s ∈ [0, sT]. It is
shown that using the arc length as independent parameter (instead of σ) allows
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Fig. 2: Samples of the joint coordinates q. Blue circles: using solution (5) for the
inverse path kinematic with constant speed σ̇0. Orange crosses: Using solution (10) for
arc length parameterized inverse path kinematics with constant arc length speed ṡ0

Fig. 3: Resulting joint velocities q̇. Blue circles: using (5) for the inverse path kinemat-
ics with constant speed σ̇0. Orange crosses: using (10) for the inverse path kinematics
with constant speed ṡ0.

for coping with inverse kinematic singularities. Moreover, the joint motion can
be fully controlled, instead of controlling the EE-speed. Instead of large joint
motions near singularities, the method leads to reduced EE-motions. As shown
in the example, the arc length parameterized velocity inverse path-kinematics
solution (10) gives rise to an adaptive sampling scheme that yields significantly
smaller joint velocities. The introduced approach is applicable to time-optimal
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path following that is robust against singularities. This will be addressed in
future work. Preliminary results indicate that the optimization problem is better
conditioned and excessive joint velocities are avoided.
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