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ABSTRACT
Background  Papillary renal cell carcinoma (pRCC) is the 
most common non-clear cell RCC, and associated with 
poor outcomes in the metastatic setting. In this study, we 
aimed to comprehensively evaluate the immune tumor 
microenvironment (TME), largely unknown, of patients with 
metastatic pRCC and identify potential therapeutic targets.
Methods  We performed quantitative gene expression 
analysis of TME using Microenvironment Cell Populations-
counter (MCP-counter) methodology, on two independent 
cohorts of localized pRCC (n=271 and n=98). We then 
characterized the TME, using immunohistochemistry 
(n=38) and RNA-sequencing (RNA-seq) (n=30) on 
metastatic pRCC from the prospective AXIPAP trial cohort.
Results  Unsupervised clustering identified two “TME 
subtypes”, in each of the cohorts: the “immune-enriched” 
and the “immune-low”. Within AXIPAP trial cohort, the 
“immune-enriched” cluster was significantly associated 
with a worse prognosis according to the median overall 
survival to 8 months (95% CI, 6 to 29) versus 37 
months (95% CI, 20 to NA, p=0.001). The two immune 
signatures, Teff and JAVELIN Renal 101 Immuno signature, 
predictive of response to immune checkpoint inhibitors 
(CPI) in clear cell RCC, were significantly higher in the 
“immune-enriched” group (adjusted p<0.05). Finally, 
five differentially overexpressed genes were identified, 
corresponding mainly to B lymphocyte populations.
Conclusion  For the first time, using RNA-seq and 
immunohistochemistry, we have highlighted a specific 
immune TME subtype of metastatic pRCC, significantly 
more infiltrated with T and B immune population. This 
“immune-enriched” group appears to have a worse 
prognosis and could have a potential predictive value for 
response to immunotherapy, justifying the confirmation of 
these results in a cohort of metastatic pRCC treated with 
CPI and in combination with targeted therapies.
Trial registration number  NCT02489695.

INTRODUCTION
Papillary renal cell carcinoma (pRCC) is the 
most common non-clear cell RCC (nccRCC) 
and represents up to 15% of renal cell carci-
noma (RCC).1 2 The denomination nccRCC 
comprises a heterogeneous group of tumors 

with distinct histological and molecular 
characterization.3 Patients with metastatic 
pRCC (mpRCC) have significantly lower 
response rates, lower median progression-
free survival (PFS) and overall survival (OS) 
than those with clear cell renal cell carcinoma 
(ccRCC).4 5 Based on the pathological assess-
ment according to the WHO 2016 classifica-
tion, pRCC have been routinely classified in 
two subtypes: type 1, commonly associated 
with multiple or bilateral small tumors with a 
favorable prognosis and few metastatic devel-
opment, type 2, commonly more aggressive 
and associated with a dismal prognosis, and 
unclassified pRCC.6 Several studies aimed 
at investigating molecular events specific to 
pRCC subtypes.2 7 8

WHAT IS ALREADY KNOWN ON THIS TOPIC
	⇒ Papillary renal cell carcinoma is the most com-
mon non-clear cell RCC, and associated with poor 
outcomes in the metastatic setting. We aimed to 
comprehensively evaluate, by RNA sequencing and 
immunohistochemistry (IHC), the immune tumor mi-
croenvironment (TME), largely unknown, to identify 
potential therapeutic targets.

WHAT THIS STUDY ADDS
	⇒ The identification of TME subtypes, and notably the 
“immune-enriched” group, could be done by IHC, 
and in particular by the CD3 marker, a reliable and 
inexpensive technique. This “immune-enriched” 
feature appears to be correlated with a poor prog-
nosis but could indicate a potential predictive value 
for response to immunotherapy, alone or in combi-
nation, a treatment not currently recommended.

HOW THIS STUDY MIGHT AFFECT RESEARCH, 
PRACTICE OR POLICY

	⇒ This study could lead to the development of pre-
dictive biomarker-driven clinical trials in these rare 
tumors.
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The therapeutic management of patients with meta-
static nccRCC has historically been similar to metastatic 
ccRCC given the lack of dedicated trials.1 9 10 A few phase 
2 studies, evaluating targeted therapies, have been carried 
out specifically in mpRCC. Those investigated suni-
tinib (SUPAP11), everolimus (RAPTOR12), cabozantinib 
(PAPMET13) and axitinib (AXIPAP14) as first-line agents. 
Cabozantinib treatment resulted in significantly longer 
PFS (median 9.0 months, 95% CI, 6% to 12%) than in the 
sunitinib group (5.6 months, 3% to 7%; HR for progres-
sion or death 0.60, 0.37 to 0.97, one-sided p=0.019). 
Response rate for cabozantinib was 23% versus 4% for 
sunitinib (two-sided p=0.010).13 As well, axitinib demon-
strated encouraging efficacy in patients with mpRCC, 
especially in type 2 pRCC, with manageable toxicity. The 
progression-free rate at 24 weeks, primary end-point, was 
45.2% (95% CI, 32.6% to not reached), the objective 
response rate (ORR) 28.6% (95% CI, 15.7% to 44.6%) 
including 7.7% in type 1 and 35.7% in type 2. Median 
OS was 18.9 months (95% CI, 12.8 to not reached).14 The 
clinical efficacy of immunotherapy, monotherapy or in 
combination, has since been established in metastatic 
RCC with a clear cell histologic component.15 16 However, 
these pivotal studies of immune checkpoint inhibitors 
(CPI) excluded nccRCC. Small retrospective cohorts 
report discordant results regarding nccRCC response to 
CPI.17–22 The activity of CPI, as a single agent appears vari-
able in patients with metastatic pRCC, with ORR ranging 
from 8% to 25%. Indeed, in monotherapy, the KEYNOTE-
427 cohort B study remains the largest prospective data 
set to date, showing promising antitumor activity with 
first-line pembrolizumab monotherapy in metastatic 
pRCC. At a median follow-up of 11.1 months (range 
0.9–21.3), median PFS was 4.1 months and the median 
OS has not yet been reached with 72% of patients alive at 
1 year in the entire nccRCC cohort. In 118 patients with 
mpRCC, ORR was 25.4% (95% CI, 17.9% to 34.3%). In 
combination, the preliminary analysis of KEYNOTE-B61, 
a single-arm, phase 2 study (NCT04704219) evaluating 
pembrolizumab and lenvatinib as first-line treatment 
for nccRCC, showed increased antitumor activity. The 
6-month PFS rate was 72.3% (95% CI, 60.7% to 81.0%) 
and the 6-month OS rate was 87.8% (95% CI, 78.5% to 
93.2%). In 51 patients with mpRCC, ORR was 52.9% 
(95% CI, 38.5% to 67.1%).23 Further activity could be 
gained from combinations, but optimal partners still 
need to be investigated.24

CPI therapy appears to be more effective in patients with 
pre-existing antitumor immune activation. According to 
Charoentong et al,25 immunogenicity can be represented 
by cytotoxic lymphocyte activity,26 being the ultimate 
effector mechanism of the antitumor immune response. 
Lymphocyte infiltration has been described in pRCC but 
seems to be less present than in ccRCC.25 Papillary RCC 
may have a different immunogenicity, and thus a different 
response to CPI than ccRCC. An heterogeneous expres-
sion of the immune checkpoint programmed death-ligand 
1 (PD-L1) was described in pRCC.27 28 Characteristics 

of the immune infiltrate have also been described with 
limited information in pRCC,25 29 highlighting two 
predominant profiles: inflammatory cluster with elevated 
Th17 and Th1 genes, or depleted lymphocyte cluster with 
a more prominent macrophage signature, associated with 
a different prognosis.30 An immune signature based on 
the expression of Th2 genes, was also described in a rare 
pRCC subtype with the worst prognosis and harboring 
a Cytosine preceding Guanine (CpG) island methylator 
phenotype, questioning the potential role of CPI in this 
context.31 While further data is awaited from prospective 
trials, these studies constitute growing evidence that the 
immune tumor microenvironment (TME) may have a key 
role in pRCC and support the need to investigate the role 
of CPI in patients with metastatic pRCC.

Immune infiltration and expression of immune check-
points may be critical factors to select patients, but the 
microenvironment of pRCC is still to be described.26 32–35

In ccRCC, several transcriptomic signatures were asso-
ciated with predictive value of response to CPI,36 37 as 
Teff signature,38–42 or myeloid signature,38–40 42 or JAVELIN 
Renal 101 Immuno signature.40 42 Prospective studies are 
ongoing to validate these predictive transcriptomic signa-
tures but their use in routine practice will represent a 
major challenge.43

Therefore, in this study, we comprehensively evaluated 
the TME of patients with pRCC, and identified key genes 
and B and T-cell subsets that are closely related to the 
TME of patients with pRCC and could be used as immu-
notherapeutic targets or predictive biomarkers.

MATERIALS AND METHODS
Study cohorts
We performed quantitative explorations of the immune 
infiltration gene expression on two independent cohorts 
of localized pRCC, as a discovery set.

We downloaded the gene expression RNA-sequencing 
(RNA-seq) data and clinical phenotype of kidney papil-
lary cell carcinoma (KIRP) from The Cancer Genome 
Atlas (TCGA) portal (https://gdc.cancer.gov/). The 
transcriptome profiling of RNA expression was obtained 
by RNA‐seq according to the GRCh38 reference genome 
annotation, Ensembl V.80 of May 2015 (BiomaRt 
package). HTSeq-count data were converted to tran-
scripts per million (TPM) (TCGAbiolinks package). 
Log2‐based transformation was used for the normaliza-
tion of RNA expression profiles (TPM + 1). Clinical data 
were extracted from Ricketts et al.31 After the data were 
preprocessed, and the samples without clinical data 
excluded, 271 pRCC were enrolled. Updated survival 
data were extracted from Liu et al,44 with OS available for 
266 patients. The same TCGA barcode structure is used 
for both clinical data and molecular data, enabling inte-
grated analysis of patient-based clinical data and sample-
based molecular data.

Gene expression microarray data were also obtained 
from an independent cohort of frozen tissue samples 
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from 98 localized pRCC, with 47 type 1 pRCC, 45 type 
2 pRCC and 6 unclassified pRCC.45 We performed our 
analyses using the already normalized data.

Then, we performed a post hoc analysis of the AXIPAP 
trial.14 This multicenter, single-arm, phase II trial enrolled 
patients with locally advanced or metastatic specifically 
confirmed pRCC, in first-line treatment. The study was 
registered on ​ClinicalTrials.​gov. Fifty-six patients were 
screened, and 44 included (13 type 1, 30 type 2 and 1 
non-specified, according to the WHO 2016 classification). 
For our ancillary study, clinical data cut-off was February 
28, 2021, for the final analysis. The pRCC samples were 
all confirmed by expert central pathology review. Only 
formalin-fixed paraffin-embedded (FFPE) samples with 
sufficient materials were included.

Procedures in AXIPAP trial cohort
Immunohistochemistry
Paraffin blocks of pRCC have been centralized at the 
Department of Pathology (NRL, Rennes Hospital, 
France). They were sent with original pathology reports 
by different Departments of Pathology in France. An 
Hémalun Eosine Safran (HES) slide has been performed 
from each block and all the HES-stained slides were 
reviewed by a uropathologist (NRL).

The following pathological data were collected: histo-
logical type (according to the WHO 2016 classification), 
International Society of Urological Pathology (ISUP) 
nucleolar grade; presence of necrosis and sarcomatoid 
and/or rhabdoid component.

From each paraffin block, unstained sections were 
obtained for immunohistochemistry (IHC), and slides 
were labeled using the BenchMark ULTRA/Roche.

For angiogenesis analysis, the following antibodies 
were used: the anti-Vascular Endothelial Growth Factor 
(VEGF) antibody (clone SP28-M3281, Spring/Biosci-
ences), and the anti-CD31 antibody (Clone JC70A; titer 
1:500; DakoCytomation). We described two angiogenic 
phenotypes one and two according to the following publi-
cation in Human Pathology,46 and we defined the micro 
vessel density as the vessel sections per mm2.

For the immune microenvironment, we used the 
following antibodies: CD3 (MAb rabbit 2GV6, Roche), 
CD8 (clone C8/144B, M7103, DAKO), CD68 (clone 
PG-M1, Dako), and PD-L1 (E1L3N, Cell Signaling). 
We evaluated the tumor infiltrating lymphocytes (CD3, 
CD8) and macrophages (CD68) at the invasive margin 
defined as a 1 mm wide zone centered on the border of 
the malignant cells with the host tissue, and in the central 
tumor defined as the central tumor tissue surrounded by 
this zone. We scored the CD3/CD8/CD68 positive cells 
according to the proposal of the International Immu-
noOncology Biomarkers Working Group,47 using a 
manual semi quantitative 4-point scale: score 0 (no CD3/
CD8/CD68+ cells or very rare positive cells), score 1 (rare 
diffuse or focal positive cells), score 2 (diffuse numerous 
positive cells), and score 3 (diffuse and numerous positive 

cells with some aggregates). For PD-L1, we evaluated the 
% of positive tumor cells.

On HES, we also evaluated the tumor infiltrating mono-
nuclear cells (lymphocytes, and plasma cells) both at the 
invasive margin and in the central tumor as previously 
described.

RNA-sequencing
RNA extraction was performed with COVARIS ME220 
Focused-ultrasonicator, to allow a high quantity and high 
quality of RNA extracted. RNA libraries were prepared 
with the SureSelectXT RNA Direct Library Preparation 
kit and the SureSelectXT Human All Exon V6+UTR 
probes from Agilent. All libraries were sequenced on an 
Illumina NextSeq550 in paired-end mode (2×75 bp) with 
a target depth of 20 million fragments per sample.

Sequenced reads were trimmed with fastp V.0.20.1 
and mapped to GRCh38 using HISAT2 V.2.1.0 both 
with default parameters. Reads overlapping genomic 
features were counted with featureCounts V.2.0.0 from 
the Subread package and Ensembl V.99. Only uniquely 
mapped and not duplicated reads were counted. Multiple 
overlaps of unique genomic feature were not counted. 
The counts data were converted to TPM. Log2‐based 
transformation was used for the normalization of RNA 
expression profiles (TPM + 1).

The R package “DESeq2” was applied to screen differ-
entially expressed messenger RNAs (mRNAs) between 
different groups. Next, the p value was calculated by 
the false discovery rate (FDR)-corrected method. The 
mRNAs with | log2 fold-change | >2 and p adjusted <0.01 
were filtrated as differentially expressed genes.

Identification of clusters
Based on transcriptomic markers, using Microenvi-
ronment Cell Populations-counter (MCP-counter)-
methodology,48 49 that assesses the proportion of 10 
immune and stromal cell populations in the TME, we 
applied unsupervised clustering by using pheatmap 
package and Ward‐d2 distance method.

We applied the same unsupervised clustering method 
to IHC immune markers.

Gene expression analyses
From the output of MCP-counter, we performed explor-
atory quantitative analyses to characterize the TME. We 
analyzed immune cell populations and immune markers 
including LAG3, TIGIT, CTLA4, PD-1 and PD-L1. Multio-
mics analyses were performed using available data from 
Chen et al50 and Ricketts et al.31 We analyzed the Th2 
prognostic signature (PMCH, AHI, PTGIS, CXCR6, 
EVI5, IL-26, MB, NEIL3, GSTA4, PHEX, SMAD2, CENPF, 
ANK1, ADCY1, LAIR2, SNRPD1, MICAL2, DHFR, 
WDHD1, BIRC5, SLC39A14, HELLS, LIMA1, CDC25C, 
CDC7, GATA3)31 51 in the TCGA cohort. Moreover, we 
analyzed three transcriptomic signatures described in 
ccRCC,38–40 between each cluster, in each cohort: angio-
genesis (VEGFA, KDR, ESM1, PECAM1, ANGPTL4, CD34) 

 on D
ecem

ber 13, 2023 by guest. P
rotected by copyright.

http://jitc.bm
j.com

/
J Im

m
unother C

ancer: first published as 10.1136/jitc-2023-006885 on 7 N
ovem

ber 2023. D
ow

nloaded from
 

http://jitc.bmj.com/


4 de Vries-Brilland M, et al. J Immunother Cancer 2023;11:e006885. doi:10.1136/jitc-2023-006885

Open access�

signature, predictive of tyrosine kinase inhibitors (TKI) 
response, and Teff (CD8A, EOMES, PRF1, IFNG, CD274) 
and JAVELIN Renal 101 Immuno (CD3G, CD3E, CD8B, 
THEMIS, TRAT1, GRAP2, CD247, CD2, CD96, PRF1, 
CD6, IL7R, ITK, GPR18, EOMES, SIT1, NLRC3, CD244, 
KLRD1, SH2D1A, CCL5, XCL2, CST7, GFI1, KCNA3, 
PSTPIP1) signatures, predictive of response to CPI.

Statistical analysis
Data processing and statistical analyses were performed 
using R programming language (V.4.0.3). The heatmaps 
were generated by applying R package “pheatmap”. The 
data, RNA-seq and IHC, were normalized by the scale 
function, before clustering. The Kruskal-Wallis test was 
employed to compare differences between clusters. In all 
data analyses, a two-tailed p<0.05 was considered statisti-
cally significant, with p adjusted for Benjamini-Hochberg 
correction (*p<0.05 **p<0.01, ***p<0.001). Boxplots 
were drawn using the ggplot2 package. Kaplan-Meier 
survival analysis between different clusters was performed 
using the R survival and survminer packages. The group 
comparisons were performed with the logrank test with 
p<0.05, considered statistically significant.

RESULTS
Gene expression analysis of localized pRCC reveal two distinct 
immune landscapes
The clinical characteristics of 271 patients from TCGA 
KIRP cohort were presented in table 1.

Discovery of TME subtypes in pRCC
Using MCP-counter methodology,48 49 we estimated abun-
dances of immune and stromal cell population from 
cell-specific transcriptomic markers. We applied unsuper-
vised clustering to the abundance scores and identified 
two different clusters: 21% (n=56) of patients featured 
an “immune-enriched” tumor and 79% (n=215) an 
“immune-low” tumor, more heterogeneous (figure  1A). 
Notably, the “immune-enriched” cluster was significantly 
characterized by higher abundances of cytotoxic T cells, 
B cells and natural killer cells (online supplemental 
figure S1A). There was no significant difference between 
our two clusters in the number of mutations (data not 
shown), but there were significantly more copy number 
alterations of chromosome 7, corresponding to mesen-
chymal epithelial transition factor (MET) gene, in the 
“immune-low” cluster (p<0.01) (online supplemental 
figure S1B). Gene signature mRNA-based concerning the 
cell cycle, hypoxia, NRF2/ARE, TFE3 fusion, were signifi-
cantly greater in expression in the “immune-enriched” 
cluster (p<0.001) (online supplemental figure S1C).

We performed the same analysis in an independent 
cohort of 98 patients with localized pRCC. We confirmed 
the presence of “immune-enriched” and “immune-low” 
TMEs (8% vs 92%, respectively) (online supplemental 
figure S2A).

pRCC TME subtypes are associated with immune checkpoints and 
prognosis
Interestingly, in two independent cohorts, the immune 
checkpoints markers, LAG3, TIGIT, CTLA-4, PD-1, PD-L1 
were significantly enriched in the “immune-enriched” 
cluster (adjusted p<0.001) (figure 1B and online supple-
mental figure S2B). Additionally, the three predictive 
signatures for response to TKI (angiogenesis) and CPI 
(Teff and JAVELIN Renal 101 Immuno) in ccRCC were 
significantly greater in the “immune-enriched” cluster 
(adjusted p<0.001) (figure 1C and online supplemental 
figure S2C).

The “immune-enriched” component was associated 
with a worse prognosis (median OS was 68 months (95% 
CI, 43.5 to NA) vs not reached, and 12-month OS=87% 
vs 97%, in “immune-enriched” vs “immune-low” clusters, 
respectively, p=0.002) (figure  1D). Similarly, the Th2 
signature, associated with a poor prognosis in the litera-
ture,31 was significantly higher in the “immune-enriched” 
cluster (adjusted p<0.001) (online supplemental figure 
S1D).

Based on these exploratory results in the localized 
pRCC cohort, we investigated the immune infiltrate in a 
cohort of metastatic pRCC with treatment data, as a vali-
dation cohort.

Table 1  Characteristics of the localized papillary renal 
cell carcinoma population, from The Cancer Genome Atlas 
kidney papillary cell carcinoma cohort

Characteristic N=271*

 � Age 61 (53–69)

Unknown 23

Gender

 � Female 67 (25)

 � Male 204 (75)

Type

 � Type 1 papillary RCC 159 (59)

 � Type 2 papillary RCC 78 (29)

 � Unclassified papillary RCC 34 (13)

Stage

 � Stage I 163 (66)

 � Stage II 21 (8.5)

 � Stage III 48 (19)

 � Stage IV 15 (6.1)

 � Unknown 24

Vital_status

 � Alive 231 (85)

 � Dead 40 (15)

Survival_time (days) 742 (403–1,465)

 � Unknown 1

*Median (IQR); n (%).
RCC, renal cell carcinoma.
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Figure 1  Transcriptomic analyses from The Cancer Genome Atlas kidney papillary cell carcinoma cohort (n=271). (A) Heatmap 
representing unsupervised analysis from MCP-counter on normalized transcriptomic expression data (k=2), identifying the TME 
subtypes. (B) Boxplots representing the transcriptomic expression of five checkpoint markers according to clusters from the 
MCP-counter analysis. (C) Boxplots representing the three predictive gene signatures of response to treatment described in the 
clear-cell renal cell carcinoma (angiogenesis, effector T-cell (Eff T), JAVELIN Renal 101 Immuno), according to the clusters from 
MCP-counter. P values were obtained using the two-sided Mann-Whitney test (***p<0.001). (D) Kaplan-Meier survival curves 
(overall survival (OS)) according to clusters from MCP-counter analysis. CTLA-4, cytotoxic T-lymphocyte–associated antigen 4; 
LAG-3, lymphocyte activation gene-3; MCP, Microenvironment Cell Populations; NK, natural killer; PD-1, programmed death 1; 
PD-L1, programmed death-ligand 1; TIGIT, T cell immunoglobulin and ITIM domain; TME, tumor microenvironment.
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Validation in patients with metastatic pRCC treated by axitinib
We performed a post hoc analysis of the AXIPAP trial14 
from 38 patients with available tissue samples and clini-
cally annotated treatment response on first line systemic 
therapy, second and subsequent line, represented in flow 
chart (figure  2A). Fourteen patients were treated with 
immunotherapy in second or third line including 12 with 
nivolumab (in the French national AcSé program). The 
clinical characteristics of these 38 patients were presented 

in table  2. Among the 38 cases, 1 (3%) case was from 
metastatic sites and 37 (97%) cases were primitive pRCC.

We performed IHC on 38 tumor samples, among which 
30 samples had RNA of sufficient quality for downstream 
analyses (figure 2B).

Figure 2  (A) Flow chart of patients included in AXIPAP and their follow-up (clinical data cut-off was February 28, 2021) and 
(B) with materials available for IHC and RNA-seq analysis. CPI, checkpoint inhibitors; IHC, immunohistochemistry; pRCC, 
papillary renal cell carcinoma; RNA-seq, RNA-sequencing; TKI, tyrosine kinase inhibitors.
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Protein analyses of pRCC TME subtypes in metastatic patients 
treated by axitinib
Using IHC, we scored T lymphocytes (CD3, CD8), macro-
phages (CD68) (from 0 to 3) and tumor-infiltrating 
lymphocytes (TILs) scoring, at the invasive front and 
intratumoral (IT), and the immune checkpoint ligand 
PD-L-1 (% of cells). Based on unsupervised clustering, we 
identified two groups: 47% (n=18) of patients appeared 
to have an “immune-enriched” tumor and 53% (n=20) 
had an “immune-low” tumor (figure  3A). The propor-
tion of histological type 2 pRCC appeared to be higher 
in the “immune-enriched” subgroup (72% vs 65%, χ2 
test p=0.63). Vascular density was similar in both groups 
(online supplemental figure S3).

Interestingly, most samples with CD3 IT>1 marker were 
in the “immune- enriched” group (36/38, 95%).

pRCC TME subtypes “immune enriched” is associated with worse 
OS and lower response rates to axitinib
As identified with RNA-seq analyses, the IHC “immune-
enriched” component featured a worse prognosis. 
Median OS was 8 months (95% CI, 6 to 29) versus 37 
months (95% CI, 20 to NA), and 12-month OS was 33% 
versus 90%, in “immune-enriched” versus “immune-low” 
groups, respectively) (p=0.001) (figure 3B).

Similarly, the PFS was significantly worse in this same 
group with p=0.0007. Median PFS was 5 months (95% CI, 
2 to 9) versus 11 months (95% CI, 7 to 26), and 12-month 
PFS was 6% versus 45%, in “immune-enriched” versus 
“immune-low” groups, respectively) (figure  3C). ORR 
to axitinib appeared to be lower in the IHC “immune-
enriched” group (11% vs 30%, Fisher’s exact test p=0.2) 
(online supplemental figure S4A). Despite the limited 
data on responses to second and third line immuno-
therapy (n=14) in the AXIPAP cohort, we observed that 
the only partial response corresponded to a patient 
identified in the “immune-enriched” group. In the same 
group, we observed one stable disease and one progres-
sive disease. In the “immune-low” group, we identified 
two stable diseases and seven progressive diseases. The 
ORR to immunotherapy was better in the “immune-
enriched” group (33% vs 0%, Fisher’s exact test p=0.16) 
(online supplemental figure S4B). The two gene expres-
sion immune signatures, predictive of response to CPI 
in ccRCC, were significantly higher in the “immune-
enriched” group (adjusted p<0.05) (online supplemental 
figure S4C). These results suggest that pRCC patients 
from the “immune-enriched” TME subtype could poten-
tially benefit from immunotherapy.

Transcriptomic characterization of the pRCC TME subtypes defined 
by IHC
To identify the transcriptomic programs driving the pRCC 
TME subtypes, we performed differential expression anal-
yses. Under the condition of log2 (fold-change) >2 and 
p adjusted <0.01, five differentially overexpressed genes 
were identified between the two groups identified by IHC 
in the AXIPAP cohort (figure  4A): IGHV4-61, CXCL13, 
FDCSP, ADAMTS14, EPHA3. Three of these genes directly 
indicate that B cells and tertiary lymphoid structures 
(TLS) are likely drivers of the pRCC “immune enriched” 
subtype. IGHV4-61, immunoglobulin heavy variable 4–61, 
is coding for the variable region of an immunoglobulin 
which indicates involvement of B cells. Further, CXCL13 
(C-X-C motif chemokine ligand 13) is a chemo-attractant 
for B cells and T follicular helper cells. Finally, FDCSP 
(follicular dendritic cell secreted protein) is indicative of 
the presence of follicular dendritic cells, key component 
of mature TLS.

The prognosis of patients with a “high transcriptomic 
signature”, defined as a higher expression of these five 
genes, seemed to be associated with a dismal prognosis, 
even if the difference in survival was not significant with 
p=0.11. Median OS was 10 months (95% CI, 7 to NA) 
versus 26 months (95% CI, 18 to NA), and 12-month 
OS was 47% versus 80%, in “high signature” versus “low 
signature”, respectively (figure 4B).

According to the Gene Ontology terms analyses, and 
in particular biological process, similarly to the TCGA 
cohort (online supplemental figure S5A), the “immune-
enriched” group was significantly associated with the 
immune-response and B-cell activation pathways (online 
supplemental figure S5B). Furthermore, from the top 

Table 2  Characteristics of the metastatic papillary renal cell 
carcinoma population, from AXIPAP trial cohort

Characteristic N=38*

Age 62 (53–69)

Gender

 � Female 6 (16)

 � Male 32 (84)

Type

 � Type 1 papillary RCC 12 (32)

 � Type 2 papillary RCC 26 (68)

Prior nephrectomy 35 (92)

ECOG

 � 0 19 (50)

 � 1 19 (50)

IMDC score

 � Favorable risk group 8 (22)

 � Intermediate risk group 16 (44)

 � High-risk group 12 (33)

 � Unknown 2

Vital_status

 � Alive 12 (32)

 � Dead 26 (68)

Survival_time (months) 18 (8–35)

*Median (IQR); n (%).
ECOG, Eastern Cooperative Oncology Group; IMDC, International 
Metastatic RCC Database Consortium; RCC, renal cell carcinoma.
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50, 42 pathways were common between the “immune-
enriched” and “immune-low” clusters in the TCGA cohort 
and the “immune-enriched” and “immune-low” groups in 
the AXIPAP cohort.

DISCUSSION
We report the first comprehensive characterization of 
immune infiltration in pRCC in both localized and meta-
static patients.

Using an unsupervised analysis on localized pRCC data, 
we identified distinct subsets of pRCC, including one 
population enriched in immune infiltrate. We confirmed 
this result in an independent localized pRCC cohort.45

Figure 3  Immunohistochemistry (IHC) analyses from AXIPAP trial cohort (n=38). (A) Heatmap representing unsupervised 
analysis based on the immune markers performed in IHC (k=2), identifying the “IHC TME subtypes” with the “immune-enriched” 
group and the “immune-low” group. (B) Kaplan-Meier survival curves (overall survival (OS)) according to subgroups from 
the unsupervised analysis based on IHC immune markers. (C) Kaplan-Meier survival curves (progression-free survival (PFS)) 
according to subgroups from the unsupervised analysis based on IHC immune markers. FI, invasive front; HES, Hémalun Eosine 
Safran; IT, intratumoral; PD-L1, programmed death-ligand 1; TME, tumor microenvironment.

 on D
ecem

ber 13, 2023 by guest. P
rotected by copyright.

http://jitc.bm
j.com

/
J Im

m
unother C

ancer: first published as 10.1136/jitc-2023-006885 on 7 N
ovem

ber 2023. D
ow

nloaded from
 

http://jitc.bmj.com/


9de Vries-Brilland M, et al. J Immunother Cancer 2023;11:e006885. doi:10.1136/jitc-2023-006885

Open access

Figure 4  Transcriptomic characterization of the papillary renal cell carcinoma tumor microenvironment subtypes defined by 
IHC. (A) Volcano plot representing the messenger RNAs differential-expression analysis (=32,378 genes) from DESeq2, between 
the two groups identified from IHC in the AXIPAP trial cohort (n=30). Under the condition of log2 (fold-change) >2 and p adjusted 
<0.01, five differentially overexpressed genes were identified between the two groups (red circle). (B) Kaplan-Meier survival 
curves (overall survival (OS)) according to subgroups with a “high transcriptomic signature” and “low transcriptomic signature”, 
defined as a median of the five significant differentially overexpressed genes. IHC, immunohistochemistry.
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Given that the immune infiltrate may differ between 
localized and metastatic disease,31 52 we subsequently 
characterized the TME of patients with metastatic pRCC. 
We conducted a comprehensive evaluation of immune 
infiltration, by IHC and RNA-seq, in a prospective meta-
static pRCC trial cohort, annotated with systemic therapy 
treatment.14

In the metastatic cohort, we also identified an “immune-
enriched” subgroup, by IHC, with the CD3 marker being 
a routinely applicable IHC staining. Our results provide 
further granularity to the previously presented analyses 
from the KEYNOTE-427-B cohort53 performed in 136 
nccRCC, showing that the T-cell–inflamed gene expres-
sion profile signature was significantly associated with 
ORR, which may be predictive of a response to CPI.54 
However, this signature remains based on RNA-seq, 
therefore limiting its clinical implementation in a daily 
practice.

In addition to identifying an “immune-enriched” 
subgroup pRCC, we highlighted its prognostic value, 
which was significantly worse than that of the identified 
“immune-low” population, both in RNA-seq and IHC. 
These results are similar to those of the ccRCC well 
described in literature.55 56

Our results as part of the AXIPAP clinical trial cohort, 
indicated that both ORR and PFS under axitinib 
appeared to be lower in the “immune-enriched” group. 
These findings suggest that other treatment options, such 
as immunotherapy, may be considered in this subgroup. 
We previously reported on CPI therapies limited activity 
in an unselected pRCC population,24 highlighting the 
need to identify predictive biomarkers to better select 
patients more likely to respond to CPI. In our analysis, the 
“immune-enriched” cluster was characterized by signifi-
cantly higher gene expression of CPI markers. Interest-
ingly, the study by Şenbabaoğlu et al showed that enriched 
in T cells ccRCC tumors and responding to immuno-
therapy had also high expression levels of immune 
response-related genes, including immune checkpoint 
genes such as PD-1, PD-L1 and CTLA-4.57 Moreover, the 
two predictive signatures for response to CPI (Teff and 
JAVELIN Renal 101 Immuno), described in ccRCC, were 
significantly greater in the “immune-enriched” cluster. 
Despite the limited data on responses to second and 
third line immunotherapy in our AXIPAP cohort, the 
ORR to immunotherapy appeared numerically higher in 
the “immune-enriched” group. Taken altogether, these 
results suggest that the “immune-enriched” feature may 
have potential predictive value for a favorable response to 
immunotherapy.

Furthermore, in order to characterize the difference 
between the two groups identified in IHC, we performed 
mRNAs differential expression analysis with strict signif-
icance criteria. We highlighted five differentially over-
expressed genes in the “immune-enriched” group. The 
gene IGHV4-61 is part of B lymphocyte populations. The 
gene CXCL13, corresponds to chemokine (C-X-C motif) 
ligand 13 or BLC (B-lymphocyte chemoattractant) or 

BCA-1 (B cell-attracting chemokine 1). His role is selec-
tive chemotaxis for B cells, a product of follicular helper 
CD4+T cells and a contributor to TLS.58 The gene FDCSP, 
follicular dendritic cell secreted protein, is able to specifi-
cally bind to activated B cells and is intimately connected 
to chemokine pathways, particularly with the CXCL13.59 
Follicular dendritic cells are found in the center of the 
germinal center of mature tertiary lymphoid structures60 
where they are likely to present antigen to B cells. The 
gene ADAMTS14, a disintegrin and metalloproteinase 
with thrombospondin motifs 14, is mainly involved in 
extracellular matrix assembly and degradation. It is highly 
associated with several immune cells in ccRCC, such 
as activated dendritic cell, central memory CD8 T cell, 
central memory CD4 T cell, and activated CD4 T cell.61 
Finally, the gene EPHA3, Eph receptor tyrosine kinases, 
formerly known as HEK, contribute to tumor develop-
ment, modulating cell–cell adhesion and survival during 
invasion, neo-angiogenesis and metastasis.62 Therefore, 
the gene EPHA3 represents a potential source of tumor-
specific antigens recognized on tumor cells that express 
human leukocyte antigens (HLA) class II molecules. It 
appears to function as a tumor-suppressor in ccRCC as in 
the tumor stromal microenvironment with mesenchymal 
stromal cells (MSCs).63 All these genes are related to the 
B population and TLS, recently described in the litera-
ture. Notably, tumors with mature TLS, a high density of 
B cells and plasma cells, as well as the presence of anti-
bodies totumor-associated antigens are typically asso-
ciated with favorable clinical outcomes and responses 
to immunotherapy compared with those lacking these 
characteristics.60

Our exploratory analysis of a transcriptomic signature, 
defined as a higher expression of these five genes, seemed 
to be associated with a dismal prognosis in OS. This result 
is consistent with the literature as these five genes are 
described in ccRCC, each of which is associated with a 
poor prognosis and decreased survival of patients.64–67 
IT CXCL13+CD8+T cells abundance was associated 
with immune-evasive contexture. The abundance of 
CXCL13+CD8+T cells was shown to be an independent 
prognosticator and a potential immunotherapeutic target 
marker for ccRCC treatment.68 Luo et al reports that four 
TME-related genes (CD79A, CXCL13, IL-6 and CCL19) 
were identified as biomarkers for pRCC prognosis in 
localized pRCC from the TCGA cohort.69

Beyond their prognostic value, data from the recent 
literature showed that the B and TLS populations have a 
potential predictive value for response to immunotherapy 
in various cancers,66 70 demonstrating significantly higher 
expression of B-cell-related genes in responders versus 
non-responders.71 CXCL13 expression, as a surrogate for 
tumor TLS, is a relevant candidate predictive biomarker of 
response to CPI for patients with advanced-stage bladder 
cancer.72 Similarly, in the NIVOREN cohort, Carril-Ajuria 
et al, demonstrated for the first time, that a pre-existing 
high number of circulating baseline unswitched memory 
B cells is associated with higher probability of response to 
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nivolumab and longer PFS and OS in patients with meta-
static ccRCC.73

Our study has several limitations. As pRCC are rare 
tumors, our analyses were performed on a limited 
number of available samples. We can note the differences 
in clustering proportions between cohorts, which can be 
explained by metastatic tumors, known to be more inflam-
matory and aggressive than localized pRCC,52 the hetero-
geneity of techniques between RNA-seq, microarray, and 
IHC, and also a potential lack of power due to a limited 
number of available samples. Moreover, sequencing tech-
niques, especially on paraffin blocks, are recent, and may 
generate biases in the results. Similarly, it would be inter-
esting to be able to confirm the possibility of identifying 
the “immune-enriched” group from the CD3 marker in 
another independent cohort. Finally, the potential predic-
tive value of response to immunotherapy of our identified 
“immune-enriched” group can only be formulated as a 
hypothesis since we have limited data from further CPI 
treatment. It will be necessary to validate our results and 
hypotheses in a prospective cohort of metastatic pRCC 
treated with CPI alone and in combination with a TKI.

CONCLUSION
In summary, for the first time, based on a comprehensive 
analysis, using RNA-seq and IHC, we identified a specific 
immune TME subtype of metastatic pRCC, significantly 
more infiltrated with cytotoxic T and B immune popu-
lations. The identification of this group could be done 
by IHC, and in particular by the CD3 marker, a reliable 
and inexpensive technique. This “immune-enriched” 
feature, with its defining markers highlighted, appears to 
be correlated with a poor prognosis but could indicate 
a potential predictive value for response to immuno-
therapy. This, however, requires a confirmation in meta-
static pRCC treated with CPI alone and in combination 
with a TKI.
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