A note on the Casas-Alvero Conjecture

Daniel Schaub, Univ Angers, CNRS, LAREMA, SFR MATHSTIC F-49000 Angers, France email: daniel.schaub@univ-angers.fr

Mark Spivakovsky, Univ Paul Sabatier, CNRS, IMT UMR 5219 F-31062 Toulouse, France and CNRS, LaSol UMI 2001, UNAM. email: mark.spivakovsky@math.univ-toulouse.fr

November 7, 2024

Abstract

The Casas–Alvero conjecture predicts that every univariate polynomial f over a field K of characteristic zero having a common factor with each of its derivatives $H_i(f)$ is a power of a linear polynomial. Let $f = x^d + a_1 x^{d-1} + \cdots + a_1 x \in K[a_1, \ldots, a_{d-1}][x]$ and let $R_i = Res(f, H_i(f)) \in K[a_1, \ldots, a_{d-1}]$ be the resultant of f and $H_i(f), i \in \{1, \ldots, d-1\}.$ The Casas-Alvero Conjecture for algebraically closed fields is equivalent to saying that R_1, \ldots, R_{d-1} are "independent" in a certain sense, namely that the height $ht(R_1, \ldots, R_{d-1}) =$ $d-1$ in $K[a_1,\ldots,a_{d-1}]$. In this paper we prove a partial result in this direction: if $i \in \{d-3, d-2, d-1\}$ then $R_i \notin \sqrt{(R_1, \ldots, R_i, \ldots, R_{d-1})}$.

1 Introduction

In the year 2001 Eduardo Casas–Alvero published a paper on higher order polar germs of plane curve singularities [\[1\]](#page-3-0). His work on polar germs inspired him to make the following conjecture (according to the testimony of José Manuel Aroca, E. Casas communicated the problem orally well before 2001).

A lot of work on the Casas-Alvero conjecture has been done since 2001. Some of the most important partial results can be found in [\[1–](#page-3-0)[7\]](#page-4-0).

Let K be a field, d a strictly positive integer and $f = x^d + a_1 x^{d-1} + \cdots + a_{d-1} x + a_d$ a monic univariate polynomial of degree d over K . Let

$$
H_i(f) = {d \choose i} x^{d-i} + {d-1 \choose i} a_1 x^{d-i-1} + \dots + {i \choose i} a_{d-i}
$$

be the *i*-th Hasse derivative of f .

Definition 1 The polynomial f is said to be a Casas–Alvero polynomial if for each $i \in$ $\{1,\ldots,d-1\}$ it has a non-constant common factor with its i-th Hasse derivative $H_i(f)$.

Note that, by definition, a Casas-Alvero polynomial f has a common root with $H_{d-1}(f)$. In particular, if char $K = 0$, it has at least one root $b \in K$, regardless of whether or not K is algebraically closed. Making the change of variables $x \rightsquigarrow x - b$, we may assume that 0 is a root of f, in other words, $a_d = 0$. In the sequel, we will always make this assumption without mentioning it explicitly.

Conjecture 1 (Casas–Alvero) Assume that char $K = 0$. If $f \in K[x]$ is a Casas-Alvero polynomial of degree d with $a_d = 0$, then $f(x) = x^d$.

For $i \in \{1, \ldots, d-1\}$, let $R_i = \text{Res}(f, H_i(f)) \in K[a_1, \ldots, a_{d-1}]$ be the resultant of f and $H_i(f)$. The polynomials f and $H_i(f)$ have a common factor if and only if $R_i = 0$. Thus f is Casas–Alvero if and only if the point $(a_1, \ldots, a_{d-1}) \in K^{d-1}$ belongs to the algebraic variety $V(R_1, \ldots, R_{d-1}) \subset K^{d-1}$. In those terms the Conjecture can be reformulated as follows:

Conjecture 2 Let $V = V(R_1, ..., R_{d-1})$ ⊂ K^{d-1} . Then $V = \{0\}$.

When K is algebraically closed, this is also equivalent to

Conjecture 3

$$
\sqrt{(R_1, \ldots, R_{d-1})} = (a_1, \ldots, a_{d-1})
$$
\n(1)

or, equivalently,

 $a_i^N \in (R_1, ..., R_{d-1})$ for all $i \in \{1, ..., d-1\}$ and some $N \in \mathbb{N}$. (2)

Remark 2 (i) When K is not algebraically closed, Conjecture [3](#page-1-0) is a priori stronger. (ii) Let $K \subset K'$ be a field extension. The induced extension

$$
K[a_1,\ldots,a_{d-1}]\subset K'[a_1,\ldots,a_{d-1}]
$$

is faithfully flat. Since the polynomials R_1, \ldots, R_{d-1} have coefficients in \mathbb{Z} , [\(2\)](#page-1-1) holds in $K[a_1, \ldots, a_{d-1}]$ if and only if it holds in $K'[a_1, \ldots, a_{d-1}]$. Hence the truth of Conjecture 5 depends only on the characteristic of K but not on the choice of the field K itself. Because of this, we will take $K = \mathbb{C}$ in the sequel.

Remark 3 Formulae [\(1\)](#page-1-2) and [\(2\)](#page-1-1) can be interpreted in terms of Gröbner bases. Namely, (1) and (2) are equivalent to saying that for any choice of monomial ordering and Gröbner basis (f_1, \ldots, f_s) of (R_1, \ldots, R_{d-1}) , after renumbering the f_j , the leading monomial of f_j is a power of a_j for $j \in \{1, ..., d-1\}$.

Remark 4 Conjecture [3](#page-1-3) and Remark 3 say that, as polynomials in $K[a_1, \ldots, a_{d-1}]$, the resultants R_1, \ldots, R_{d-1} are "independent" in a certain sense.

Each of the following statements is also equivalent to the Casas-Alvero Conjecture.

- (a) For each $i \in \{1, \ldots, d-2\}$, the element R_{i+1} is not a zero divisor modulo (R_1, \ldots, R_i) (in other words, R_1, \ldots, R_{d-1} form a regular sequence in $K[a_1, \ldots, a_{d-1}].$
- (b) For each $i \in \{1, ..., d-2\}$,

$$
R_{i+1} \not\in \bigcup_{\mathfrak{p} \in Ass((R_1, \ldots, R_i))} \mathfrak{p}.
$$

where $Ass((R_1, \ldots, R_i))$ is the set of associated primes of the ideal (R_1, \ldots, R_i) .

Moreover, the above statements (a) and (b) are independent of the numbering of the R_i (since the R_i are quasi-homogeneous); a permutation of the R_i yields equivalent statements.

Notation. We will denote by $(R_1, R_2, \ldots, R_{i}, \ldots, R_{d-1})$ the ideal of $K[a_1, \ldots, a_{d-1}]$ generated by the set $\{R_1, R_2, \ldots, R_{d-1}\} \setminus \{R_i\}.$

The main theorem of this paper is the following partial result in the direction of Conjecture [3](#page-1-0) and statements (a) and (b) of Remark [4.](#page-1-4)

Theorem 5 Take an element $i \in \{d-3, d-2, d-1\}$. We have

$$
R_i \not\in \sqrt{(R_1, R_2, \ldots, R_i, \ldots, R_{d-1})}.
$$

2 Ideals generated by all the resultants but one

In this section we prove Theorem [5](#page-2-0) after recalling some preliminary results.

Proposition 6 Let f be a polynomial of degree d with real roots $\beta_1 \leq \beta_2 \leq \ldots \leq \beta_d$. Then $H_1(f)$ has real roots $\gamma_1 \leq \gamma_2 \leq \ldots \leq \gamma_{d-1}$, counted with multiplicity, where $\gamma_i \in]\beta_i, \beta_{i+1}[$ is $\beta_i < \beta_{i+1}$ and $\gamma_i = \beta_i$ if $\beta_i = \beta_{i+1}$.

Proof: Assume that f has s distincts roots $\delta_1 < \delta_2 < \cdots < \delta_s$ of multiplicities m_1, \ldots, m_s , respectively. Then δ_j is a root of $H_1(f)$ of multiplicity $m_j - 1$, where we say that δ_j is a root of multiplicity 0 if it is not a root of $H_1(f)$.

By Rolle's theorem, there is at least one root of $H_1(f)$ in each of the $s-1$ open intervals $]\delta_1, \delta_2[,\ldots,]\delta_{s-1}, \delta_s[$.

Notation. Let $\text{Int}(\beta_i, \beta_{i+1}) :=]\beta_i, \beta_{i+1}[$ if $\beta_i < \beta_{i+1}$ and $\text{Int}(\beta_i, \beta_{i+1}) := \{\beta_i\}$ if $\beta_i = \beta_{i+1}$.

According to the above, there is at least one real root of $H_1(f)$ in each of $Int(\beta_i, \beta_{i+1}),$ $i \in \{1, \ldots, d-1\}$, where $\gamma_1 \in \text{Int}(\beta_1, \beta_2), \ldots, \gamma_{m_1-1} \in \text{Int}(\beta_{m_1-1}, \beta_{m_1})$ are the first m_1-1 roots of $H_1(f)$ (in fact, the same root counted with multiplicity $m_1 - 1$) and similarly for the other multiple roots of f .

We have accounted for a total of $s-1+(m_1-1)+\cdots+(m_s-1)=m_1+\cdots+m_s-1=d-1$ real roots of $H_1(f)$ counted with multiplicities. Hence $H_1(f)$ has no roots, real or complex, other than the ones listed above, and the result follows. \square

Corollary 7 Let f be a polynomial of degree d with d real roots, counted with multiplicities. Then each of the $H_i(f)$, $i \in \{1, \ldots, d-1\}$, has $d-i$ real roots, counted with multiplicity. In other words, all the roots of $H_i(f)$ are real.

Next, we recall a result from [\[4\]](#page-3-1) on almost counterexamples to the Casas-Alvero conjecture.

Definition 8 Fix an $i \in \{1, \ldots, d-1\}$. An almost counterexample to the Casas-Alvero conjecture of level i is a polynomial f that has a common root with $H_i(f)$ for all $j \in \{1, \ldots, d-\}$ $1\} \setminus \{i\}$ but is not a power of a linear polynomial.

Notation. Given a polynomial f of degree d with d real roots, for a pair (k, m) of integers with $1 \leq k \leq d-1$ and $1 \leq m \leq d-k$ we write $\alpha_{k,m}(f)$ for the m-th root of $H_k(f)$, where the roots of $H_k(f)$ are ordered (weakly) increasingly.

We state the next theorem in a somewhat stronger form than in $[4]$: the extra information about the recycled roots $\alpha_{k_j,m_j}(f)$ does not appear explicitly in the statement of the result in [\[4\]](#page-3-1), but is shown in the course of its proof.

Theorem 9 (J. Draisma–J. P. de Jong [\[4\]](#page-3-1), Theorem 5) Fix $d-2$ pairs of integers

$$
(k_j, m_j), \quad j \in \{1, \ldots, d-2\},\
$$

with

$$
1 \le k_1 < k_2 < \dots < k_{d-2} \le d-1
$$

and $1 \leq m_i \leq d - k_i$. There exists a polynomial $f \in \mathbb{R}[x]$ with $f(0) = f(1) = 0$, all of whose roots are real and lie in [0,1], such that $\alpha_{k_j,m_j}(f)$ is a root of f for all $j \in \{1,\ldots,d-2\}$ (in particular, f is an almost counterexample to the Casas-Alvero conjecture of level i, where i is the unique element of the set $\{1,\ldots,d-1\} \setminus \{k_1,\ldots,k_{d-2}\}$.

We also recall the following result, Theorem 13 of [\[2\]](#page-3-2):

Theorem 10 Assume that f is a counterexample to the Casas-Alvero Conjecture. Then f has at least five distinct roots.

Proof of Theorem [5:](#page-2-0) We argue by contradiction. Assume that

$$
R_i \in \sqrt{(R_1, \ldots, \breve{R}_i, \ldots, R_{d-1})}.
$$
\n(3)

Let f be an almost counterexample of level i to the Casas-Alvero conjecture with $m_i = 1$ for all $j \in \{1, \ldots, d-2\}$, given by Theorem [9.](#page-0-0) By [\(3\)](#page-3-3), f is a Casas-Alvero polynomial that is a counterexample to the Casas-Alvero conjecture. By definition of f, $\alpha_{k,i}(f)$ is the first root of $H_{k_j}(f)$ and also a root of f, for all $j \in \{1, \ldots, d-2\}$. In particular, since $i \in \{d-3, d-2, d-1\}$, $\alpha_{\ell_1}(f)$ is the first root of $H_{\ell}(f)$ and a root of f for all $\ell \in \{1, \ldots, d-4\}.$

By Proposition [6,](#page-2-1) $\alpha_{11}(f)$ is also the first root of f (so $\alpha_{11}(f) = 0$). Let m denote the multiplicity of this root of f. By Theorem [10,](#page-3-4) f has at least 5 distinct roots, hence $m \leq d-4$. Let β denote the first strictly positive root of f.

By Proposition [6,](#page-2-1) there is a unique root $\beta^{(1)}$ of $H_1(f)$ with $\beta^{(1)} \in]0, \beta[$. If $m > 2$, again by Proposition [6,](#page-2-1) there is a unique root $\beta^{(2)}$ of $H_2(f)$ with $\beta^{(2)} \in]0, \beta^{(1)}[\subset]0, \beta[$. We continue like this recursively until $H_{m-1}(f)$, to show that there is a unique root $\beta^{(m-1)}$ of $H_{m-1}(f)$ with $\beta^{(m-1)} \in]0, \beta^{(m-2)}[\subset]0, \beta[$. Now, $H_m(f)$ has no root at 0, hence its first root $\alpha_{m1}(f)$ belongs to the open interval $]0, \beta^{(m-1)}[\subset]0, \beta[$.

This contradicts the fact that $\alpha_{m1}(f)$ is a root of f. This completes the proof. \Box

References

- [1] Eduardo Casas–Alvero, Higher Order Polar Germs, Journal of Algebra, Volume 240, Issue 1, 1 June 2001, pages 326–337
- [2] W. Castryck, R. Laterveer, M. Ounaïes, Constraints on counterexamples to the Casa-Alvero conjecture and a verification in degree 12, arXiv:1208.5404v1, 27/08/2018.
- [3] M. Chellali, A. Salinier, La conjecture de Casas-Alvero pour les degrés $5p^e$, hal-00748843, 2012.
- [4] J. Draisma and J.P. de Jong, On the Casas-Alvero conjecture, Newsletter of the EMS 80 (June 2011) 29–33
- [5] R.M. de Frutos Marín, Perspectivas Aritméticas para la Conjectura de Casas-Alvero, PhD thesis, Universidad de Valladolid, 2012.
- [6] S. Ghosh, A finiteness result towards the Casas-Alvero conjecture, preprint, arXiv:2402.18717v2, [math.AG], 2024.
- [7] H.-C. Graf von Bothmer, O. Labs, J. Schicho and C. Van de Woestline, The Casas-Alvero conjecture for infinitely many degrees Journal of Algebra, Vol. 316(1),224-230, 2007.