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Introduction

In the year 2001 Eduardo Casas-Alvero published a paper on higher order polar germs of plane curve singularities [START_REF] Casas-Alvero | Higher Order Polar Germs[END_REF]. His work on polar germs inspired him to make the following conjecture (according to the testimony of José Manuel Aroca, E. Casas communicated the problem orally well before 2001).

Let K be a field, d a strictly positive integer and f = x d + a 1 x d-1 + • • • + a d-1 x + a d a monic univariate polynomial of degree d over K. Let

H i (f ) = d i x d-i + d -1 i a 1 x d-i-1 + • • • + i i a d-i
be the i-th Hasse derivative of f .

Definition 1

The polynomial f is said to be a Casas-Alvero polynomial if for each i ∈ {1, . . . , d -1} it has a non-constant common factor with its i-th Hasse derivative H i (f ).

Note that, by definition, a Casas-Alvero polynomial f has a common root with H d-1 (f ). In particular, if char K = 0, it has at least one root b ∈ K, regardless of whether or not K is algebraically closed. Making the change of variables x ⇝ x -b, we may assume that 0 is a root of f , in other words, a d = 0. In the sequel, we will always make this assumption without mentioning it explicitly.

Conjecture 1 (Casas

-Alvero) Assume that char K = 0. If f ∈ K[x] is a Casas-Alvero polynomial of degree d with a d = 0, then f (x) = x d . For i ∈ {1, . . . , d -1}, let R i = Res(f, H i (f )) ∈ K[a 1 , . . . , a d-1
] be the resultant of f and H i (f ). The polynomials f and H i (f ) have a common factor if and only if R i = 0. Thus f is Casas-Alvero if and only if the point (a 1 , . . . , a d-1 ) ∈ K d-1 belongs to the algebraic variety V (R 1 , . . . , R d-1 ) ⊂ K d-1 . In those terms the Conjecture can be reformulated as follows:

Conjecture 2 Let V = V (R 1 , . . . , R d-1 ) ⊂ K d-1 . Then V = {0}. In other words, (R 1 , . . . , R d-1 ) = (a 1 , . . . , a d-1 ) (1) 
or, equivalently,

a N i ∈ (R 1 , . . . , R d-1
) for all i ∈ {1, . . . , d -1} and some N ∈ N.

(2)

If char K = p > 0, the Conjecture is false in general. The simplest counterexample is the polynomial f (x) = x p+1 -x p . Remark 2 Let K ⊂ K ′ be a field extension. The induced extension K[a 1 , . . . , a d-1 ] ⊂ K ′ [a 1 , . . . , a d-1 ] is faithfully flat. Since the polynomials R 1 , . . . , R d-1 have coefficients in Z, (2) holds in K[a 1 , . . . , a d-1 ] if and only if it holds in K ′ [a 1 , . . . , a d-1 ].
Hence the truth of the conjecture depends only on the characteristic of K but not on the choice of the field K itself. Because of this, we will take K = C in the sequel.

Remark 3 Formulae ( 1) and ( 2) can be interpreted in terms of Gröbner bases. Namely, ( 1) and ( 2) are equivalent to saying that for any choice of monomial ordering and Gröbner basis (f 1 , . . . , f s ) of (R 1 , . . . , R d-1 ), after renumbering the f j , the leading monomial of f j is a power of a j .

Remark 4 Conjecture 2 and Remark 3 say that, as polynomials in K[a 1 , . . . , a d-1 ], the resultants R 1 , . . . , R d-1 are "independent" in a certain sense.

Each of the following statements is also equivalent to the Casas-Alvero Conjecture.

(a) For each i ∈ {1, . . . , d -2}, the element R i+1 is not a zero divisor modulo (R 1 , . . . , R i ) (in other words, R 1 , . . . , R d-1 form a regular sequence in K[a 1 , . . . , a d-1 ]).

(b) For each i ∈ {1, . . . , d -2}, R i+1 ∈ / p∈Ass((R 1 ,...,R i ))
p.

where Ass((R 1 , . . . , R i )) is the set of associated primes of the ideal (R 1 , . . . , R i ).

Moreover, the above statements (a) and (b) are independent of the numbering of the R i ; a permutation of the R i yields equivalent statements.

Notation. We will denote by (R 1 , R 2 , . . . , Ȓi , . . . , R d-1 ) the ideal of K[a 1 , . . . , a d-1 ] generated by the set

{R 1 , R 2 , . . . , R d-1 } \ {R i }.
The main theorem of this paper is the following very partial result in the direction of Conjecture 2 and statements (a) and (b) of Remark 4. Theorem 5 Take an element i ∈ {d -3, d -2, d -1}. We have

R i ∈ / (R 1 , R 2 , . . . , Ȓi , . . . , R d-1 ).

Ideals generated by all the resultants but one

In this section we prove Theorem 5 after recalling some preliminary results.

Proposition 6 Let f be a polynomial of degree d with real roots β 1 ≤ β 2 ≤ . . . ≤ β d , counted with multiplicity. Then H 1 (f ) has real roots γ 1 ≤ γ 2 ≤ . . . ≤ γ d-1 , counted with multiplicity, where

γ i ∈]β i , β i+1 [ if β i < β i+1 and γ i = β i if β i = β i+1 .
Proof: Assume that f has s distincts roots δ 1 < δ 2 < • • • < δ s of multiplicities m 1 , . . . , m s , respectively. Then δ j is a root of H 1 (f ) of multiplicity m j -1, where we say that δ j is a root of multiplicity 0 if it is not a root of H 1 (f ). By Rolle's theorem, there is at least one root of

H 1 (f ) in each of the s -1 open intervals ]γ 1 , γ 2 [, . . . , ]γ s-1 , γ s [. Notation. Let Int(β i , β i+1 ) :=]β i , β i+1 [ if β i < β i+1 and Int(β i , β i+1 ) := {β i } if β i = β i+1 .
According to the above, there is at least one real root of

H 1 (f ) in each of Int(β i , β i+1 ), i ∈ {1, . . . , d -1}, where γ 1 ∈ Int(β 1 , β 2 ), . . . , γ m 1 -1 ∈ Int(β m 1 -1 , β m 1 ) are the first m 1 -1 roots of H 1 (f ) (in
fact, the same root counted with multiplicity m 1 -1) and similarly for the other multiple roots of f .

We have accounted for a total of s-1+(m

1 -1)+• • •+(m s -1) = m 1 +• • •+m s -1 = d-1 real roots of H 1 (f )
counted with multiplicities. Hence H 1 (f ) has no roots, real or complex, other than the ones listed above, and the result follows. □ Corollary 7 Let f be a polynomial of degree d with d real roots, counted with multipliciites. Then each of the H i (f ), i ∈ {1, . . . , d -1}, has d -i real roots, counted with multiplicity. In other words, all the roots of H i (f ) are real.

Next, we recall a result from [START_REF] Draisma | On the Casas-Alvero conjecture[END_REF] on almost counterexamples to the Casas-Alvero conjecture.

Definition 8 Fix an i ∈ {1, . . . , d -1}. An almost counterexample to the Casas-Alvero conjecture of level i is a polynomial f that has a common root with H j (f ) for all j ∈ {1, . . . , d-1} \ {i} but is not a power of a linear polynomial.

Notation. Given a polynomial f of degree d with d real roots, for a pair (k, m) of integers with 1 ≤ k ≤ d -1 and 1 ≤ m ≤ k we write α k,m (f ) for the m-th root of H k (f ), where the roots of H k (f ) are ordered (weakly) increasingly.

We state the next theorem in a somewhat stronger form than in [START_REF] Draisma | On the Casas-Alvero conjecture[END_REF]: the extra information about the recycled roots α k j ,m j (f ) does not appear explicitly in the statement of the result in [START_REF] Draisma | On the Casas-Alvero conjecture[END_REF], but is shown in the course of its proof.

Theorem 9 (J. Draisma-J. P. de Jong [START_REF] Draisma | On the Casas-Alvero conjecture[END_REF], Theorem 5) Fix d -2 pairs of integers (k j , m j ), j ∈ {1, . . . , d -2},

with 1 ≤ k 1 < k 2 < • • • < k d-2 ≤ d -1
and 1 ≤ m j ≤ n -k j . There exists a polynomial f ∈ R[x] with f (0) = f (1) = 0, all of whose roots are real and lie in [0, 1], such that α k j ,m j (f ) is a root of f for all j ∈ {1, . . . , d -2} (in particular, f is an almost counterexample to the Casas-Alvero conjecture of level i, where i is the unique element of the set {1, . . . , d -1} \ {k 1 , . . . , k d-2 }).

We also recall the following result, Theorem 13 of [START_REF] Castryck | Constraints on counterexamples to the Casa-Alvero conjecture and a verification in degree 12[END_REF]:

Theorem 10 Assume that f is a counterexample to the Casas-Alvero Conjecture. Then f has at least five distinct roots.

Proof of Theorem 5: We argue by contradiction. Assume that

Let f be an almost counterexample of level i to the Casas-Alvero conjecture with m j = 1 for all j ∈ {1, . . . , d -2}, given by Theorem 9. By (3), f is a Casas-Alvero polynomial that is a counterexample to the Casas-Alvero conjecture. By definition of f , α k j 1 (f ) is the first root of H k j (f ) and also a root of f , for all j ∈ {1, . . . , d -2}. In particular, since i ∈ {d -3, d -2, d -1}, α ℓ1 (f ) is the first root of H ℓ (f ) and a root of f for all ℓ ∈ {1, . . . , d -4}. By Proposition 6, α 11 (f ) is also the first root of f . Let m denote the multiplicity of this root of f . By Theorem 10, f has at least 5 distinct roots, hence m ≤ d -4. Let β denote the first strictly positive root of f . By Proposition 6, there is a unique root β (1) of H 1 (f ) with β (1) ∈]0, β[. If m > 2, again by Proposition 6, there is a unique root β (2) of H 2 (f ) with β (2) ∈]0, β (1) [⊂]0, β[. We continue like this recursively until H m-1 (f ), to show that there is a unique root β (m-1) of H m-1 (f ) with β (m-1) ∈]0, β (m-2) [⊂]0, β[. Now, H m (f ) has no root at 0, hence its first root α m1 (f ) belongs to the open interval ]0, β (m-1) [⊂]0, β[. This contradicts the fact that α m1 (f ) is a root of f . □