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Biological carbon pump estimate based on 
multidecadal hydrographic data

Wei-Lei Wang1 ✉, Weiwei Fu2,5, Frédéric A. C. Le Moigne3, Robert T. Letscher4, Yi Liu2,6, 
Jin-Ming Tang1 & François W. Primeau2 ✉

The transfer of photosynthetically produced organic carbon from surface to 
mesopelagic waters draws carbon dioxide from the atmosphere1. However, current 
observation-based estimates disagree on the strength of this biological carbon  
pump (BCP)2. Earth system models (ESMs) also exhibit a large spread of BCP 
estimates, indicating limited representations of the known carbon export pathways3. 
Here we use several decades of hydrographic observations to produce a top-down 
estimate of the strength of the BCP with an inverse biogeochemical model that 
implicitly accounts for all known export pathways. Our estimate of total organic 
carbon (TOC) export at 73.4 m (model euphotic zone depth) is 15.00 ± 1.12 Pg C year−1, 
with only two-thirds reaching 100 m depth owing to rapid remineralization of organic 
matter in the upper water column. Partitioned by sequestration time below the 
euphotic zone, τ, the globally integrated organic carbon production rate with 
τ > 3 months is 11.09 ± 1.02 Pg C year−1, dropping to 8.25 ± 0.30 Pg C year−1 for τ > 1 year, 
with 81% contributed by the non-advective-diffusive vertical flux owing to sinking 
particles and vertically migrating zooplankton. Nevertheless, export of organic 
carbon by mixing and other fluid transport of dissolved matter and suspended 
particles remains regionally important for meeting the respiratory carbon demand. 
Furthermore, the temperature dependence of the sequestration efficiency inferred 
from our inversion suggests that future global warming may intensify the recycling of 
organic matter in the upper ocean, potentially weakening the BCP.

The downward flux of biologically produced organic carbon draws CO2 
out of the atmosphere, contributing to the maintenance of a vertical 
gradient of dissolved inorganic carbon (DIC) in the ocean4. Much of 
the primary production occurring in sunlit waters is respired in sur-
face waters without greatly affecting the partitioning of CO2 between 
the atmosphere and ocean2. Attention, therefore, focuses on the frac-
tion of the net primary production (NPP) exported to deeper waters 
before being respired. Considerable effort has focused on discovering 
the processes responsible for the regional differences in the so-called 
ef-ratio2,5–7, defined as export, or new production, divided by NPP 
(e-ratio and f-ratio, respectively). Oceanographers rely on empirical 
relationships between the ef-ratio and satellite-based measurements 
of NPP and sea surface temperature (SST) to obtain global-scale export 
patterns. Unfortunately, different versions of these empirical relation-
ships, which typically assume that the ef-ratio is positively correlated 
with NPP and negatively correlated with SST, produce globally inte-
grated estimates of carbon export that can vary by as much as a factor 
of three (5–12 Pg C year−1), although part of the spread may be caused 
by the different choices of export depth and data-coverage issues2,8. 
Moreover, several field observations in highly productive regions such 
as the Southern Ocean often contradict the assumption that the ef-ratio 
is positively correlated with NPP (refs. 9–13).

One cause for these discrepancies is that most observations provide 
only snapshots of the ocean at the time of collection, whereas episodic 
signals may be missed in models. Another explanation is that empiri-
cal algorithms focus almost entirely on the contribution from sinking 
particles, neglecting possibly important contributions from vertically 
migrating zooplankton and the transport of dissolved and non-sinking 
particulate organic carbon (POC) by subducting and overturning water 
masses (also known as the particle injection pump1). For instance, sup-
port for the importance of non-sinking particles is provided by the 
work of Emerson14, who estimated annual net community production 
(ANCP) at three time-series sites (ALOHA, Hawaii Ocean Time-series 
station; BATS, Bermuda Atlantic Time-series Study; and OSP, Ocean 
Station Papa). He found that sinking POC flux is 3–4 times lower than 
required by mass-balance analyses. Indeed, Boyd et al.1 suggest that 
non-gravitational export pathways acting on suspended particles can 
account for as much carbon export as the gravitational carbon pump, 
although the strength of these export pathways remains uncertain.

Regardless of how organic matter produced in surface waters is trans-
ferred to depth (gravitationally or not, in particulate form or not), 
most of it eventually remineralizes to inorganic carbon and nutrients, 
consuming dissolved oxygen (O2) along the way. The resulting imprint 
on the dissolved oxygen, inorganic carbon, dissolved organic carbon 
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(DOC) and dissolved organic phosphate (DIP) concentrations, for which 
there exist global databases (GLODAPv2.2021 (ref. 15) and an updated 
DOC database16) collected over several decades of ship-based cam-
paigns (Extended Data Figs. 1 and 2), allows us to infer the total carbon 
export and its regional variations. Here, using an inverse biogeochemi-
cal model for the cycling of phosphorus (P), carbon (C) and oxygen (O) 
(Fig. 1), we estimate the global distribution of the export flux separated 
into contributions from advective-diffusive flux, which encompasses 
fluxes mediated by physical transports such as the mixed-layer pump17 

and the subduction pump18, and DOC contribution to the biological 
pump19,20, and non-advective-diffusive vertical flux that includes contri-
butions from the gravitational pump1, zooplankton migration pump21 
and seasonal lipid pump22. The model has 21 adjustable parameters 
whose values are constrained from global databases of DIP, total alka-
linity (ALK), DIC, DOC and O2 using a Bayesian inversion procedure.

After fitting the 21 parameters (Extended Data Table 1), the model 
captures most of the spatial variance in the three-dimensional dis-
tribution of DIP (R2 = 0.93, n = 76,480), DIC (R2 = 0.94, n = 63,085), 
ALK (R2 = 0.87, n = 59,093), O2 (R2 = 0.88, n = 83,732) and total DOC 
(R2 = 0.80, n = 21,295) (Extended Data Figs. 3 and 4). What distinguishes 
our model from previous inverse models23,24 is the small number of 
adjustable parameters and the simultaneous use of several tracers 
to constrain the inversion. In particular, our inverse model uses DIC 
measurements, which provide the most natural constraint on the BCP. 
Previous inverse models did not use DIC observations to avoid the 
need to explicitly model the transient anthropogenic carbon signal 
in the hydrographic DIC dataset. Here we explicitly simulated the 
transient DIC signal and found that it contributes an approximately 
20% decline in the vertical DIC gradient produced by the biological 
pump (Extended Data Fig. 5c; Methods). Furthermore, by combining 
ALK and DIC data with an accurate representation of the anthropo-
genic DIC signal, our model captures the respiration of organic carbon 
not oxidized by O2 (ref. 25). In a sensitivity test in which we followed 
refs. 23,24 by using only O2 and DOC to constrain the model, we found 
a substantial deterioration of the fits to other tracers (Extended Data 
Fig. 3). Our model results are further validated using deep-water POC 
fluxes measured using sediment traps at time-series stations and the 
ANCP estimated using several geochemical tracers (see text below). 
The model is able to match different satellite-based NPP products 
(CbPM and CAFE) by adjusting labile DOC production (Extended Data 
Fig. 6; Methods) without greatly affecting the goodness of fit to trac-
ers or the estimated carbon fluxes with residence times greater than  
about 1 year.

Organic carbon fluxes
In our model, which has a horizontal mesh resolution of 2° × 2° and 24 
vertical layers, we define export according to the timescale for the verti-
cal transfer of the organic carbon. Fluxes by fast-sinking POC (gravita-
tional pump) and vertical zooplankton movements (vertical migration 
pump and seasonal lipid pump), which transport carbon vertically with 
no appreciable lateral transport, are assigned to non-advective-diffusive 
vertical export. Fluxes induced by organic carbon detrainment caused 
by changes of mixed-layer depth (mixed-layer-depth pump)17 and physi-
cal subduction (subduction pump)18 are assigned to advective-diffusive 
export. We note that, although the DOC pool of our model includes what 
would be characterized as suspended POC in field measurements and 
therefore is missing from the DOC measurement database, we believe 
that the difference is negligible for most of the ocean because the con-
centration of suspended POC is much lower (less than a few μM) than 
that of DOC (dozens of μM)19. We infer the strength and distribution 
of the total BCP from tracer distributions, which avoids counting the 
same export pathways several times1.

Globally integrated, our estimated non-advective-diffusive vertical 
flux, which is calculated by integrating POC remineralization below 
73.4 m, the euphotic zone depth of the model, is 10.63 ± 0.14 Pg C year−1. 
For comparison, simulated export production in the Coupled Model 
Intercomparison Project Phase 5 (CMIP5) models ranged from approxi-
mately 4.5 to 7.5 Pg C year−1 (ref. 26). The spread in the newer CMIP6 
models is even larger, ranging from approximately 5 to 12 Pg C year−1 at 
about 100 m (ref. 3). Our most probable estimate is almost triple that 
obtained from the 234Th method (4 Pg C year−1)2. That our estimated 
export flux is larger than the 234Th-based estimate is not surprising 
because our flux includes not only the gravitational pump but also 
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Fig. 1 | Schematic representations of phosphorus, carbon and oxygen cycling 
in the ocean. a, Phosphorus cycling. b, Carbon cycling. c, Oxygen cycling.  
The dissolved tracers, oxygen (O2), DIP and DIC, DOP and DOC, and ALK are 
transported by advection and diffusion. POP and POC are transported vertically 
downward and remineralized in the water column. The downward particulate 
flux attenuation is modelled so as to produce a power-law depth dependence. 
PIC also sinks and dissolves in the water column. Its downward flux attenuation is 
modelled so as to produce an exponential depth dependence. DIC and O2 
experience sea-to-air gas fluxes in the surface ocean, which are represented by 
the coiled arrows above DIC and O2, respectively (FCO2 and FO2). The DIC and ALK 
concentrations are influenced by evaporation and precipitation. Thus, a virtual 
flux (coiled arrows above DIC and below ALK; FvDIC and FvALK, respectively) is 
applied to DIC and ALK to account for the concentrating and diluting effects of 
precipitation and evaporation. The solid lines in the schematic for the carbon- 
cycle model represent the pools that are connected by means of sink–source 
relationships. The dashed lines indicate the pools that are related by indirect 
source–sink relationships. For example, the formation of POC does not directly 
release ALK but instead changes the chemical form of nitrogen, which leads  
to changes in the ALK. See Methods for the symbol definitions and the 
Supplementary Information for their numerical values. κ[TOC] in the O2 model 
represents the remineralization of TOC (see Methods for its full expression).
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fluxes mediated by zooplankton migration. By contrast, the 234Th 
method constrains only the flux of sinking POC.

Geographically, our estimated non-advective-diffusive vertical 
export rate is high in coastal upwelling regions, the Southern Ocean 
convergent zones, subpolar North Pacific and Atlantic oceans and 
low in the subtropics (Fig. 2 and Extended Data Fig. 7). The non- 
advective-diffusive vertical flux is consistent with measurements from 
deep-water sediment traps27 at ocean stations ALOHA, OSP, BATS and 
CARIACO, in which extensive measurements exist (Fig. 2), even though 
such POC-flux measurements only partially include contributions 
from zooplankton migration (faecal pellets). The similarity may be 
because the migration pump is weak in oligotrophic oceans24,28,29, in 
which ALOHA and BATS are located. For the mid-latitude OSP site, 
our estimates for the upper 200 m are higher than the median values 
of in situ sediment-trap measurements, probably because of the con-
tribution from the migration pump. For the coastal CARIACO station, 

the higher fluxes from sediment-trap measurements have several pos-
sible explanations. First, our model may not have adequate resolution. 
Second, the bias may be the result of blooms, which may be poorly 
represented in our climatological-mean model. Last, sediment traps 
may overestimate particle flux in coastal regions because of augmented 
‘statistical funnels’ of particle collection30 or catchment of large aggre-
gates mediated by a range of physical and biological processes1.

Our advective-diffusive export is calculated by tracking subsur-
face organic carbon respiration rates back to the base of the euphotic 
zone using an adjoint method31. The semi-labile and labile organic 
carbon fluxes are 1.67 ± 0.02 and 2.70 ± 1.04 Pg C year−1, respectively, 
at 73.4 m. The export of refractory organic carbon (e-folding decay 
time about 5,500 and about 11,000 years in and below the euphotic 
zone, respectively) is two orders of magnitude lower than that of labile 
and semi-labile ones and, thus, is ignored in the following discussion. 
Our advective-diffusive flux of semi-labile organic carbon is close to 
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Fig. 2 | Non-advective-diffusive vertical flux. a, Contour plot of non-advective- 
diffusive vertical flux (mg C m−2 day−1) exiting the base of the euphotic zone, 
with the location of the four ocean stations (OSP, ALOHA, BATS and CARIACO) 
marked with black stars. b–e, Model-derived non-advective-diffusive vertical 
flux at different depths compared with trap-determined POC flux. The box 
plots represent sediment trap and the green circles are model predictions, with 
error bars representing ±1σ derived from different model configurations. The 
box plots summarize the distributions of in situ measurements of POC flux, 
which show the 25th, 50th and 75th percentiles binned according to the POC 

flux. The whiskers cover 99.3% of the data, with the remaining points shown as 
red crosses. In b–e, the sediment-trap data presented are multiyear collections 
covering a sampling period of 1988–2011 for the BATS station, 1988–2010 for 
the ALOHA station, 1987–2006 for the OSP and 1995–2012 for the CARIACO 
station. Because sediment traps are deployed in the water for several months, 
their measurements represent an average for a relatively extended period 
instead of a snapshot. The results of a are based on the CbPM NPP product and 
an e-folding remineralization time of 12 h for labile DOC.
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a previous estimate of 1.8 Pg C year−1 at 100 m reference depth19, but 
lower than the estimated 2.31 ± 0.6 Pg C year−1 at the same depth of 
73.4 m obtained from interpolated DOC observations and a circulation 
model20. When we include the export of labile organic carbon, our esti-
mate surpasses any previous estimates. The previous estimate20, which 
considered only one DOC pool, may have included signals from both 
labile and semi-labile organic carbon, explaining its intermediate value.

The labile and semi-labile organic carbon have distinct export pat-
terns (Fig. 3a,b and Extended Data Fig. 7). Two factors contribute to this 
spatial pattern. One is the biological production pattern and the other 
is the spatially variable export efficiency. To explain the latter effect, 
we computed the mean DOC sequestration time for each water col-
umn in the model (‘DOC sequestration time’ in Methods). The mean of 
these residence-time distribution functions is contoured in Fig. 3d. For 
semi-labile organic carbon, the high export regions are in the Southern 
Ocean convergence zone, subarctic North Pacific and North Atlantic, 
with relatively long DOC residence time (Fig. 3b,d). These are important 
subduction and deep-water formation regions in which water masses 
are transferred from the mixed layer into the thermocline and deep 
ocean. For labile organic carbon, the high export regions (Fig. 3a) are 
located in the periphery of where it is produced, for example, in the 
subtropical gyres. However, there is no apparent export in the equa-
torial oceans and coastal upwelling regions (for example, the Arabian 
Sea and eastern tropical Pacific), in which its production is the highest 
(Extended Data Fig. 6c,d). This is because strong upwelling retains 
the labile organic carbon in the surface ocean long enough for it to be 
respired. Another interesting region is the high-latitude North Atlantic 
Ocean, in which export is high even though production is low. This is 
because strong vertical mixing reinforces the export of short-lived 
organic carbon (Fig. 3d).

Regionally, the contribution of advective-diffusive export 
(labile + semi-labile) to total carbon export can be higher than 50% 
(ref. 4) (Fig. 3c and Extended Data Fig. 7). The high-contribution regions 
are mainly in the middle-latitude and high-latitude oceans, such as the 
subtropical North Atlantic and South Atlantic oceans, and high-latitude 
North Atlantic Ocean and the Southern Ocean convergence zones, 

whereas in the equatorial upwelling zones, the contribution of 
advective-diffusive export is less than 10%. Overall, our estimated pat-
tern of advective-diffusive flux is in close agreement with the results 
estimated on the basis of an inverse model constrained using the US 
Climate Variability and Predictability (CLIVAR) DOC observations32. 
The zonally averaged advective-diffusive export proportion (sum of 
advective-diffusive fluxes by labile and semi-labile organic carbon over 
TOC flux) increases from about 15% in equatorial regions (0–15°) to 
about 37%, about 39% and about 29% in subtropical (15–30°), temper-
ate (30–45°) and subpolar (45–60°) areas, respectively. The poleward 
increase of advective-diffusive export ratios is consistent with the 
mechanisms of the mixed-layer pump17,33, eddy subduction pump18 
and large-scale subduction pump34.

Combining the non-advective-diffusive and advective-diffusive 
fluxes, our globally integrated TOC flux at the base of the euphotic 
zone is 15.00 ± 1.12 Pg C year−1 (Fig. 4a). This number is sensitive to the 
export horizon owing to strong remineralization in the upper ocean. 
For example, the export flux decreases by roughly 30% from 73 m to 
the 100-m-depth horizon typically used by ESMs as a reference export 
depth. An alternative perspective on this sensitivity is provided by 
distribution functions for the sequestration time, τ, of organic carbon 
production and for the stock of regenerated DIC (Fig. 5). The TOC pro-
duction with τ > 3 months is 11.09 ± 1.02 Pg C year−1. For τ > 1 year, the 
total export flux decreases to 8.25 ± 0.30 Pg C year−1 and for τ > 3 years, 
it is only 6.30 ± 0.09 Pg C year−1. The distribution functions show that 
the total flux is dominated by small residence-time export, but that 
the small residence-time fluxes contribute negligibly to the standing 
stock of regenerated DIC, pointing to the rapid recycling of much of the 
organic matter production on short timescales. For τ < 1 year (yellow 
regions in Fig. 5), the accuracy of export fluxes is highly uncertain as 
a result of three main factors. First, the circulation model lacks rep-
resentation of the seasonal cycle. Second, the short residence-time 
fluxes are sensitive to the mathematical formulation of the biological 
production and respiration models. Last, the inverse model, which is 
constrained by carbon, oxygen and nutrient stocks, is insensitive to the 
part of the export-flux distribution that does not affect these stocks. 
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Fig. 3 | Contour plots of advective-diffusive export flux at the base of the 
model euphotic zone. a, Distribution of advective-diffusive flux by labile 
organic carbon (mg C m−2 day−1). b, Distribution of advective-diffusive flux by 
semi-labile organic carbon (mg C m−2 day−1). c, Distribution of the ratio of 
advective-diffusive flux to TOC flux. d, Distribution of DOC residence time in 

years at the bottom of the euphotic zone. The residence time is defined as the 
time elapsed for DOC to be upwelled to the surface ocean following its export 
below the euphotic zone at that grid box. The results are based on the CbPM 
NPP product and an e-folding remineralization time of 12 h for labile DOC.
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Indeed, marked contributions to the standing stock (Fig. 5b) only 
become apparent when residence times approach approximately 1 year.

Our estimated TOC flux rate at 100 m (10.64 ± 0.80 Pg C year−1) falls 
into the range of the previous model and satellite-based predictions 
(5–12 Pg C year−1, summarized in ref. 14 in their table 1) and is in close 
agreement with the ‘baseline’ estimate of 10.2 Pg C year−1 using an 
ensemble numerical model constrained with O2 and DOC observa-
tions24. There are no direct global-scale annual TOC flux measurements 
because extensive samplings would be needed to resolve the seasonal 
cycle of all export pathways. Reliable ANCP (equivalent to TOC flux at 
steady state) estimates are only available at time-series stations and 
some basins based on regional ARGO float data35. On basin scales, our 
results align with the geochemical ANCP in the Pacific Ocean and North 
Atlantic Ocean35 (Fig. 4b,c). The magnitude of our estimated TOC export 
flux varies meridionally by approximately a factor of three, indicating a 
smaller gradient compared with previous ESM-based or satellite-based 
estimates, which typically suggest that TOC export varies by up to a 

factor of ten35. We further compared our TOC flux with those meas-
ured using mass-balance calculations at ALOHA, BATS and OSP. Our 
model results (mean with ±σ) at the base of maximum mixed-layer depth 
(mMLD) have overlapping error bars with mass-balance estimates at 
ALOHA (45.99 ± 23.00 this study versus 82.15 ± 23.00 mg C m−2 day−1) 
and at OSP (52.65 ± 3.29 this study versus 75.56 ± 19.71 mg C m−2 day−1)14. 
Our estimate at the BATS station (23.00 ± 3.28 mg C m−2 day−1 at mMLD) 
is much lower than the ANCP by Emerson14 (124.83 ± 39.42 mg C m−2 day−1 
at 150 m), but twofold higher than the ANCP determined using O2 and 
DI13C in the western North Atlantic around the BATS station at 100 m 
depth (82.13 ± 13.14 this study versus 39.42 mg C m−2 day−1 (ref. 36)).

Biogeochemical implications
Budgets based on in situ observations often struggle to establish a 
balance between community production and respiration (for exam-
ple, refs. 37,38), either because they fail to account for all processes 
that deliver organic carbon to the mesopelagic ocean or because 
they are limited to measurements during a specific season. Our 
model, which represents an annual-mean balance between com-
munity production and respiration, is able to simultaneously fit full 
water-column observations of DIC, DOC, ALK and O2, showing that 
there is no difficulty in closing the budget provided one accounts for 
both advective-diffusive and non-advective-diffusive export path-
ways. At the Porcupine Abyssal Plain site in the North Atlantic Ocean, 
our TOC export (201.5 ± 29.4 mg C m−2 day−1 between 73 and 1,000 m) 
exceeds the in situ community respiration (48–167 mg C m−2 day−1 
between 50 and 1,000 m) measured in the summer season39 when 
net community production is relatively low38. At station ALOHA, our 
annual TOC flux between mMLD and 1,000 m (45.1 ± 4.0 mg C m−2 day−1) 
overlaps with in situ measurements of heterotrophic respiration rates 
between 150 and 1,000 m (32.5–96.6 mg C m−2 day−1)37. However, at the 
Japanese time-series site K2 station, also in the Pacific, our TOC flux 
between mMLD and 1,000 m (82.1 ± 2.4 mg C m−2 day−1) falls short of 
the lower end of in situ determinations (106.1–249.8 mg C m−2 day−1)37 
at the depth interval of 150–1,000 m. Such disparities could poten-
tially arise because our model represents an annual mean, whereas 
the in situ measurements were conducted during specific seasons. 
Future development of a seasonal inverse model could contribute to 
narrowing this difference. The disparities might also be influenced by 
the inherent uncertainties associated with in situ measurements. In 
light of these potential factors, we advocate for an increased number of 
in situ observations focused on year-round whole-community carbon 
demand within the twilight zone.

Numerous mechanisms have been proposed to explain the spatial 
variations of carbon flux, with prominent factors including particle 
size and sinking velocities, community structure, remineralization 
dependence on temperature and oxygen, and ballast effect40,41. ESMs 
that incorporate these mechanisms in varying degrees exhibit a wide 
range of carbon flux (approximately 5–12 Pg C year−1)3 and have clearly 
identifiable biases in their simulated oxygen and carbon distribu-
tions. By contrast, our inverse model avoids overparameterization, 
by not including explicit representations of each of these processes. 
Nevertheless, it provides a good fit to the tracer data with a simple 
temperature-dependent parameterization for the remineralization 
of organic carbon. Specifically, our model adopts a power-law param-
eterization with a temperature-dependent exponent b = bCθT + bC for 
non-advective-diffusive carbon fluxes (Methods). Our inversion infers a 
temperature dependence, bCθ = 0.03 °C−1 (Extended Data Table 1) that is 
approximately 50% smaller than the value estimated using a limited sedi-
ment trap dataset of POC fluxes42, but is otherwise in agreement with the 
sign of the temperature effect. Geographically, non-advective-diffusive 
vertical fluxes attenuate faster when surface waters are warmer and 
penetrate deeper in the water column when surface waters are cold 
(Extended Data Fig. 8). Notably, our non-advective-diffusive vertical 
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Fig. 4 | TOC flux at the base of the model euphotic zone. a, Distribution of 
TOC (non-advective-diffusive + advective-diffusive) flux (mg C m−2 day−1) at the 
base of the euphotic zone. b,c, Comparisons of TOC flux with geochemical 
ANCP estimates at the North Atlantic and Pacific oceans, respectively. The 
black squares represent the mean (±1σ) of TOC flux over 10° latitude bands in 
this study. The red triangles correspond to the mean (±1σ) of geochemical 
ANCP estimates33, which is computed at the base of a spatially varying mMLD 
obtained from a CESM simulation. For a fair comparison, we extend our flux  
to the bottom of mMLD at places in which mMLD is deeper than the model 
euphotic zone depth (Methods). Our TOC flux is the sum of non-advective- 
diffusive and advective-diffusive flux at places in which mMLD is shallower 
than the euphotic depth. The results are based on the CbPM NPP product and 
an e-folding remineralization time of 12 h for labile DOC.
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flux includes not only the classical gravitational POC flux but also any 
fluxes with substantial non-advective-diffusive vertical transport, such 
as fluxes related to seasonal lipid pump22 and zooplankton migration 
pump21. It is also worth noting that, in high-latitude low-temperature 
oceans, the prevalence of large phytoplankton with ballast shells and 
shorter food webs promotes non-advective-diffusive vertical fluxes. 
Conversely, in warm subtropical gyres, the prevalence of small phy-
toplankton and longer food webs reduces non-advective-diffusive 
flux40,41. The deeper penetration in higher latitudes, coupled with an 

overall lower temperature dependence compared with the trap-derived 
value (0.03 °C−1 this study versus 0.062 °C−1 (ref. 42)) underscores the 
intricate interplay of different mechanisms. In our inverse model, the 
dependence of the power-law exponent on temperature serves as a 
proxy for any mechanism that correlates with surface temperature. 
Future research will need to unravel these mechanisms. But if we assume 
that the contemporary relationships persist into the future, we can 
expect that global warming will cause stronger non-advective-diffusive 
vertical-flux attenuation (increased b-value in Extended Data Fig. 8c,d), 
which would leave more carbon in the upper ocean and atmosphere43. 
The same mechanism could help to explain atmospheric CO2 varia-
tions during glacial–interglacial cycles44. The more efficient downward 
carbon transfer in cold waters compared with warm waters (evidenced 
by lower b-value in high latitudes; Extended Data Fig. 8) suggests a 
stronger removal of CO2 from the atmosphere during cold climates.

Our results emphasize the role played by advective-diffusive export. 
Only a few global-data-constrained estimates of carbon export23,24 and 
algorithms account for advective-diffusive export of DOC and sus-
pended POC (refs. 7,45,46) or export mediated by zooplankton migra-
tion3. Previously, the contribution from DOC was typically included 
by simply scaling up the POC flux by an assumed amount2. However, 
Emerson14 found that sinking POC export is a small fraction of the ANCP 
at three time-series stations (BATS, ALOHA and OSP), suggesting that 
other export pathways are important. Indeed, we find that the export 
of DOC and suspended POC can be regionally important, especially 
in subtropical gyres in which DOC production is high and Ekman con-
vergence transports DOC downward4,20 and in high-latitude oceans 
in which the subduction pump and mixed-layer pump are strong17,18 
(Fig. 3c). More importantly, in situ observations often miss such mix-
ing events because sea-going measurements usually take place during 
the summer, when there is less vertical mixing in the water column. 
This is a possible reason why POC export ratios determined in situ 
are negatively correlated with NPP in the Southern Ocean10. Indeed, 
we find that up to 70% of the production is exported by means of the 
advective-diffusive pathway in the latitudes between the subtropical 
and subantarctic fronts (Fig. 3c). The negative correlation between 
POC export ratio and NPP contradicts the empirical relationships that 
relate the ef-ratio to temperature and NPP (refs. 6,45) by assuming a 
positive relationship between NPP and the ef-ratio.

Furthermore, the export of DOC is not associated with the export 
of particulate inorganic carbon (PIC) as the POC export may be. Such 
export can therefore be more efficient at sequestering CO2 by avoiding 
the effects of the carbonate counter pump47. However, a more slug-
gish circulation48,49 and stronger stratification50 expected as a result 
of future warming may decrease the export of DOC and suspended 
POC and thus contribute a positive feedback to climate warming. An 
improved mechanistic understanding of the various pathways associ-
ated with the BCP should help to decipher what controls carbon export 
efficiency and improve predictions of future carbon exports11–13. Our 
results highlight the importance of including the advective-diffusive 
flux of DOC and suspended POC when estimating the strength of the 
BCP and motivate the need to improve satellite-based carbon export 
algorithms so that they better account for export mediated by mixing 
and other fluid transport.

One strength of our inverse model is that the estimated export fluxes 
are not sensitive to satellite-estimated NPP. This is a substantial differ-
ence from export estimates based on the ef-ratio, which suffer from 
the compound uncertainties in the ef-ratio and in the algorithm used 
to estimate the NPP (ref. 28). By contrast, our inverse model infers 
carbon export from the respiration signal imprinted in the full water 
column DIC, DOC, DIP, ALK and oxygen observations. Unlike prognostic 
ESMs, our top-down inverse estimate avoids the need for incorporat-
ing uncertain and possibly incorrect parameterizations of complex 
processes for which we have insufficient understanding. However, our 
model has its own limitations. For example, our advection–diffusion 
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transport model represents the climatological annual-mean circula-
tion and lacks seasonality. Therefore, we are unable to diagnose how 
export changes seasonally. Future developments of our inverse model 
should consider the effect of seasonal variation. Finally, the success-
ful integration of DIC and oxygen measurements in our model was 
contingent on an accurate estimation of the transient anthropogenic 
carbon signal. Our estimate shows that the vertical DIC gradient in the 
ocean has decreased by approximately 20% owing to the invasion of 
anthropogenic CO2 (Extended Data Fig. 5c and ‘Anthropogenic DIC’ in 
Methods). We therefore expect that future improvements in anthro-
pogenic carbon-uptake estimates will need to take into account the 
multitracer constraints we used here.
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Methods

Data
Observational concentrations of DIP, DIC, ALK and O2 were downloaded 
from the Global Ocean Data Analysis Project website, the second ver-
sion (GLODAPv2 (ref. 15); Extended Data Fig. 1). DOC observations 
were from ref. 16. The data were then binned into the ocean circula-
tion inverse model (OCIM) model grid that has a horizontal resolution 
of 2° × 2° and vertically 24 layers, with finer resolution in the upper 
ocean and coarser resolution in the deep ocean. The updated DOC 
compilation contains 25,869 valid data points (Extended Data Fig. 2) 
after binning to our model grid and has better coverage than previ-
ously widely used ones (ref. 51) that only had 14,034 valid data points 
in the model grid. The DOC dataset has a slight seasonal bias, with more 
samples collected in the summer season. However, we think that the 
influence is minor because: (1) a substantial proportion of the total 
DOC is composed of refractory DOC; unlike labile and semi-labile DOC, 
refractory DOC does not exhibit strong seasonality owing to its long 
residence time in the ocean; (2) we used tracer data from the full-water 
depth to constrain our model parameters. The deep ocean experiences 
lesser seasonal variability compared with the surface ocean. Therefore, 
using full-water-depth data helps to anchor the stability of the inver-
sion. Two NPP products, carbon-based NPP from Sea-viewing Wide 
Field-of-view Sensor (SeaWiFS CbPM)52 and CAFE, were downloaded 
from https://doi.org/10.6084/m9.figshare.19074521. The NPP products 
were interpolated and averaged by Nowicki et al.24 to the same model 
grid as used in this study. The climatological ocean temperature and 
silicate are from World Ocean Atlas 2018 (refs. 53,54). The projected 
temperature at 2099 was obtained from a CESM-BGC model predic-
tion under the RCP8.5 scenario55. The historical atmospheric pCO2 
data were obtained from ref. 56 for the period from 1850 to 2015 and 
were downloaded from https://scrippsco2.ucsd.edu/data/atmos-
pheric_co2/primary_mlo_co2_record.html (ref. 57) for the period from  
2016 to 2020.

Biogeochemical inverse model
A schematic of the structure of the biogeochemical model is shown 
in Fig. 1. The model couples the cycling of phosphorus (P), carbon (C) 
and oxygen (O). The phosphorus model is the base model that provides 
a biological uptake rate (γ(r), in which r is a position coordinate) in P 
units (G ≡ (γ[DIP])), which is then converted to a DIC uptake rate in the 
carbon model by incorporating a C:P ratio (rC:P). In the P-cycle model, 
the DIP assimilation rate is modelled using a spatial pattern obtained 
from satellite-derived NPP (mg C m−2 day−1) and a gridded surface DIP 
climatology as follows
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in which NPP0 and [DIP]0 are 1 mmol C m−2 day−1 and 1 μM that are func-
tioned to remove dimensions of NPP and DIP; α and β are adjustable 
parameters that are constrained in the inversion; rC:P is the C:P ratio that 
is used to convert NPP from C unit to P unit and modelled according to 
Galbraith and Martiny58 (rC:P = (0.006 + 0.0069[DIP]obs)−1). z and zC are 
water depth and the euphotic zone depth, respectively. Photosynthesis 
is assumed to occur only in the euphotic zone and to be zero below. The 
euphotic zone is defined as the top two model layers (73.4 m).

Phosphorus model. The phosphorus model considers four explicit 
tracers: dissolved inorganic phosphorus (DIP), dissolved semi-labile 
organic phosphorus (DOP), dissolved labile organic phosphorus (DOPl) 
and particulate organic phosphorus (POP). We assign an e-folding 

remineralization time (1/κl) of 12 h for DOPl so that it quickly cycles in 
the upper ocean, with little being transported below the euphotic zone. 
We use a parameter δ to allocate production to labile pools. The remain-
ing production (total production less production to DOPl) is allocated 
to DOP and POP. The factions σP and (1 − σP − δ) of the production al-
located, respectively, to DOP and POP are determined by estimating 
the parameter σP through our Bayesian inversion procedure. The ad-
vective-diffusive transport of dissolved tracers (DIP, DOP and DOPl in 
the P model; DIC, semi-labile dissolved organic carbon (DOC), labile 
dissolved organic carbon (DOCl), refractory dissolved organic carbon 
(DOCr) and ALK in the C model; and O2 in the O model) is computed 
using the OCIM tracer transport matrix, T

⎯→
U[C] ≡ ∇ ⋅ ( [C] − K∇[C]) , in 

which 
⎯→
U  is the velocity vector and K is the diffusive term. Τ represents 

the climatological mean circulation of the ocean. The OCIM tracer 
transport matrix is constrained using salinity, temperature, sea-surface 
height, CFC-11, CFC-12, 14C, 3He etc. (see DeVries and Holzer59 for details). 
We neglect the advective-diffusive transport of particulate tracers 
(POP in the P model and PIC and POC in the C model) so that particulate 
tracers are transported only vertically. The vertical transport of POP is 
modelled using a sinking flux divergence operator ( ⎯→F w≡ ∇ ⋅ ( [POP])POP ),  
in which 

⎯→w is the sinking speed of POP and is directed downward. We 
choose a sinking speed that increases linearly with depth and a constant 
dissolution rate, κP = (1/30) days−1, so that the attenuation of the verti-
cal flux of POP follows a power-law function, F(z) = F(z0)(z/z0)−b, in which 
F(z) and F(z0) are fluxes at a depth of z and z0, respectively60. A sensiti
vity test with κP = (1/60) days−1 suggests that the choice of κP does  
not markedly influence our results. The exponent b for the P model  
(C model in the following section) is defined in the following way 
(ref. 42), b(P) = bPθT + bP, in which bPθ and bP are two adjustable para
meters and T is the average temperature of the model euphotic zone. 
The initial guess of bPθ is set to zero, thereby avoiding any intentional 
imposition of temperature dependence. The optimization process 
determines both the sign and magnitude of bPθ. The governing equa-
tions for the phosphorus cycle are as follows:
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in which κdP is the DOP remineralization rate constant that is a function 
of temperature defined using a Q10 function (κdP = κPθQ10

(T−30)/10), in which 
T is water temperature from World Ocean Atlas 2018 (ref. 54). κPθ and 
Q10 are optimized in the inversion. κl is the e-folding remineralization 
time of DOPl, which is fixed at κl = (1/12) h−1. We tested the sensitivity 
to a smaller κl = (1/24) h−1 and found that the choice of κl did not sub-
stantially change the fittings to the tracers but could alter the export 
flux of labile organic matter. We therefore include different κl values 
in the uncertainty analysis (see the ‘Uncertainty analysis’ section). κg 
is prescribed to (1/106) years−1 and is used to set the global mean DIP 
concentration to the observed global mean concentration ([DIP]obs). κP 
is a prescribed POP remineralization rate constant (κP = (1/30) days−1). 
A sensitivity test shows that increases or decreases in the fraction of 
DOPl production (δ in equations (2) and (3)) does not alter the fit to the 
observational data nor does it change the inferred export fluxes of POC 

https://doi.org/10.6084/m9.figshare.19074521
https://scrippsco2.ucsd.edu/data/atmospheric_co2/primary_mlo_co2_record.html
https://scrippsco2.ucsd.edu/data/atmospheric_co2/primary_mlo_co2_record.html


and semi-labile DOC. We therefore set δ to be zero in the first-round 
optimization.

Carbon model. The carbon model explicitly simulates seven tracers: 
DIC, DOCl, DOC, DOCr, POC, PIC and ALK (Fig. 1b). The DIP assimilation 
rate G is converted to the DIC assimilation rate by incorporating a C:P 
ratio (rC:P) that is allowed to vary spatially according to the modelled DIP 
concentration, rC:P = (cc[DIP] + dd)−1, in which cc and dd are estimated as 
part of the inversion. As in the P model, we set the allocation to DOCl to 
be zero in the first round of optimization. Subsequently, we prescribe 
the difference between satellite NPP and model organic carbon produc-
tion as the production for labile DOCl, so that our model production 
matches satellite NPP exactly. The fraction, σC, of the organic carbon 
production allocated to POC and DOC pools is estimated as part of the 
inversion and does not need to be the same as the fraction σP allocated 
to the POP and DOP pools. A further adjustable parameter, η, is used to 
control the fraction of DOC that is transferred to the refractory pool by 
bacterial reworking. The remaining DOC fraction (1 − η) is remineralized 
back to DIC. The e-folding decay times of DOCr (κur and κdr for the upper 
and deeper ocean, respectively) are estimated as part of the inversion. 
POC sinks and is gradually remineralized to DIC in the water column. 
The downward transport of POC is modelled using a flux divergence 
operator (FPOC), which is formulated in the same way as the POP sinking 
flux-divergence operator FPOP with independent adjustable param-
eters bCθ and bC that are determined as part of the inversion (Extended 
Data Table 1). Unlike DIP, DIC experiences sea-to-air gas exchange at 
the surface. This gas exchange is modelled according to the method 
used for phase 2 of the Ocean Carbon-Cycle Model Intercomparison 
Project (OCMIP-2)61 using a recalibrated piston velocity (see the next 
section). Also, freshwater precipitation and evaporation can greatly 
affect surface ocean DIC and ALK concentrations. Precipitation will 
dilute, whereas evaporation will concentrate their concentrations.  
A virtual flux according to OCMIP-2 (ref. 61) is applied to model for the 
effects of precipitation and evaporation on DIC and ALK (FvDIC[DIC]s 
and FvALK[ALK]s, in which [DIC]s and [ALK]s are the mean surface-ocean 
concentrations of DIC and ALK, respectively).

Production of PIC is modelled to be proportional to the produc-
tion of POC using two adjustable parameters, rSi and rRR, that are 
estimated in the inversion. The parameter rSi adjusts PIC production 
according to silicate concentration in the surface ocean in linear form 
(RRR = rSi[SiO4

4−] + rRR). The downward transport of PIC is modelled using 
a flux divergence operator (FPIC), which generates a PIC flux profile that 
follows an exponential function FPIC(z) = F0exp((z − z0)/d), in which d 
is the PIC dissolution length scale, whose value is estimated as part 
of the inversion (Extended Data Table 1). Compared with a power-law 
function, an exponential function with a length scale on the order of 
several thousand metres leads to a much smaller CaCO3 dissolution 
rate in the shallow water in which CaCO3 is supersaturated62. Every 
mole of PIC production consumes two moles of ALK. By contrast, the 
dissolution of one mole of PIC releases two moles of ALK (equation (3)). 
From the perspective of carbon, photosynthesis and remineralization 
of organic matter do not change alkalinity. However, in the processes 
of photosynthesis and remineralization, chemical forms of nitrogen 
change, which influences alkalinity so that a mole of organic carbon 
production increases alkalinity by rN:C moles, whereas a mole of organic 
carbon remineralization decreases alkalinity by rN:C moles. The govern-
ing equations for carbon cycling are as follows:
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Anthropogenic DIC. To use DIC observations to constrain our inverse 
model, we have to take into account the changing DIC concentration 
owing to the invasion of anthropogenic CO2 into the ocean. To obtain 
a self-consistent estimate of the anthropogenic carbon signal, we per-
formed a time-dependent simulation using equation (3). Starting from 
an assumed steady state, we time-stepped our carbon-cycle model 
forward in time from 1850 to 2020, using an implicit trapezoid-rule 
time-integration scheme for all terms except for the gas exchange, for 
which we used an explicit Euler forward scheme. In this calculation, we 
prescribed the surface SST according to a time-dependent reanaly-
sis product (ref. 63). The transient integration was carried out with a 
time step size of Δt = 2 months. The atmospheric pCO2 was prescribed 
according to ref. 56 from 1850 to 2015 and according to ref. 57 from 
2016 to 2020. We also simulated δ14C to better calibrate the air–sea 
gas-exchange velocity as described below. The atmospheric δ14C was 
prescribed according to ref. 64 for the period from 1850 to 2015 and 
according to ref. 65 from 2016 to 2020. To produce the initial condi-
tions, we assumed that the system was in steady state in 1850 and used 
Newton’s method to find the steady state.

To calibrate the air–sea gas exchange parameterization, we 
re-optimized the scaling factor in the OCIM2 gas-exchange scheme 
by minimizing the misfit between our modelled δ14C and the GLODAPv2 
δ14C data. See Extended Data Fig. 5a,b for the number of observations 
as a function of time. To compute the misfit, we sampled our model at 
the location and times of the bottle measurements in the GLODAPv2 
database. Our calibration method followed an iterative two-step pro-
cess in which we first optimized the air–sea gas exchange through a 
series of transient carbon-cycle simulations. After obtaining the opti-
mal air–sea gas exchange, we subtracted the excess anthropogenic 
DIC from the GLODAPv2 measurements to produce an estimate of the 
natural background DIC for the year 1850. The resulting DIC data and 
optimal gas-exchange velocity were then used for the optimization of 
the biogeochemistry model (see the ‘Parameter estimation’ section). 
The optimized biogeochemical model was then used to produce an 
updated initial condition for the transient carbon-cycle simulation and 
a re-optimization of the air–sea gas-exchange velocity. We repeated 
this two-step process until we obtained self-consistent estimates of:  
(1) the optimal biogeochemical parameter values (Extended Data 
Table 1); (2) the biogeochemical state; (3) the scaling factor for the 
air–sea gas–transfer velocity, a = 0.234 cm h−1 (m s−1)−2; (4) transient 
DIC; and (5) the transient δ14C signal including the combined effects of 
radioactive decay, the Suess effect and the bomb radiocarbon signal. 
Extended Data Figure 5c shows a time series of the excess anthropo-
genic DIC concentration averaged over the top 100 m of the water 
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column and for the water column below 100 m. By 2020, the vertical 
DIC gradient is reduced by 20%.

Oxygen model. Oxygen production is modelled by applying a ratio 
of oxygen to carbon (rO:C) to the DIC assimilation rate (GrC:P). The ratio 
rO:C is optimized in the process of inversion. We convert the DOC and 
POC remineralization rates (ηκdC[DOC] + κr[DOCr] + κl[DOCl] + κp[POC])  
to an oxygen consumption rate using the same rO:C ratio and gradually 
shut down oxygen consumption as the oxygen concentration falls 
below the critical value (Ocrit = 5 mmol l−1) using a hyperbolic equation 
(R([O2]) = 0.5 + 0.5tanh[([O2] − Ocrit)/[O2]0]), in which [O2]0 (1 mmol l−1) 
is used to remove the O2 dimension. Sea-to-air O2 flux (FO2) is modelled 
according to OCMIP-2 (ref. 61):
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in which the matrix R is a diagonal matrix, whose elements are given 
by R([O2]).

Parameter estimation
The 21 adjustable parameters of the model (Extended Data Table 1) 
were estimated using a Bayesian inversion method. In this approach, 
the solutions to our model equations define the tracer fields as implicit 
functions of the adjustable parameters, which we then compare with 
the observations to construct a likelihood function. We obtain the P, 
C and O fields by finding the steady-state solutions of the governing 
equations for the P, C and O models (equations (2)–(4)). Because the 
governing equations for the P model are linear, their steady-state solu-
tion can be obtained efficiently by direct matrix inversion after setting 
the time derivatives in equation (2) to zero. We fix the atmospheric 
CO2 concentration at the preindustrial level (278 ppm) to compute 
the preindustrial sea-to-air CO2 flux (FCO2). The steady-state solution 
for the C model is solved using Newton’s method because of nonlinear-
ity in FCO2. The governing equation for O is also nonlinear because of 
the hyperbolic function (R) that turns off oxygen consumption when 
oxygen concentration is critically low. We solve the oxygen equations 
using Newton’s method.

To find the most probable parameter values, we minimize the nega-
tive logarithm of the posterior probability function, which is equivalent 
to minimizing the negative log-likelihood because we log-transformed 
our parameters (except of the slopes of exponent b) so that they have 
flat priors:
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in which the eX are column vectors whose elements are given by 
the difference between modelled and observed concentrations, 
eX = HX[Xmod] − [Xobs], in which the X label denotes the specific tracer 
and Hx is a rectangular matrix that picks out the model grid boxes that 
have observations of tracer X. Because there are no measurements that 
precisely separate DOC into different pools according to their lability, 
we sum all three pools in the model (DOC, DOCl and DOCr) and com-
pare the sum to observations. For DIC, we subtracted our estimated 
anthropogenic DIC from the bottle measurements in the GLODAPv2 
database according to the location and time of measurement (see the 
‘Anthropogenic DIC’ section). WX is a precision matrix for tracer X and 
is defined in the following way:
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in which VX is a diagonal matrix with the fractional volumes of the model 
grid boxes (V = diag(ΔVi/ΣiΔVi), in which the subscript i is the index of 
the grid boxes that have at least one observation) and σx

2 is the spatial 
variance of the observations, that is,
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in which VX is a diagonal matrix with the grid-box volumes and the 
subscript X represents the grid boxes that have observations of tracer 
X. The bold 1 represents a column vector. The transpose turns it into a 
row vector. Thus, the numerator yields the volume integral of Xobs and 
the denominator yields the total volume.

The optimization is conducted using MATLAB’s fminunc function, 
which is computationally efficient because we can supply hand-coded 
first and second derivatives of the objective function with respect to the 
adjustable parameters. The optimization generally takes fewer than 100 
iterations. The most probable model parameter values are presented 
in Extended Data Table 1. Parameter error bars that correspond to ±1 
standard deviations are calculated using Laplace’s approximation as 
described in ref. 66.

Calculation of carbon flux
The two-dimensional vertical-flux field ( fPOC) is calculated by vertically 
integrating POC remineralization below the euphotic zone 
( f κ V M= ∑ POC ∆i

z
i i iPOC =1 p , in which i represents the index for deep grid, 

ΔVi is the volume of the ith grid box and Mi is a mask that is set to 1 below 
the euphotic zone and 0 elsewhere). In our model, POC is transported 
vertically in the water column and is not advected to neighbouring 
grids. This approximation is appropriate for the coarse horizontal 
resolution of our model. The non-advective-diffusive flux below  
the first two layers is calculated on the basis of the following power- 
law function (also known as the Martin curve function), fPOC(z) =  
fPOC(z0)(z/z0)−b, in which z0 is the euphotic zone depth and z is the depth 
at which non-advective-diffusive flux is calculated. The exponent, b, 
depends linearly on the surface water temperature42. The estimated 
slope and intercept (bC and bCθ) for this linear relationship are presented 
in Extended Data Table 1. The advective-diffusive fluxes of labile and 
semi-labile organic carbon are calculated using an adjoint method, 
which tracks the export and subsequent remineralization of DOC, as 
described by ref. 31. Only DOC respired below the depth of the euphotic 
zone is counted as export. The flux of TOC is the sum of the non- 
advective-diffusive flux and fluxes from labile DOC and semi-labile 
DOC. We ignore the export of refractory DOC because of its negligible 
contribution.

To compare the non-advective-diffusive flux to CMIP6 models at 
their consensus reference depth (about 100 m), we scale our estimated 
non-advective-diffusive flux using a power-law function with our opti-
mized temperature-dependent b exponents.

To compare our export estimates to the geochemical ANCP estimates 
that are calculated at the base of spatially varying mMLDs obtained 
from a CESM simulation35, we estimated the export fluxes of POC and 
semi-labile DOC to the depth z = mMLD. For cases in which mMLD is 
deeper than our euphotic zone depth, we scaled the fluxes using the 
power-law function with our optimized b exponents. For cases in which 
mMLD is above the base of the euphotic zone, we did not apply the 
power-law scaling because it tends to amplify errors. In those cases, 
we used the export flux at the base of the model’s euphotic zone for 
the comparison. Note that the contribution of labile DOC is ignored 
when scaling flux down to mMLD owing to the short e-folding decay 
time (12 h or 24 h).



Uncertainty analysis
The uncertainty analysis is conducted in two ways. First, we use a Monte 
Carlo method whereby an ensemble of parameter values is drawn from a 
multivariate normal distribution whose mean is given by our estimated 
most probable parameter values and whose covariance matrix is given 
by the inverse of the matrix of second partial derivatives of the nega-
tive logarithm of the posterior probability distribution, that is, by the 
Hessian matrix. For each ensemble member, we solve the steady-state 
model equations and calculate the organic carbon fluxes. However, 
the parameters are so well constrained that their uncertainties are 
small, and the flux uncertainties calculated this way are small. Second, 
because the DIP uptake model is constructed with two different satel-
lite NPP products (SeaWiFS CbPM and CAFE), and the 21 adjustable 
parameters are optimized for each NPP field (Extended Data Table 1), 
the influence of NPP fields on export fluxes are much larger than that 
of parameter uncertainties. Also, the e-folding remineralization time 
of labile DOC is prescribed at 12 h and 24 h. We, therefore, report flux 
uncertainties estimated from the results based on different initial NPP 
fields and on different labile DOC e-folding decay timescales. The dis-
tributions of the standard deviation of key outputs are illustrated in 
Extended Data Fig. 9.

DOC sequestration time
To calculate the DOC sequestration time, we injected unit DOC pulses 
in the model euphotic zone and tracked this DOC as it was transported 
by the circulation, respired into DIC (according to the timescale given 
in Extended Data Table 1) and then transported back to the surface, 
where it was rapidly removed with a loss frequency of (1 day)−1. We 
then spatially integrated the removal rate for each DOC pulse to obtain 
residence-time distributions for the DOC exported from the surface 
of each water column.

Sequestration-time-partitioned distribution functions
To compute the sequestration-time-partitioned distribution func-
tions, we use the three-dimensional organic carbon respiration rate 
to construct a Dirac δ-function pulse of labelled regenerated inor-
ganic carbon. The resulting tracer field is then transported using 
the circulation model until it is removed in the 36.1-m-thick surface 
layer of the model using a loss frequency of (1/500) year−1. We inte-
grate the system forward in time for 10,000 years, by which time 
all of the regenerated-carbon pulse has left the system. We use a 
second-order-accurate trapezoidal integration rule starting with a 
time-step size of less than 10−4 years and gradually increase it to 10 years 
by the end of the simulation. A sequestration-time density distribu-
tion function is obtained by globally integrating the loss rate and the 
cumulative distribution function is then obtained by integrating the 
density function for progressively longer times. To obtain the cumu-
lative sequestration-time distribution for the stock of regenerated 
DIC, we first integrate the tracer field over the whole volume of the 
ocean and then integrate the resulting stock for progressively longer 
sequestration times. By year 10,000, the resulting integral is equal to 
the global inventory of regenerated DIC.

Data availability
Supporting data used to run the inverse model are available at https://
doi.org/10.5281/zenodo.10016054. Model output from the inverse 
model is available at https://doi.org/10.5281/zenodo.8253973. Source 
data are provided with this paper.

Code availability
The code for the inverse model is available at https://doi.org/10.5281/
zenodo.8368856.
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Extended Data Fig. 1 | Sampling density of DIP, DIC, ALK and O2. a, DIP. b, DIC. 
c, ALK. d, O2. The observational data, downloaded from the GLODAPv2 (ref. 15), 
are binned to the OCIM grid. The colour denotes the fraction of the grid boxes 

in each water column with at least one measurement. For each vertical column, 
the sampling density is defined as the number of grid boxes with at least one 
sample divided by the total number of wet grid boxes.
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Extended Data Fig. 2 | Spatial and monthly DOC sampling density.  
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Extended Data Fig. 3 | Tracer–tracer comparison for DIP, ALK, DIC and O2. 
a–d, Observations and optimal model. e–h, Model constrained using only O2 
and DOC based on the SeaWiFS CAFE NPP field. The plot shows the joint density 
distribution for the modelled and observed tracer concentrations. The volume 
under the distribution integrates to 100th percentiles. The colour indicates the 
fraction of the distribution that falls outside the given contour. The dashed red 

line shows the one-to-one line. The optimal model captures 93%, 87%, 94%  
and 88% of the spatial variance of the GLODAPv2 DIP, ALK, DIC and O2 data, 
respectively, whereas the model constrained using only DOC and O2 captures 
66%, 0.0%, 56% and 89% of the spatial variance of the GLODAPv2 DIP, ALK, DIC 
and O2 data, respectively.
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Extended Data Fig. 4 | Comparison of model DOC (DOC + DOCr + DOCl) based 
on SeaWiFS CbPM NPP field to observations. a, Tracer–tracer comparison for 
DOC between the observations and the optimal model. Red circles show DOC 
observations in the Atlantic Ocean, black squares in the Pacific Ocean, blue 
triangles in the Indian Ocean and green stars in the Arctic Ocean. The red line 
shows the one-to-one line. The model captures roughly 80% of the spatial 
variance of the DOC data. b–d, Comparisons of model DOC to those measured 

at ocean stations at different depths. The in situ DOC measurements are 
interpolated to the model grid. The numbers above/below each box represent 
the number of measurements at each depth. The box plots summarize the 
distributions of in situ measurements, which show the 25th, 50th and 75th 
percentiles binned according to the DOC concentration. The whiskers cover 
99.3% of the data, with the remaining points shown as red crosses.
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Extended Data Fig. 5 | DIC and DI14C observations. a, Number of hydrographic 
DIC measurements per month in the GLODAPv2 database as a function of time. 
b, Number of hydrographic δ14C measurements per month in the GLODAPv2 
database as a function of time. c, Estimated excess DIC (DIC(t) − DIC(1850)) 
computed by averaging the DIC concentration of our optimized model over the 
top 100 m (blue) and below 100 m (red). For reference, the estimated average 

background DIC concentration in 1850 was 2,046.8 mmol m−3 for the top 100 m 
of the water column and 2,308.4 mmol m−3 for the water column below 100 m, 
implying a reduction in the vertical DIC gradient of approximately 20% owing 
to the invasion of anthropogenic CO2 into the ocean. This reduction masks the 
true strength of the biological pump, unless it is properly accounted for in the 
model.
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Extended Data Fig. 6 | Model NPP and organic carbon production. a,b, The 
NPP patterns based on SeaWiFS CbPM and CAFE products. c,d, The model 
production of labile organic carbon. e,f, The model production of semi-labile 

and POC. The left column (a,c,e) is based on the CbPM NPP product and the 
right column (b,d,f) is based on the CAFE NPP product.
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Extended Data Fig. 7 | Export fluxes and ratios of advective-diffusive to total 
flux calculated at the base of the model euphotic zone (73.4 m). a–c, The 
advective-diffusive flux of labile organic carbon. d–f, The advective-diffusive 
flux of semi-labile organic carbon. g–i, The non-advective-diffusive flux. j–l, The 
flux of TOC. m–o, Ratios of advective-diffusive flux to total flux. The left column 

shows results based on the CbPM NPP product and an e-folding remineralization 
time of 24 h for labile DOC, whereas the middle and right columns are based on 
the CAFE NPP product and e-folding remineralization times of 12 h and 24 h for 
labile DOC, respectively.
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Extended Data Fig. 8 | Distributions of exponent b values for the non- 
advective-diffusive carbon flux. a,b, The optimal b-value distributions based 
on SeaWiFS CbPM and CAFE products, respectively. c,d, The projected change 

in the b-value according to temperature prediction by a CESM-BGC model 
prediction under the RCP8.5 scenario in the year 2099 (ref. 51). Larger b-values 
implies that respiration occurs nearer the sea surface.
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Extended Data Fig. 9 | Distributions of standard deviations. a, Standard 
deviations of TOC flux. b, Standard deviations of non-advective-diffusive flux. 
c, Standard deviations of advective-diffusive flux by labile DOC. d, Standard 
deviations of advective-diffusive flux by semi-labile DOC. e, Standard deviations 
of the ratio of advective-diffusive flux to TOC flux. f, Standard deviations of 

DOC residence time in years. These standard deviations are computed from 
four distinct model configurations, which hinge on two distinct NPP products, 
namely, CbPM and CAFE, along with two varying e-folding remineralization 
timescales for labile DOC, specifically, 12 h and 24 h.



Extended Data Table 1 | Most probable model parameter values with their uncertainties (±1σ)

The definitions of the parameters are presented in Methods. M1 and M2 are models parameterized according to SeaWiFS CbPM and CAFE, respectively. The shaded column represents the 
results reported in the main text. 
*κdX = κXθQ10

(T−30)/10, semi-labile DOP or DOC remineralization e-folding time. 
†b(X) = bXθT + bX, Martin curve exponent, in which T is the average surface ocean temperature (upper approximately 100 m), X represents C or P. 
‡Reciprocals of e-folding remineralization time of refractory DOC in the upper (κru) and deep (κrd) oceans. 
§Length scale of PIC dissolution. 
||RRR = rSi[SiO4

4−] + rRR, function of PIC to POC production ratio. 
¶Ratio of P:C: rP:C = cc[DIP] + dd.
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