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ALMOST SHARP RATES OF CONVERGENCE FOR THE AVERAGE
COST AND DISPLACEMENT IN THE OPTIMAL MATCHING

PROBLEM

MICHAEL GOLDMAN MARTIN HUESMANN FELIX OTTO

Abstract. In this note we prove estimates for the average cost in the quadratic optimal
transport problem on the two-dimensional flat torus which are optimal up to a double
logarithm. We also prove sharp estimates on the displacement. This is based on the
combination of a post-processing of our quantitative linearization result together with a
quasi-orthogonality property.

1. Introduction

The aim of this note is to improve the currently best known rates of convergence of
the average cost in the quadratic optimal transport problem on the two-dimensional flat
torus from [2]. Compared with the conjecture from Caracciolo and al. in [9], our rate is
optimal up to a double logarithm. We first use our quantitative linearization result from
[13] (in its post-processed version of [12]) to improve the estimates from [3] on the optimal
transport map. We then combine this with a quasi-orthogonality property first observed
in [14, (3.28)] and relatively standard heat kernel estimates to conclude.

To state our main result let us set some notation. We work on the 2 dimensional flat
torus T1 = (R/Z)2 and consider (Xi)i≥1 a family of i.i.d. uniformly distributed random
variables on T1. For n ≥ 1 we define the empirical measure as

µn =
1

n

n∑
i=1

δXi
.

The (quadratic) optimal matching problem on the torus is then

E
[

inf
π∈Cpl(µn,1)

∫
T1×T1

|x− y|2dπ(x, y)
]
=: E

[
W 2

2 (µn, 1)
]
.

Here, we identify the Lebesgue measure on T1 with the constant density 1, Cpl(µn, 1)
denotes the couplings between µn and the Lebesgue measure on T1, and W2 is the L2

Kantorovich Wasserstein distance on T1.

Date: December 5, 2023.
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ALMOST SHARP RATES IN THE OPTIMAL MATCHING PROBLEM 2

While it is known since the seminal article [1] that nE [W 2
2 (µn, 1)] ∼ log n, it was recently

conjectured in [9] that

(1.1) lim
n→∞

(
nE
[
W 2

2 (µn, 1)
]
− log n

4π

)
∈ R.

Our main result in this direction is the following theorem.

Theorem 1.1. We havei ∣∣∣∣nE [W 2
2 (µn, 1)

]
− log n

4π

∣∣∣∣ ≲ log log n.(1.2)

In light of conjecture (1.1), the error in (1.2) is optimal up to a double logarithm. This
essentially improves by

√
log n the rate obtained in [2] which built on the approach from

[5] where the leading order term in (1.1) was identified. Let us however point out that our
result currently holds only in the case of the flat torus while [2, 5] covers any Riemann-
ian manifold without boundary as well as the case of the unit cube. Moreover, since we
mostly rely on [13], we are currently not able to treat the bi-partite problem. We refer to
[20, 19, 7, 6, 11, 15, 4, 16, 8] for related results.

As in [5, 2] our proof of (1.2) is based on the linearization ansatz proposed in this context
by [9] and which we now recall. If πn = (Tn, Id)#1 is the optimal (random) coupling between
µn and 1, i.e.

W 2
2 (µn, 1) =

∫
T1×T1

|x− y|2dπn,

this ansatz postulate that Tn(y) − y is well approximated by ∇fn(y) where fn solves the
Poisson equation

−∆fn = µn − 1.

As understood since [5], this ansatz can only make sense after some regularization. For
t > 0, let pt be the heat kernel at time t on T1 and set fn,t = pt ∗ fn be a solution of

−∆fn,t = pt ∗ (µn − 1).

As a consequence of the trace formulaii, see e.g. [2, Lemma 3.14],

(1.3) nE
[∫

T1

|∇fn,t|2
]
=

| log t|
4π

+O(
√
t).

In order to prove (1.2), it is thus ’enough’ to prove that for some tn with | log tn| =
log n+O(log log n),

n

∣∣∣∣E [W 2
2 (µn, 1)

]
− E

[∫
T1

|∇fn,t|2
]∣∣∣∣ ≲ log log n.

The main step to prove this is our second main result.

iThe notation A ≲ B, which we use in output statements, means that there exists a universal constant
C > 0 such that A ≤ CB.

iiwhen integrating with respect to the Lebesgue measure we drop the factor dy
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Theorem 1.2. For any t ≥ 1
n
= r2n we have

(1.4) nE
[∫

T1

|x− y −∇fn,t(x)|2 dπn

]
≲ 1 + log

(
t

r2n

)
.

Moreover, for t ≥ tn = n−1 log3 n we have

nE
[∫

T1

|Tn(y)− y −∇fn,t(y)|2
]
≲ log

(
t

r2n

)
.(1.5)

Notice that the difference between (1.4) and (1.5) is that we replaced ∇fn,t(x) in the
former by ∇fn,t(y) in the latter. While both have sharp dependence in t, we can go down
to the microscopic scale t = r2n = n−1 in (1.4) but are restricted to mesoscopic scales
t ≥ tn ≫ n−1 in (1.5). This is most likely an artefact from our proof. Indeed, we derive
(1.5) from (1.4) combined with an L∞ bound on ∇2fn,tn . This imposes the choice tn ≫ n−1

(see (2.2) of Lemma 2.1). Still, (1.5) improves by
√
log n a similar bound from [3] (see also

the recent generalization [10]).
The proof of (1.4) is mostly based on the quantitative linearization result from [13] in

its post-processed version from [12]. Let us list the differences between [12, Proposition
4.7] and (1.4). A first point is to pass from a compactly supported convolution kernel as in
[12] to the heat kernel as in (1.4). This is done using Lemma 2.4 which relies on relatively
standard heat/Green kernel estimates. A second difficulty is to pass from a quenched
and localized estimate in [12] to an annealed and global one, see (3.1). This is obtained
appealing to stationarity. The argument here is a bit more delicate than its counterpart
in [12].

From this sketch of proof it is clear that the ’only’ obstacle to obtain (1.5) down to
t = n−1 is the fact that [13] is currently only known for constant target measures. An
extension of this result to arbitrary measures should also allow to extend our results to the
bi-partite case.

Let us notice that combining (1.5), (1.3) and nE [W 2
2 (µn, 1)] ∼ log n together with

Cauchy-Schwarz inequality, it is not hard to obtain∣∣∣∣nE [W 2
2 (µn, 1)

]
− log n

4π

∣∣∣∣ ≲ (log n log log n)
1
2

which gives an alternative proof of the estimate in [2]. Similar sub-optimal error terms
coming from the application of Cauchy-Schwarz inequality can be seen in [2, Theorem
1.2] for example. In order to obtain the sharper estimate (1.2) we rely instead on the
quasi-orthogonality property∣∣∣∣nE [∫

T1

(Tn(y)− y −∇fn,tn(y)) · ∇fn,tn(y)

]∣∣∣∣ ≲ 1.

This type of estimates, first noticed in [14, (3.28)], see also [13, Lemma 1.7], are a central
ingredient in the variational approach to the regularity theory for optimal transport maps
(see also [18, 17, 21]).
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2. Preliminaries

In this section we gather a few technical results which follow from relatively standard
heat-kernel estimates. To simplify notation and presentation we provide estimates only for
moments of order four but similar bounds can be obtained for moments of arbitrary order.
As in [2], for t ≥ 0 we let

qt(x) =

∫ ∞

t

(ps(x)− 1)ds

so that

(2.1) ∇fn,t(y) =
1

n

n∑
i=1

∇qt(Xi − y).

Lemma 2.1. Let tn = n−1 log3 n. Then,

(2.2) E[
∥∥∇2fn,tn

∥∥4
∞]

1
4 ≲

1

log n
.

For every n−1 ≤ s < t < 1 we have

(2.3) nE
[∫

T1

|∇fn,s −∇fn,t|4
] 1

2

≲ 1 + log

(
t

s

)
.

Proof. We first prove (2.2). For ξ > 0 define the event An,t
ξ = {∥∇2fn,t∥∞ ≤ ξ}. By [2,

Theorem 3.3], there exists a constant C > 0 such that for any n ∈ N and 0 < t < 1 we
have

(2.4) P[
(
An,t

ξ

)c
] ≲

{
1

t2ξ3
e−Cntξ2 if 0 < ξ ≤ 1

1
t2ξ3

e−Cntξ if ξ ≥ 1.

The estimate for ξ ≥ 1 is not explicitly contained in the statement of [2, Theorem 3.3] but
follows by the exact same argument.

Since for a non-negative random variable X and a > 0, E[Xp] ≲ ap+
∫∞
a

ξp−1P[X ≥ ξ]dξ,
(2.4) implies that for every 1 > a > 0,

(2.5) E
[∥∥∇2fn,tn

∥∥4
∞

]
≲ a4 +

∫ 1

a

1

t2n
e−Cntnξ2dξ +

∫ ∞

1

1

t2n
e−Cntnξdξ.

Recalling that tn = n−1 log3 n, the last integral can be estimated as

1

t2n

∫ ∞

1

e−Cntnξdξ ≲
n2

log9 n
exp(−C log3 n) ≪ 1

log4 n
.

The other integral can be estimated by∫ 1

a

1

t2n
e−Cntnξ2dξ ≲

n2

log6 n

∫ ∞

a

exp(−Cξ2 log3 n)dξ

ξ=s log−3/2 n

≲
n2

log
15
2 n

∫ ∞

a log3/2 n

e−Cs2ds ≲
n2

log9 n
e−Ca2 log3 n.
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Choosing a = γ log−1 n with Cγ2 > 2 we get

e−Ca2 log3 n ≤ n−2

and thus ∫ 1

a

1

t2n
e−Cntnξ2dξ ≲

1

log4 n
.

Plugging this in (2.5) concludes the proof of (2.2).

We now turn to the proof of (2.3). By stationarity we have

E
[∫

T1

|∇fn,s −∇fn,t|4
]
= E[|∇fn,s(0)−∇fn,t(0)|4].

Since ∇fn,s(0) = n−1
∑

i ∇qs(Xi) we have by Rosenthal inequality,

E[|∇fn,s(0)−∇fn,t(0)|4] ≲ n−4

(
n

∫
T1

|∇qs −∇qt|4 +
(
n

∫
T1

|∇qs −∇qt|2
)2
)

= n−3

∫
T1

|∇qs −∇qt|4 + n−2

(∫
T1

|∇qs −∇qt|2
)2

.

To estimate the first right-hand side term we recall from [2, Corollary 3.13] that for 0 <
t < 1,

(2.6)

∫
T1

|∇qt|4 ≲ t−1.

Using triangle inequality we thus conclude that

(2.7)

∫
T1

|∇qs −∇qt|4 ≲
∫
T1

|∇qs|4 +
∫
T1

|∇qt|4 ≲ t−1 + s−1 ≲ n.

For the second right-hand side term we can argue as in [2, Proposition 3.11] using that
qs =

∫∞
s
(pr − 1)dr and −∆qs = ps − 1 to obtain after integration by parts,∫

T1

|∇qs −∇qt|2 =
∫
T1

(qt − qs)(pt − ps) =

∫
T1

∫ t

s

pr(pt − ps)drdx

=

∫ t

s

∫
T1

(prpt − 1)dxdr −
∫ t

s

∫
T1

(prps − 1)dxdr.

Using the semi-group property of the heat kernel together with the trace formula (see e.g.
[2, Theorem 3.7]) we have∫ t

s

∫
T1

(prpt−1)dxdr =

∫ t

s

(pr+t(0)−1)dr =

∫ 2t

s+t

(pr(0)−1)dr =
1

4π
log

(
2t

s+ t

)
+O(1).
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Arguing similarly we have∫ t

s

∫
T1

(prps − 1)dxdr =
1

4π
log

(
s+ t

2s

)
+O(1)

so that

E
[∫

T1

|∇qs −∇qt|2
]
=

1

4π
log

(
t

s

)
+O(1).

Combining this with (2.7) concludes the proof of (2.3). □

Lemma 2.2. For t ≥ r2n = 1
n
we have

(2.8) nE
[

1

|Brn|

∫
Brn

|∇fn,t(0)−∇fn,t(x)|2 dµn

]
≲

1

(nt)1/2
≲ 1.

Proof. Put E = E
[∫

Brn
|∇fn,t(0)−∇fn,t(x)|2 dµn

]
and write µn = 1

n

∑n
i=1 δXi

to get

E = E
[
χBrn

(X1)|∇fn,t(0)−∇fn,t(X1)|2
]
= E

[
χBrn

(X1)|∇fn,t(0)|2
]

− 2E
[
χBrn

(X1)∇fn,t(0) · ∇fn,t(X1)
]
+ E

[
χBrn

(X1)|∇fn,t(X1)|2
]
.

We now estimate each term separately using (2.1). For the first one we have

E
[
χBrn

(X1)|∇fn,t(0)|2
]
=

1

n2

∑
i,j

E
[
χBrn

(X1)∇qt(Xi) · ∇qt(Xj)
]
.

By independence of the Xi and the fact that
∫
T∇qt(x) = 0 we obtain that for i ̸= j the

expectation is 0. Hence,

E
[
χBrn

(X1)|∇fn,t(0)|2
]
=

n− 1

n2
E
[
χBrn

(X1)|∇qt(X2)|2
]
+

1

n2
E
[
χBrn

(X1)|∇qt(X1)|2
]

=
n− 1

n2
|Brn|

∫
T
|∇qt|2 +

1

n2

∫
Brn

|∇qt|2.

For the last term we have similarly,

E
[
χBrn

(X1)|∇fn,t(X1)|2
]
=

1

n2

∑
i,j

E
[
χBrn

(X1)∇qt(Xi −X1) · ∇qt(Xj −X1)
]

=
n− 1

n2
E
[
χBrn

(X1)|∇qt(X2 −X1)|2
]
+

1

n2
E
[
χBrn

(X1)|∇qt(0)|2
]

=
n− 1

n2
|Brn|

∫
T
|∇qt|2 +

1

n2
|Brn||∇qt(0)|2.
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Regarding the middle term we have

E
[
χBrn

(X1)∇fn,t(0) · ∇fn,t(X1)
]
=
∑
i,j

E
[
χBrn

(X1)∇qt(Xi) · ∇qt(Xj −X1)
]

=
n− 1

n2
E
[
χBrn

(X1)∇qt(X2) · ∇qt(X2 −X1)
]
+

1

n2
E
[
χBrn

(X1)∇qt(X1) · ∇qt(0)
]

=
n− 1

n2

∫
Brn

∫
T
∇qt(z) · ∇qt(z − x) +

1

n2

∫
Brn

∇qt(x) · ∇qt(0).

Since by [2, Proposition 3.12]

(2.9) sup
Brn

|∇qt| ≲ (rn + t1/2)−1 ≲ t−1/2

we have
1

n2

∫
Brn

∇qt(x) · ∇qt(0) ≲
|Brn|
n2

t−1

and similarly for the two other terms with prefactor n−2. Therefore, for some C ≫ 1,

nE − C
|Brn|
nt

≲

(
|Brn|

∫
T
|∇qt|2 −

∫
Brn

∫
T
∇qt(z) · ∇qt(z − x)

)
=

∫
Brn

∫
T
∇qt(z) · (∇qt(z)−∇qt(z − x))

=

∫
Brn

∫
T
−∆qt(z) · (qt(z)− qt(z − x))

=

∫
Brn

∫
T
(pt(z)− 1) · (qt(z)− qt(z − x))

=

∫
Brn

(q2t(0)− q2t(x)) ≤ |Brn|rn sup
Brn

|∇q2t|.

Here we used that −∆qt = pt − 1 together with the semi-group property of pt. Using (2.9)
again we conclude the proof of (2.8). □

Remark 2.3. For t ≥ tn = n−1 log3 n, the proof of (2.8) can be significantly simplified
with the help of the Hessian bounds (2.2).

Finally, in order to translate the results from [13, 12] to the setting of [5, 2, 3] we will need
to be able to switch from convolutions against compactly supported kernels to convolutions
against the heat kernel.

Lemma 2.4. Let η ∈ C∞
c (B1) be a smooth convolution kernel. For r > 0, set ηr =

r−2η(·/r) and let then φr
n the mean-zero solution of

−∆φr
n = ηr ∗ (µn − 1).

For every t ≥ n−1 we have

(2.10) nE[|∇fn,t(0)−∇φ
√
t

n (0)|4]
1
2 ≲ 1.
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Proof. We start by noting that ∇φ
√
t

n (0) = n−1
∑

i(η
√
t ∗ ∇q0)(Xi). Since ∇fn,t(0) =

n−1
∑

i ∇qt(Xi) we may apply as above Rosenthal inequality to obtain

E[|∇fn,t(0)−∇φ
√
t

n (0)|4]

≲ n−4

(∑
i

E[|∇qt(Xi)−∇(η√t ∗ q0)(Xi)|4] + (
∑
i

E[|∇qt(Xi)−∇(η√t ∗ q0)(Xi)|2])2
)

= n−4

(
n

∫
T1

|∇qt −∇(η√t ∗ q0)|4 + (n

∫
T1

|∇qt −∇(η√t ∗ q0)|2)2
)

≲ n−3

(∫
T1

|∇qt|4 +
∫
T1

|∇(η√t ∗ q0)|4
)
+ n−2

(∫
T1

|∇qt −∇(η√t ∗ q0)|2
)2

.

The first right-hand side term is estimated by (2.6). Arguing exactly as in the proof of [12,
(3.5)], we may similarly estimate the second right-hand side term by∫

T1

|∇(η√t ∗ q0)|4 ≲ t−1.

In order to conclude the proof of (2.10) we are left with proving

(2.11)

∫
T1

|∇qt −∇(η√t ∗ q0)|2 ≲ 1.

To this aim we write
(2.12)∫
T1

|∇qt −∇(η√t ∗ q0)|2 ≲
∫
B3

√
t

|∇qt|2 +
∫
B3

√
t

|∇(η√t ∗ q0)|2 +
∫
T1\B3

√
t

|∇qt −∇(η√t ∗ q0)|2

For the first right-hand side term we notice that by [2, Proposition 3.12] in B3
√
t we have

|∇qt| ≲
1√
t

so that

(2.13)

∫
B3

√
t

|∇qt|2 ≲
∫
B3

√
t

1

t
≲ 1.

The second right-hand side term in (2.12) is treated similarly. Indeed, arguing as in [12,
(3.7)] we get that in B3

√
t,

|∇(η√t ∗ q0)| ≲
1√
t

so that

(2.14)

∫
B3

√
t

|∇(η√t ∗ q0)|2 ≲ 1.
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We finally turn to the last right-hand side term in (2.12). We further decompose it as

(2.15)

∫
T1\B3

√
t

|∇qt−∇(η√t ∗ q0)|2 ≲
∫
T1\B3

√
t

|∇qt−∇q0|2+
∫
T1\B3

√
t

|∇(η√t ∗ q0)−∇q0|2.

For the first right-hand side term we have by definition of qt,

∇qt −∇q0 = −
∫ t

0

∇psds.

Moreover, by [2, Theorem 3.8&3.9], we have in T1\B3
√
t

|∇ps|2 ≲
|x|2

s4
exp(−c

|x|2

s
).

Using Cauchy-Schwarz, we find∫
T1\B3

√
t

|∇qt −∇q0|2 ≲ t

∫ t

0

∫
T1\B3

√
t

|∇ps|2 ≲ t

∫ t

0

∫
T1\B3

√
t

|x|2

s4
exp(−c

|x|2

s
)

x=
√
sy

≲ t

∫ t

0

∫ ∞

3
√

t/s

r3

s2
exp(−cr2)drds.

Using that for A ≥ 3, ∫ ∞

A

r3 exp(−cr2) ≲ A2 exp(−cA2)

we find ∫
T1\B3

√
t

|∇qt −∇q0|2 ≲ t2
∫ t

0

s−3 exp(−c
t

s
)ds

s=tu
=

∫ 1

0

u−3 exp(−1

u
)du ≲ 1.

We now estimate the second right-hand side term in (2.15). For x ∈ T1\B3
√
t and y ∈ B√

t

we have arguing exactly as in [12, Lemma 3.1]

|∇q0(x− y)−∇q0(x)| ≲
|y|
|x|2

.

Therefore,∫
T1\B3

√
t

∣∣∇(η√t ∗ q0)−∇q0
∣∣2 = ∫

T1\B3
√
t

∣∣∣∣∣
∫
B√

t

η√t(y)(∇q0(x− y)−∇q0(x))dy

∣∣∣∣∣
2

dx

≤
∫
T1\B3

√
t

(∫
B√

t

η√t(y)|y|

)2

|x|−4dx ≤ t

∫
T1\B3

√
t

|x|−4 ≲ 1.

We conclude that

(2.16)

∫
T1\B3

√
t

|∇qt −∇(η√t ∗ q0)|2 ≲ 1.

Injecting (2.13), (2.14) and (2.16) in (2.12) we obtain the desired (2.11). □
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We recall that from the concentration properties of W 2
2 (µn, 1) (see [5] or [12, Theorem

4.5 & Remark 4.6]) we have the following moment bound:

Lemma 2.5. We have

(2.17) nE
[
(W 2

2 (µn, 1))
2
] 1

2 ≲ log n.

3. Proof of the main results

In this section we prove Theorem 1.2 and then Theorem 1.1.

Proof of Theorem 1.2. We start with (1.4). Let t ≥ r2n. As in [12], we first rely on station-
arity to infer that

E
[∫

T1×T1

|x− y −∇fn,t(x)|2 dπn

]
= E

[
1

|Brn|

∫
Brn×T1

|x− y −∇fn,tn(x)|
2 dπn

]
.

Let φr
n be defined as in Lemma 2.4. We now claim that in order to prove (1.4), it is enough

to prove

(3.1) nE
[

1

|Brn|

∫
Brn×T1

|x− y −∇φrn
n (0)|2 dπn

]
≲ 1.

To this aim we use for (x, y) ∈ Brn × T1 the triangle inequality in the form

|x− y −∇fn,t(x)|2 ≲ |x− y −∇φrn
n (0)|2

+
∣∣∇φrn

n (0)−∇fn,r2n(0)
∣∣2 + ∣∣∇fn,r2n(0)−∇fn,t(0)

∣∣2 + |∇fn,t(0)−∇fn,t(x)|2 .

In order to prove the claim we need to show that the contributions coming from the last
three terms on the right-hand side are controlled. Observe, that nµn(Brn) is a Binomial
random variable with all moments of order 1. Hence, we can estimate

nE
[

1

|Brn|

∫
Brn×T1

∣∣∇φrn
n (0)−∇fn,r2n(0)

∣∣2 dπn

]
=

n

|Brn|
E
[
µn(Brn)

∣∣∇φrn
n (0)−∇fn,r2n(0)

∣∣2]
≤ n

|Brn|
E
[
(µn(Brn))

2
] 1

2 E
[∣∣∇φrn

n (0)−∇fn,r2n(0)
∣∣4] 1

2
(2.10)

≲ 1.

Second,

nE
[

1

|Brn|

∫
Brn×T1

∣∣∇fn,r2n(0)−∇fn,t(0)
∣∣2 dπn

]
≤ n

|Brn|
E
[
(µn(Brn))

2
] 1

2 E
[∣∣∇fn,r2n(0)−∇fn,t(0)

∣∣4] 1
2

(2.3)

≲

(
1 + log

(
t

r2n

))
.
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Finally, by (2.8) of Lemma 2.2 we have

nE
[

1

|Brn|

∫
Brn×T1

|∇fn,tn(0)−∇fn,tn(x)|
2 dπn

]
= nE

[
1

|Brn|

∫
Brn

|∇fn,tn(0)−∇fn,tn(x)|
2 dµn

]
≲ 1.

We now establish (3.1). After rescaling and changing φrn
n into −φrn

n , [12, Proposition 4.6]
yields the existence of a random radius r∗,n ≥ rn with moments of every order i.e. for every
p ≥ 1,

(3.2) E
[(

r∗,n
rn

)p]
≲p 1

such that

sup{|x− y −∇φr∗,n
n (0)| : (x, y) ∈ Sptπn ∩ (Brn × T1)} ≲ r∗,n.

Moreover, combining [12, Lemma 4.3 & Theorem 4.5] together with [13, Lemma 2.10] we
may further assume that r∗,n is such that for some α ∈ (0, 1),

|∇φr∗,n
n (0)−∇φrn

n (0)| ≲ r∗,n

(
r∗,n
rn

)2+α

.

We can thus estimate using triangle inequality,

nE
[

1

|Brn|

∫
Brn×T1

|x− y −∇φrn
n (0)|2 dπn

]
≲ nE

[
1

|Brn|

∫
Brn×T1

|x− y −∇φr∗,n
n (0)|2 dπn

]
+ nE

[
µ(Brn)

|Brn|
|∇φr∗,n

n (0)−∇φrn
n (0)|2

]

≲ nE
[
r4∗,n
] 1

2 + nE

[
r4∗,n

(
r∗,n
rn

)4(2+α)
] 1

2 (3.2)

≲ 1.

This concludes the proof of (3.1) and, hence, of (1.4).
To show (1.5) we use the triangle inequality to estimate for t ≥ tn,

nE
[∫

T1

|Tn(y)− y −∇fn,t(y)|2
]

≲ nE
[∫

T1

|∇fn,t −∇fn,tn|
2

]
+ nE

[∫
T1

|Tn(y)− y −∇fn,tn(y)|
2

]
.
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Using Hölder inequality and (2.3) we see that it is enough to prove (1.5) for t = tn. We
then use triangle inequality again to write

nE
[∫

T1

|Tn(y)− y −∇fn,tn(y)|
2

]
= nE

[∫
T1×T1

|x− y −∇fn,tn(y)|
2 dπn

]
≲ nE

[∫
T1×T1

|x− y −∇fn,tn(x)|
2 dπn

]
+ nE

[∫
T1×T1

|∇fn,tn(x)−∇fn,tn(y)|
2 dπn

]
.

Since the second right-hand side term is estimated as

nE
[∫

T1×T1

|∇fn,tn(x)−∇fn,tn(y)|
2 dπn

]
≲ nE[

∥∥∇2fn,tn
∥∥4
∞]

1
2E[(W 2

2 (µn, 1))
2]

1
2

(2.2)&(2.17)

≲
log n

log2 n
=

1

log n
,

we conclude by (1.4). □

We finally prove Theorem 1.1.

Proof of Theorem 1.1. We start by writing

|Tn(y)− y|2 = |Tn(y)− y−∇fn,tn(y)|2 + |∇fn,tn(y)|2 +2(Tn(y)− y−∇fn,tn(y)) · ∇fn,tn(y).

After integration and using (1.5) with t = tn, we thus get∣∣∣∣nE [∫
T1

|Tn(y)− y|2
]
− log n

4π

∣∣∣∣ ≲ log log n+

∣∣∣∣nE [∫
T1

|∇fn,tn(y)|2
]
− log n

4π

∣∣∣∣
+

∣∣∣∣nE [∫
T1

(Tn(y)− y −∇fn,tn(y)) · ∇fn,tn(y)

]∣∣∣∣ .
Since by the trace formula, see (1.3)∣∣∣∣nE [∫

T1

|∇fn,tn(y)|2
]
− log n

4π

∣∣∣∣ ≲ log log n,

we are left with the proof of the quasi-orthogonality property

(3.3)

∣∣∣∣nE [∫
T1

(Tn(y)− y −∇fn,tn(y)) · ∇fn,tn(y)

]∣∣∣∣ ≲ 1.

For this we first split the left-hand side as

(3.4) nE
[∫

T1

(Tn(y)− y −∇fn,tn(y)) · ∇fn,tn(y)

]
= nE

[∫
T1

(Tn(y)− y) · ∇fn,tn(y)

]
− nE

[∫
T1

|∇fn,tn(y)|2
]
.
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To estimate the first term we argue in the spirit of [18] and introduce the following notation:
for y ∈ T1 let Xs = Xs(y) be the constant speed geodesic with X0 = y and X1 = Tn(y).
We thus have∫

T1

(Tn(y)− y) · ∇fn,tn(y) =

∫
T1

∫ 1

0

Ẋs · ∇fn,tn(X0)

=

∫
T1

∫ 1

0

Ẋs · ∇fn,tn(Xs) +

∫
T1

∫ 1

0

Ẋs · (∇fn,tn(X0)−∇fn,tn(Xs)).

For the second term we can estimate

(3.5) nE
[∣∣∣∣∫

T1

∫ 1

0

Ẋs · (∇fn,tn(X0)−∇fn,tn(Xs))

∣∣∣∣] ≲ nE
[∥∥∇2fn,tn

∥∥
∞ W 2

2 (µn, 1)
]

(2.2)&(2.17)

≲ 1.

For the first term we use that Ẋs·∇fn,tn(Xs) =
d
ds
[fn,tn(Xs)] to write (recall thatX1 = Tn(y)

and X0 = y)∫
T1

∫ 1

0

Ẋs · ∇fn,tn(Xs) =

∫
T1

(fn,tn(X1)− fn,tn(X0))

=

∫
T1

fn,tnd(µn − 1) =

∫
T1

fn,tn(−∆fn,0) =

∫
T1

∇fn,tn · ∇fn,0.

Using the semi-group property of the heat kernel we get∫
T1

∇fn,tn · ∇fn,0 =

∫
T1

|∇fn, tn
2
|2.

We thus conclude that∣∣∣∣nE [∫
T1

(Tn(y)− y) · ∇fn,tn(y)

]
− nE

[∫
T1

|∇fn, tn
2
|2
]∣∣∣∣ ≲ 1.

Plugging this back into (3.4) yields∣∣∣∣nE [∫
T1

(Tn(y)− y −∇fn,tn(y)) · ∇fn,tn(y)

]∣∣∣∣
≲ 1 + n

∣∣∣∣E [∫
T1

|∇fn, tn
2
|2
]
− E

[∫
T1

|∇fn,tn|2
]∣∣∣∣ ≲ 1

where in the last line we used once more (1.3). This concludes the proof of (3.3). □

Remark 3.1. Let us point out that the only source of suboptimality in (1.2) lies in (3.5)
where we use in a crucial way the bound on ∇2fn,tn from Lemma 2.1. Indeed, if we knew
(using the notation from the proof of Theorem 1.1) that analogously to (1.4)

nE
[∫

T1×T1

∫ 1

0

∣∣∣Ẋs −∇fn,r2n(Xs)
∣∣∣2 dsdπn

]
≲ 1
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and analogously to (1.3),

(3.6) nE
[∫

T1×T1

∫ 1

0

|∇fn,t(Xs)|2dsdπn

]
=

| log t|
4π

+O(
√
t)

then the exact same proof would yield an error term which is of order one.

Remark 3.2. In a similar direction, let us also observe that arguing as in the proof of
Lemma 2.2 we can obtain the analog of (1.3) (this explicit computation cannot be done for
(3.6))

nE
[∫

T1

|∇fn,t|2dµn

]
=

| log t|
4π

+O(
√
t).

Instead of relying on (1.5) in the proof of (1.2), we could have thus used (1.4) (with t = tn).
This would however make the proof slightly heavier without affecting the final result.
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