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Abstract—Superpixel segmentation methods are widely used
in computer vision applications due to their properties in border
delineation. These methods do not usually take into account any
prior object information. Although there are a few exceptions,
such methods significantly rely on the quality of the object
information provided and present high computational cost in
most practical cases. Inspired by such approaches, we propose
Object-based Dynamic and Iterative Spanning Forest (ODISF),
a novel object-based superpixel segmentation framework to
effectively exploit prior object information while being robust
to the quality of that information. ODISF consists of three
independent steps: (i) seed oversampling; (ii) dynamic path-based
superpixel generation; and (iii) object-based seed removal. After
(i), steps (ii) and (iii) are repeated until the desired number of
superpixels is finally reached. Experimental results show that
ODISF can surpass state-of-the-art methods according to several
metrics, while being significantly faster than its object-based
counterparts.

I. INTRODUCTION

Superpixels are commonly defined as groups of connected
pixels which share a common property (e.g, color, texture).
Superpixel segmentation methods create an image partition
by delineating relevant borders. Ideally, they should preserve
the borders of an object of interest, such that the object
can be represented by the union of its superpixels. These
methods are often used as an intermediary step in several
applications: (i) medical image analysis [1]–[3]; (ii) pedestrian
segmentation [4]; and (iii) plant detection [5].

Several works [6], [7] elect a number of desirable properties
for superpixel methods.
• Every pixel must be uniquely assigned to a single super-

pixel;
• Superpixels must be a connected set of pixels;
• The object boundaries should be overlapped by a super-

pixel border;
• Superpixels should be generated efficiently; and
• The user should be able to control the number of super-

pixels.
Moreover, these properties should be satisfied with as few
superpixels as possible [8]. Although some authors list other
properties, such as compacity, one may note that the afore-
mentioned ones are a consensus amongst all methods.

A three-stage pipeline is an approach commonly seen in
many superpixel segmentation methods [6], [11]–[13]: (a)

(a) (b)

(c) (d)

Fig. 1: Results of object-based superpixel segmentation meth-
ods considering 25 superpixels. (a) Original image with
ground-truth borders overlayed in red; (b) Object saliency
map [9]; Segmentation results (in cyan), drawn over (a),
obtained by (c) OISF [10] and (d) our proposal.

initial seed sampling; (b) superpixel segmentation; and (c) seed
recomputation, repeating steps (b) and (c) for a few iterations.
As an example, Iterative Spanning Forest (ISF) [12] is a
superpixel segmentation framework in which, benefiting from
the properties of the Image Foresting Transform (IFT) [14]
algorithm, all of its steps are independently defined. That is,
modifications in one step do not require adjustments in the
others. Dynamic ISF [13] is another example that follows
the same pipeline. In DISF, the seeds are selected through
oversampling and, through a few iterations, superpixels are
delineated by the IFT algorithm as the seed set is reduced in
step (c) based on superpixel properties. Although state-of-the-
art methods present accurate object delineation, they do not
usually consider prior object information. For instance, it is
not possible to control the superpixel displacement in order to



improve object delineation in specific regions, often within or
nearby the boundary of the objects of interest.

A recent category of superpixel methods permits the in-
clusion of object information during execution. Given such
information, these algorithms may improve the delineation
performance in relevant regions. The Object-based ISF [10],
[15] method is a three-stage IFT-based superpixel approach
that falls into this category. In OISF, object information is
represented by an object saliency map. OISF variants consider
the map’s intensities as indication of probable object location
and extension. As exemplified in Figure 1, such maps often
present good estimation of the object location, but performs
poorly in terms of object delineation (even when the saliency
map is created by a deep neural network [9]). Given that,
OISF methods are highly dependable on the object information
quality, such that errors in the saliency map may critically
affect its delineation performance. Furthermore, OISF variants
often present high computational cost.

In this paper, we propose Object-based DISF, a novel
object-based superpixel segmentation framework which ex-
ploits the major features of DISF while incorporating prior
object information as represented by an object saliency map.
Similarly to DISF, ODISF variants perform oversampling to
guarantee that relevant seeds are part of the initial seed set
and delineate superpixels by using the IFT algorithm. The
major contribution of ODISF is the novel object-based seed
removal criterion, which favors seeds whose superpixels are
placed nearby probable object boundaries. By strategically
incorporating the object information only in the seed removal
step, ODISF exploits the good estimation of the object location
and is more robust to eventual delineation errors in the saliency
map. Therefore, such pipeline not only provides accurate ob-
ject delineation with low computational cost, but also manages
to overcome the high dependency on the saliency map quality
seen in OISF (see Fig. 1).

This paper is organized as follows. First, we discuss recent
works in superpixel segmentation in Section II. Then, in
Section III, we detail the mathematical framework used for
presenting DISF and ODISF in Section IV. The experimental
setup and results are shown in Section V and, finally, we draw
conclusions and possible future work in Section VI.

II. RELATED WORKS

In this section, we present an overview of the state-of-the-art
superpixel segmentation methods. For a deeper discussion, one
may refer to notable surveys [7], [16]–[18]. In Section II-A,
we review methods which are completely unaware of any
object information. Then, in Section II-B we discuss methods
based on deep learning. Finally, we present algorithms that
consider object information independently from their source
(Section II-C).

A. Classic and Content-Sensitive Methods

We may broadly classify such methods in two groups: (i)
clustering-based methods; and (ii) graph-based methods. The
former comprises those that solve superpixel segmentation by

pixel clustering (e.g., K-means, DBSCAN, GMMs). Simple
Linear Iterative Clustering (SLIC) [6], the most popular
method, solves such task by an adaptive K-means approach,
resulting in low computational cost and fair object delineation.
Inspired by SLIC, Linear Spectral Clustering (LSC) [11] maps
every pixel into a 10-dimensional space and, subsequently,
applies K-means. LSC shows significant improvement over
SLIC in delineation, with the expense of being slightly slower.
Similarly to LSC, Intrinsic Manifold SLIC (IMSLIC) [19] runs
K-means in a two-dimensional manifold, where area indicates
the content density. The majority of these methods (except
IMSLIC) cannot guarantee connected superpixels in a given
desired number, being necessary to apply a post-processing
step that compromises the number of desired superpixels.
Finally, due to strict constraints, such as the restricted search
scope in the adapted K-means, adjustments for effectively
considering object information may become impractical.

The second group of methods solve superpixel segmenta-
tion as a graph partitioning problem. Entropy Rate Superpix-
els (ERS) [8] generates superpixels by removing edges based
on the entropy of a random walk in the graph. Although it
presents high object adherence, it also presents high com-
putational cost. Superpixel Hierarchy (SH) [20] computes a
hierarchy of superpixels with high boundary adherence and
low computational cost using the Borůkva algorithm. Yet,
such methods do not consider object information in their
computation.

A major subset of graph-based algorithms segments the
image through path concatenation using the Image Foresting
Transform (IFT) [14] algorithm. Such methods are often
fast and present accurate object delineation. In [12], the au-
thors propose a three-stage superpixel segmentation framework
named Iterative Spanning Forest (ISF), whose steps are inde-
pendently defined. This flexibility favored the development of
recent and more effective approaches. The Recursive ISF [21]
is a hierarchical superpixel segmentation method that applies
ISF at each layer of the hierarchy. Dynamic ISF (DISF) [13]
generates superpixels dynamically through initial seed over-
sampling with subsequent removal along iterations based on a
predefined criterion. Such methods, however, do not consider
object information in their computation.

B. Deep Learning Methods

Recently, a significant number of studies propose deep
learning solutions for superpixel segmentation. In [22], the
authors present an algorithm, named Deep-FLIC, that consid-
ers deep features as input for an adapted version of the Fast
Linear Iterative Clustering (FLIC) [23] algorithm. Conversely,
the authors in [24] debate over the efficiency of incorporating
deep features and propose a neural network for computing
pixel affinities in the image, which are used as input for
a superpixel segmentation method (e.g., ERS). Finally, we
recall the Superpixel Sampling Network (SSN) [25] and the
Superpixel with Fully Convolutional Network (S-FCN) [26]
as representatives of end-to-end trainable superpixel segmen-
tation methods. Notably, deep learning methods are strongly
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Fig. 2: Flowchart of the proposed Object-based DISF considering N0 = 1000 and Nf = 5.

dependent on the amount of annotated training examples,
which are usually scarce in scientific applications. Even if
a large set is provided, one may argue that the profits of
supervision lacks more evidence. Finally, for a different object
of interest, the proposed model may not assure the reported
performance even through fine-tuning.

C. Object-based Methods

Object-based algorithms generates superpixels by consid-
ering a prior information regarding the objects of interest.
Similarly to ISF, the Object-based ISF (OISF) [10] is a three-
stage object- and IFT-based superpixel segmentation frame-
work. In OISF, the object information is provided through an
object saliency map. This map is used in each of the three
steps, permitting the user to control the superpixel morphology
and displacement with respect to the borders of the map. As
drawbacks, OISF variants are highly dependent of the quality
of the saliency map, and their computational cost is high.

III. THEORETICAL BACKGROUND

In this section, we briefly discuss the theoretical back-
ground. In Section III-A, we recall basic notions regarding
images and graphs and, in Subsection III-B, we detail the
Image Foresting Transform (IFT) [14], the core method of
our approach.

A. Image Graph

Let an image I be a pair 〈P,F〉 in which P ⊂ Z2 is the set
of picture elements (i.e., pixels) and F(p) ∈ Rm, for m ∈ N>0,
consists in a particular and representative sequence of features
(e.g. color) of a pixel p. If m = 1, I is a grayscale image;
otherwise, I is a colored image (e.g., CIELAB). Moreover, p

can be represented a unique sequence of (spatial) coordinates
〈xp, yp〉. Finally, considering the previous definitions, we may
define an object saliency map O as a grayscale image 〈P,O〉
in which O(p) ∈ [0, 1] maps every pixel p to a representative
value that indicates its likelihood of belonging to an object of
interest.

Given I , it is possible to build an image graph G = 〈V, E〉
such that V ⊆ P is the set of vertices and E ⊂ V2 is the
set of edges. A classic approach for defining the edge set is
through the Euclidean (spatial) distance between two distinct
vertices u, v, with respect to a certain radius r ∈ R≥0. More
specifically, E = {〈u, v〉 | ‖u− v‖2 ≤ r}. In this work, we
use the 8-neighborhood (i.e., r =

√
2). If 〈u, v〉 ∈ E , then u, v

are adjacents. In this work, G is an undirected graph (i.e.,
〈u, v〉 ≡ 〈v, u〉).

Consider a path ρ = 〈vi〉ki=1 to be a sequence of distinct
vertices such that, for i < k, vi, vi+1 are adjacents. If k = 1,
then ρ is a trivial path. We may explicitly exhibit the origin (or
root) v1 and the terminus vk of ρ either by ρv1 vk or simply
by ρvk . Finally, the following notation ρs � 〈s, t〉 indicates a
path resultant from a concatenation between a path ρs and an
edge 〈s, t〉.

B. Image Foresting Transform

Several state-of-the-art algorithms use the Image Foresting
Transform (IFT) [14] for generating superpixels [12], [13],
[15], [21]. The IFT is a framework for the development of
image operators based on connectivity and, in this work, we
focus on its seed-restricted variant. For a given set S ⊂ V of
vertices (i.e., seeds), the IFT finds optimum-paths in an non-
decreasing order of cost from any s ∈ S to every p ∈ V \ S .



First, let Π be the set of all possible paths in G. Then,
a path-cost function assigns a non-negative path-cost value
f∗(ρ) ∈ Rto any path ρ ∈ Π. The fmax is often chosen due
to its effective performance in object delineation, and may be
defined as follows (Eq. 1):

fmax(〈t〉) =

{
0 if t ∈ S

+∞ otherwise
fmax(ρt � 〈t, s〉) = max {fmax(ρt),w∗(t, s)}

(1)

in which w∗(t, s) ∈ R defines a cost to an edge 〈t, s〉 ∈ E .
An optimum-path ρt is a path in which, for any other τt ∈ Π,
f∗(ρt) ≤ f∗(τt).

Let P be an acyclic map in which assigns a vertex v ∈ V
to its predecessor P(v) = u ∈ V in a unique path ρv or
to a distinctive marker N 6∈ V when v is the root of ρv . P is
said to be optimum if all of its paths are optimum. As one may
note, we may assign every vertex v to its respective root R(v)
defined in P through recursion. Therefore, for a given seed set
S and a path-cost function f∗, the IFT algorithm can output an
optimum predecessor map P such that, for every seed x ∈ S,
it is defined an optimum-path tree Tx with paths that are more
closely connected to x than to any other seed. In other words,
the IFT minimizes a path-cost map C(v) = minρv∈Π {f∗(ρv)}
and, consequently, builds P through path concatenation. In this
work, every superpixel whose seed is x ∈ S is an optimum-
path tree Tx. Even if f∗ is not smooth [27], the superpixel
segmentation can be effective.

IV. OBJECT-BASED DISF

In this section, we present the Object-based Dynamic
and Iterative Spanning Forest (ODISF) method, illustrated
in Figure 2, by making clear its differences with respect to
the DISF approach [13]. In Section IV-A, we discuss two
different strategies for seed oversampling and, subsequently
in Section IV-B, we revisit the concept of dynamic edge-cost
estimation for superpixel generation using the IFT framework.
Finally, we detail our proposed object-based seed removal
strategy for a given object saliency map in Section IV-C.

A. Seed Oversampling

For a given number Nf > 0 of desired superpixels, the
first step of seed-based methods is to estimate an initial seed
set S. Differently from most methods [6], [11], [13], DISF
and ODISF start off from seed oversampling such that |S| =
N0 � Nf . This strategy significantly increases the probability
of selecting, in the initial seed set, all relevant seeds for solving
the problem.

Most methods [6], [11], [13] initially distribute seeds
equidistantly in a grid pattern. Such strategy, hereafter named
GRID, first estimates the expected superpixel size a for an
image I = 〈P,F〉 as a = |P|/Nf . Then, it establishes that
seed pairs must be distanced by

√
a. Finally, in order to avoid

seeds placed over borders, every seed s ∈ S is shifted to a
position whose gradient is the lowest within its neighborhood.

In [28], the authors evaluate the impact of object-based seed
sampling strategies for superpixel segmentation and conclude

that a high concentration of seeds within the object leads to
better results in delineation. However, these strategies are com-
putationally expensive. On the other hand, the combination
of seed oversampling and an accurate local criterion for seed
removal along iterations may result into similar effectiveness
with considerable efficiency gains. For example, one can pre-
serve seeds near the borders of a given object saliency map in
the seed removal step. We explore this strategy and, moreover,
analyze if a random selection of seeds (hereafter named RND)
is equivalent to GRID when using seed oversampling.Unlike
GRID, RND does not require computing the image gradient
for seed perturbation, and it is straightforward to implement
for non-rectangular masks.

B. Superpixel Generation

Both DISF and ODISF use the IFT algorithm with path-
cost function fmax and on-the-fly edge-cost estimation, as
proposed in [29] for interactive object segmentation. Let
µF(Tx) =

∑
v∈Tx F(v)/|Tx| be the mean feature vector of

a growing optimum-path tree rooted in x. The dynamic edge-
cost function is defined as w(u, v) = ‖µF(Tx)− F(v)‖2 for
x = R(u) by the time the path ρu is optimum during the IFT
algorithm.

Whenever the object saliency values in O are derived
from F, both should contain the same information about the
boundaries of interest. In [15], the authors use a path-cost
function with an object-based edge-cost estimation in which
it is possible to control boundary adherence with respect to the
borders in O and F. As Figure 4 shows, for imperfect saliency
maps, this strategy can negatively affect superpixel delineation.
In such a case, the border information in F should be sufficient
for accurate superpixel delineation. In our framework, we
prefer to constrain the use of the object saliency map for seed
removal (Section IV-C).

C. Object-based Seed Removal

In DISF, due to seed oversampling, the number of iterations
is such that Nf seeds (superpixels) must result at the last itera-
tion. At each iteration i ∈ N>0, M(i) = max

{
N0 exp−i, Nf

}
seeds are selected from S for the delineation step in iteration
i + 1, while the remaining are discarded. This process is
repeated until Ni = Nf , resulting in Ω iterations. For most
practical cases, Ω = 5.

One approach for selecting M(i) seeds is to assign a rele-
vance value V∗(s) to each s ∈ S based on the characteristics
of its resulting superpixel Ts. Two distinct trees Tx, Ty are
said adjacent if ∃ 〈u, v〉 ∈ E such that u ∈ Tx and v ∈ Ty .
Let B be the set of pairs 〈Tx, Ty〉 of adjacent trees within the
forest. Then, we may define V1(s) as a combination of size
and contrast of Ts as presented in Eq. 2

V1(s) =
|Ts|
|V|

min
∀ 〈Ts,Tr〉∈B

{‖µF(Ts)− µF(Tr)‖2} (2)

The major drawback of V1 is not distinguishing whether a
superpixel is near an object border. Obviously, the size of a
superpixel does not assist in such determination. As one may
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Fig. 3: Results obtained for ECSSD, Liver and Parasites, respectively. For all methods, the default configuration was set.
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Fig. 4: Results of object-based superpixel segmentation meth-
ods considering 25 superpixels. (a) Ground-truth image; (b)
Object saliency map [9]; Segmentation results (in cyan), drawn
over (a), obtained by (c) OISF [10] and (d) our proposal.

note, the contrast information is also insufficient since low
contrast regions are present within the whole image. Thus,
inspired by [30], we propose an object-based seed relevance
criterion V2 (Eq. 3)

G(Ts) = max
∀ 〈Ts,Tr〉∈B

{‖µO(Ts)− µO(Tr)‖1}

V2(s) = V1(s) max {µO(Ts),G(Ts)}
(3)

in which, analogously to µF, µO(Ts) =
∑
v∈Ts O(v)/|Ts| is

the mean saliency value of Ts. In contrast to other object-
based methods, which promotes a simple concentration of
superpixels within (or outside) the objects of interest, our pro-
posed function favors those nearby a probable object border,
promoting seed competition in crucial regions, or within a
region with high object certainty (i.e., high saliency values).

V. EXPERIMENTAL RESULTS

In this section, we present the experimental setup and the
results obtained by our approach. In Section V-A, we present
the baselines, the datasets and the evaluation metrics consid-
ered for benchmark. Subsequently, in Sections V-C and V-B,
we present and illustrate the performance of all methods.

A. Experimental Setup

Most works evaluate their proposals in a contour-driven
dataset [31] in which all relevant borders are desired. However,
as one may note, our proposal aims the accurate delineation
of the object of interest. Therefore, we chose three datasets
from distinct domains and with different object properties for
evaluating the robustness of ODISF. The Extended Complex
Saliency Scene Dataset (ECSSD) [32] is a popular dataset for
salient object detection and consists of 1000 natural images
with diverse objects. The Liver [12] dataset is composed of 40
CT slices of the human liver, which imposes a great challenge
for being a grayscale object with smooth borders. Similarly,
the Parasite [15] dataset contains 72 images of colored objects
(i.e., helminth eggs) with smooth borders in which an impurity
may be attached. For all datasets, we randomly defined 70%
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Fig. 5: Segmentation results (in cyan), obtained for each method, overlaying the ground-truth (in red and magenta). A number
Nf = 25 of superpixels was required, and the default parameter setting was used.

as test set. For generating object saliency maps, we considered
a recent deep neural network approach [9]1, suitable for small
datasets, whose detection accuracy is on par with many other
deep-learning approaches. We trained such estimator in the
remaining 30% of the dataset.

We selected five state-of-the-art methods in which the
last one is, to the best of our knowledge, the only object-
based method in literature: (i) SLIC [6]2; (ii) ERS [8]3; (iii)

1https://github.com/xuebinqin/U-2-Net
2https://www.epfl.ch/labs/ivrl/research/slic-superpixels/
3https://github.com/mingyuliutw/EntropyRateSuperpixel

LSC [11]4; (iv) SH [20]5; and (v) OISF-OSMOX [10]6. All
methods were selected due to their performance in superpixel
delineation and, for that, the recommended parameter con-
figuration was set. For our approach, we set N0 = 8000
(as in [13]) and evaluate ODISF with two options for seed
oversampling: ODISF-GRID and ODISF-RND. The code of
ODISF is available online 7. The performances were assessed
by two classic metrics. Boundary Recall (BR) [7] measures
the percentage of object boundaries correctly overlapped by
a superpixel border (i.e., higher is better). On the other hand,

4https://jschenthu.weebly.com/projects.html
5https://github.com/semiquark1/boruvka-superpixel
6https://github.com/LIDS-UNICAMP/OISF
7https://github.com/LIDS-UNICAMP/ODISF



Under-Segmentation Error (UE) [18] measures the error of
multiple ground-truth overlapping by superpixels (i.e., lower
is better). Since we do not aim for compact superpixels,
and due to the high correlation between different superpixel
metrics [7], we argue that the both selected are sufficient for
a proper evaluation. We evaluated all methods considering
Nf ∈ [25, 750].

B. Quantitative Results

Figure 3 shows the results for all datasets. It is possible
to see that ODISF surpasses all baselines with significant
margin, especially in boundary adherence. Table I shows the
average computational time of each method using a 64bit,
Intel (R) Core(TM) i5-5200U PC with CPU speed of 2.20Ghz.
Knowing that SLIC, LSC, and SH are O(N) complex, con-
sidering N to be the number of pixels in the image, it is no
surprise that they are the fastest baselines. When comparing
to OISF, ODISF presents a significant speedup of 3.05 (for
Nf = 25) in Parasites, with on pair performance in UE. It is
important to emphasize that, although both ODISF and OISF
are O(N logN), OISF-OSMOX exploits parallelism during
sampling and computes differential IFTs (DIFTs) [33] for
speed optimization. Therefore, since ODISF is an IFT-based
method, our implementation is eligible for computing DIFTs
and further improve its speed.

Similarly to [34], we found no statistical difference between
ODISF-GRID and ODISF-RND for both metrics and, fur-
thermore, both achieve similar performance to object-based
seed sampling approaches [28]. Thus, we may conclude that
the oversampling step can be significantly simplified without
prejudicing the ODISF performance.

Method Time(sec)
Nf = 25 Nf = 250 Nf = 750

SLIC 0.559±0.077 0.578±0.085 0.581±0.084
ERS 2.591±1.305 2.879±1.407 3.166±1.561
LSC 0.944±0.247 0.965±0.251 0.983±0.259

OISF-OSMOX 13.824±9.589 6.619±4.624 5.128±3.424
SH 0.991±0.067 0.990±0.064 0.974±0.070

ODISF-RND 4.540±2.625 3.612±1.949 2.945±1.639

TABLE I: Average processing time for superpixel segmenta-
tion in the Parasites dataset.

Interestingly, OISF, whose edge-cost estimation is object-
based, presents performance inferior to ODISF, which consid-
ers the input image features only. Although there are other
differences in their connectivity function, the neural network
may generate imperfect object saliency maps and the use of
this map restricted to the seed removal policy seems to make
ODISF more robust than OISF. We argue that our object-based
seed removal policy is effective to preserve relevant seeds and
robust to imperfect saliency maps that at least locate the object
of interest.

C. Qualitative Results

Figure 5 illustrates the segmentation results obtained by
each method for the Parasite and ECSSD datasets. The strategy
used by LSC yields effective results in natural images but, as

one may note, it can lead to critical errors in different do-
mains. On the other hand, SH shows a consistent performance
irrespective of the image domain, justifying its position as
one of the top superpixel methods. The results obtained by
OISF-OSMOX illustrates its high dependency on the quality
of the map by presenting high adherence to the borders of the
map, including both correct and incorrect estimations. Finally,
it is possible to see that ODISF segmentation manages to
best approximate the object borders while it prevents severe
superpixel leakings present in the results of the previous
methods.

VI. CONCLUSION AND FUTURE WORK

In this paper, we propose a novel object-based super-
pixel segmentation framework inspired in a recent super-
pixel method named Dynamic and Iterative Spanning For-
est (DISF) [13]. Our proposal, Object-based DISF (ODISF),
exploits the positive aspects of DISF, such as seed oversam-
pling and dynamic edge-cost estimation, while it offers a more
effective and robust seed removal criterion based on prior
object information. Experimental results show that ODISF
variants can surpass state-of-the-art algorithms in superpixel
delineation by preventing segmentation errors, while being
faster than its object-based counterpart [10], [15].

For future endeavors, we intent to study different curves for
establishing the number of seeds at each iteration. Similarly
to [30], we also desire to investigate the applicability of
ODISF for interactive object segmentation based on user-
drawn markers.
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