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I. INTRODUCTION

Superpixels are commonly defined as groups of connected pixels which share a common property (e.g, color, texture). Superpixel segmentation methods create an image partition by delineating relevant borders. Ideally, they should preserve the borders of an object of interest, such that the object can be represented by the union of its superpixels. These methods are often used as an intermediary step in several applications: (i) medical image analysis [START_REF] Martins | A supervoxel-based approach for unsupervised abnormal asymmetry detection in MR images of the brain[END_REF]- [START_REF] Zhou | Superpixel segmentation of breast cancer pathology images based on features extracted from the autoencoder[END_REF]; (ii) pedestrian segmentation [START_REF] Yu | Pedestrian segmentation based on a spatio-temporally consistent graph-cut with optimal transport[END_REF]; and (iii) plant detection [START_REF] Zhang | Plant diseased leaf segmentation and recognition by fusion of superpixel, K-means and PHOG[END_REF].

Several works [START_REF] Achanta | SLIC superpixels compared to state-of-the-art superpixel methods[END_REF], [START_REF] Stutz | Superpixels: An evaluation of the state-of-the-art[END_REF] elect a number of desirable properties for superpixel methods.

• Every pixel must be uniquely assigned to a single superpixel; • Superpixels must be a connected set of pixels;

• The object boundaries should be overlapped by a superpixel border; • Superpixels should be generated efficiently; and • The user should be able to control the number of superpixels. Moreover, these properties should be satisfied with as few superpixels as possible [START_REF] Liu | Entropy rate superpixel segmentation[END_REF]. Although some authors list other properties, such as compacity, one may note that the aforementioned ones are a consensus amongst all methods.

A three-stage pipeline is an approach commonly seen in many superpixel segmentation methods [START_REF] Achanta | SLIC superpixels compared to state-of-the-art superpixel methods[END_REF], [START_REF] Li | Superpixel segmentation using linear spectral clustering[END_REF]- [START_REF] Belém | Superpixel segmentation using dynamic and iterative spanning forest[END_REF] As an example, Iterative Spanning Forest (ISF) [START_REF] Vargas-Muñoz | An iterative spanning forest framework for superpixel segmentation[END_REF] is a superpixel segmentation framework in which, benefiting from the properties of the Image Foresting Transform (IFT) [START_REF] Falcão | The image foresting transform: Theory, algorithms, and applications[END_REF] algorithm, all of its steps are independently defined. That is, modifications in one step do not require adjustments in the others. Dynamic ISF [START_REF] Belém | Superpixel segmentation using dynamic and iterative spanning forest[END_REF] is another example that follows the same pipeline. In DISF, the seeds are selected through oversampling and, through a few iterations, superpixels are delineated by the IFT algorithm as the seed set is reduced in step (c) based on superpixel properties. Although state-of-theart methods present accurate object delineation, they do not usually consider prior object information. For instance, it is not possible to control the superpixel displacement in order to improve object delineation in specific regions, often within or nearby the boundary of the objects of interest.

A recent category of superpixel methods permits the inclusion of object information during execution. Given such information, these algorithms may improve the delineation performance in relevant regions. The Object-based ISF [START_REF] Belém | Superpixel generation by the iterative spanning forest using object information[END_REF], [START_REF] Belém | Superpixel segmentation by object-based iterative spanning forest[END_REF] method is a three-stage IFT-based superpixel approach that falls into this category. In OISF, object information is represented by an object saliency map. OISF variants consider the map's intensities as indication of probable object location and extension. As exemplified in Figure 1, such maps often present good estimation of the object location, but performs poorly in terms of object delineation (even when the saliency map is created by a deep neural network [START_REF] Qin | U2-net: Going deeper with nested u-structure for salient object detection[END_REF]). Given that, OISF methods are highly dependable on the object information quality, such that errors in the saliency map may critically affect its delineation performance. Furthermore, OISF variants often present high computational cost.

In this paper, we propose Object-based DISF, a novel object-based superpixel segmentation framework which exploits the major features of DISF while incorporating prior object information as represented by an object saliency map. Similarly to DISF, ODISF variants perform oversampling to guarantee that relevant seeds are part of the initial seed set and delineate superpixels by using the IFT algorithm. The major contribution of ODISF is the novel object-based seed removal criterion, which favors seeds whose superpixels are placed nearby probable object boundaries. By strategically incorporating the object information only in the seed removal step, ODISF exploits the good estimation of the object location and is more robust to eventual delineation errors in the saliency map. Therefore, such pipeline not only provides accurate object delineation with low computational cost, but also manages to overcome the high dependency on the saliency map quality seen in OISF (see Fig. 1).

This paper is organized as follows. First, we discuss recent works in superpixel segmentation in Section II. Then, in Section III, we detail the mathematical framework used for presenting DISF and ODISF in Section IV. The experimental setup and results are shown in Section V and, finally, we draw conclusions and possible future work in Section VI.

II. RELATED WORKS

In this section, we present an overview of the state-of-the-art superpixel segmentation methods. For a deeper discussion, one may refer to notable surveys [START_REF] Stutz | Superpixels: An evaluation of the state-of-the-art[END_REF], [START_REF] Schick | An evaluation of the compactness of superpixels[END_REF]- [START_REF] Neubert | Superpixel benchmark and comparison[END_REF]. In Section II-A, we review methods which are completely unaware of any object information. Then, in Section II-B we discuss methods based on deep learning. Finally, we present algorithms that consider object information independently from their source (Section II-C).

A. Classic and Content-Sensitive Methods

We may broadly classify such methods in two groups: (i) clustering-based methods; and (ii) graph-based methods. The former comprises those that solve superpixel segmentation by pixel clustering (e.g., K-means, DBSCAN, GMMs). Simple Linear Iterative Clustering (SLIC) [START_REF] Achanta | SLIC superpixels compared to state-of-the-art superpixel methods[END_REF], the most popular method, solves such task by an adaptive K-means approach, resulting in low computational cost and fair object delineation. Inspired by SLIC, Linear Spectral Clustering (LSC) [START_REF] Li | Superpixel segmentation using linear spectral clustering[END_REF] maps every pixel into a 10-dimensional space and, subsequently, applies K-means. LSC shows significant improvement over SLIC in delineation, with the expense of being slightly slower. Similarly to LSC, Intrinsic Manifold SLIC (IMSLIC) [START_REF] Liu | Intrinsic manifold SLIC: A simple and efficient method for computing content-sensitive superpixels[END_REF] runs K-means in a two-dimensional manifold, where area indicates the content density. The majority of these methods (except IMSLIC) cannot guarantee connected superpixels in a given desired number, being necessary to apply a post-processing step that compromises the number of desired superpixels. Finally, due to strict constraints, such as the restricted search scope in the adapted K-means, adjustments for effectively considering object information may become impractical.

The second group of methods solve superpixel segmentation as a graph partitioning problem. Entropy Rate Superpixels (ERS) [START_REF] Liu | Entropy rate superpixel segmentation[END_REF] generates superpixels by removing edges based on the entropy of a random walk in the graph. Although it presents high object adherence, it also presents high computational cost. Superpixel Hierarchy (SH) [START_REF] Wei | Superpixel hierarchy[END_REF] computes a hierarchy of superpixels with high boundary adherence and low computational cost using the Borůkva algorithm. Yet, such methods do not consider object information in their computation.

A major subset of graph-based algorithms segments the image through path concatenation using the Image Foresting Transform (IFT) [START_REF] Falcão | The image foresting transform: Theory, algorithms, and applications[END_REF] algorithm. Such methods are often fast and present accurate object delineation. In [START_REF] Vargas-Muñoz | An iterative spanning forest framework for superpixel segmentation[END_REF], the authors propose a three-stage superpixel segmentation framework named Iterative Spanning Forest (ISF), whose steps are independently defined. This flexibility favored the development of recent and more effective approaches. The Recursive ISF [START_REF] Galvão | RISF: recursive iterative spanning forest for superpixel segmentation[END_REF] is a hierarchical superpixel segmentation method that applies ISF at each layer of the hierarchy. Dynamic ISF (DISF) [START_REF] Belém | Superpixel segmentation using dynamic and iterative spanning forest[END_REF] generates superpixels dynamically through initial seed oversampling with subsequent removal along iterations based on a predefined criterion. Such methods, however, do not consider object information in their computation.

B. Deep Learning Methods

Recently, a significant number of studies propose deep learning solutions for superpixel segmentation. In [START_REF] Awaisu | Fast superpixel segmentation with deep features[END_REF], the authors present an algorithm, named Deep-FLIC, that considers deep features as input for an adapted version of the Fast Linear Iterative Clustering (FLIC) [START_REF] Zhao | FLIC: Fast linear iterative clustering with active search[END_REF] algorithm. Conversely, the authors in [START_REF] Tu | Learning superpixels with segmentation-aware affinity loss[END_REF] debate over the efficiency of incorporating deep features and propose a neural network for computing pixel affinities in the image, which are used as input for a superpixel segmentation method (e.g., ERS). Finally, we recall the Superpixel Sampling Network (SSN) [START_REF] Jampani | Superpixel sampling networks[END_REF] and the Superpixel with Fully Convolutional Network (S-FCN) [START_REF] Yang | Superpixel segmentation with fully convolutional networks[END_REF] as representatives of end-to-end trainable superpixel segmentation methods. Notably, deep learning methods are strongly dependent on the amount of annotated training examples, which are usually scarce in scientific applications. Even if a large set is provided, one may argue that the profits of supervision lacks more evidence. Finally, for a different object of interest, the proposed model may not assure the reported performance even through fine-tuning.

C. Object-based Methods

Object-based algorithms generates superpixels by considering a prior information regarding the objects of interest. Similarly to ISF, the Object-based ISF (OISF) [START_REF] Belém | Superpixel generation by the iterative spanning forest using object information[END_REF] is a threestage object-and IFT-based superpixel segmentation framework. In OISF, the object information is provided through an object saliency map. This map is used in each of the three steps, permitting the user to control the superpixel morphology and displacement with respect to the borders of the map. As drawbacks, OISF variants are highly dependent of the quality of the saliency map, and their computational cost is high.

III. THEORETICAL BACKGROUND

In this section, we briefly discuss the theoretical background. In Section III-A, we recall basic notions regarding images and graphs and, in Subsection III-B, we detail the Image Foresting Transform (IFT) [START_REF] Falcão | The image foresting transform: Theory, algorithms, and applications[END_REF], the core method of our approach.

A. Image Graph

Let an image I be a pair P, F in which P ⊂ Z 2 is the set of picture elements (i.e., pixels) and F(p) ∈ R m , for m ∈ N >0 , consists in a particular and representative sequence of features (e.g. color) of a pixel p. If m = 1, I is a grayscale image; otherwise, I is a colored image (e.g., CIELAB). Moreover, p can be represented a unique sequence of (spatial) coordinates x p , y p . Finally, considering the previous definitions, we may define an object saliency map O as a grayscale image P, O in which O(p) ∈ [0, 1] maps every pixel p to a representative value that indicates its likelihood of belonging to an object of interest.

Given I, it is possible to build an image graph G = V, E such that V ⊆ P is the set of vertices and E ⊂ V 2 is the set of edges. A classic approach for defining the edge set is through the Euclidean (spatial) distance between two distinct vertices u, v, with respect to a certain radius r ∈ R ≥0 . More specifically, E = { u, v | u -v 2 ≤ r}. In this work, we use the 8-neighborhood (i.e., r = √ 2). If u, v ∈ E, then u, v are adjacents. In this work, G is an undirected graph (i.e., u, v ≡ v, u ).

Consider a path ρ = v i k i=1 to be a sequence of distinct vertices such that, for i < k, v i , v i+1 are adjacents. If k = 1, then ρ is a trivial path. We may explicitly exhibit the origin (or root) v 1 and the terminus v k of ρ either by ρ v1 v k or simply by ρ v k . Finally, the following notation ρ s s, t indicates a path resultant from a concatenation between a path ρ s and an edge s, t .

B. Image Foresting Transform

Several state-of-the-art algorithms use the Image Foresting Transform (IFT) [START_REF] Falcão | The image foresting transform: Theory, algorithms, and applications[END_REF] for generating superpixels [START_REF] Vargas-Muñoz | An iterative spanning forest framework for superpixel segmentation[END_REF], [START_REF] Belém | Superpixel segmentation using dynamic and iterative spanning forest[END_REF], [START_REF] Belém | Superpixel segmentation by object-based iterative spanning forest[END_REF], [START_REF] Galvão | RISF: recursive iterative spanning forest for superpixel segmentation[END_REF]. The IFT is a framework for the development of image operators based on connectivity and, in this work, we focus on its seed-restricted variant. For a given set S ⊂ V of vertices (i.e., seeds), the IFT finds optimum-paths in an nondecreasing order of cost from any s ∈ S to every p ∈ V \ S.

First, let Π be the set of all possible paths in G. Then, a path-cost function assigns a non-negative path-cost value f * (ρ) ∈ Rto any path ρ ∈ Π. The f max is often chosen due to its effective performance in object delineation, and may be defined as follows (Eq. 1):

f max ( t ) = 0 if t ∈ S +∞ otherwise f max (ρ t t, s ) = max {f max (ρ t ), w * (t, s)} (1) 
in which w * (t, s) ∈ R defines a cost to an edge t, s ∈ E.

An optimum-path ρ t is a path in which, for any other

τ t ∈ Π, f * (ρ t ) ≤ f * (τ t ).
Let P be an acyclic map in which assigns a vertex v ∈ V to its predecessor P(v) = u ∈ V in a unique path ρ v or to a distinctive marker ∈ V when v is the root of ρ v . P is said to be optimum if all of its paths are optimum. As one may note, we may assign every vertex v to its respective root R(v) defined in P through recursion. Therefore, for a given seed set S and a path-cost function f * , the IFT algorithm can output an optimum predecessor map P such that, for every seed x ∈ S, it is defined an optimum-path tree T x with paths that are more closely connected to x than to any other seed. In other words, the IFT minimizes a path-cost map C(v) = min ρv∈Π {f * (ρ v )} and, consequently, builds P through path concatenation. In this work, every superpixel whose seed is x ∈ S is an optimumpath tree T x . Even if f * is not smooth [START_REF] Ciesielski | Path-value functions for which Dijkstra's algorithm returns optimal mapping[END_REF], the superpixel segmentation can be effective.

IV. OBJECT-BASED DISF

In this section, we present the Object-based Dynamic and Iterative Spanning Forest (ODISF) method, illustrated in Figure 2, by making clear its differences with respect to the DISF approach [START_REF] Belém | Superpixel segmentation using dynamic and iterative spanning forest[END_REF]. In Section IV-A, we discuss two different strategies for seed oversampling and, subsequently in Section IV-B, we revisit the concept of dynamic edge-cost estimation for superpixel generation using the IFT framework. Finally, we detail our proposed object-based seed removal strategy for a given object saliency map in Section IV-C.

A. Seed Oversampling

For a given number N f > 0 of desired superpixels, the first step of seed-based methods is to estimate an initial seed set S. Differently from most methods [START_REF] Achanta | SLIC superpixels compared to state-of-the-art superpixel methods[END_REF], [START_REF] Li | Superpixel segmentation using linear spectral clustering[END_REF], [START_REF] Belém | Superpixel segmentation using dynamic and iterative spanning forest[END_REF], DISF and ODISF start off from seed oversampling such that |S| = N 0 N f . This strategy significantly increases the probability of selecting, in the initial seed set, all relevant seeds for solving the problem.

Most methods [START_REF] Achanta | SLIC superpixels compared to state-of-the-art superpixel methods[END_REF], [START_REF] Li | Superpixel segmentation using linear spectral clustering[END_REF], [START_REF] Belém | Superpixel segmentation using dynamic and iterative spanning forest[END_REF] initially distribute seeds equidistantly in a grid pattern. Such strategy, hereafter named GRID, first estimates the expected superpixel size a for an image I = P, F as a = |P|/N f . Then, it establishes that seed pairs must be distanced by √ a. Finally, in order to avoid seeds placed over borders, every seed s ∈ S is shifted to a position whose gradient is the lowest within its neighborhood.

In [START_REF] Belém | The importance of object-based seed sampling for superpixel segmentation[END_REF], the authors evaluate the impact of object-based seed sampling strategies for superpixel segmentation and conclude that a high concentration of seeds within the object leads to better results in delineation. However, these strategies are computationally expensive. On the other hand, the combination of seed oversampling and an accurate local criterion for seed removal along iterations may result into similar effectiveness with considerable efficiency gains. For example, one can preserve seeds near the borders of a given object saliency map in the seed removal step. We explore this strategy and, moreover, analyze if a random selection of seeds (hereafter named RND) is equivalent to GRID when using seed oversampling.Unlike GRID, RND does not require computing the image gradient for seed perturbation, and it is straightforward to implement for non-rectangular masks.

B. Superpixel Generation

Both DISF and ODISF use the IFT algorithm with pathcost function f max and on-the-fly edge-cost estimation, as proposed in [START_REF] Bragantini | Graphbased image segmentation using dynamic trees[END_REF] for interactive object segmentation. Let µ F (T x ) = v∈Tx F(v)/|T x | be the mean feature vector of a growing optimum-path tree rooted in x. The dynamic edgecost function is defined as w(u, v) = µ F (T x ) -F(v) 2 for x = R(u) by the time the path ρ u is optimum during the IFT algorithm.

Whenever the object saliency values in O are derived from F, both should contain the same information about the boundaries of interest. In [START_REF] Belém | Superpixel segmentation by object-based iterative spanning forest[END_REF], the authors use a path-cost function with an object-based edge-cost estimation in which it is possible to control boundary adherence with respect to the borders in O and F. As Figure 4 shows, for imperfect saliency maps, this strategy can negatively affect superpixel delineation. In such a case, the border information in F should be sufficient for accurate superpixel delineation. In our framework, we prefer to constrain the use of the object saliency map for seed removal (Section IV-C).

C. Object-based Seed Removal

In DISF, due to seed oversampling, the number of iterations is such that N f seeds (superpixels) must result at the last iteration. At each iteration i ∈ N >0 , M(i) = max N 0 exp -i , N f seeds are selected from S for the delineation step in iteration i + 1, while the remaining are discarded. This process is repeated until N i = N f , resulting in Ω iterations. For most practical cases, Ω = 5.

One approach for selecting M(i) seeds is to assign a relevance value V * (s) to each s ∈ S based on the characteristics of its resulting superpixel T s . Two distinct trees T x , T y are said adjacent if ∃ u, v ∈ E such that u ∈ T x and v ∈ T y . Let B be the set of pairs T x , T y of adjacent trees within the forest. Then, we may define V 1 (s) as a combination of size and contrast of T s as presented in Eq. 2

V 1 (s) = |T s | |V| min ∀ Ts,Tr ∈B { µ F (T s ) -µ F (T r ) 2 } (2)
The major drawback of V 1 is not distinguishing whether a superpixel is near an object border. Obviously, the size of a superpixel does not assist in such determination. As one may note, the contrast information is also insufficient since low contrast regions are present within the whole image. Thus, inspired by [START_REF] Borlido | Towards interactive image segmentation by dynamic and iterative spanning forest[END_REF], we propose an object-based seed relevance criterion V 2 (Eq. 3) 

G(T s ) = max ∀ Ts,Tr ∈B { µ O (T s ) -µ O (T r ) 1 } V 2 (s) = V 1 (s) max {µ O (T s ), G(T s )} (3) 

V. EXPERIMENTAL RESULTS

In this section, we present the experimental setup and the results obtained by our approach. In Section V-A, we present the baselines, the datasets and the evaluation metrics considered for benchmark. Subsequently, in Sections V-C and V-B, we present and illustrate the performance of all methods.

A. Experimental Setup

Most works evaluate their proposals in a contour-driven dataset [START_REF] Arbelaez | Contour detection and hierarchical image segmentation[END_REF] in which all relevant borders are desired. However, as one may note, our proposal aims the accurate delineation of the object of interest. Therefore, we chose three datasets from distinct domains and with different object properties for evaluating the robustness of ODISF. The Extended Complex Saliency Scene Dataset (ECSSD) [START_REF] Shi | Hierarchical image saliency detection on extended cssd[END_REF] is a popular dataset for salient object detection and consists of 1000 natural images with diverse objects. The Liver [START_REF] Vargas-Muñoz | An iterative spanning forest framework for superpixel segmentation[END_REF] dataset is composed of 40 CT slices of the human liver, which imposes a great challenge for being a grayscale object with smooth borders. Similarly, the Parasite [START_REF] Belém | Superpixel segmentation by object-based iterative spanning forest[END_REF] dataset contains 72 images of colored objects (i.e., helminth eggs) with smooth borders in which an impurity may be attached. For all datasets, we randomly defined 70% as test set. For generating object saliency maps, we considered a recent deep neural network approach [9] 1 , suitable for small datasets, whose detection accuracy is on par with many other deep-learning approaches. We trained such estimator in the remaining 30% of the dataset.

We selected five state-of-the-art methods in which the last one is, to the best of our knowledge, the only objectbased method in literature: (i) SLIC [6] 2 ; (ii) ERS [START_REF] Liu | Entropy rate superpixel segmentation[END_REF] 3 ; (iii) 1 https://github.com/xuebinqin/U-2-Net 2 https://www.epfl.ch/labs/ivrl/research/slic-superpixels/ 3 https://github.com/mingyuliutw/EntropyRateSuperpixel LSC [START_REF] Li | Superpixel segmentation using linear spectral clustering[END_REF] 4 ; (iv) SH [START_REF] Wei | Superpixel hierarchy[END_REF] 5 ; and (v) OISF-OSMOX [10] 6 . All methods were selected due to their performance in superpixel delineation and, for that, the recommended parameter configuration was set. For our approach, we set N 0 = 8000 (as in [START_REF] Belém | Superpixel segmentation using dynamic and iterative spanning forest[END_REF]) and evaluate ODISF with two options for seed oversampling: ODISF-GRID and ODISF-RND. The code of ODISF is available online 7 . The performances were assessed by two classic metrics. Boundary Recall (BR) [START_REF] Stutz | Superpixels: An evaluation of the state-of-the-art[END_REF] measures the percentage of object boundaries correctly overlapped by a superpixel border (i.e., higher is better). On the other hand, Under-Segmentation Error (UE) [START_REF] Neubert | Superpixel benchmark and comparison[END_REF] measures the error of multiple ground-truth overlapping by superpixels (i.e., lower is better). Since we do not aim for compact superpixels, and due to the high correlation between different superpixel metrics [START_REF] Stutz | Superpixels: An evaluation of the state-of-the-art[END_REF], we argue that the both selected are sufficient for a proper evaluation. We evaluated all methods considering N f ∈ [START_REF] Jampani | Superpixel sampling networks[END_REF]750].

B. Quantitative Results

Figure 3 shows the results for all datasets. It is possible to see that ODISF surpasses all baselines with significant margin, especially in boundary adherence. Table I shows the average computational time of each method using a 64bit, Intel (R) Core(TM) i5-5200U PC with CPU speed of 2.20Ghz. Knowing that SLIC, LSC, and SH are O(N ) complex, considering N to be the number of pixels in the image, it is no surprise that they are the fastest baselines. When comparing to OISF, ODISF presents a significant speedup of 3.05 (for N f = 25) in Parasites, with on pair performance in UE. It is important to emphasize that, although both ODISF and OISF are O(N log N ), OISF-OSMOX exploits parallelism during sampling and computes differential IFTs (DIFTs) [START_REF] Falcão | Interactive volume segmentation with differential image foresting transforms[END_REF] for speed optimization. Therefore, since ODISF is an IFT-based method, our implementation is eligible for computing DIFTs and further improve its speed.

Similarly to [START_REF] Jerônimo | Graph-based supervoxel computation from iterative spanning forest[END_REF], we found no statistical difference between ODISF-GRID and ODISF-RND for both metrics and, furthermore, both achieve similar performance to object-based seed sampling approaches [START_REF] Belém | The importance of object-based seed sampling for superpixel segmentation[END_REF]. Thus, we may conclude that the oversampling step can be significantly simplified without prejudicing the ODISF performance. Interestingly, OISF, whose edge-cost estimation is objectbased, presents performance inferior to ODISF, which considers the input image features only. Although there are other differences in their connectivity function, the neural network may generate imperfect object saliency maps and the use of this map restricted to the seed removal policy seems to make ODISF more robust than OISF. We argue that our object-based seed removal policy is effective to preserve relevant seeds and robust to imperfect saliency maps that at least locate the object of interest.

C. Qualitative Results

Figure 5 illustrates the segmentation results obtained by each method for the Parasite and ECSSD datasets. The strategy used by LSC yields effective results in natural images but, as one may note, it can lead to critical errors in different domains. On the other hand, SH shows a consistent performance irrespective of the image domain, justifying its position as one of the top superpixel methods. The results obtained by OISF-OSMOX illustrates its high dependency on the quality of the map by presenting high adherence to the borders of the map, including both correct and incorrect estimations. Finally, it is possible to see that ODISF segmentation manages to best approximate the object borders while it prevents severe superpixel leakings present in the results of the previous methods.

VI. CONCLUSION AND FUTURE WORK

In this paper, we propose a novel object-based superpixel segmentation framework inspired in a recent superpixel method named Dynamic and Iterative Spanning Forest (DISF) [START_REF] Belém | Superpixel segmentation using dynamic and iterative spanning forest[END_REF]. Our proposal, Object-based DISF (ODISF), exploits the positive aspects of DISF, such as seed oversampling and dynamic edge-cost estimation, while it offers a more effective and robust seed removal criterion based on prior object information. Experimental results show that ODISF variants can surpass state-of-the-art algorithms in superpixel delineation by preventing segmentation errors, while being faster than its object-based counterpart [START_REF] Belém | Superpixel generation by the iterative spanning forest using object information[END_REF], [START_REF] Belém | Superpixel segmentation by object-based iterative spanning forest[END_REF].

For future endeavors, we intent to study different curves for establishing the number of seeds at each iteration. Similarly to [START_REF] Borlido | Towards interactive image segmentation by dynamic and iterative spanning forest[END_REF], we also desire to investigate the applicability of ODISF for interactive object segmentation based on userdrawn markers.
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 1 Fig. 1: Results of object-based superpixel segmentation methods considering 25 superpixels. (a) Original image with ground-truth borders overlayed in red; (b) Object saliency map [9]; Segmentation results (in cyan), drawn over (a), obtained by (c) OISF [10] and (d) our proposal.
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 2 Fig. 2: Flowchart of the proposed Object-based DISF considering N 0 = 1000 and N f = 5.
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 34 Fig.3: Results obtained for ECSSD, Liver and Parasites, respectively. For all methods, the default configuration was set.

  in which, analogously to µ F , µ O (T s ) = v∈Ts O(v)/|T s | is the mean saliency value of T s . In contrast to other objectbased methods, which promotes a simple concentration of superpixels within (or outside) the objects of interest, our proposed function favors those nearby a probable object border, promoting seed competition in crucial regions, or within a region with high object certainty (i.e., high saliency values).
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 5 Fig.5: Segmentation results (in cyan), obtained for each method, overlaying the ground-truth (in red and magenta). A number N f = 25 of superpixels was required, and the default parameter setting was used.
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 I Average processing time for superpixel segmentation in the Parasites dataset.
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