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Abstract—In this paper, we study the behavior of a multiple-
input multiple-output (MIMO) full-duplex (FD) system according
to two different models of the self-interference (SI) channel inher-
ent to the FD communication strategy: the spherical wave model
(SWM) and the planar wave model (PWM). More precisely, we
evaluate the received SI power at the receiver antenna array
by changing the relative geometrical position of the transmitter
antenna array in respect to the latter. Our study shows a
significant difference between the two models. In particular we
theoretically show as well as through simulation that the SWM
for the SI channel is more precise than the PWM, and should
then be considered for practical applications of the FD concept.

Index Terms—Analog beamforming, full-duplex, MIMO, pla-
nar wave model, self-interference, spherical wave model.

I. INTRODUCTION

These last decades, full-duplex (FD) has been proven to
be one of the most appealing but also most challenging
communication technologies [1]–[5]. The main advantage of
FD is its capacity to transmit and receive different signals at
the same time. Thus, it becomes theoretically possible for FD
devices to double the spectral efficiency compared to half-
duplex (HD) devices. However, FD devices suffer from the
presence of self-interference (SI) that inevitably occurs since
the transmitter (TX) is likely to radiate in the direction of
the co-localised receiver (RX), while the receiver is trying to
receive a signal from other devices.

For any FD system to work properly the management of
the SI becomes the most important task to deal with. One of
the key factors for the design of an efficient self-interference
cancellation (SIC) technique is the model of the SI channel.
Most of the existing works dealing with FD systems model
the SI channel with a planar wave model (PWM), e.g. [6]–[8],
which is not rigorously correct taking into account the short
distance between the transmitter and the receiver antenna parts.
Thus, it seems more relevant to consider the spherical wave
model (SWM) which is expected to reveal more precisely the
short distance propagation effects. This becomes even more
critical considering transmit and receive radiating devices in
the form of antenna arrays, since the size of the radiating
disposal is hereby augmented. Recently more and more authors
start to question the use of the PWM while modelling the
SI channel in FD systems. In [9] and [10], the authors
do consider the SWM for the SI channel model, however
no solid theoretical proof was provided to justify the latter

consideration. In [11], the authors adopted the SWM for the
SI channel model, however limiting the work to the case of a
uniform linear arrays (ULA). This limiting case finally showed
very few advantage in favor of the SWM model compared to
its PWM counterpart.

In this paper, we consider a generic MIMO FD system
with the capacity of analog beamforming, and we propose
to analyze and compare the system performance between the
PWM and SWM models. Unlike [11], we consider in our work
a uniform planar array (UPA) structure instead of a ULA, to
fully exhibit the potential advantage of SWM compared to
PWM. In particular, we first demontrate that the received SI
power evaluated upon the PWM model can be written in a
simplified way whereas such a simplification is not possible if
the SWM model is used. This proves that the SWM model
is much more generic and accurate than the PWM model
to characterize the behavior of the SI link in FD systems.
To confirm this fact, we then provide simulation results of
a realistic FD system with various relative positions of the
antenna arrays. Our experiments clearly show the lack of
accuracy of the PWM approximation making the SWM model
essential in the perspective of proper SIC algorithm design for
FD systems and more generally FD performance assessment.

The rest of the paper is organized as follows: Section
II introduces the PWM and SWM channel models and our
considered FD MIMO system model as well as the analog
beamforming model, section III provides the justification of
the validity domain of PWM and the theoretical analysis
involving the PWM model, section IV gives the simulation
results while section V concludes our work.

Notations: Boldface letters a and normal font letters a
represent vectors and scalars, respectively. Capital boldface
letters A represents matrix. AH represents the conjugate
transpose operation of matrix A. ∥.∥2 denotes the L2-norm.

II. CHANNEL MODEL AND SYSTEM MODEL

In this section we first present the considered MIMO FD
system model. We then introduce the two channel models we
consider: the PWM and the SWM. The end of this section
presents the analog beamforming model we consider in our
work.



Fig. 1. 3D view of the relative position change of the TX array to the RX
array.

A. System Model

In our work we consider a generic FD MIMO system with
a TX part and a RX part. Each part has its own antenna array
dedicated to transmit signals to other devices or receive signals
of interest (SOI) from other devices, and each antenna array
has its own number of antennas Mt for TX and Mr for RX.
We assume that both TX and RX arrays are built in the same
way: both adopt the UPA structure with a λ

2 spacing between
adjacent elementary antennas. Without loss of generality we
assume that the TX array is placed closely below the RX array.
Fig. 1 shows the topology for both TX and RX arrays. A
Cartesian orthonormed coordinated system (Oi, xi, yi, zi) with
i ∈ {Rx, Tx} is associated to each array. Initially the two
coordinated systems are exactly the same with a translation
along the y axis between each other as shown in the left part
of Fig. 1. During our study, we consider that the position of
the TX array can vary according to two angles as shown in
the right part of Fig. 1: a tilt angle θx around the x axis and
θy around the y axis. We study the effect of these two angles
on the received SI power radiated from the TX array on the
RX array. The received signal at RX side can be written as:

y = WH
RFHSIF SIxSI + ySOI +WH

RFn, (1)

with y the vector gathering all the received signal at the RX
array, WRF the analog post coding matrix at RX side (detailed
in the next section), HSI the SI channel between the RX
array and the TX array using PWM or SWM, FRF the analog
precoding matrix at TX side, xSI the vector gathering all the
signals sent from the TX array which represent precisely the
source of SI for the RX array, ySOI the vector gathering all

the SOI for RX and n the vector gathering the noise received
at each elementary antenna of the RX array.

B. Spherical wave model

The SI channel coefficient with SWM between the m-th
(∀m ∈ {0, . . . ,Mr − 1}) receiver antenna and the n-th (∀n ∈
{0, . . . ,Mt − 1}) transmitter antenna can be defined as in the
work of [12]:

hSI,m,n = ρejϕ
D

Dm,n
e−j 2π

λ ∆SWM
m,n , (2)

with ρejϕ the complex gain expressing the channel between
the center OTx

of the TX antenna array and the center ORx

of the RX antenna array, D
Dm,n

an amplitude fluctuation term
due to the small distance between the TX and RX antennas,
where D is the distance between OTx

and ORx
and Dm,n is

the distance between the centre of the m-th antenna of the
receiver antenna array and the centre of the n-th antenna of
the transmitter antenna array, λ the wavelength and ∆SWM

m,n ≜
Dm,n −D the phase shift with respect to the reference points
located at OTx

and ORx
defined as:

∆SWM
m,n = ∥−at,n +Dut +Rar,m∥2 −D, (3)

with −at,n (resp. ar,m) the vector from the n-th (resp. m-
th) antenna of the TX (resp. RX) array to the centroid OTx

(resp. ORx
), Dut the vector from OTx

to ORx
(with ut the

unitary vector pointing from OTx
to ORx

), R the rotation
matrix mapping the vectors of the RX coordinate into the TX
coordinate: Rur = −ut and ur the dual vector of ut for the
RX array.

C. Planar Wave Model

The PWM corresponds to the first order term in the Taylor
development of the expression of SWM and so the SI channel
can be defined as follows:

HPWM
SI =

√
MtMrρe

jϕer(ur)et(ut)
H , (4)

with ρejϕ the complex gain as defined in (2), er and et the
steering vectors associated with the elementary antennas of the
RX array and the TX array respectively. The steering vector
can then be defined in a classic way as:

ex(ux) =

√
1

Mx

 e−j 2π
λ ax,0·ux

...
e−j 2π

λ ax,Nx−1·ux

 , (5)

with x ∈ {t, r}.

D. Analog Beamforming Model

We adopt in our work the structure of partially connected RF
chain to form the precoding/post coding matrix, which means
the RF chains of the same unit (TX or RX) are independent
from each other, and each RF chain is only connected to a
unique sub-array of elementary antennas. Thus, each sub-array
of elementary antennas has the capability to form a unique



directional beam, the latter being controlled by an array of
phase shifters for example. In this sense, the analog precoding
matrix FRF of size Mt×NRF

t can be formed by concatenating
the steering vectors defined in (5) as:

FRF =


e0 0 · · · 0
0 e1 · · · 0
...

...
. . .

...
0 · · · · · · eNRF

t −1

 , (6)

with NRF
t the number of RF chains at the TX side. Similarly,

the analog post coding matrix WRF of dimension Mr×NRF
r

can be formed in the same way with NRF
r the number of RF

chains at the RX side.

III. THEORETICAL ANALYSIS

A. Validity Domain

We first evaluate the validity domain of the PWM and the
SWM. The validity domain of the PWM can be defined from
[12] as follows:

D ≥
8R2

f

λ
, (7)

with λ the wavelength and Rf the Fraunhofer distance defined
as in [13]:

Rf =
π

4

D2
max

Φλ
, (8)

with Dmax the maximum aperture of the elementary antenna,
Φ the maximum tolerated phase error and λ the wavelength.
In our work we employ the patch antennas whose maximum
aperture is optimized and equal to 4.24mm as in the work
of [14]. Furthermore, we place ourselves under typical 5G
mmWave conditions with a central frequency of 28GHz, which
leads to λ = 10.77mm. For Φ = π

8 which is a classic
consideration in literature, the Fraunhofer distance in our case
is Rf = 3.3603mm, leading to D = 8.4423mm for the validity
distance of the PWM. For the considered MIMO FD system
in which the two arrays are placed one next to each other,
only a distance of λ

2 = 5.36mm can be found between the
two arrays, which is clearly below the validity domain of the
PWM. Thus, we see the necessity to consider the SWM in a
FD system with transmit and receive disposals close to each
other. Note that the value of Rf considered here only gives an
order of magnitude of the validity domain of SWM i.e. does
not represent an absolute bound on the choice of P/SWM.

B. Channel Model Analysis

In this section we theoretically evaluate the effect of the
considered analog beamforming techniques on the SI power
when PWM is used for the SI channel model. The received
SI power at the m-th RF chain with PWM can be written as:

PPWM
SI,m =

NRF
t −1∑
n=0

Pt,n

∣∣∣(WH
RFH

PWM
SI FRF)m,n

∣∣∣2, (9)

with Pt,n the transmit power of the n-th RF chain at the TX
side. By replacing the expression of WRF and FRF by their
definition as in (6), (9) becomes:

PPWM
SI,m =

NRF
t −1∑
n=0

Pt,n

∣∣∣∣∣
M

(n)
t −1∑
k′=0

1√
M

(n)
t

e
−j 2π

λ a
(n)

t,k′ut

(M(m)
r −1∑
k=0

1√
M

(m)
r

ej
2π
λ a

(m)
r,k urHPWM

SI,k,k′

)∣∣∣∣∣
2

. (10)

The channel coefficient of HPWM
SI can be derived from (4)

and is expressed as:

HPWM
SI,k,k′ = ρejϕe

−j 2π
λ (a

(m)
r,k uSI

r −a
(n)

t,k′u
SI
t )

. (11)

Replacing (11) in (10) leads to:

PPWM
SI,m =

NRF
t −1∑
n=0

ρPt,n

M
(n)
t M

(m)
r

∣∣∣∣∣
M

(n)
t −1∑
k′=0

e
−j 2π

λ a
(n)

t,k′ (ut−uSI
t )

(M(m)
r −1∑
k=0

ej
2π
λ a

(m)
r,k (ur−uSI

r )

)∣∣∣∣∣
2

. (12)

Since UPA are considered for the antenna arrays, we define
w (resp. w′) and h (resp. h′) the horizontal antenna index
and the vertical antenna index for the RX (resp. TX) with
w ∈ {0, . . . , k(m)

w − 1} (resp. w′ ∈ {0, . . . , k′(n)w − 1}), h ∈
{0, . . . , k(m)

h − 1} (resp. h′ ∈ {0, . . . , k′(n)h − 1}) and k
(m)
w

(resp. k
′(n)
w ) and k

(m)
h (resp. k

′(n)
h ) the number of antennas

per row for the m-th RF chain of RX (resp. TX) and the
number of antennas per column for the m-th RF chain of RX
(resp. TX). Thus, the array index k (resp. k′) of RX (resp.
TX) can be replaced and written as k = hk

(m)
w + w (resp.

k′ = h′k
′(n)
w + w′). Relying on such new index (k,w) and

(k′, w′), (12) can be further simplified:

PPWM
SI,m =

NRF
t −1∑
n=0

ρPt,n

M
(n)
t M

(m)
r∣∣∣∣∣

k
′(n)
h −1∑
h′=0

k′(n)
w −1∑
w′=0

e
−j 2π

λ a
(n)

t,h′k′(n)
w +w′

(ut−uSI
t )

(k
(m)
h −1∑
h=0

k(m)
w −1∑
w=0

e
j 2π

λ a
(m)

r,hk
(m)
w +w

(ur−uSI
r )

)∣∣∣∣∣
2

. (13)

Given that a λ
2 spacing is assumed in the construction of our

UPAs for both RX and TX, the result of the scalar products
a
(n)

t,h′k
′(n)
w +w′

ut and a
(m)

r,hk
(m)
w +w

ur are known from [15] and
can be expressed as follows:

a
(n)

t,h′k
′(n)
w +w′

ut =
λ

2
(w cos(ϕ(n)) sin(θ(n)) + h sin(ϕ(n))),

(14)



and

a
(m)

r,hk
(m)
w +w

ur =
λ

2
(w cos(ϕ(m)) sin(θ(m)) + h sin(ϕ(m))).

(15)

Since we consider two rotation angles θx around the x axis
first and then θy around the y axis, the expression of the global
rotation matrix R can be defined as the following:

R =

 cos(θy) sin(θx) sin(θy) cos(θx) sin(θy)
0 cos(θx) − sin(θx)

− sin(θy) sin(θx) cos(θy) cos(θx) cos(θy)

 . (16)

Note that the order of rotation is important at this point.
If the rotation along the y axis is performed first, the global
rotation matrix R has a different expression which leads also
to a different expression of uSI

t . Moreover, since we suppose
that only the TX antenna array is rotating and the RX array is
fixed, the unitary vector uSI

r can easily be defined in the RX
coordinate system as uSI

r = [0,−1, 0]T . The expression of
uSI
t in the TX coordinate system can then be easily calculated

by using the fact that uSI
t = −RuSI

r , which leads to uSI
t =

[sin(θx) sin(θy), cos(θx), sin(θx) cos(θy)]
T .

We now evaluate the components of the vectors
a
(n)

t,w′k
′(n)
h +h′

and a
(m)

r,wk
(m)
h +h

in their own coordinate system.
Without loss of generality, we assume that both RX and TX
arrays have an even number of antennas along the horizontal
direction and the vertical direction (i.e. k′(n)h , k′(n)w , k(m)

w and
k
(m)
h are even). We further assume that both k′-th antenna of

the TX array and the k-th antenna of the RX array are placed
in the top right area of TX and RX so that the coordinates of
both a

(n)

t,w′k
′(n)
h +h′

and a
(m)

r,wk
(m)
h +h

are positive. Note that other

locations of the k-th and the k′-th antenna are also possible
and this is not impacting the final result. Thus, the coordinates
of the vectors a

(n)

t,w′k
′(n)
h +h′

and a
(m)

r,wk
(m)
h +h

can be written as
the following:

a
(n)

t,h′k
′(n)
w +w′

=

(k
′(n)
w +1

2 − w′)λ2

(
k
′(n)
h +1

2 − h′)λ2
0

 , (17)

a
(m)

r,hk
(m)
w +w

=

(k
(m)
w +1

2 − w)λ2

(
k
(m)
h +1

2 − h)λ2
0

 . (18)

Substituting (14), (15), (17) and (18) in (13) leads to:

PPWM
SI,m =

NRF
t −1∑
n=0

ρPt,n

M
(n)
t M

(m)
r

×

∣∣∣∣∣
k
′(n)
h −1∑
h′=0

k′(n)
w −1∑
w′=0

e−jπ(w′ cos(ϕ(n)) sin(θ(n))+h′ sin(ϕ(n)))

ejπ sin(θx) sin(θy)
(

k
′(n)
w +1

2 −w′
)
ejπ cos(θx)

(
k
′(n)
h

+1

2 −h′
)

(k
(m)
h −1∑
h=0

k(m)
w −1∑
w=0

ejπ(w cos(ϕ(m)) sin(θ(m))+h sin(ϕ(m)))

ejπ
(

k
(m)
h

+1

2 −h
))∣∣∣∣∣

2

. (19)

After some simple arrangements according to the different
sum index, (19) becomes:

PPWM
SI,m =

NRF
t −1∑
n=0

ρPt,n

M
(n)
t M

(m)
r

∣∣∣∣∣
k
′(n)
h −1∑
h′=0

e−jπh′(sin(ϕ(n))+cos(θx))

k′(n)
w −1∑
w′=0

e−jπw′(cos(ϕ(n)) sin(θ(n))+sin(θx) sin(θy))

k
(m)
h −1∑
h=0

ejπh(sin(ϕ
(m))−1)

k(m)
w −1∑
w=0

ejπw cos(ϕ(m)) sin(θ(m))

∣∣∣∣∣
2

.

(20)

By using the sum of a geometrical sequences in the different
sum operators of (20), we obtain:

PPWM
SI,m =

NRF
t −1∑
n=0

ρPt,n

M
(n)
t M

(m)
r

×

∣∣∣∣∣1− e−jπk
′(n)
h (sin(ϕ(n))+cos(θx))

1− e−jπ(sin(ϕ(n))+cos(θx))

1− e−jπk
′(n)
w (cos(ϕ(n)) sin(θ(n))+sin(θx) sin(θy))

1− e−jπ(cos(ϕ(n)) sin(θ(n))+sin(θx) sin(θy))

1− ejπk
(m)
h (sin(ϕ(m))−1)

1− ejπ(sin(ϕ(m))−1)

1− ejπk
(m)
w cos(ϕ(m)) sin(θ(m))

1− ejπ cos(ϕ(m)) sin(θ(m))

∣∣∣∣∣
2

.

(21)

Then applying Euler’s formula yields:



PPWM
SI,m =

NRF
t −1∑
n=0

ρPt,n(k
′(n)
h k

′(n)
w k

(m)
h k

(m)
w )2

M
(n)
t M

(m)
r

×

∣∣∣∣∣ sin c(πk
′(n)
h (sin(ϕ(n)) + cos(θx)))

sin c(π(sin(ϕ(n)) + cos(θx)))

sin c(πk
′(n)
w (cos(ϕ(n)) sin(θ(n)) + sin(θx) sin(θy)))

sin c(π(cos(ϕ(n)) sin(θ(n)) + sin(θx) sin(θy)))

sin c(πk(m)
h (sin(ϕ(m))− 1))

sin c(π(sin(ϕ(m))− 1))

sin c(πk(m)
w cos(ϕ(m)) sin(θ(m)))

sin c(π cos(ϕ(m)) sin(θ(m)))

∣∣∣∣∣
2

.

(22)

Furthermore, since we consider UPAs with a λ
2 spac-

ing, ρ can simply be expressed as ρ = MrMt

(
λ
4D

)2
.

By recognizing the Dirichelet kernal in (22), i.e. ∀a, x ∈
R, Da(x) = sinc(πax)/sinc(πx) and by remarking that
M

(n)
t = k

′(n)
h k

′(n)
w and M

(m)
r = k

(m)
h k

(m)
w , the final expres-

sion of the received SI power at the m-th RF chain of the RX
for the PWM writes:

PPWM
SI,m = f(D)× g1(ϕ

(m), θ(m))× g2(ϕ
(n), θ(n), θx, θy),

(23)

where,

f(d) = MrMt

(
λ

4d

)2

, (24)

g1(ϕ
(m), θ(m)) =

∣∣∣∣Dk
(m)
h

(
sin(ϕ(m))− 1

)
D

k
(m)
w

(
cos(ϕ(m)) sin(θ(m))

)∣∣∣∣2,
(25)

g2(ϕ
(n), θ(n), θx, θy) =

NRF
t −1∑
n=0

Pt,nM
(n)
t M (m)

r

×
∣∣∣∣Dk

′(n)
h

(
sin(ϕ(n)) + cos(θx)

)
D

k
′(n)
w

(
cos(ϕ(n)) sin(θ(n)) + sin(θx) sin(θy)

)∣∣∣∣2,
(26)

with f a function which only depends on the distance between
OTx

and ORx
, g1 a function which only depends on the

steering angles of the analog combiner WRF at RX and g2 a
function which depends on the steering angles of the analog
precoder FRF at TX and the angles of rotation θx and θy of
the TX array. Thus, we have proven that the received SI power
can be written as a product of independent functions when the
PWM is used. This fact is however not true using the SWM
since, in that case, the distance D between the centers would
also be an argument of the sin c functions in g2. From this

TABLE I
SIMULATION PARAMETERS

Symbol Value
Mr,Mt 32
NRF

r , NRF
t 4

MRF
r ,MRF

t 8
f 28GHz
d 5.36mm
Pt 50W
{ϕ(0)

r , θ
(0)
r } {15◦,−45◦}

{ϕ(1)
r , θ

(1)
r } {−30◦,−60◦}

{ϕ(2)
r , θ

(2)
r } {−30◦, 0◦}

{ϕ(3)
r , θ

(3)
r } {−30◦, 60◦}

{ϕ(0)
t , θ

(0)
t } {10◦, 5◦}

{ϕ(1)
t , θ

(1)
t } {−30◦,−45◦}

{ϕ(2)
t , θ

(2)
t } {−30◦,−5◦}

{ϕ(3)
t , θ

(3)
t } {−30◦, 45◦}

theoretically derivations, we conclude that the assessment of
the SI would suffer an approximation and a loss of accuracy
using the PWM instead of the SWM. Simulation results of the
next section confirm our analysis.

IV. SIMULATIONS AND DISCUSSION

In this section, simulation results are obtained using a
complete simulation chain to evaluate the relevance of the
SWM compared to the PWM for the considered MIMO FD
system.

A. Simulations parameters

Table I presents the simulation parameters we used. Mx

and MRF
x denote the number of elementary antennas of array

x (x ∈ {r, t}) and the number of elementary antennas per
RF chain for array x, respectively. As mentioned before, the
two arrays are separated by a distance d = 5.36mm, with
an operation frequency centered at 28GHz as in the work
of [6] and [10]. We assume that each RF chain of the TX
array are transmitting signals with the same power fixed at
50W. We further assume that for both arrays, the antennas
dedicated to the first RF chain are placed on the top of each
array, as the antennas dedicated to the last RF chain are placed
on the bottom of each array. Moreover, ϕ(i)

x and θ
(i)
x are the

elevation and azimuth angles of the i-th RF chain of array
x (i ∈ {0, 1, 2, 3}). Without additional indications all the
following results are obtained with the parameters of Table
I.

B. Simulations Results

Note that in all the following figures, the variation of the
received SI power regarding the rotation angles θx and θy
represents only the specific case when the different steering
angles from Table I are chosen and does not represent a general
behavior of the SI power radiation. For other pairs of steering
angles the variation may be very different but does not impact
our analysis. We first study the influence of the tilt angle θx
on the received SI power at different RF chains of the RX side
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Fig. 2. Comparison between PWM and SWM on the received SI power of the
1st and the 4th RF chain of the RX array by variating θx. (Results obtained
with only 1 RF chain activated on the TX array).

in Fig. 2. In this first series of simulations, we consider that
only one of the 4 RF chains of the TX side is activated, and
we evaluate the received SI power for all the 4 RF chains of
the RX side. For a matter of clarity we decide to show only
the results of RF chain #1 and RF chain #4 of the RX side.
As shown in Fig. 2, we observe that the received SI power
monotonously increases when θx increases. This is consistent
since the higher the θx, the more the RX and TX arrays are
in line of sight, thus resulting in an increasing received SI
power with a maximum achieved for a perfect face-to-face
position of the arrays at θx = 90◦. Moreover, it is interesting
to remark that for the PWM, the received SI power drastically
drops when θx → 0◦, while the SI power with the SWM is
maintained at a non negligible level (superior to 0 dBm) when
θx → 0◦. Thanks to a better precision of the SWM, we can
conclude that in reality the received SI power is less sensitive
to the tilt change compared to the approximation offered by the
PWM. Both models confirm the intuition that the minimum of
SI power is reached for a ”perfect” installation of the arrays,
i.e. θx = 0◦. However the SWM shows that an installation
error up to 5◦ can be tolerated since the amplitude of the SI
power in that case meets very few variation for θx varying
from 0◦ to 5◦.

In Fig. 3, we study the same metric as in Fig. 2 but
considering that all the 4 RF chains are activated on the TX
array. This time we study the received SI power at RF chain #1
and #4 of the RX array. As we can observe, since the received
SI power is the sum of the contributions of the 4 TX RF chains,
there is a larger dynamic variation of the received SI power
compared to that reported in Fig. 2. We also observe that even
if the PWM is trying to follow the variations of the SWM,
there is a clear mismatch of the extremum of the SI power
between the two. An important conclusion can be drawn here:
for any SIC method based on the estimation of the SI power,
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Fig. 3. Comparison between PWM and SWM on the received SI power of the
1st and the 4th RF chain of the RX array by variating θx. (Results obtained
with 4 RF chains activated on the TX array).

a non-negligible estimation error is induced if the PWM is
used for the estimation instead of the SWM, thus leading to a
poorer performance of the SIC algorithm. Another interesting
point is that the received SI power at different RF chains with
the PWM have the same variation, with only an amplitude
offset between them. The limit of the PWM approximation
is clearly shown here: since we showed theoretically in (23)
that for the PWM the received SI power is the product of 3
independent functions among which the first one only depends
on the distance and the second and the third one only depend
on the angles. That means for the same angular variation (θx)
as in Fig. 3, the received SI power with the PWM is only
varying with the distance between ORx and OTx . Since RF
chain #4 is placed closer to the TX array, this explains the high
correlation of variation between the PWMs and their relative
position, and further confirms that in the considered situation
the SWM is way more precise and accurate than the PWM.

In Fig. 4 we study the same metric as a function of θy
instead of θx, while considering θx = 0◦. We observe that
the SI power with the PWM does not vary according to this
rotation change since the planar wave front is not affected by
the rotation around the y axis. This result can also be found by
replacing θx by 0◦ in (23), which further validates the analysis.
On the contrary, the SWM is sensitive to the change and shows
in particular that the minimum of SI power is reached when
θy = 0◦, which means when the two a antenna arrays are
perfectly coplanar. The same conclusion than before can be
made here: it is more relevant to consider the SWM instead
of the PWM to model the SI channel.

More generally in Fig. 5, we study the received SI power
at the RF chain 4 by variating simultaneously θx and θy . We
observe in particular in Fig. 5-(a) that the received SI power is
constant for θx = 0◦ as we showed previously in Fig. 4, but the
SI power with the PWM is still sensitive to θy variation for
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Fig. 4. Comparison between PWM and SWM on the received SI power of the
1st and the 4th RF chain of the RX array by variating θy . (Results obtained
with 4 RF chains activated on the TX array).

(a) Received SI power at the 4th RF chain of the RX array with PWM
by simultaneously variating θx and θy (Results obtained with 4 RF chains
activated on the TX array).

(b) Received SI power at the 4th RF chain of the RX array with SWM
by simultaneously variating θx and θy (Results obtained with 4 RF chains
activated on the TX array).

Fig. 5. Comparison of the received SI power at the 4th RF chain with SWM
and PWM by simultaneously variating θx and θy .

other values of θx, which approves our theoretical analysis.
We observe that the overall variation of the SI power with
PWM in Fig. 5-(a) is more monotoneous than the variation
with the SWM in Fig. 5-(b), while a clear mismatch between
the extremum of SI power for some values of (θx, θy) can be

observed. Once again, the SWM proves to be more relevant
than the PWM in the considered situation.

V. CONCLUSION

In this paper we evaluated and showed the influence of the
SWM and the PWM in a MIMO FD system. Indeed, for a
generic FD system where the TX array and the RX array are
potentially very close to each other, the PWM is no longer
viable to model correctly the SI channel. We theorerically
proved and highlighted through simulations the limitations of
the PWM compared to the SWM. This makes us conclude
about the importance of considering the SWM for a more
precise model of the SI channel which undoubtedly would
lead to much more efficient SIC algorithms.
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