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Abstract: The extension of Mathematical Morphology to colour and multivariate images is challenging due
to the need to define a total ordering in the colour space. No one general way of ordering multivariate data
exists and, therefore, there is no single, definitive way of performing morphological operations on colour
images. In this paper, we propose an extension to mathematical morphology, based on reduced ordering,
specifically themorphological Hit-or-Miss Transformwhich is used for object detection. The reduced ordering
employed transformsmultivariate observations to scalar comparisons allowing for an order to be derived and
for both flat and non-flat structuring elements to be used.We also compare other definitions of theHit-or-Miss
Transform and test alternative colour ordering schemes presented in the literature. Our proposed method is
shown to be intuitive and outperforms other approaches tomultivariateHit-or-Miss Transforms. Furthermore,
methods of setting the parameters of the proposed Hit-or-Miss Transform are introduced in order to make the
transform robust to noise and partial occlusion of objects and, finally, a set of design tools are presented in
order to obtain optimal values for setting these parameters accordingly.

Keywords: Image processing; Mathematical morphology; Hit-or-Miss Transform; Template matching; Object
detection; Pattern recognition

1 Introduction
Mathematical Morphology (MM), first introduced and formalised byMatheron [25] and Serra [37, 38] and later
extended by Heijmans [13], is a fundamental set of non-linear image processing techniques. MM applies the
mathematical concepts of set theory, specifically lattice theory, in order to study the shape, or morphology,
of objects in various image analysis tasks such as object detection, edge detection, segmentation and im-
age de-noising [32, 41]. Although, the use of MM was initially limited to binary images, there has since been
much effort to extendMM techniques for application to greyscale images [30, 40] and beyond formultivariate
images [2, 20, 50].

The Hit-or-Miss Transform (HMT) is a useful tool in MM and is often used for detecting objects based on
their size and shape. In common with many other MM operators, the definition of the HMT was originally
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restricted to binary images [37]. Multiple proposals for greyscale extensions followed, which are reviewed in
[28], and a unified formulation now exists [30]. A further extension to colour and higher dimensionality do-
mains is non-trivial. The fundamental issue is thatMMrequires a complete lattice [34] in order for its operators
to be accurately defined. Defining a complete lattice, i.e. an infimum and a supremum, on multivariate data is
a challenging task as there is no generally accepted or unambiguous way to order such data [4]. As a result,
no unified morphological framework exists for use in colour or multivariate images. One way of implement-
ing MM in the colour domain is to introduce a scheme for ordering multivariate data into a morphological
framework [2, 36]. Other methods include redefining morphological frameworks using techniques such as
fuzzy logic [35] and supervised ordering [44].

Another increasingly common method for object detection is the use of deep learning techniques. Deep
learning has been employed to great effect in various image processing applications such as segmentation,
edge detection as well as for object tracking [46] and object detection and subsequent classification [16].
Deep-learning, especially convolutional neural network (CNN), based methods offer object detection typic-
ally based on some bounding box regression and classification [33]. However, morphology provides a rapid,
pixel-wise decision for object detection and pattern recognition based on size and shape without the need for
training data. Instance segmentation based networks such as Mask R-CNN [12] offer similar pixel-wise classi-
fication however are comparatively complex and computationally expensive. Recently, various investigations
into ways of combining morphology into state of the art deep learning methods have been introduced. All
morphological operations are performed using a structuring element, or SE, and as such the design of these
SEs is of great importance. Traditionally, SEs are designed by hand with some prior knowledge of the opera-
tion however, more automatic methods to optimise the design of SEs using supervised [22] and deep learning
[24, 31, 39] have been explored. Morphology can also be deployed within deep learning frameworks, forming
the non-linear filters required in feature pooling stage [9] or in other layers within a CNN [51]. Deep learning
can also be used to learn and mimic morphological operations such as erosion and dilation [9] as well as
the HMT [14] or used in morphological operations for various image analysis tasks [24, 26]. All of these pro-
posedmethods are solely restricted to single channel images, or can be appliedmarginally to colour images to
provide a naivemulti-channel approach. In the future, wemay investigate how to couple our techniques with
deep learning however the immediate aims of this work are to improve upon the field of colour morphology.

In this paper we propose a novel multivariate extension of the HMT, the HMT was chosen due to its sim-
plicity, speed, and interpretability. Pairs of SEs can be designed with little to no prior knowledge and it can
easily be altered for use in various scenarios. Our proposed method can be applied directly to colour images
in any colour space as well as to other high dimensionality multivariate images such as hyperspectral images
or volumetric images. This is achieved by computing the dissimilarity, using reduced orderings, between an
SE and a region in an image bounded by the support of that SE. These dissimilarity measures can then be
ordered and morphological operations can be applied to this ordered set. By translating the SE to all points
in an image, the morphological analysis of that image can take place. We show how our techniques can be
made robust to noise by relaxing the fit of SEs to the image under test allowing for noise to “puncture” the
SE or to allow for objects of interest with slight disparities in size, shape or texture to be detected with a gen-
eralised SE. Additionally, we present a novel approach for the optimal setting of parameters for use with our
technique based on the Percentage Occupancy (PO) Plots, presented in [27], which informs the decision of
howmuch relaxation to apply to each SE for an object to be detected correctly. We compare our method with
other recently proposed extensions of theHMT tomultivariate datawith our approach performing favourably.

Preliminarywork is presented in [23], while this paper presents amore detailed analysis of the transform,
the method for setting the optimal noise robustness parameters as well as comparisons with other relevant
state of the art techniques. The rest of this paper is structured as follows: Section 2 presents an overview of
relatedwork onmorphology and its extension to colour andmultivariate images. Sections 3 and 4 contain our
proposal for an extension of the HMT as well as the results and comparisons between our method and other
colour HMTs and related state of the art object methods for object detection. Section 5 details the summary
and conclusions of this work.
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2 Related Work

2.1 Mathematical Morphology

The basis of any structural morphological operator is the SE which defines a region for some morphological
operation to take place [41]. In the binary case a SE is simply a window defining the region for the operation,
when extended to greyscale images, the SE can be “flat” or “non-flat”, where the window has weights which
can affect the outcome of MM operations.

2.1.1 Erosion and Dilation

The fundamental operators of MM are Erosion and Dilation. The Erosion on a binary image, X, by an SE, S,
(εS) is the locus of all points in a binary image, x ∈ X, where the SE translated to point x, Sx, is a subset of X,

εS(X) = {x | Sx ⊆ X}. (1)

This is equivalent to all points in the image where an SE, S, is translated to a point x, Sx, and matches, or fits
inside, the foreground. The dilation by a reflected SE, Ŝ, (δS), known as the dual of the erosion, is the locus
of all points where the intersection of Ŝ and X is non-empty,

δS(X) = {x | Ŝx ∩ X ≠ ∅}. (2)

This is equivalent to all points in the image where a translated SE touches, or intersects with, the foreground.
Equations (1) and (2) can be extended for application to a greyscale image G, with support g ∈ G. The grey-
scale erosion is defined as [εS(G)](g) = min(G(g + s)), and greyscale dilation as [δS(G)](g) = max(G(g + s)),
where S denotes a greyscale SE with support s ∈ S.

2.1.2 The Hit-or-Miss Transform

The HMT differs from both erosion and dilation in the fact that it requires two non-intersecting SEs. The
foreground SE (SEFG) is designed to fit within the object under study in an image, X, and the background SE
(SEBG) is designed to fit the background of the object or the complement (Xc) of image X. These two SEs can
be collated into one composite SE S which is defined as S = [SEFG , SEBG] where SEFG ∩ SEBG = ∅. The HMT
of X using a composite SE, S, can be implemented as the intersection of two separate erosions:

HMTS(X) = εSEFG (X) ∩ εSEBG (X
c) (3)

An example of theHMToperating on a synthetic binary image is shown in Figure 1. Awhite square is used
as the foreground SE and a hollow square as the background SE. This configuration is designed to detect 3×3
white squares on a black background.

Equation (3) couldbe extended to greyscale images but this requires taking the complement of a greyscale
image, the result of which would ultimately be dependent on the value used for complementing the image.
In addition, the HMT is not an increasing transform, this is to say that given x ≤ y, this does not imply that
HMT(x) � HMT(y). This means that its extension to greyscale is not a straightforward endeavour [32, 41]. The
general equation for theHMTused in this paper is a formof Soille’s UnconstrainedHMT (UHMT) [41] with this
and various other greyscale HMT extensions reviewed in detail in [28]. The UHMT is based on the binary HMT
from (3) and exploits the duality between erosion and dilation, removing the need to erode the complement
of the image. Using the greyscale erosion and dilation defined previously and following the definition of the
UHMT [41] we can define the greyscale HMT as:

[HMTS(X)](x) =
{︃
1 if [δSBG ](x) < [εSFG ](x)
0 otherwise

(4)
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(a)

SEFG

SEBG

(b) (c)

Figure 1: Example of a binary HMT. a) 16×16 binary test imagemade up ofmultiple sizes of shapes. b) Binary composite SE where
SEFG is 3 × 3 and SEBG is 5 × 5. c) Output of the HMT of (a) using (b).

(a) (b) (c)

Figure 2: Example of a greyscale HMT. a) 16 × 16 greyscale test image made up of of shapes with varying intensity and size. b)
Greyscale composite SE where SEFG is 3 × 3 and SEBG is 5 × 5. c) Output of the HMT of (a) using (b).

An example of object detection using this greyscale HMT on a synthetic greyscale image can be seen in Figure
2. Similarly to the binary image test shown in Figure 1, the SE was designed to detect 3 × 3 squares brighter
than their background.

While it performs well in many applications, the HMT is very susceptible to errors when given a noisy
image. This is due to the underlying assumption that both SEs will fit the object under inspection perfectly,
meaning just one noisy pixel in the foreground or background can thwart this operation. This is apparent in
Figures 1 and 2 where, in several cases, there are white square shapes with a single non-white pixel (repres-
enting noise) that are not detected using the standard binary and greyscale HMTs.

There are multiple ways of relaxing the hard constraints of the HMT to detect these imperfect objects
including the notion of a Percentage Occupancy HMT (POHMT) [27] which allows for a percentage error in
the matching of an SE to an image. These Percentage Occupancy measures can be implemented by replacing
the hard limits of erosions (minimum filters) and dilations (maximum filters) with rank k filters [27]. The
output of a rank order filter with rank k within the region of an SE, S, centred at point x in an image I is
calculated using:

[ζS,k(I)](x) = kth rank
s∈S

{I(x + s)} (5)

A rank order filter with rank k will return the kth smallest element, or kth order statistic, of an ordered set of
data. When k = 1, an erosion takes place and when k = n a dilation takes place, where n is the sample size,
or Cardinality (Card), of the input set. The desired rank given some PO value, P, is denoted as kP and allows
for the unbiased specification of rank regardless of the size and shape of an SE, S, and the region it describes
within an image [27]:

kP =
⌊︂(︂

P
100 × Card(S)

)︂⌋︂
(6)

The POHMT can then be defined in terms of the values of two rank order filters and the desired value of k
given some value for P, kP. The first of these operations is equivalent to a relaxed erosion of the foreground,
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(a) (b) (c) (d)

Figure 3: a) Binary test image from Figure 1a. b) POHMT of (a) using Figure 1b and P = 70%. c) Greyscale test image from Figure
2a. d) POHMT of (c) using Figure 2b and P = 80%.

[ζSFG ,k100−P (I)](x), and the second is a relaxed background dilation, [ζSBG ,kP (I)](x), such that:

[POHMTS(X)](x) =
{︃
1 if [ζSFG ,k100−P (I)](x) > [ζSBG ,kP (I)](x)
0 otherwise.

(7)

In (7) the output is the set of points in the image where the intensity at rank k100−P of SFG, when coincident
with some image pixel x, is greater than the intensity at rank kP of SBG at that same point, x, in I.

An example of the POHMT is shown in Figure 3 where the images from Figure 1 and 2 were input into
a POHMT with P = 90% and the result is a more accurate object detection in the presence of the simulated
“noisy” pixels. This can be seen in the results shown in Figure 3 as the squares with non-white centre pixels
are detected despite the non-ideal shape or intensity profile.

2.2 Ordering relations

Having explained and reviewed the extensions of the HMT to greyscale and the incorporation of noise robust-
ness, we now examine methods to extend the HMT to multivariate images. According to Barnett [5], there are
four main ways of ordering multivariate, vectorial data. The first, marginal or m-ordering is concerned with
treating each vector as a set of scalars, in the case of image processing techniques - processing each channel
in an image separately, which can introduce false colour as shown in Figure 4. The secondmethod is partial or
p-ordering which separates the vectors into groups which can then be distinguished by rank or extremeness.
The thirdmethod is conditional or c-orderingwhich involves ordering one of themarginal sets based on some
condition. This can be repeated on subsequent sets if the previous result is inconclusive - i.e. first ordering
the Red channel in an RGB image followed by the Green and Blue if Red intensity values are repeated and a
true order cannot be determined. C-ordering, or lexicographical ordering as it is sometimes referred to in lit-
erature, has the disadvantage that the infimum and supremum defined are wholly dependant on the order in
which the channels are processed [15] whichmay introduce biases when detecting various objects of interest.
The final method, and the one employed in our proposed extension, is reduced or r-ordering which involves
measuring the vector against some reference vector or by projecting it into a reduced space. This creates a
scalar value based on the disparity of each pixel vector to the reference, which can be sorted easily.

Both r-ordering and p-ordering rely on a pre-ordering of data, meaning they lack the anti-symmetry char-
acteristic. As well as this, two distinct vectors can be equidistant from a reference vector and no longer be
distinct when r-ordering takes place [2]. As such, our approach incorporates reference colour values locally
into the transform, by encoding them in the SE, as opposed to being a global reference.

An example ofm-ordering and r-ordering is shown in Figure 4 for ten synthetic colour observations. The
effect of false colour introduction can be seen when comparing the marginal (Figure 4a) with the reduced
(Figure 4b) ordering schemes, where with the reduced scheme the colours are preserved. In the m-ordering
scheme, each colour channel is ordered independently leading to the introduction of false colours. In the
r-ordering scheme, a reference colour, on the right, is used to determine the distance from each colour to the
reference which is a scalar value suitable for ordering. Once the colours have been ordered in this way they
are able to be re-represented as ordered colour values based on similarity. This produces a colour order where
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BM-ordered

IM-ordered

(a)

reference

R
G
B
I

DS
DSsorted
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GR-ordered

BR-ordered
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(b)

Figure 4: a) M-ordering scheme and b) R-ordering scheme on synthetic colour data samples. The m-ordering scheme orders
each band independently meaning the original colours of each pixel are lost. The r-ordering scheme retains the original colour
information as each pixel is ordered based on some reference colour.

colours close to the desired colour are high in the orderwhereas any complimentary colours, the furthest from
the reference, are lowest.

2.3 Alternate Proposals for a Colour HMT

There exist multiple proposals for colour morphology frameworks and colour HMTs in particular each with
varying ways of definingmorphological operators in colour andmultivariate domains. Many of these general
methods are reviewed in [4]. The most common ways morphology has been applied to multivariate spaces is
through the ordering relations such as those described in Section 2.2.

In [7] and [18] the authors compare the marginal, channel-wise, processing with various vectorial order-
ing strategies. Both come to the conclusion that a marginal strategy can work in some cases but produces
false colour artefacts which are potentially detrimental to further processing steps and the definition of a
colour ordering is needed.

In [1] the author investigates the combination of r-ordering and c-ordering using the Mahalanobis colour
distance in order to apply morphological operations to colour images. Similarly in [2] the authors also use
reduced and conditional ordering but extend the theory tomultiple alternative colour spaces. Neither defines
a colour HMT.

In [48], the authors use the HSV colour space along with lexicographical (conditional) ordering, where
the intensity values are considered most important over Saturation and in turn Hue and colours are ordered
in relation to this scheme. Other recent approaches involve using the Loewner ordering method [6] or other
alternative supervised ordering methods [44] or by attempting to learn and infer a complete lattice for colour
image data [21].

In addition to colour morphology frameworks, there have been multiple colour and multivariate HMTs
defined in the literature. An extension of Barat’s HMT for colour morphology is proposed in [19] and uses the
notion of convergence and colour distances within the CIELAB colour space in order to define colour erosion
and dilation. In [45], the authors define anmultivariate HMTwhere each channel is processed independently
as in the marginal strategy but with a individual SE designed for each band. In [3], a Vectorial HMT (VHMT)
based on a vector ordering, lexicographical in this case, is defined using two colour templates or structuring
functions (SF), a lower SF and an upper SF, where objects that fit between the two are detected. The VHMT is
seen to be sensitive to noise and therefore a robust VHMTwas developed, also utilising rank-order filters. The
rank parameters are obtained by defining amaximumnumber of non-matching pixels in both the foreground
and background SEs that can be allowed for the object to still be detected. A downside of using such an
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approach is that this measure will be highly specific to an application whereas in this work, alongside that
presented in [29], a percentage is used to generalise more appropriately to this problem. In [43] the authors
define operations basedonh-supervised ordering. This supervised approach requires trainingdata in order to
define the foreground and background operators necessary. This may lead to problems in scenarios with few
objects or converselywithmany objectswith varied appearancewheremultiple training setsmay be required.
In [42], the authors use a Percentage Occupancy HMT [27] to detect buildings in multispectral imagery. They
define a local order within the SE based on extremeness where each element is compared to every other and
the pair of infimum and supremum can be found.

In [50] the authors define a lexicographical ordering scheme based on colour similarity. This is closely re-
lated to our approach where the similarity in this case is calculated based on the likeness between the image
values and the corresponding values in the SE - this allows for non-flat SEs to beutilised. For an image, I, anda
composite SE, S, the Similarity HMT (SHMT) is defined as SHMT(I;S) =

{︁
hssimilarity

(︁
Ehssimilarity

I(x)
)︁
= 1, x ∈ E

}︁
for all points x in I where E is the 2D support of the image in Z2 and hssimilarity and Ehssimilarity

are the colour
similarity and colour similarity based erosion respectively. This SHMT approach has the drawback of being
restricted to only colour imageswith three channels due to the definition of similarity functions based on Fin-
layson’s colour image formationmodel. The authors also present a noise robust variant, the SHMTη, where η
is some threshold value for similarity. Along with the limitation in spectral dimension, this threshold value
can cause errors in detection. The SHMTη is defined as SHMTη(I;S) =

{︁
hssimilarity

(︁
Ehssimilarity

I(x)
)︁
≥ η, x ∈ E

}︁
.

A single noisy pixel can cause the similarity to decrease and consequently the threshold must also decrease
which can introduce false positive detections if it is set too low. In our approach we combine a similar dis-
similarity threshold with relaxation in the erosion and dilation using rank-order filters as opposed to hard
minimum and maximum filters in order to attain improved results. This reduces the susceptibility of our
method to noise and reduces the number of false positives introduced when compared with the SHMT.

3 Proposed Reduced Ordering-based HMT
Our proposed algorithm, the Multiple Dimensional Percentage Occupancy Hit-or-Miss Transform (MD-
POHMT), provides a robust, controllable approach using a reduced ordering scheme based on point-wise
distances between twomultivariate SEs and an image. Each colour ormultivariate observation canbe thought
of as a single point in a multivariate space of the same domain. By using a reduced ordering, these multivari-
ate observations, which are themselves difficult to order and quantify, are reduced into an easily sorted
scalar quantity based on some reference – in this case the corresponding pixel of the coincident SE. By using
reduced ordering, the correlation of the input vectors are also preserved unlike in some methods. SEs of the
same dimensionality as an image can be designed in order to detect objects of interest through translation
and comparison at each pixel in a set of query images. For a more varied set of objects, or ones which vary
in scale, multiple SEs can be generated and tested rapidly. By using multivariate SEs, both flat and non-flat,
i.e., multi-coloured, SEs can be created in order to fit to more complex or textured objects in images. This
also constrains the colours considered as a match since the desired colour information is encoded into the
SE. For simplicity, in this paper, the distance between an image pixel and the reference is calculated using
the Euclidean distance in the RGB colour space, however the choice of colour space and distance measure
is an important consideration and is often highly dependent on the application. Our proposed MDPOHMT
is intended as a general technique which can be readily applied to any image regardless of the colour space
and distance measure used.

3.1 Definition

We consider the set of images I from Zn the discrete domain of dimension n > 0 into the interval [0, 1]n: i.e.,
I = Zn → [0, 1]n. Given an image I ∈ I, the support of I, denoted by supp(I), is the set of points where I



Macfarlane et al., Robust Object Detection in Colour Images Using the MDPOHMT | 135

is non-zero: i.e., supp(I) =
{︀
x ∈ Zn , I(x) ≠ 0

}︀
. In the following, we will always assume that the considered

images have a finite support. Let d̂ be a normalised positive dissimilarity measure on [0, 1]n, in the case of
the Euclidean distance function utilised as a dissimilarity function, the normalisation is achieved by dividing
the dissimilarity values, d, by the number of channels:

d̂(a, b) =

⎯⎸⎸⎷1
n

n∑︁
i=1

(ai − bi)2 (8)

Given two images A and B in I and a point p inZn, we define the indexed family of normalised dissimilarities,
DS, between A and B at point x by:

DS(A, B, x) =
{︁
d̂(A(x + b), B(b))

}︁
b∈supp(B)

(9)

Given a finite indexed family F =
{︀
fj
}︀
j∈J of elements in [0, 1] and an integer k between 1 and Card(J),

we denote by rankk(F) the k-th smallest element of F (thus we have rank1 (F) = min(F) and rankCard(F)(F) =
max (F)).

Given an image I and our two structuring element images SEFG and SEBG, and using a similar process to
the greyscale POHMT from (7) the fitting of the foreground SE and the image or the background SE and the
image at a point x can be defined using rank order filters, identical to those from (5), in place of erosion and
dilation. The rank of these filters, k, is based on the ranked dissimilarity using percentage occupancy values
of 50 < P ≤ 100, with the value of k being obtained from (6) and can be expressed as

[ξSE,k(I)](x) = kth rank
{︀
DS(I, SE, x)

}︀
(10)

The range of PO values must lie between 50 and 100% as 50% occupancy would simply be a median
filter and anything belowwould cause an erosion to tend towards a dilation and vice versa. Combining two of
these operations, one which emulates an erosion and another for a dilation, along with a variable similarity
threshold, T ∈ [0, 1], allows us to define a newmultivariate HMT-like operator as seen in (11), where kP is the
appropriate rank based on some desired PO value given in (6).

[MDPOHMTS(I)](x) =

⎧⎪⎪⎨⎪⎪⎩
1 if [ξSEFG ,Card (SEFG)−kP+1(I)](x) < [ξSEBG ,kP (I)](x)

and [ξSEFG ,Card (SEFG)−kP+1(I)](x) ≤ T
0 otherwise

(11)

If P = 100%, (10) reduces to min(DS(I, SFG , x)) − max(DS(I, SBG , x)), which means that we compare the
largest dissimilarity between the image and the foreground SE to the smallest dissimilarity between the image
and the background SE. If the image is close to the foreground SE and far from the background SE the fitting
value should be large. Relaxing the precision by reducing P leads to an increased true positive rate but can
also result in an increased false positive detection. As well as the rank parameter, the threshold T can be
adjusted to specify a maximum dissimilarity between the image and the corresponding SE that can register
a hit, this can account for variability of colour in various objects. For example, if we are interested in red
objects, the threshold can be set in such a way as to rule out other colour possibilities. Figure 5 displays the
operation of the MDPOHMT in pictorial form, showing how adding rank order filter equivalents in the place
of erosion and dilation can aid in noise robustness.

3.2 Rank estimation and noise robustness

It has been shown previously how rank order filters can be used in order to add robustness to both binary
and greyscale HMTs. The PO plot method defined in [27] can be used to estimate the most appropriate rank
from example objects and indeed can be extended for use with our MDPOHMT. When centred at a pixel in a
greyscale image, the intensities of the image pixels are compared with their corresponding SE values. The oc-
cupancy can then be calculated for foreground and background by determining the percentage of pixels that
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Figure 5:MDPOHMT in pictorial form depicting an image plane as well as the composite SE, S = [SEFG , SEBG]. In a) the algorithm
will return a relatively large dissimilarity between the blue image and the red SEFG. b) SEFG matches the image producing a small
to zero dissimilarity relative to that produced by comparing SEBG with the white background and thus detects the object. c) The
object has been corruptedwith noise in the formof a flipped pixel and therefore cannot be detectedwithout the use of percentage
occupancy or another relaxation method on the foreground erosion. d) By relaxing the transform using percentage occupancy,
the pixel containing the noise can be overlooked as the foreground erosion no longer takes themaximumdistance instead taking
a lower ranked distance. e) The relaxation is designed to be invariant to the location of the noisy pixels.

lie below some grey-level, t, for the foreground SE, essentially the percentage that “fit” within the foreground
of the object and conversely the percentage that are above t in the background SE. This produces two oc-
cupancy vectors which contain the foreground and background occupancies at each grey-level respectively.
When plotted against one another, these two vectors produce what is known as a PO plot at the particular
pixel under test.

In our case, when applied to multivariate images, these estimated occupancies need to relate to colour
and multivariate dissimilarity as opposed to greyscale intensity. This, along with the lack of grey-level ana-
logue in a colour image, means a slightly different approach is required in order to extend the notion of PO
plots for use with colour images. This extension of the PO plot rank parameter setting method to the mul-
tivariate domain is one of the main contributions of this work and provides a simple and effective approach
to improve the recognition rate of objects and patterns in the presence of noise.

In order to obtain the occupancy vectors using multivariate images and SEs the probability distribution
function (PDF) of the ordered normalised dissimilarity for each SE is estimated. This is achieved by binning
the dissimilarities in a histogram for both the foreground, HFG, and background, HBG before determining
the occupancy vectors POFG and POBG using cumulative histograms where POFG(n) =

∑︀n
m=1 HFG(m) and

POBG(n) = 1 −
∑︀n

m=1 HBG(m).
Here, the occupancy vectors indicate whether the foreground SE or background SE is more similar to

the image at any given rank. Following the notion that the foreground SE must fit the image better than the
background SE, a critical point corresponding to the minimum occupancy required to detect an object can
be found as P = max [min{POFG , POBG}]. This critical point can also be found by plotting both POFG and
POBG together and finding their point of intersection. Plotting POFG against POBG producing a PO plot also
highlights this critical point as the location of the graphs intersection with the straight line POFG = POBG.

An example of this can be seen in Figures 6b and 6e for clean and noisy test images respectively. The
noise was added using the methods described in [8]. By finding the maximum of the minimum of all points
in the cumulative distribution functions (CDF) of the BG and FG, or the point of intersection between the two,
(indicated by the horizontal black lines in Figure 6b and 6e) an estimate of PO can be found. In both the
clean and noisy cases, the object of interest is the red square in the upper left of each image. In the case of
the uncorrupted object (Figure 6b) it was, as expected, 100% occupancy whereas for the object corrupted by
Gaussian noise (Figure 6e) it fell to 84% in order for the object to be detected. The second method involves
plotting the estimated CDF of the foreground against that of the background and by analysing where this
curve crosses the diagonal the PO can be estimated. In the example shown in Figure 6 analysing the PO plots
gave the same values of 100% and 84% occupancy to detect the clean and noise corrupted objects as was
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the case when analysing the CDF. Once the PO estimation has been made, the rank parameter, kP, can be
found for each SE using (7). Figure 7 shows the PO plots for each of the red, green and blue SEs when centred

(a)

0
0.

1
0.

2
0.

3
0.

4
0.

5
0.

6
0.

7
0.

8
0.

9 1

Normalised Distance

0

0.5

1

O
c
c
u
p
a
n
c
y

PO
FG

PO
BG

PO

(b)

0 0.5 1

PO FG

0

0.2

0.4

0.6

0.8

1

P
O

 B
G

(c)

(d)

0
0.

1
0.

2
0.

3
0.

4
0.

5
0.

6
0.

7
0.

8
0.

9 1

Normalised Distance

0

0.5

1

O
c
c
u
p
a
n
c
y

PO
FG

PO
BG

PO

(e)

0 0.5 1

PO FG

0

0.2

0.4

0.6

0.8

1

P
O

 B
G

(f)

Figure 6: PO plots and setting of the appropriate PO and rank parameters. a) Clean 160 × 160 test image. b) Occupancy of the
foreground and background SEs. c) PO plot of the foreground and background SEs. d) Noisy 160 × 160 test image. e) Occupancy
of the foreground and background SEs. f) PO plot of the foreground and background SEs.

on their respective objects in the two test images. In the case of the clean image (Figure 7a) all nine objects
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Figure 7: Percentage occupancy plots of coloured square in test images. a) Clean 160 × 160 test image. b) PO plots for the red
objects. c) PO plots for the green objects. d) PO plots for the blue objects. e) Noisy 160 × 160 test image. f) PO plots for the red
objects. g) PO plots for the green objects. h) PO plots for the blue objects. i) Red SE. j) Green SE. k) Blue SE.
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(a) (b) (c) (d) (e) (f)

Figure 8: Results of the MDPOHMT on the two test images from Figures 6a and 6d. a) Red squares detected in the clean image
using the MDPOHMT with P = 100%. b) Green squares detected in the clean image using the MDPOHMT with P = 100%. c) Blue
squares detected in the clean image using the MDPOHMT with P = 100%. d) Red squares detected in the noisy image using the
MDPOHMT with P = 70%. e) Green squares detected in the noisy image using the MDPOHMT with P = 70%. f) Blue squares
detected in the noisy image using the MDPOHMT with P = 70%.

are fully fitted with their respective SEs, as shown in Figures 7i-7k. As each of the SEs match the objects in
question, this produces the square PO plots, which as the plot intersects with the top right corner, indicates a
perfect fit. The clean imagewas then corruptedwith randomGaussian noise as well as foreground removal to
create non-uniform shapes. The percentage occupancy was again calculated at the same positions resulting
in the PO plots shown in Figures 7f-7h where the PO plot begins to curve, indicating a non exact fit. The PO
and resulting rank estimation can be carried out through investigation of these plots, namely where each of
the occupancies intersect with the diagonal.

Applying the MDPOHMT to the test image shown in Figure 7a with 100% occupancy results in an ideal
fitting as expected through analysis of the PO plots and verified by the HMT result shown in Figures 8a-8c for
the red, green and blue objects respectively. However, applying the MDPOHMT with the same parameters to
the corrupted image (Figure 7e) results in none of the objects being detected. This is because the SE no longer
fits the image as it is being “punctured” by noise. By estimating and setting the appropriate rank using PO
plots and applying this to the MDPOHMT the objects are again detected correctly, Figures 8d-8f. Despite each
of the objects having varying noise andflipped pixel colours, through analysis of the POplots and appropriate
rank selection they are all successfully detected.

The rank parameter and selection is intended to be intuitive as possible and represents a percentage fit
between an image under test and a probing SE. A percentage is used as there is no need to define which
pixels must fit inside the SE. While the PO plot method provides a way of setting the optimal parameter for
detecting an object, there may exist some cases where few or no samples are available to train suchmethods.
In these cases, the rank parameter can be estimated easily simply by trialling various percentages, under the
assumption that a high percentage fit will restrict the detected objects and a lower percentage will relax the
transform [29]. The transform is computationally inexpensive enough to be performed multiple times with
different test rank parameters until a positive outcome is reached.

4 Experimental Results
In this section, we apply our algorithm to various synthetic and natural colour and hyperspectral images. We
first compare our MDPOHMT to an existing greyscale HMT in order to highlight the need for a generalisation
to colour andmultivariate imagery in order to better distinguish between objects of interest.We then compare
our approachwith other colourHMTs and investigate the benefits of the noise robustness offered by using PO.
We also show how the MDPOHMT can be used to detect objects with varying size, shape, colour and textural
information from high resolution images. Finally we show how the reduced ordering can be performed on
higher dimensional data andapply theMDPOHMT tohyperspectral object detectionusing a synthetic dataset.
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4.1 Image Acquisition

The primary source of images used when testing our MDPOHMT is the DOTA dataset [47] which contains
thousands of images taken fromGoogle Earthwith 15 object classes to be detected. For the purposes of testing
the MDPOHMT, a subset of these images which contain swimming pools are used as they have varying size,
shape, orientation and colour information as well as having varying amounts of pixels on target, providing
a very varied target set. The dataset contains a ground truth for its training and validation subsets, ground
truths for further images are created in order to increase the volume of data available to test on. In total, 7 high
resolution colour images were selected for testing with a total of 1257 instances of the swimming pool object
included. Other natural and synthetic images were used for testing our MDPOHMT against other greyscale
and colour HMTs.

4.2 Comparison with Soille’s Unconstrained HMT (UHMT)

The greyscale UHMT [41] and other greyscale HMTs have been shown to be useful for various object detection
applications [11, 32]. However, there are situations where colour information being taken into account can be
advantageous and provide an extra dimension to a detection decision.

Figure 9 shows an example use of the MDPOHMT in detecting traffic lights of various colours. In Figure
9a a colour image of a traffic light with its red and amber lights lit is shown. From this image, two flat SEswere
created (Figures 9b and 9c respectively) in order to detect the red and amber lights. The SEs were originally
made from cropped regions of the image as to match exactly with a single pixel but were flattened using the
average value in each region in order to be generalised. Figure 9d shows the locations where the red light
is detected successfully using the red SE from Figure 9b. Similarly, the amber light is detected as shown in
Figure 9e using the amber SE shown in Figure 9c.

This same task was carried out using the greyscale unconstrained HMT (UHMT). Figure 10a shows the
image from 9a converted to greyscale using the weights used to calculate the luminance, Y, in the NTSC col-
our space. The red and amber SEs from Figures 9b and 9c were also converted to greyscale and are shown in
Figures 10b and 10c. Applying these greyscale SEs, or indeed a set of binary SEs, to the image yields the res-
ults shown in Figures 10d and 10e where both the red and amber lights are being detected by both SEs. This is

(a)

(b) (c)

(d) (e)

Figure 9: a) Original colour image of a traflc light. b) Circular SE used to find the red light. c) Circular SE used to find the amber
light. d) Results of taking the MDPOHMT of (a) using (b) with P = 90%. e) Results of taking the MDPOHMT of (a) using (c) with
P = 90%.
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(a)

(b) (c)

(d) (e)

Figure 10: a) Original image of a traflc light converted to greyscale. b) Circular SE used to find the red light. c) Circular SE used to
find the amber light. d) Results of taking the greyscale UHMT of (a) using (b). e) Results of taking the greyscale UHMT of (a) using
(c).

due to both SEs fitting both objects based solely on similar intensities and with no colour information avail-
able to discriminate between the two there is confusion. This highlights the benefits of incorporating colour
information into the HMT in order to better discriminate between colours with similar greyscale intensities.

4.3 Comparison with the colour Similarity HMT (SHMT)

The MDPOHMT is based on a reduced ordering between a multivariate image and a multivariate SE, turning
this multivariate data into a scalar for ordering. Another similar approach is the SHMT [50] which calculates
the colour similarity between amultivariate image and SE pair. These similarity values alongwith the image’s
individual colour channels are ordered lexicographically, where if there are two identical similarity values
they are orderedby the corresponding green values, if their green values are identical then they are orderedby
red and then, if their red values are identical, by blue. The infimum, or erosion, of the now ordered similarity
values is taken and the SHMT is defined as all points in the image where this value of similarity is equal to
one. The SHMTη further constrains this where theminimum similarity in the SEwindowmust be greater than
some threshold η. A comparison between our MDPOHMT and the SHMT on a synthetic test image is shown
in Figure 11.

Figures 10f and 10k show a colour test image and the same colour image corrupted with Gaussian noise
as well as flipped pixels. These images are used to verify and compare the SHMT and the MDPOHMT. The
composite SE used is the same as that shown in Figure 7i. The SEs are designed to detect the three 3 × 3 red
objects in the test images. Figure 10j shows the results of the SHMTon the clean test image fromFigure 10fwith
the corresponding similarity at each pixel shown in Figure 10i. At all pixels where the similarity between the
SE and the image is one, i.e., they match, the output of the SHMT registers a hit. Figure 10h shows the results
of the MDPOHMT with the corresponding foreground dissimilarity shown in 10g. The MDPOHMT registers
a hit where the foreground SE matches the image better than the background SE, or where there is lower
dissimilarity in the foreground than the background. It can be observed that the two methods of ordering
the data are somewhat inverted, with the SHMT being based on colour similarity and the MDPOHMT being
based on a colour distance, or dissimilarity. This is apparent when comparing Figures 10i and 10g where, at
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Test Images FG Dissimilarity MDPOHMT Result Similarity, h SHMT Result

Clean Image

(f) (g) (h) (i) (j)

Noisy Image

(k) (l) (m) (n) (o) (p)

Figure 11: Comparisons between the MDPOHMT and the SHMT. a) Dissimilarity between the image from c) and the SE with P =
100%. b) Results of the MDPOHMT on the image from c) where P = 100%. c) Clean test image (32×32). d) Similarity of each pixel
in the test image in c) to the SE. e) Result of the SHMT on the image from c). f) Dissimilarity between the image from h) and the
SE with P = 80%. g) Results of the MDPOHMT of h) where P = 80%. h) Noisy test image (32 × 32). i) Similarity of each pixel in the
test image in h) to the SE. j) Results of taking the SHMT0.6 of h). k) Results of taking the SHMT0.05 of h).

the pixels where the HMT registers a hit, the similarity values of the SHMT are one and the dissimilarity of
the MDPOHMT values are zero.

The noise robustness of each method was then assessed by applying both the SHMT and MDPOHMT
to the Gaussian noise corrupted image in Figure 10k. When applying the standard SHMT where η = 1, i.e.,
where no thresholding is applied, the transform fails to detect any of the three red objects as the SE no longer
matches the image perfectly and the colour similarity, h, will be in the range 0 ≤ h < 1. By investigating the
similarity at each of the appropriate pixels (Figure 10n) a valid threshold value can be obtained to ensure all
objects of interest can be detected.

TheSHMTη applies a single threshold η across the similarity image inorder to relax the similarity required
for the detection of an object in the presence of noise. The result of applying a threshold of η = 0.6 on the
similarity image shown in Figure 10n can be seen in Figure 10o where only one of the three objects of interest
is detected successfully. The other objects, containing flipped blue and orange pixels respectively, have a
low minimum colour similarity under the probing SE, with pure red and pure blue having zero chromatic
similarity. Due to this low colour similarity, the threshold must be lowered below the minimum similarity
value present when the SE is centred over an object of interest. In order for all three of the red objects to be
detected in the noisy case, the threshold needs to be set less than η = 0.05 to compensate for the flipped blue
pixel in the lower right red square. However, lowering the threshold to this level introduces a large number
of false positives detections as seen in Figure 10p.

The SHMTη is essentially operating as an erosion and as such only considers the minimal value of sim-
ilarity between the image pixels and corresponding reference values within the support of an SE. This could
be improved by using a rank order filter to relax this erosion in a similar manner to the proposed MDPOHMT.
If the hard minimum similarity is relaxed situations, like that presented in Figure 10k, where there are low
similarity pixels present in the support of an SE causing the SHMT to miss an object can be avoided. By in-
corporating such rank order filters into the proposed method, the MDPOHMT can be made more robust to
these effects of noise. The results of taking the MDPOHMT with a P = 80% are shown in Figure 10m with the
foreground dissimilarity shown in 10l, with the locations of the three objects visibly darker than the rest of
the dissimilarity image.

Further comparisons with the SHMT using more natural images were then carried out. Figure 12c shows
an image of white and yellow flowers in a grassy background. This image was used in [49] to validate the
performance of the SHMT and SHMTη. Figures 12a and 12d show the SE from [49] used in the SHMT and
the similarity of each pixel respectively. The majority of the image is black meaning there is low chromatic
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similarity between the image and SE at those pixels. The SHMTη is essentially a thresholding operation on
this similarity image where the threshold is set to the value of η. Setting the threshold at lower values of η
allows for the detection of decreasingly similar objects as shown in Figures 12e-12g which show the results of
carrying out the SHMTη where η is reduced in each subsequent test: η = {0.7, 0.5, 0.3}. The SHMTη operator
does not allow for any relaxation of the shape of an SE and therefore requires much more specific SE design
and can be more sensitive to changes in the object as well as noise or occlusion.

(a) (b) (c) (d)

(e) (f) (g)

(h) (i) (j) (k)

Figure 12: Comparison between the SHMT and the MDPOHMT on a real image. a) SE for SHMTη. b) Composite SE for MDPOHMT.
c) Test image “flowers". d) SHMT chromatic similarity. e) Results of the SHMT0.7. f) Results of the SHMT0.5. g) Results of the
SHMT0.3. h)MDPOHMT with P= 90%. i) Dissimilarity with P = 90%. j)MDPOHMT with P = 60%. k) Dissimilarity with P = 60%.

When η = 0.7 (Figure 12e) only a couple of pixels in the centre of one flower are detected, this was the
point most similar in shape to the designed SE. Reducing this further to η = 0.5 (Figure 12f), half of the
flowers present in the scene have at least one positively detected pixel, however a patch of false positive
detections spreads across a number of closely grouped flowers. At η = 0.3 (Figure 12g) this patch has grown
to cover multiple flowers, this is due to the similarity being set so low as to introduce pixels which no longer
exhibit high similarity. Referring to Figure 12d, which shows the similarity of each pixel to the probing SE, it
is possible to see that there are some flowers which can never be detected with this SE - highlighted by zero
or low similarity. Attempting to lower η further in order to detect them would yield results similar to those in
Figure 10p, where multiple false positive pixels are introduced. In [49], the author explains that some flowers
cannot be detected as they are smaller than the generalised SE or that they are damaged to the point they are
too dissimilar.

We then compared the performance of the SHMT with our MDPOHMT using the same test image with
the results shown in Figure 12. The foreground SE used is identical to that used in the SHMT (Figure 12a) and
the background SE is a hollow white square which can be seen in the composite SE shown in Figure 12b. The
MDPOHMT outperforms the SHMT even with high values of PO, at P = 90% it detects the same flowers as the
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SHMT with η = 0.5 however muchmore precisely with no false positives (Figure 12h). In an attempt to detect
the other damaged or smaller flowers, the PO value was reduced to P = 60% as shown in Figure 12j. This
improves the number of flower centres detected but there is also some patches of the white petal detected,
this is because as the PO decreases, lower percentages of pixels are allowed to fit and in this case as the white
petals are a feature of the foreground SE (Figure 12b). Areaswherewhite petals are prevalent are also detected
as they are not dissimilar to the SE. However, by lowering PO we are not decreasing the similarity required
for a fit, merely allowing dissimilar pixels within the support of the SE and ignoring them in order to detect
areas that have a lower percentage match. As discussed in Section 2.3 and shown in Figure 10p, the SHMT is
susceptible to a single noisy pixel with low chromatic similarity to the target requiring such a low threshold
to be set that large numbers of false positives are introduced. The h-similarity measure may be incorporated
as a distance measure within the MDPOHMT and by relaxing the percentage fit using rank order filters, as
well as varying the thresholded value η, the detection results can be improved when compared to using the
SHMTη.

4.4 Application of the MDPOHMT to high resolution Aerial Imagery

The MDPOHMT is also designed to generalise to objects of interest over multiple images. In order to validate
this, the MDPOHMT was applied to a set of aerial images from the DOTA dataset to test its performance for
detecting various sizes and shapes of colour objects, in this case swimming pools. This class of objects was
chosen for the challenge that it presented with varying size, shape, colour and level of occlusion. In order to
detect these objects first a generalised SE must be designed from examples or from prior knowledge of the
objects of interest. After viewing some examples, the average colour size and shape can be used to create an
appropriate SE.

In order to generalise well to objects, including those which are noisy or partially occluded, the fit often
needs to be relaxed. This is preferable over creating multiple bespoke SEs as this not only takes time but
increases the time required to probe an image with these multiple SEs. The optimal relaxation parameters
can be found in one of two ways, either utilising the PO plots from [27] in order to train the parameters on
similar objects of interest or to perform a greedy search optimisation and use the parameters whichmaximise
some desired measure such as accuracy or F1 score. In order to select the optimal parameters using PO plots,
multiple pixels in a training image which contained positive examples of swimming pools were selected. The
MDPOHMT was then taken at each of these points with the designed SE and the foreground and background
occupancy for each point was plotted in a PO plot, and an appropriate value can be selected.

Figure 13 shows the approach for estimating the appropriate PO parameters, where multiple points in
a representative image (Figure 13a) are selected and the occupancy of both the foreground and background
SEs are taken and used to generate a PO plot as in Figure 13b. By observing the plot of foreground against
background occupancy appropriate values for the PO parameter are set. In the case of Figure 13, a PO value
of P = 80%would be sufficient to detect each of the three swimming pools in the scenewhen the SE is centred
at that particular pixel. This was validated by performing a grid search with multiple PO values as inputs in
order to maximise the F1 score.

Aswell as the POparameter, an additional colour distance threshold, T, where, 0 ≤ T ≤ 1,was introduced
to ensure that the dissimilarity between the image and the foreground SE for any prospective match was
limited. In order to set this parameter, anumber of cropped regions fromeachof the test imageswere extracted
and the MDPOHMT was applied with the PO set to P = 80%. A number of colour distance thresholds were
tested on the basis of the resultant F1 score in order to optimise this parameter. It was found that the optimal
threshold value for a set of training images is T = 0.15.

With this we now have the set of parameters to test on the full set of images. Figure 14 shows the results
of taking the MDPOHMT on a full image from DOTA, where detected swimming pools are outlined in green
and missed pools in red. Examples of the swimming pools that are detected and missed are shown in Figure
15. The full results from applying the MDPOHMT to the images from DOTA are shown in Table 1, where the
image shown in Figure 15 is “Image 7” in Table 1.
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Figure 13: a) Cropped image with multiple pixels of interest overlaid. b) Composite SE used to detect the swimming pools in a).
c) PO Plots at the three selected pixels of interest.

On average the method performs well, achieving an accuracy of 84% with high F1 scores as well as high
precision and recall. The number of false positive detections is very low, with only eleven false positives
detected over all of the seven images. The majority of objects are successfully detected, as indicated by the
high number of true positives as well as the high accuracy. Those that are not detected are often missed due
to significant occlusion, shadow, or other changes in colour. The occlusions can be overcome by reducing
the PO value further, however, with this comes the risk of also increasing the number of false positives if
the transform is relaxed in excess. Alternative SEs can be designed by looking at examples that a single SE
has missed in order to improve the detection rate and recall of the MDPOHMT. In this particular example,
another three SEs were used to detect objects the first had missed, using information from the examples of
false negatives to design appropriate SEs. This process, however, comes at the expense of execution time,
highlighted by the results in Table 1. This has the desired effect of increasing the recall of the MDPOHMT at
the expense of some precision due to false positives introduced by each SE.

In order to compare theMDPOHMTwith other related techniques, the SHMTwas also applied to the same
subset of the DOTA dataset with identical SEs to those used in the MDPOHMT. The results of the SHMT with
a single SE and with multiple SEs are shown in Table 1. From these results we can see that the SHMT fails to
generalise due to the need for the SE to fit the query image more exactly. However, similarly to the results of
the MDPOHMT, the addition of other SEs improves the results but the average F1 score is still 0.211 below that
of the MDPOHMT. This can be seen further in Figure 16 where the precision-recall curves of the MDPOHMT
and SHMT with both a single and multiple SEs are plotted.

Figure 16 shows the results of theMDPOHMTwith both a PO value of P = 100%aswell as a relaxed trans-
form with P = 80%. Both the MDPOHMT and SHMT perform similarly with a single SE both achieving high
precision before decreasing. Using multiple SEs with the MDPOHMT improves the recall slightly as indicated
by the curve shifting to the right before tailing off. Using multiple SEs with the SHMT has a similar effect,
with the recall being slightly increased, however, this comes at the expense of precision with false positives
introduced in bothmethods. Examples of the false positive detections introduced can be seen in Figure 17 and
are mostly grey roofs with other blue objects such as umbrellas, shipping containers and other clutter within
the image, these can ultimately be filtered out through further optimisation of the SEs used. By reducing the
PO value of the MDPOHMT to 80% (Figure 16), the recall can be improved without a significant decrease in
precision. This is true for both the single SE test and multiple SE test. From the results in both Table 1 and
Figure 16 we can show that our MDPOHMT offers an advantage over similar techniques. From Table 1 we can
also see that the MDPOHMT has a faster execution time compared to the SHMT as the h-similarity measure
is more computationally expensive to determine.
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Figure 14: Image from the DOTA test set used to validate the detection of swimming pools where objects detected using the
MDPOHMT are highlighted in green and those missed are shown in red.

(a)

(b)

Figure 15: Examples of: a) 10 positively detected swimming pools, b) 10 missed swimming pools from Figure 14

4.5 Application of the MDPOHMT to object detection in hyperspectral imagery

Another limitation of the SHMT, as discussed in Section 2.3, is that the model for similarity can only consider
3 channel colour images in either the RGB or L*a*b colour spaces [50]. A general method for images in higher
dimensionalities such as those present in multispectral or hyperspectral imaging applications would be of
benefit in object and target detection tasks. The reduced ordering method employed in our MDPOHMT is not
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Table 1:MDPOHMT and SHMT results on a subset of the DOTA Dataset using both single and multiple SEs.

MDPOHMT - P = 80%, T = 0.15
Image Number 1 2 3 4 5 6 7 Average
Processing Time (s) 4.2 2.5 1.1 0.9 2.8 2.1 2.6 -
No.True Positives 236 125 95 91 197 164 157 -
No. False Negatives 59 15 23 20 28 22 37 -
No. False Positives 0 1 0 3 2 0 5 -
Accuracy 80.00 89.29 80.51 81.98 87.56 88.17 80.93 84.06
F1 Score 0.8889 0.9398 0.8920 0.8878 0.9290 0.9371 0.8820 0.9081
Precision 1.0000 0.9921 1.0000 0.9681 0.9899 1.0000 0.9691 0.9885
Recall 0.8000 0.8929 0.8051 0.8198 0.8756 0.8817 0.8093 0.8406

MDPOHMT Multiple SEs - P = 80%, T = 0.15
Image Number 1 2 3 4 5 6 7 Average
Processing Time (s) 16.5 10.1 4.5 3.7 11.4 8.3 10.6 -
No.True Positives 264 132 102 96 202 173 168 -
No. False Negatives 31 8 16 15 23 13 26 -
No. False Positives 9 5 21 22 12 20 26 -
Accuracy 89.49 94.29 86.44 86.49 89.78 93.01 86.60 89.44
F1 Score 0.9296 0.9521 0.8465 0.8384 0.9203 0.9129 0.8660 0.8952
Precision 0.9670 0.9635 0.8293 0.8136 0.9439 0.8964 0.8660 0.8971
Recall 0.8949 0.9429 0.8644 0.8649 0.8978 0.9301 0.8660 0.8944

SHMT0.9
Image Number 1 2 3 4 5 6 7 Average
Processing Time (s) 22 14.2 6.4 5.3 15.9 11.7 14.6 -
No.True Positives 76 54 47 45 94 102 94 -
No. False Negatives 219 86 71 66 131 84 100 -
No. False Positives 0 0 0 0 0 0 0 -
Accuracy 25.76 38.57 39.83 40.54 41.78 54.84 48.45 41.40
F1 Score 0.4097 0.5567 0.5697 0.5769 0.5893 0.7083 0.6528 0.5805
Precision 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Recall 0.2576 0.3857 0.3983 0.4054 0.4178 0.5484 0.4845 0.4140

SHMT0.9 Multiple SEs
Image Number 1 2 3 4 5 6 7 Average
Processing Time (s) 88.6 56.4 25.5 20.6 62.7 46.8 58.3 -
No.True Positives 110 76 58 59 118 121 115 -
No. False Negatives 185 64 60 52 107 65 79 -
No. False Positives 2 2 0 1 2 1 5 -
Accuracy 37.29 54.29 49.15 53.15 52.44 65.05 59.28 52.95
F1 Score 0.5405 0.6972 0.6591 0.6901 0.6841 0.7857 0.7325 0.6842
Precision 0.9821 0.9744 1.0000 0.9833 0.9833 0.9918 0.9583 0.9819
Recall 0.3729 0.5429 0.4915 0.5315 0.5244 0.6505 0.5928 0.5295

restricted toR3, such is the case for RGB or other colour images, and can be readily applied toRN imageswith
no additional complexity, other than the additional dimensionality of the data. While we use the Euclidean
distance measure here in order to present the MDPOHMT, other distance measures, or indeed target detec-
tion methods such as the Spectral Angle Mapper (SAM), which are explicitly suited to hyperspectral imaging
applications may be incorporated as the reduced ordering method within the MDPOHMT. Figure 18 shows
the set of synthetic images created in order to test the MDPOHMT on hyperspectral data. Each of the images
created have a spatial dimension of 215 × 215 with 80 spectral bands and contains two endmember spectra
from the United States Geological Survey (USGS) Spectral Library [17], shown in Figure 18a, one comprised
of a mixture of antigorite and grass which create the background and another which forms the foreground at
varying abundancies throughout the image. The abundancemeasure was varied from 100% to 1%, as seen in
Figure 18b in order to verifywhether theMDPOHMT could be used in scenarioswhere therewas no pure target
spectra present in a pixel. In order to also validate the noise robustness of the MDPOHMT when applied to
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(a)

Figure 17: Examples of 10 False positive swimming pool detections when using multiple SEs with the MDPOHMT on the image
shown in Figure 14.

hyperspectral imagery, both impulsive noise with 10% probability as well as zero-mean Gaussian noise with
σ2 = 0.1 were added to the image (Figure 18c).

TheMDPOHMTwas first applied to the image that has not been perforated by noise (Figure 18b) with SEs
designed using the desired target spectra from Figure 18a, the results of this operation are shown in Figure
19a. All 100 of the desired target objects are correctly detected with no false positive detections. Even those
with little (≤ 10%) abundancy are detected as the foreground SEwill havemarginally lower dissimilarity with
these mixed regions than the background SE has with the background.

The MDPOHMT was then applied with P = 100% to the noise compromised image (Figure 18c) with the
number of correctly identified objects dropping from 100 to 22, as seen in Figure 19bwhere white pixels indic-
ating a True Positive (TP) detection and magenta pixels indicating a False Negative (FN) detection. This drop
in detections can mostly be attributed to the impulsive noise added to the image as this can “puncture” the
SE causing the MDPOHMT to fail. In order to rectify this, a number of example points were selected from the
image with varying target abundancies being represented. PO plots for each of these points were generated
and are shown in Figure 19c. Using the combination of the PO plots at each pixel it was found that the 1%
abundancy target could not be detected at all due to the required PO falling below 50%. The other test ob-
jects could be detected with a PO value set to P = 70% as represented by the magenta cross in Figure 19c. The
results of the HMT in Figures 19a, 19b and 19d have been enlarged in order to increase their legibility, each
detection is a single pixel.

With this new occupancy value of P = 70%, the MDPOHMT could be reapplied to the noisy image. Upon
relaxing the PO value the number of positively detected objects rose from 22 to 92 largely overcoming the
impulsive noise present in the image.Only 8 objectswere not detectedwhen thenoisewas accounted for, each
of thosewith spectral abundancy ≤ 10%. This can be attributed primarily to the Gaussian noise overpowering
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the target spectra and blending it with the background spectra due to the low abundancies of target spectra
and subsequent high sensitivity to changes.

The spectra present in Figure 18a are near-uniform over the portion of the spectrum considered here.
Thus, as seen in Figure 19a, they are relatively easy to delineate and detect with even the 1%abundance target
being detected in the noise free image. Despite the impulsive and Gaussian noise applied to the image, this
uniformity is unrealistic and is intended to be an example of the extension of theMDPOHMT for application to
spectral data. In order to assess how reliably theMDPOHMT can detect targets in amore complex domain, an
additional set of images was created again using the USGS [17] Spectral Library along with the Hyperspectral
Imagery Synthesis (EIAs) MATLAB toolbox [10] which allowed for the creation of randomised abundance
maps for hyperspectral image synthesis.

Four spectra from the USGS Spectral Library were selected, three natural materials: dry grass, spruce
needles, and limestone which would form the background of the synthetic scene and concrete which again
forms the in-painted targets at abundancies decreasing from 100% to 1%. Each of these endmember spectra
present in the image are displayed in Figure 20a with both the grass and limestone spectra being similar to
that of the target concrete. The background scene was generated using the Gaussian Fields method [10] and
the targets were subsequently inserted, with an abundance of 100%, i.e., pure spectra, in the bottom right
corner of Figure 20b and an abundance of 1% in the top left corner. The generated image is shown in Figure
20b and Figure 20c shows the image with additional Gaussian and impulsive noise generated using the same
parameters as those in Figure 18c.

TheMDPOHMTwas first applied to the noise free image in Figure 20b, the results of which can be seen in
Figure 21a where 95 of the 100 targets are detected successfully despite the likeness between the targets and
their background in places. When compared with the results on the first, simpler, synthetic image (Figure
18b), there are False Positive (FP) detections introduced due to areas of spectrally similar background being
detected incorrectly. These FPs are represented as green pixels in the MDPOHMT results images. In total,
33 objects are detected incorrectly. One method for removing such FP detections is to lower the foreground
distance threshold, T however, this may also lead to a drop in TP detections due to some targets having low
abundancies and less similarity to the probing SE.

Applying the MDPOHMT with P = 100% to the noise degraded image (Figure 20c) yields similar results
to that of Figure 19b with only 20 of the 100 targets being detected, as shown in Figure 21b. This can again
be improved upon by lowering the PO, with the appropriate value set using a PO Plot (Figure 21c). Through
investigation, a PO value of P = 80% (represented by the magenta cross in Figure 21c) was sufficient to detect
each of the targets tested, excluding the target with 1% abundance which required a PO value of P < 50%.
Applying the MDPOHMT to the noisy image with P = 80% results in the image shown in Figure 21d where
88 of the 100 targets are detected with only 8 false positive detections. By relaxing the percentage fit through
reducing the PO measure based on the PO Plot analysis the impulsive noise better accounted for.
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Figure 18: Synthetic Images generated to assess the MDPOHMT for use on hyperspectral images. a) The two endmember spectra
used to create the image - the antigorite/grass mixed spectra forming the background and the concrete forming the in-painted
targets. b) False-colour synthetic image created with 100 targets ranging from 100% abundance to 1%. c) False-colour synthetic
image from b) with 10% impulsive noise and Gaussian noise with σ2 = 0.1 and µ = 0.
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Figure 19: MDPOHMT results on the generated synthetic hyperspectral images a) MDPOHMT results on the image from Figure
18b with P = 100%. b) MDPOHMT results on the image from Figure 18c with P = 100%. c) PO plots at selected test pixels with
decreasing target spectra abundancy. d)MDPOHMT with P = 70% selected using the PO plot in c).
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Figure 20: Hyperspectral image synthesis with a more complex, non-uniform, scene. a) The four endmember spectra used to
create the synthetic image. b) False-colour synthetic image created with 100 targets ranging from 100% abundance to 1%. c)
False-colour synthetic image from b) with 10% impulsive noise and Gaussian noise with σ2 = 0.1 and µ = 0.
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Figure 21: a)MDPOHMT results on the image from Figure 20b with P = 100%. b)MDPOHMT results on the image from Figure 20c
with P = 100%. c) PO plots at selected test pixels with decreasing target spectra abundancy. d)MDPOHMTwith P = 80% selected
using the PO plot in c).
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5 Conclusion
In this paper we presented and described our proposed novel method based on the Hit-or-Miss Transform,
the Multi-Dimensional Percentage Occupancy Hit-or-Miss Transform. The MDPOHMT is intended as a gen-
eral technique which extends the morphological HMT for use in object detection and pattern recognition
applications in colour and multivariate images. This is achieved using a reduced ordering scheme which re-
duces multivariate data into a scalar value via some distance or similarity measure. We have validated our
approach, first using synthetic colour images in order to display the correct operation of our technique fol-
lowed by object detection and discrimination experiments on natural images. We tested the MDPOHMT on
the DOTA aerial image dataset in order to display how the technique performs in a large dataset with objects
of interest varying in size, shape, colour, texture, and occlusion levels. We also compared our technique with
other similar HMT operators with our method performing favourably.

In order to make our MDPOHMT more robust to noise, rank-order filters are used in place of the hard
maximum and minimum filters commonly employed in morphological techniques. This allows for the trans-
form to be flexible in cases where the image contains noise or objects of interest are occluded. By relaxing
the constraints of traditional erosion and dilation operations, objects with a high enough percentage fit to
the corresponding probing SEs can be detected. By using a percentage fit, the transform remains unbiased
to changes in size or shape of the objects of interest or the SEs used in detecting them. The parameters used
in this relaxation are intuitive and can can be determined through trial and error using only a few training
samples or indeed estimated and refined empirically, by using the extended PO Plots introduced in this work.
Through the use of percentage occupancy and rank order filters combined with the use of PO plots for set-
ting the appropriate parameters, the MDPOHMT has been shown to perform favourably when compared with
related single channel and multivariate HMT definitions on the considered pattern recognition tasks.

Through experimentation using the DOTA dataset we found that our MDPOHMT operator, in conjunc-
tion with the Euclidean distance-based reduced ordering, can be very sensitive to changes in colour. The
Euclidean distance measure was used as an example of the reduced ordering necessary for the operation of
our technique. Other distance measures may be more appropriate for specific applications, especially in the
case of hyperspectral imagingwhere dedicated spectralmeasuresmay be implemented. Similarly, alternative
colour spaces, such as L*a*b or HSV, may be more suited to colour morphology as discussed in the literat-
ure. A general way of overcoming this sensitivity to changes in colour or spectral information in objects of
interest is to simply design multiple composite SEs, one for each image or object however this would be a
rather involved and bespoke process. By using multivariate SEs and encoding the SE with the desired colour
information, as well as size and shape, the issue of colour perception is limited - as it simply needs to match
the SE - while also allowing for non-flat objects to be detected with a single composite SE. As with the vast
majority of morphological operators the SE choice and design is still an active area of research and optimal
design of SE for particular applications is of interest in future work. An alternative way to relax the sensit-
ivity to changes in object colour could be to have a multivariate threshold or decision space rather than a
scalar distance threshold. In our testing we found that, like other HMT definitions, the MDPOHMT itself is
not scale invariant, this is something we will investigate further but can again be overcome by simply creat-
ing multiple SEs based on the scale and orientation of the objects to be detected, or by designing SEs which
generalise between objects.

While in this paper we focus on extending the Hit-or-Miss Transform in particular, themethods used here
may be able to be extended and applied to other morphological operators such as erosions and dilations and
subsequently openings and closings. Similarly to the techniques described in Section 1 our MDPOHMT may
be integrated into a machine learning framework. This may have the effect of augmenting feature extraction
either as an individual HMT layer or alternatively using the notion of percentage occupancy and rank-order
filters within the pooling stage.
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