Mixing data and knowledge for modeling and control of building energy systems

Benoit DELINCHANT

Grenoble Electrical Engineering Lab Grenoble-INP

DESCARTES Decision-making in Critical Urban Systems

SINERGIE

French-Singaporean research network programme on Renewable Energy

Monday, 6 November 2023 Session-03 - Smart Buildings and Smart Cities NTU Reality Theatre - Research Techno Plaza (RTP) Singapore

Outline

Context and Strategies for Hybridization

Application to Building modelling

Quang Hùng Nguyen, Benoit Delinchant, Florent Chatelain. Machine learning driven parameter identification for grey-box thermal modelling for buildings. Building Simulation 2023, Sep 2023, Shanghai, China

Application to Building control

Sharath Ram Kumar, Remy Rigo Mariani, Benoit Delinchant, Arvind Easwaran, "Towards Safe Model-Free Building Energy Management using Masked Reinforcement Learning", ISGT 2023

Context and Motivations

District Energy Managment

Energy flexibility at district level

- Management strategies of energy systems :
 - Buildings with/without flexibilities
 - PV (intermittent RES)
 - Storage local/district (bidirectional control)

Different sources of uncertainties :

- Forecast Errors on the input (e.g. RES/occupancy profiles)
- Model Accuracy (e.g. simplification physical laws.)
- Model Parameters (e.g. physical properties not perfectly known.)

Opportunity to mitigate uncertainties using real time data:

- 1. To re-estimate model parameters continuously: active parameter learning
- 2. reinforcement learning controller hybrid strategies

Hybridization Strategies

Modeling and Control strategies

Modeling methodology [PhD Quang Hùng NGUYEN]

RC (grey box) models

- **Explainability** from knowledge (extrapolate to new situations not seen in data)
- Adaptability from data (to manage lack of knowledge)
- Easy to deploy at district level (RC archetypes)
- Hybrid : Retain major physical dynamics while enabling data-driven parameters learning

Control methodology [PhD Sharath RAM KUMAR]

• **Model Predictive Control (MPC)** : find optimal controls based on forecasting of inputs w_t and the system model (f, g)

 Reinforcement learning (RL) : find optimal policy φ of interaction between the controller (agent) and the system (environment)

- Drawback : need many experiments to learn
- Hybrid approach : using model and knowledge to guide learning

Outline

Context and Strategies for Hybridization

Application to Building modelling

Quang Hùng Nguyen, Benoit Delinchant, Florent Chatelain. Machine learning driven parameter identification for grey-box thermal modelling for buildings. Building Simulation 2023, Sep 2023, Shanghai, China

Application to Building control

Sharath Ram Kumar, Remy Rigo Mariani, Benoit Delinchant, Arvind Easwaran, "Towards Safe Model-Free Building Energy Management using Masked Reinforcement Learning", ISGT 2023

Building hybrid model

Data assimilation

Lumped-parameters physical model

• One zone R2C2 differential equation model

T_nodes: temperature at nodes u: heat fluxes (input) θ_{RC} : parameters

6

$\theta_{\it RC}$ parameter identification : solve LS minimization

- Training during one year to catch seasonal variation
- Data are from numerical simulation

 Prediction error can be important, coming from modelling hypotheses and external factors uncertainties

Improvement : tradeoff between complexity and uncertainties

Increasing model complexity lead to identification failure...

How to deal with time-varying bias?

- θ_{RC} rolling identification [Quan Nguyen-Hong et. al. 2017],
- piecewise constant parameters

 θ_{RC} 1-week history identification
updating 1-dayforecasting model
next day

[Quan Nguyen-Hong et. al. 2017], Meta-Optimization and Scattering Parameters Analysis for Improving On Site Building Model Identification for Optimal Operation

Comparing rolling identification with a machine learning approach

No optimization during simulation

• Why:

7

- to avoid doing non-convex optimization
- to smooth variation of θ_{RC} , filtering bad results
- to add exogeneous variables
- to reduce computational cost

- Daily \rightarrow 7*2 features per variable
- Week \rightarrow 1*2 features per variable
- Exogeneous variables : Number of occupants, season of year

Time

Performances

Metrics : Statistics on Absolute Error of T_{int} mean, standard deviation, max

5 models comparison

- 1. Constant θ_{RC} (1 LS identification for 1 year) time varying θ_{RC} (1-day piecewise cst) :
- 2. Rolling LS identification (robustness, comp. ress.)
- 3. Reusing post-treated 1st year θ_{RC} (accuracy loss)
- 4. Ridge meta-model (weakly stats)
- 5. Ridge meta-model (daily stats)

Conclusions

9

- Hybrid physics and ML approach
- Enhenced computation resources and robustness
- Enhenced accuracy by providing exogen. variables.

Maximum absolute erro

Outline

Context and Strategies for Hybridization

Application to Building modelling

Quang Hùng Nguyen, Benoit Delinchant, Florent Chatelain. Machine learning driven parameter identification for grey-box thermal modelling for buildings. Building Simulation 2023, Sep 2023, Shanghai, China

Application to Building control

Sharath Ram Kumar, Remy Rigo Mariani, Benoit Delinchant, Arvind Easwaran, "Towards Safe Model-Free Building Energy Management using Masked Reinforcement Learning", ISGT 2023

Energy managment system

- **Building energy systems:** solar panels, energy storage and controllable HVAC (heating ventilation air conditioning).
- **Cost/Comfort Trade-off** minimum electrical bill and max. indoor comfort.
- Defining an hybrid controller :
 - Knowledge/Expertise available : Rule-Based-Controller (RBC)
 - Data : power meter at building level

Deep Reinforcment Learning

Reference method : Proximal Policy Optimization (PPO)

- Reinforcement Learning (RL) is a model free approach of decision making (policy φ) depending on the actual state s_t (Markov Decision Process), in order to maximize the expected cumulative reward.
- PPO is a policy gradient deep RL method which ensures a small deviation for each policy update, and is based on Actor-Critic which learn two function approximations:
 - A policy that controls how the agent acts (actor)
 - *A value function* to assist the policy update by measuring how good the action taken is

RL Limitations :

- The learning phase may require many samples in order to capture a good behaviour => model free approach
- The exploration may generates "unrealistic" controls regarding the physics of the systems and its constraints => no knowledge /
 - expertise about the system

12

Problem definition

13

G2Elab Grenoble Génie Electrique Grenoble Electrique Grenoble Electrique

• State: $s_t = \begin{bmatrix} h & wkday & soc_t & \pi_t & T_{t-1} & P_{t-1}^{gd} \end{bmatrix}$

- Action: $a_t = \begin{bmatrix} p_t^{st} & T_t^s & \delta_t \end{bmatrix}$ continuous or discrete space
- Reward to maximize over time: $r_{t} = r_{t}^{gd} \times r_{t}^{hc}$ $r_{t}^{gd} = \left(a - b \times p_{t}^{gd} \times \pi_{t} \times dt\right)$ $r_{t}^{hc} = \left(d \times \Delta T_{t}^{2} + e \times \Delta T_{t} + f\right)$ $\Delta T_{t} = T_{t} - T_{t}^{ref}$

Rk : r_r^{hc} is < 0 when r_r^{hc} < 0 and r_r^{hc} < 0

Strategy 1 : Use knowledge / expertise to pre-train the policy

- **RL Limitation** The learning phase may require many iterations in order to capture a good behaviour.
- **Behavioural Cloning (BC)** initialize the controller in an offline mode from Rule Based Controller (RBC) samples : from real environment or applied on a model (eg. RC).

Strategy 2 : Use knowledge / expertise to avoid bad actions

- RL Limitation In the exploration phase RL may generates "unrealistic" controls regarding the physics of the systems and its constraints.
- **Masked RL (MRL)** rules to eliminate illogical controls before they are sent to the environment.
 - No charge/discharge beyond limits (soc_t)
 - HVAC is forced "ON" if the temperature is outside of the comfort zone

Four Controllers Investigated :

- Baseline Rule-Based-Controller RBC
- Reinforcement Learning RL
- Behavioural Cloning + RL BCRL
- Masked Reinforcement Learning MRL

Hyperparameters for Learning-Based Controllers based on Proximal Policy Optimization (PPO).

	Continuous	Discrete
Learning rate	2.7e-4	2.3e-4
Discount factor	0.999	0.988
Clip range	0.6	0.7
Episod length	1 day	1 day

Sensitivity to reward function

Test over different reward functions

robust 0 low complexity RL No knowledge a piori

RBC - Baseline Rule-Based-Controller

- **RL** Reinforcement Learning (PPO)
- BCRL Behavioural Cloning + RL

Conclusions

MRL - Masked Reinforcement Learning

17

Mixing data and knowledge for modeling and control of building energy systems

- Building modeling approach :
 - Use general/simple physical law (RC)
 - Time varying parameters to catch modelling errors
 reduce by 3 the MAE
 - Train NN instead of continual re-identification
 - \Rightarrow Increase robustness
 - Tested different models with exogen parameters
 ⇒ improvements on the error variance
- Building controller :

18

- RL for adaptation
- Existing knowledge (RBC) => Pre-training of NN
- Action masking to avoid illogical control and keep safe exploration
- ⇒ Always a **balance** between knowledge **exploitation** and **exploration**

Perspectives: District scale : control of a cluster of buildings without explicit knowledge of local control.

Mixing data and knowledge for modeling and control of building energy systems

Benoit DELINCHANT

Grenoble Electrical Engineering Lab Grenoble-INP

DESCARTES Decision-making in Critical Urban Systems

SINERGIE

French-Singaporean research network programme on Renewable Energy

Monday, 6 November 2023 Session-03 - Smart Buildings and Smart Cities NTU Reality Theatre - Research Techno Plaza (RTP) Singapore

