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Context and Motivations

District Energy Managment

Energy flexibility at district level

• Management strategies of energy systems :

 Buildings with/without flexibilities

 PV (intermittent RES)

 Storage local/district (bidirectional control)

Different sources of uncertainties  :

• Forecast Errors on the input (e.g. RES/occupancy profiles)

• Model Accuracy (e.g. simplification physical laws.)

• Model Parameters (e.g. physical properties not perfectly 

known.)

2/ 9

Opportunity to mitigate uncertainties using real time data:

1. To re-estimate model parameters continuously: active 

parameter learning

2. reinforcement learning controller hybrid strategies

PCC

tP
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Hybridization Strategies

Modeling and Control strategies

Modeling methodology [PhD Quang Hùng NGUYEN]

RC (grey box) models
• Explainability from knowledge (extrapolate to new 

situations not seen in data)

• Adaptability from data (to manage lack of knowledge)

• Easy to deploy at district level (RC archetypes)

• Hybrid : Retain major physical dynamics while enabling 

data-driven parameters learning

Control methodology [PhD Sharath RAM KUMAR]

• Model Predictive Control (MPC) : find optimal controls based on 

forecasting of inputs wt and the system model (f, g)

• Reinforcement learning (RL) : find optimal policy � of 

interaction between the controller (agent) and the system 

(environment)

• Drawback : need many experiments to learn

• Hybrid approach : using model and knowledge to guide learning

Detailed physical model Black box

+ knowledge
+ data

Grey box

Environment
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Building hybrid model

Data assimilation

Lumped-parameters physical model

• One zone R2C2 differential equation model

Indoor temperature 

prediction

• Prediction error can be important, coming from modelling 

hypotheses and external factors uncertainties

 Increasing model complexity lead to identification failure…

���	
��

�
� ����	
��, �, ����

T_nodes: temperature at nodes

u: heat fluxes (input)

���: parameters

[Quan Nguyen-Hong et. al. 2017], Meta-Optimization and Scattering Parameters 

Analysis for Improving On Site Building Model Identification for Optimal Operation

How to deal with time-varying bias ? 

Improvement : tradeoff between complexity and uncertainties

��� parameter identification : solve LS minimization

• Training during one year to catch seasonal variation

• Data are from numerical simulation

• ���  rolling identification

[Quan Nguyen-Hong et. al. 2017], 

• piecewise constant parameters



7

Methodology

Comparing rolling identification with a machine learning approach

Replace optimization by a metamodel learnt from 

past identifications• Why :

 to avoid doing non-convex optimization

 to smooth variation of ��� , filtering bad results

 to add exogeneous variables

 to reduce computational cost

 …

No optimization during simulation

Learning

Real time 

operation

θRC Model

Model trained

θRC update
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Results

Experiment

��� metamodel learning

• ground truth data : EnergyPlus simulation

 1 year for training, 1 year for testing

• Identification: least squared errors of ���� (°C) (LS optimization)

 7 parameters : �� , �� , �� , � , !� , ! , � "#"

 Daily value identification from 1 week length history

 R2 score < 0.7 = removed (marked “x” on graph)

• ��� metamodel : Linear regression (Ridge) 

 Inputs from RC : time series reduced to statistics (mean and variance)
o Daily � 7*2 features per variable

o Week � 1*2 features per variable

 Exogeneous variables : Number of occupants, season of year 

�$ (blue)

�� (orange)

�$ (blue)

�	 (orange)

%$ (blue)

%� (orange)

Daily-varying RC model parameters
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Results

Performances

Metrics : Statistics on Absolute Error of ����

mean, standard deviation, max
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METRICS – Indoor temperature (°C) 

Absolute Error Statistics

MAE

std. AE

max AE
1. Constant ��� (1 LS identification for 1 year) 

time varying ��� (1-day piecewise cst) :

2. Rolling LS identification (robustness, comp. ress.)

3. Reusing post-treated 1st year ��� (accuracy loss)

4. Ridge meta-model (weakly stats)

5. Ridge meta-model (daily stats)

5 models comparison

Conclusions

• Hybrid physics and ML approach

• Enhenced computation resources and robustness

• Enhenced accuracy by providing exogen. variables.
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Building control 

Energy managment system

• Building energy systems: solar panels, 

energy storage and controllable HVAC 

(heating ventilation air conditioning).

• Cost/Comfort Trade-off – minimum 

electrical bill and max. indoor comfort.

• Defining an hybrid controller : 

 Knowledge/Expertise available : 

Rule-Based-Controller (RBC) 

 Data : power meter at building level

l
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Learning-Based Controllers

Deep Reinforcment Learning 

Reference method : Proximal Policy Optimization (PPO)

• Reinforcement Learning (RL) is a model free approach of decision 

making (policy φ) depending on the actual state st (Markov Decision 

Process), in order to maximize the expected cumulative reward.

• PPO is a policy gradient deep RL method which ensures a small 

deviation for each policy update, and is based on Actor-Critic which 

learn two function approximations:

 A policy that controls how the agent acts (actor)

 A value function to assist the policy update by measuring how good 

the action taken is

2/ 9

Environment
st+1=g(st,at)

Controls at

Agent

Actor Critic
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RL Limitations :

• The learning phase may require many samples in order to capture 

a good behaviour => model free approach

• The exploration may generates “unrealistic” controls regarding 

the physics of the systems and its constraints => no knowledge / 

expertise about the system
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Learning-Based Controllers

Problem definition

 State :

 Action :

 Reward to maximize over time:

1 1
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Learning-Based Controllers

• RL Limitation – The learning phase may require many 

iterations in order to capture a good behaviour. 

• Behavioural Cloning (BC) – initialize the controller in an 

offline mode from Rule Based Controller (RBC) samples : 

from real environment or applied on a model (eg. RC).

Environment
st+1=g(st,at)

Agent

 t ta s

Strategy 1 : Use knowledge / expertise to pre-train the policy

Initialization

Agent 0

RBC

 0
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Learning-Based Controllers

Strategy 2 : Use knowledge / expertise to avoid bad actions

Environment
st+1=h(st,at)

Agent

policy mask

  t ta M s

 0

ta s  0 ,t t ta M a s

• RL Limitation – In the exploration phase RL may 

generates “unrealistic” controls regarding the 

physics of the systems and its constraints.

• Masked RL (MRL) – rules to eliminate illogical 

controls before they are sent to the environment.

 No charge/discharge beyond limits (soct) 

 HVAC is forced “ON” if the temperature is 

outside of the comfort zone

 …
Expertise
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Results

Four Controllers Investigated :

• Baseline Rule-Based-Controller - RBC

• Reinforcement Learning – RL

• Behavioural Cloning + RL – BCRL

• Masked Reinforcement Learning – MRL

Hyperparameters for Learning-Based Controllers based 

on Proximal Policy Optimization (PPO).

2/ 9

Continuous Discrete

Learning rate 2.7e-4 2.3e-4

Discount factor 0.999 0.988

Clip range 0.6 0.7

Episod length 1 day 1 day
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Good performances with 

BCRL at the beginning,

but RL exploration leads to 

better cumulative reward 

after 2 years

MRL allow safe exploration 

but is too restrictive and 

limit exploration
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Results

Sensitivity to reward function

Test over different reward functions

RBC - Baseline Rule-Based-Controller

RL  - Reinforcement Learning (PPO)

BCRL  - Behavioural Cloning + RL

MRL  - Masked Reinforcement Learning

RBC
robust

low complexity

suboptimal

not adaptive

RL No knowledge a piori
Sensitive to reward / 

hyperparamerters

BCRL Fast & Stable training Less exploration

MRL Safe exploration Less exploration
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Conclusions
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Conclusions and Future Works

Mixing data and knowledge for modeling

and control of building energy systems

• Building modeling approach :

 Use general/simple physical law (RC)

 Time varying parameters to catch modelling errors

reduce by 3 the MAE

 Train NN instead of continual re-identification

 Increase robustness

 Tested different models with exogen parameters

 improvements on the error variance

• Building controller :

 RL for adaptation 

 Existing knowledge (RBC) => Pre-training of NN

 Action masking to avoid illogical control and keep safe exploration

Always a balance between knowledge exploitation and exploration

s1t+1=h1(st,at)

controller

snt+1=hn(st,at)

controller

Building 1

Building n

s1t sntλ1t λnt

Building 1 

Model

Building n 

Model

District Controller

λ1t λntx1t xnt

Perspectives: District scale : control of a cluster of buildings without explicit knowledge of local control.
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