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Abstract— There is an increase of PV generation on 
many distributed sites, especially rooftop PV on buildings. 
The emergence of aware end-users, that are doing their 
best to maximize their auto-consumption in an energy 
community using energy management systems, leads to a 
need for new adapted forecasting models. We ask the 
question in this article of the ability to produce with few 
data, a robust day ahead PV generation forecasting. To do 
that, we have applied a hybrid methodology taking 
advantage of both physical model and data-based model 
in order to reduce the amount and kind of data. We reach 
improvements from 5% to 12% depending on the model 
used, compared to pure data-based approaches.  

Keywords— PV forecasting, Hybrid-AI, Physic-based model, 

Data-based model, Clear sky, cloud cover forecast, LSTM, 

XGBoost. 

I. CONTEXT AND REQUIRMENT SPECIFICATIONS 

The ongoing energy transition is seeing the spread of a 
large number of individual photovoltaic (PV) installations. 
These installations have a major impact on the electrical 
distribution. Buildings allow degrees of flexibility and can be 
integrated into aggregators that seek to optimize energy flows 
through Demand Response (DR) mechanisms in interaction 
with energy markets. They can interact directly with flexible 
assets or via end users, but must in any case receive their 
consent and can encounter many barriers [1]. In order to 
optimize this management, the aggregator must have 
knowledge of the distributed production, but also of consumer 
behavior, which is an active research field [2] and subject to 
many uncertainties. More and more individual Renewable 
Energy Sources (RES) generation are being implemented at 
the scale of buildings, or at the scale of energy communities. 
Producers become actors in the energy system, and can benefit 
from local Energy Management Systems (EMS).  

A first challenge for RES forecasting at local scale 
development is that it is lightweight and accessible. By 
accessible we mean that it is available but also easily usable, 
i.e. not requiring too specific characteristics that it would be 
impossible to provide without a dedicated scientific study. For 
instance, this is not the case of the Bird clear sky model which 
has demonstrated high precision [3] but requires too many 
details. There are many sources of uncertainties during design 
especially regarding energy demand [4], which justify works 
on more simplified PV models. 

The EMS can be based on Model Predictive Control 
(MPC) in order to achieve optimal operation on flexible 
assets, like HVAC systems. Knowing from the design phase 

that such an EMS will be available during the operation phase 
helps to avoid oversizing storage capacities [5]. 

When installed, the PV system is also able to produce 
measures that can be very useful during operation. These data 
are property of the PV owner, then free and accessible for him. 
Most of existing models is focusing on accuracy, and for that, 
once can use expensive sensors like solar radiometers, or sky 
imager. The quality of the model is not only base on its 
accuracy but on its accuracy over its training cost [6].  

Our contribution here is to provide and analyze advantages 
and cons of day ahead 24h PV forecasting hybrid models 
which improves simplicity criteria such as few data learning 
and very accessible physical modeling, while keeping 
forecasting robustness. 

II.  PV GENERATION FORECASTING METHODS 

Sobri et al. in [7] has classified solar photovoltaic power 
forecasting methods into three major categories i.e., time-
series statistical methods, physical methods, and ensemble 
methods : 

1 - Most of time-series statistical methods are today 
depicted as Artificial Intelligence (AI) and experienced a 
spectacular development in recent years especially with Deep 
Neural Network (DNN) due to their capability in solving the 
non-linear and complex structure of historical data. 

2 -  physical models are based on the modeling of solar 
radiation and its dynamic interaction with the atmosphere. 
Two main equipments are used:  

 the Sky Imager or Sky Cam (SC) are used for Cloud-
Motion-Vector (CMV) methods that has to face issues of 
complex multilayer cloud displacements, cloud formation 
and dissipation. 

 the Satellite-based radiometers used for irradiance 
forecasts using Surface Solar Irradiance (SSI) and CMV.  

For larger temporal and spatial scales (see Fig. 1), 
Numerical Weather Prediction (NWP) is used. NWP models 
are based on numerical integration of coupled differential 
equations that explain the transportation of radiation 
mechanism and the dynamics of the atmosphere. In this study, 
we are focusing on microscale forecasting. 

3 - The ensemble method refers to any combination (or 
hybridization) of pervious methods, most of time in a 
statistical approach in order to provide uncertainty 
quantification. In this paper, we are developing hybrid-AI 
which is combination of statistical approach and physic-based 
approach, but for complementarity and not redundancy. 



 

Fig. 1. Model classification based on temporal and spatial resolutions 

(adapted from [7]) 

III. HYBRID MODELING FOR PV FORECASTING  

A. Hybrid Modeling Methodology 

Physical models are approximations due to various factors, 
such as idealized assumptions, characteristic value 
approximations, unknown external factors. Then we are 
assuming that the physical model is incomplete, and unable to 
represent the whole complexity of the observed data. 

It is important to use data to cope with uncertainties, and 
to use physical laws in order to guide the modeling approach 
with some physical constraints. Our main concern is to use 
data and physical characteristic that are easy to access. Then 
the physical model �� can be considered as a coarse model of 

�  that can be enhanced with purely statistical model ��  to 
estimate the bias, as in (1). We can imagine the physical part 
�� taking most of the non-linearities, then correction term �� 

will have to manage less complex regression, requiring then 
less amount of data.  

�� = �� + �� (1) 

If �� is known and a ground truth of PV production has 

been measured, then correction contribution or the model 
enrichment ��  is obtain using classical machine learning 
approach, as in (2). 

�� = ��� − �� (2) 

Most of time, ��(θ�)  requires to adjust θ�  parameters, 

then the approach is to learn both θ� and θ�  at the same time. 

��(θ�, θ�)  = ��(θ�)  + ��(θ�) (3) 

This approach is also used in Physic Informed Neural 
Network (PINN) or more generally Physical Informed 
Machine Learning [8] when considering Kernel based 
regression. The main issue to overcome is about non 
uniqueness of the decomposition (1). 

                                                           
1 Here RMSPE is RMSE divided by the max value of the 

true values and multiplying by 100 (in percentage) 

In [10], authors formulated the learning problem such that 
“the physical model explains as much of the data as possible, 
while the data-driven component only describes information 
that cannot be captured by the physical model; no more, no 
less”. Then authors guarantee “existence and uniqueness for 
the decomposition given mild conditions, and show that this 
formulation ensures interpretability and benefits 
generalization”.  

A third similar approach relative to real time control is 
called digital twin [8]. Due to real time constraints, it requires 
to calibrate off-line a Model Order Reduction which 
implement the coarse model ��(θ�). Then ��(θ�)is update 

on-line in real time.  

In the next parts, we are detailing which models �� and �� 

have to be used in our PV forecasting methodology. 

B. Physic based model 

Over the years, numerous physical models have been 
proposed to accurately model solar irradiance under clear sky, 
which plays a crucial role in solar power production. Solar 
irradiance model combined with information on PV panels 
characteristics is then able to estimate the energy production. 

According to the suggestions provided in [11], it is noted 
that complex models heavily rely on local measurements that 
can be challenging to obtain. Hence, simpler models seem 
accurate enough for practical purposes. Considering this, even 
though the Bird clear sky model has demonstrated high 

precision [3] (RMSPE1 ≤ 5%), it is still hard to achieve such 
accuracy with expert knowledge of the system and its 
environment. Instead, we will focus use Ineichen-Perez clear 
sky model (RMSPE ≤ 10%), which requires nine parameters 
including solar zenith, azimuth, latitude, longitude, altitude.  

The pvlib [13] provides access to this model for solar 
irradiance estimation under clear sky. In particular, it offers 
the Hay-Davies model as the default for calculating solar 
irradiance. Additionally, the library includes the isotropic 
model, which has demonstrated satisfactory results [14]. 

C. Data based model 

1) Litterature review 
Using historical data, a data-driven approach can capture 

intricate patterns and relationships that may not be easily taken 
into account by the physics formulas, and can potentially 
enhance the accuracy of the forecasts. For instance, Zamo 
presents in his 2014 publication [14] a benchmark of statistical 
regression methods for short-term forecasting of photovoltaic 
electricity production built without any technical information 
about panels or irradiation models. Models can be 
deterministic or probabilistic based on Ensemble Method 
(EM) while no forecasting models clearly dominates the other 
whatever the power plant. 

Some data-based models do not directly forecast PV 
generation but solar radiance [16]. A second less complex 
model can then transformation the solar forecast into PV 
forecast [17]. But most of small PV plants (such as rooftop 
PV) have no access to irradiance measures or at the best to the 
global irradiance only, but rarely diffuse and direct irradiance 
separation.   
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A literature review summarized in the next table, show that 
Extreme Gradient Boosting (XGBoost) and Long Short-Term 
Memory (LSTM) models show better accuracy compared to 
other models, demonstrating their effectiveness in capturing 
complex patterns and relationships within the data.  

Dimitropoulos [17] has compared several Machine 
Learning (ML) models with very comparable performances. 
In the case of XGBoost, the model uses features such as 
temperature, pressure, humidity, and solar radiance to predict 
solar power generation. On the other hand, LSTM utilizes 
historical power generation data to capture temporal 
dependencies and make forecasts. By considering different 
sets of input variables, XGBoost focuses on weather-related 
factors that impact solar power generation, while LSTM 
emphasizes the historical patterns of power generation itself. 
Both approaches have demonstrated their efficacy in 
achieving accurate predictions. 

XGBoost and LSTM will be used for ML in our model. 

2) Extreme Gradient Boosting 
Extreme Gradient Boosting (XGBoost), is an open source 

machine learning library designed to perform Gradient 
Boosting (GB) for decision tree models. GB is close to 
classical regression tree ensemble Random Forest (RF). 
Where RF manages the variance problem thanks to 
bootstrapping, it does not manage at best the bias introduced 
by the depth of the regression trees. GB helps to better manage 
the bias. While RF generates random and independent trees in 
parallel, GB works sequentially to create new trees depending 
on the performance of the previous ones. 

3) Long-Short Term Memory 
Long short term memory (LSTM) is a recurrent neural 

network (RNN) dedicated to time series modelling which is 
able to catch different dynamics of the signal, and bring a 
solution to the long term gradient vanishing during the back 
propagation mechanism of classical RNN.  

IV. CASE STUDY: GREEN-ER PV FORECASTING 

In order to illustrate the modeling strategy, our case study 
is a rooftop PV of an engineering school building which owns 
also solar irradiance instruments for validation purposes.  

A. GreEn-ER instrumentation and PV generation  

1) GreEn-ER PV Generation 
The 890-square-meter photovoltaic power plant installed 

on the roof of the GreEn-ER building (Fig. 2) has a capacity 
of 183kWp. The energy produced is self-consumed, 
representing 10% of the building's total annual consumption. 

 

Fig. 2. GreEn-ER building with 183kWp PV panels 

2) Solar irradiance 

 

Fig. 3. GreEn-ER weather station 

Solar irradiance can be decomposed in Direct Normal 
Irradiance (DNI, in W/m2) and Global Horizontal Irradiance 
(GHI, in W/m2). These two components can be measured 
using a Rotating Shadowband Radiometer [18] available in 
our weather station (Fig. 3) which are required in some 
physical models and are used here for validation purpose only. 

3) Sky Imager 
Our weather station has also cameras, with sky cam (Fig. 

4) which provides images of the surrounding area. These 
images can be used to produce the cloud cover indicator (also 
known as cloudiness, cloudage, or cloud amount) which refers 
to the fraction of the sky obscured by clouds on average when 
observed from a particular location. The literature mainly 
exploits Sky Imaging [20] to reach the local scale (Microscale, 
1m – 1km). 

 

Fig. 4. Sky imager AXIS M3027-PVE, and a sky view with clouds 

4) On line web-service weather forecasting 
In [19], we showed how cloud cover forecast by on-line 

weather services can be used to predict PV production from a 
clear sky and empirical model. Indeed, it is nowadays easy to 
obtain cloud cover forecast from weather web services such as 

Sky Cam 



AROME model from Meteo-France2 which is a small scale 
NWP model, designed to short range forecasts.   

Cloud cover history and forecasting is available even for 
free, from several API providers using forecasting technics 
based on NWP (see Table 1). 

TABLE I.  WEATHER FORECASTING HORIZON FOR 4 API PROVIDERS  

Time 

step 

Forecasting horizon (free or not) 

Tomorrow 

IO 

Accu 

Weather 

Weather 

Bit 

Open 

Weather 

Hourly 5 days free 
12h free 

up to 5 days 

up to 10 

days 
up to 4 days 

3-hour    5 days free 

Daily 5 days free 
5 days free 

up to 15 

days 

7 day free 
up to 16 

days 

up to 16 

days 

In this work we are considering this kind of NWP 
forecasting as a good tradeoff between the forecasting scale 
(local) and the easiness to obtain it (without local sensor).  

V. MODELING PROCEDURE AND RESULTS 

A. Physical model 

1) System description 
TABLE II. shows parameters for the physical model 

TABLE II.  PHYSICAL MODEL PARAMETERS 

Location :   Photovoltaic System :  

Grenoble, France 

 Latitude : 45.17° N 

 Longitude : 5.7° E  

 Time zone : GMT+2 

 Altitude : 212m 

PV Panels : 452 units 

 DualSun, FLASH 405 Half-Cut:  

 Peak power : 183 kWc 

 Efficiency : 15.7% 

 Tilt : 6° 

 Azimuth 1 : 139° for 220 units 

 Azimuth 2 : -41° for 232 units 

Ground albedo : 0.2 
Inverter  : SMA Sunny Tripower 

STP50-41 : 5 units 

2) Theoretical PV production without clouds 
The site location is provided to calculate solar positions. 

Then given the PV surface tilt and azimuth, the angle of 
incidence is obtained.  

The Ineichen and Perez clear sky model parameterizes 
irradiance in terms of the Linke turbidity, allowing to 
decompose direct normal irradiance and diffuse horizontal 
irradiance which are used in Hay and Davies model to 
determines the diffuse irradiance on the PV. Then Sandia PV 
Array Performance Model calculates PV power. 

This model corresponds to the theoretical 0% cloudcover 
PV production along a year. 

B. Data sets 

1) PV production  
The dataset is 1-hour time step recording during 1 year 

from sept 2022 to sept 2023 to fit with 1-year seasonal 
variations that can be observed in Fig. 5 for PV production. 

2) Learning with few data 
Our concern is to analyze the performances of our simple 

hybrid model (basic physic, and basic machine learning) 

                                                           
2 https://www.umr-cnrm.fr/spip.php?article120&lang=en  

which must be able to adapt well even with unseen data thanks 
to the physical part. 

Then, the models will be trained for the first 3 months 
(25%) and tested on the rest (75%) with a rolling window of 
24-hours time step. For the test, we are not considering a 
continual learning, it means that the models remain the same 
even if we have access to new data. 

 

Fig. 5. PV production data training and test set,  

3) Cloud cover and PV correlation 
The dataset used is the history of day ahead hourly 

forecasting from Tomorrow IO provider (see Table 1). 

A first correlation analysis can be done to see how PV 
production and cloud cover are linked. As it can be seen in 
Fig. 6 on the left side, there is no easy to capture trend. 

As explained in the Hybrid Modeling Methodology part, 
the clear sky physical model can be considered as a coarse 
model of the real PV production, that can be enhanced with 
purely statistical model to estimate the gap, as in equation (1).  

As it can be seen in Fig. 6 on the right side, a linear trend is 
appearing between cloud cover and the gap. 

   
 

Fig. 6. Correlation analysis between cloud cover and 

left:  PV production, right: Gap between ClearSky and PV production 

 

Seasonal variation of 

clearsky maximal 

production 

Training Test 

3 months 9 months 



C. Fully data based day ahead forecasting models  

1) Reference model : fully data-based approach 
As described in the literature review, LSTM is well 

recognized for time series forecasting. It is considered here as 
our reference model. A Sequence to Sequence LSTM model 
is then developed with the PV production history observed 
over the last 24 hours as input and the next 24 hours as output. 

The structure is 128 layers LSTM and 1 dense layer with 
ReLU activation function. Adaptative learning rate stochastic 
gradient optimization algorithm is used (Adam), with mean 
square error metric.  

The RMSE obtained is 14.55% of the nominal power. This 
pure data-based model is our reference model 
(‘PVd+1=LSTM(PVd) ref’). 

D. Including nebulosity with LSTM 

Cloud cover is now added as exogeneous variables to the 
LSTM reference model as described in Fig. 7. It leads to an 
improvement of 23% as summarized in Table 2 for 
‘PVd+1=LSTM(PVd,ccd+1)’.  

 

Fig. 7. Seq2Seq LSTM model with cloud cover 

The LSTM structure is similar to the reference one, just 
having one input feature of size 24 by 2. Here we are not 
analyzing the different technics to add such auxiliary feature 
with the PV sequence. One can try others structures, for 
instance one in which cloud cover is appended to the output 
of the first LSTM and choose to pass both to another learning 
structure. 

E. Gradient boosting 

As the literature review mentioned both LSTM and 
gradient boosting, we will check if our conclusions can be 
confirmed with this different model. XGBoost models are 
defined with 200 estimators, a maximal depth of 60, and a 
squared error minimization. 

The fist model ‘PVd+1=XGB(ccd+1)’ is using the 24-hours 
cloud cover forecast in input to predict PV production. It 
improves the reference model by 16% 

The second model ‘PVd+1=XGB(PVd,ccd+1)’, add to the 
previous one the PV production history, leading to 21% 
improvement compared to the reference.  

All results will be summarized in TABLE III.  

F. Hybrid day ahead forecasting models  

1) Detrend based on daily clearsky maximal production 
In the previous methods, PV data where normalized 

according the linear scaling technic to the range [0;1] based 
on the nominal power or maximal observation for the whole 
set. But PV curve can be daily scaled by the trend defined in 
first approximation by daily clear sky maximal production 
(Fig. 5). This trend is fully determined by the location on earth 
and PV tilt, then it is obvious to use the theoretical model..  

The reference model is improved by 5% just detrending 
the data. This improvement is quite significant, and would be 
less if a full year's data had been used for the learning process, 

or if a continual learning approach had been applied. But this 
detrend is a first step to improve the pure data based approach, 
especially when few data are available.  

2) Correction term learning added to physical model 
In order to apply the hybrid methodology detailed earlier, 

we defined a correction term as in equation (2) to model the 
gap between clear sky model and PV generation measures.  

Then, using the same LSTM structure as previously 
defined, a first model (‘gapd+1=LSTM(gapd)’) is learnt with 
this 24-hours gap history, that reach 19% improvement. This 
result shows the importance of the hybrid approach, the 
improvement may be explained by a less complex behavior of 
the error than the PV production itself.  

Now we are considering the cloud cover forecasting as a 
model feature. The new model Gapd+1=LSTM(gapd,ccd+1) 
reaches the improvement of 33% compared with the reference 
(without cloud cover), and 12% compared to 
PVd+1=LSTM(PVd,ccd+1). This last result is mainly due to the 
fact that cloud cover is explaining the gap more easily than the 
PV production itself, as we had foreseen with Fig. 6. 

We have obtained similar results with gradient boosting 
for ‘Gapd+1=XGB(ccd+1)’ and ‘Gapd+1=XGB(gapd,ccd+1)’ 
with respectively 24% and 26% of improvement compared 
with reference, and respectively 9% and 5% of improvement 
compared with there equivalent models without hybrid 
approach.  

G. Results  

1) Hybridfdetrend methodolgy performance results 
TABLE III. which summarizes results, is providing 2 main 

columns on left and on the right which list the different models 
tested to validate the methodology. On the left, 4 models of 
the PV model based on data, and on the right 4 equivalent 
models of the gap, based on data and physic. 

The feature used are 24h history, and 24h cloud cover 
forecasting. Two regression technics are used, LSTM and 
Gradient Boosting. 

The two first columns of results are the improvement of 
each model with regards to the reference model 
‘PVd+1=LSTM(PVd)’. The third column consider only the 
improvement due to hybrid methodology. 

TABLE III.  PERFORMANCE COMPARISON WRT REFERENCE MODEL - 

HYBRID IMPROVEMENT WRT TO PURE DATA MODELS 
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Hybrid models 

PVd+1=LSTM(PVd)  ref 19% 19% Gapd+1=LSTM(gapd) 

PVd+1=LSTM(PVd,ccd+1) 23% 33% 12% Gapd+1=LSTM(gapd,ccd+1) 

PVd+1=XGB(ccd+1) 16% 24% 9% Gapd+1=XGB(ccd+1) 

PVd+1=XGB(PVd,ccd+1) 21% 26% 5% Gapd+1=XGB(gapd,ccd+1) 

The best performances are obtained by 
Gapd+1=LSTM(gapd,ccd+1) with 33% improvement wrt to 
reference model, and 12% wrt to PVd+1=LSTM(PVd,ccd+1). It 
reached 9.78 RMSE in percentage of the nominal PV 
production, and a regression score R2=0.78. 



H. Modeling procedure 

Here we summarize the procedure to obtain such a model: 

 Collect PV measurements and Cloud cover forecasting 

 Collect PV characteristics and simulate theoretical PV 
production without clouds using PVLib 

 Detrend both measured PV and Clear sky PV 

 Define Gap as the difference of both previous time series 

 Create training batches of 24 hours data and learn a 
model of the next 24-hours Gap from Gap history and 
Cloud cover forecasting features 

 Predict the next 24-hours Gap, remove it from detrended 
clear sky model, and retrend the result which correspond 
to the next 24-hours PV production. 

VI. CONCLUSIONS AND PERSPECTIVES 

In this paper, we proposed a hybrid model for PV 
production day ahead forecast. It is based on a basic clear sky 
model which require only few parameters on location (latitude 
and longitude) and PV installation (tilt, azimuth, peak power 
and efficiency). Then the bias model is obtained using 
machine learning technics with Long Short Term Memory 
(LSTM) or Extreme Gradient Boosting (XGBoost) with 24h 
history and cloud cover forecasting features. We especially 
proposed to include cloud cover since it is easy to access from 
Numerical Weather Prediction (NWP) web-services.  

Training often requires a significant amount of historical 
data, and then need to wait before obtaining and using 
forecasting models. The hybrid methodology is a way to learn 
with few data, and improve the robustness with regards to 
unseen data. Indeed, this work provides results of 
improvements from 5% to 12% depending on the model used. 

3 main factors are explaining the good results: 

 Detrend based on daily nominal production. 

 The less complex behavior, compared to PV 
production, of the correction model (the bias), which 
is here the gap between clear sky physical model and 
real PV production. 

 The better correlation between cloud cover and the 
gap, than the PV production. 

 

Open-science : Data and models are available at https://gricad-
gitlab.univ-grenoble-alpes.fr/GreEn-ER/pv-production  
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