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The Riemann hypothesis is a conjecture that the Riemann zeta function has its zeros only at the negative even integers and complex numbers with real part 1 2 . It is considered by many to be the most important unsolved problem in pure mathematics. Let Ψ(n) = n• q|n 1 + 1 q denote the Dedekind Ψ function where q | n means the prime q divides n. Define, for n ≥ 3; the ratio R

We require the properties of superabundant numbers, that is to say left to right maxima of n → σ (n) n . There are several statements equivalent to the Riemann hypothesis. If for each large enough superabundant number n, there exists another superabundant n ′ > n such that R(n ′ ) ≤ R(n), then the Riemann hypothesis is true. In this note, using this criterion on superabundant numbers, we prove that the Riemann hypothesis is true.

Introduction

The Riemann hypothesis was proposed by Bernhard Riemann (1859) [START_REF] Bombieri | Problems of the Millennium: The Riemann Hypothesis[END_REF]. The Riemann hypothesis belongs to the Hilbert's eighth problem on Hilbert's list of twenty-three unsolved problems [START_REF] Bombieri | Problems of the Millennium: The Riemann Hypothesis[END_REF]. This is one of the Clay Mathematics Institute's Millennium Prize Problems [START_REF] Bombieri | Problems of the Millennium: The Riemann Hypothesis[END_REF]. In mathematics, the Chebyshev function θ(x) is given by θ(x) = q≤x log q with the sum extending over all prime numbers q that are less than or equal to x, where log is the natural logarithm.

Proposition 1.1. We have [12, pp. 1]:

θ(x) ∼ x as (x → ∞).
The following property is based on natural logarithms: Proposition 1.2. For x > -1 [8, pp. 1]:

x x + 1 ≤ log(1 + x).
Leonhard Euler studied the following value of the Riemann zeta function (1734) [START_REF] Ayoub | Euler and the Zeta Function[END_REF].

Proposition 1.3. We define [2, (1) pp. 1070]:

ζ(2) = ∞ k=1 q 2 k q 2 k -1 = π 2 6 ,
where q k is the kth prime number. By definition, we have

ζ(2) = ∞ n=1 1 n 2 ,
where n denotes a natural number. Leonhard Euler proved in his solution to the Basel problem that

∞ n=1 1 n 2 = ∞ k=1 q 2 k q 2 k -1 = π 2 6 ,
where π ≈ 3.14159 is a well-known constant linked to several areas in mathematics such as number theory, geometry, etc.

Proposition 1.4. For x ≥ 3 we have [5, Lemma 6.4 pp. 370]:

q>x q 2 q 2 -1 ≤ exp 2 x ,
where exp(k) is the exponential function with value e k and exponent k. Indeed, Choie and her colleagues proved that for x ≥ 3 and t ≥ 2,

log(R t (x)) ≤ t • x 1-t t -1 ,
where R t (x) is given as

R t (x) = q>x (1 -q -t ) -1 = q>x q t q t -1 .
Therefore, this Proposition is a particular case of their result applied to the specific value of t = 2.

The number γ ≈ 0.57721 is the Euler-Mascheroni constant which is defined as

γ = lim n→∞ -log n + n k=1 1 k = ∞ 1 - 1 x + 1 ⌊x⌋ dx.
Here n to be the abundancy index function. In 1997, Ramanujan's old notes were published where he defined the generalized highly composite numbers, which include the superabundant and colossally abundant numbers [START_REF] Nicolas | Highly Composite Numbers by Srinivasa Ramanujan[END_REF]. Superabundant numbers were also studied by Leonidas Alaoglu and Paul Erdős (1944) [START_REF] Alaoglu | On Highly Composite and Similar Numbers[END_REF]. Let q 1 = 2, q 2 = 3, . . . , q k denote the first k consecutive primes, then an integer of the form k i=1 q ai i with a 1 ≥ a 2 ≥ . . . ≥ a k ≥ 1 is called a Hardy-Ramanujan integer [5, pp. 367]. A natural number n is called superabundant precisely when, for all natural numbers m < n I(m) < I(n).

We know the following properties of the superabundant numbers: Proposition 1.6. Let n be a superabundant number such that q is the largest prime factor of n. Then [1, Theorem 7 pp. 454]:

q ∼ log n as (n → ∞).
In number theory, the p-adic order of an integer n is the exponent of the highest power of the prime number p that divides n. It is denoted ν p (n). Equivalently, ν p (n) is the exponent to which p appears in the prime factorization of n.

Proposition 1.7. Let n be a superabundant number such that p is the largest prime factor of n and a prime number 2 ≤ q ≤ p. Then [9, Lemma 14 pp. 8]:

log p log q ≤ ν q (n).
In number theory, Ψ(n) = n • q|n 1 + 1 q is called the Dedekind Ψ function, where q | n means the prime q divides n. A natural number N k is called a primorial number of order k precisely when,

N k = k i=1 q i . We define R(n) = Ψ(n) n•log log n for n ≥ 3.
Proposition 1.8. Unconditionally on Riemann hypothesis, we know that [13, Proposition 3. pp. 3]:

lim k→∞ R(N k ) = e γ ζ (2) 
.

Definition 1.9. If n is a superabundant number, then we say that Dedekind(n) holds provided that

q|n 1 + 1 q ≥ e γ ζ (2) 
• log log n.

The well-known asymptotic notation Ω was introduced by Godfrey Harold Hardy and John Edensor Littlewood [START_REF] Hardy | Some problems of diophantine approximation: Part II. The trigonometrical series associated with the elliptic ϑ-functions[END_REF]. In 1916, they also introduced the two symbols Ω R and Ω L defined as [START_REF] Hardy | Contributions to the theory of the Riemann zeta-function and the theory of the distribution of primes[END_REF]:

f (x) = Ω R (g(x)) as x → ∞ if lim sup x→∞ f (x) g(x)
> 0;

f (x) = Ω L (g(x)) as x → ∞ if lim inf x→∞ f (x) g(x) < 0.
After that, many mathematicians started using these notations in their works.

From the last century, these notations Ω R and Ω L changed as Ω + and Ω -, respectively. There is another notation: f (x) = Ω ± (g(x)) (meaning that f (x) = Ω + (g(x)) and f (x) = Ω -(g(x)) are both satisfied). Nowadays, the notation f (x) = Ω + (g(x)) has survived and it is still used in analytic number theory as:

f (x) = Ω + (g(x)) if ∃k > 0 ∀x 0 ∃x > x 0 : f (x) ≥ k • g(x)
which has the same meaning to the Hardy and Littlewood older notation. For x ≥ 2, the function f was introduced by Nicolas in his seminal paper as [10, Theorem 3 pp. 376], [4, (5.5) pp. 111]:

f (x) = e γ • log θ(x) • q≤x 1 - 1 q .
Finally, we have the Nicolas Theorem: Putting all together yields a proof for the Riemann hypothesis.

Central Lemma

Several analogues of the Riemann hypothesis have already been proved. Many authors expect (or at least hope) that it is true. Nevertheless, there exist some implications in case of the Riemann hypothesis could be false. The following is a key Lemma.

Lemma 2.1. If the Riemann hypothesis is false, then there exist infinitely many superabundant numbers n such that Dedekind(n) fails (i.e. Dedekind(n) does not hold).

Proof. The function g is defined as:

g(x) = e γ ζ(2) • (log log x) • q|x 1 + 1 q -1
.

We can see that whenever there exists some superabundant number n ′ such that g(n ′ ) > 1 or equivalent log g(n ′ ) > 0, then we obtain that Dedekind(n ′ ) fails as a direct consequence. We can prove the following bound: log g(n) ≥ log f (q k ) -2 q k where q k is the largest prime factor of the superabundant number n. Certainly, we know that (log log n) ≥ log θ(q k ) by Proposition 1.5. Moreover, we have log

  q|n 1 + 1 q -1   -log ζ(2) ≥ log   q≤q k 1 - 1 q   - 2 q k .
This is because of the Propositions 1.3 and 1.4 since

1 + 1 q -1 • 1 - 1 q 2 = 1 - 1 q and -log q>q k q 2 q 2 -1 ≥ - 2 q k .
By Proposition 1.10, if the Riemann hypothesis is false, then there is a real number 0 < b < 1 2 such that there exist infinitely many natural numbers x for which log f (x) = Ω + (x -b ). Actually Nicolas proved that log f (x) = Ω ± (x -b ), but we only need to use the notation Ω + under the domain of the natural numbers. According to the Hardy and Littlewood definition, this would mean that ∃k > 0, ∀y 0 ∈ N, ∃y ∈ N (y > y 0 ) : log

f (y) ≥ k • y -b . The previous inequality is also log f (y) ≥ k • y -b • √ y • 1 √ y , but we notice that lim y→∞ k • y -b • √ y = ∞
for every possible values of k > 0 and 0 < b < 1 2 . Now, this implies that

∀y 0 ∈ N, ∃y ∈ N (y > y 0 ) : log f (y) ≥ 1 √ y .
Note that, the value of k is not necessary in the statement above. In this way, if the Riemann hypothesis is false, then there exist infinitely many natural numbers x such that log f (x) ≥ 1

√

x . In addition, if log f (x 0 ) ≥ 1 √ x0 for some large enough natural number x 0 , then log f (x 0 ) = log f (q k ) and log f (q k ) ≥ 1 √ x0 where q k is the greatest prime number such that q k ≤ x 0 which could be also the largest prime factor of the superabundant number n at the same time. The reason is because of the equality of the following terms:

q≤x0 1 - 1 q = q≤q k 1 - 1 q
and θ(x 0 ) = θ(q k ) according to the definition of the Chebyshev function. Since

1 √ x0 > 1 √ 2•q k > 2
q k for every large enough prime number q k by Bertrand's postulate, then it would be infinitely many superabundant numbers n such that log g(n) > 0 under the assumption that the Riemann hypothesis is false. □

Main Insight

This is the main insight.

Lemma 3.1. The Riemann hypothesis is true whenever for each large enough superabundant numbers n, there exists another superabundant

n ′ > n such that R(n ′ ) ≤ R(n).
Proof. Over the range of superabundant numbers n, we can state that

lim n→∞ R(n) = e γ ζ(2) since q k ∼ log n as (n → ∞) and θ(q k ) ∼ q k as (q k → ∞) where lim k→∞ R(N k ) = e γ ζ (2 
) and q k is the largest prime factor of n: This is a consequence of putting together the Propositions 1.1, 1.6 and 1.8. By Lemma 2.1, if the Riemann hypothesis is false and the inequality

R(n ′ ) ≤ R(n)
is satisfied for each large enough superabundant number n, then there exists an infinite subsequence of superabundant numbers n i such that R(n i+1 ) ≤ R(n i ), n i+1 > n i and Dedekind(n i ) fails. This is a contradiction with the fact that

lim inf n→∞ R(n) = lim n→∞ R(n) = e γ ζ (2) 
.

By definition of the limit inferior for any positive real number ε, only a finite number of elements of R(n) are less than e γ ζ(2) -ε. This contradicts the existence of such previous infinite subsequence and thus, the Riemann hypothesis must be true. □

Main Theorem

This is the main theorem.

Theorem 4.1. The Riemann hypothesis is true.

Proof. By Lemma 3.1, the Riemann hypothesis is true whenever

R(n ′ ) ≤ R(n)
is satisfied for large enough superabundant numbers n ′ > n. For every large enough superabundant number n with the largest prime factor q k-1 , we could take the greatest superabundant number n ′ > n such that its largest prime factor is q k . We are always able to find such superabundant number n ′ due to Proposition 1.5. That is the same as

q|n ′ 1 + 1 q log log n ′ ≤ q|n 1 + 1 q log log n and q|n ′ 1 + 1 q q|n 1 + 1 q ≤ log log n ′ log log n which is log log n ′ log log n ≥ 1 + 1
q k after of distributing the terms. By Proposition 1.7, we notice that log q k log q i ≤ ν qi (n ′ ) for 2 ≤ q i ≤ q k . That would be ν qi (n ′ ) > log q k log qi -1 and so,

q νq i (n ′ )+1 i > q k .
Consequently, we deduce that

n ′ ≥ q k • n since (q k-1 , q k ) is a pair of two consecutive primes such that q k > q k-1 . Hence, it is enough to show that log log(q k • n) log log n ≥ 1 + 1 q k .
By Proposition 1.2, we could obtain that

log log(q k • n) log log n = log (log q k + log n) log log n = log (log n) • 1 + log q k log n log log n = log log n + log 1 + log q k log n log log n = 1 + log 1 + log q k log n log log n ≥ 1 + log q k log n log q k log n +1 log log n = 1 + log q k log q k +log n log log n = 1 + log q k (log(q k • n)) • log log n .
We only need to prove that

1 + log q k (log(q k • n)) • log log n ≥ 1 + 1 q k .
That is equivalent to

q k • log q k ≥ (log(q k • n)) • log log n.
However, the inequality

q k • log q k ≥ (log(q k • n))
• log log n holds for large enough superabundant numbers n and n ′ since we know that n ′ ≥ q k • n and q k • log q k ∼ (log n ′ ) • log log n ′ as (n ′ → ∞)

by Propositions 1.6 and 1.7. □

Conclusions

Practical uses of the Riemann hypothesis include many propositions that are considered to be true under the assumption of the Riemann hypothesis and some of them that can be shown to be equivalent to the Riemann hypothesis [START_REF] Bombieri | Problems of the Millennium: The Riemann Hypothesis[END_REF]. Indeed, the Riemann hypothesis is closely related to various mathematical topics such as the distribution of primes, the growth of arithmetic functions, the Lindelöf hypothesis, the Large Prime Gap Conjecture, etc [START_REF] Bombieri | Problems of the Millennium: The Riemann Hypothesis[END_REF]. In general, a proof of the Riemann hypothesis could spur considerable advances in many mathematical areas [START_REF] Bombieri | Problems of the Millennium: The Riemann Hypothesis[END_REF].
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