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Abstract—Due to the high dimensionality of the data, storing
the whole set of data during stream processing is impractical.
Therefore, only a summary of the input stream is maintained,
necessitating the development of specialized data structures
that permit incremental summarization of the input stream.
The problem becomes more complex when dealing with high-
dimensional text data due to the high sparsity. In this paper
we propose a new topological unsupervised learning approach
for high dimensional text data streams. The proposed method
simultaneously learns the representation of the stream and cluster
the data in a smaller dimension space. The evaluation of the
proposed OTTC (Online Topological Text Clustering) approach
and the comparison with the state of art methods is done by using
the framework MOA (Massive Online Analysis), an open-source
benchmarking software for evolving data streams. The proposed
approach outperforms the classical methods and the obtained
results are very promising for clustering high dimensional text
data streams.

Index Terms—Data stream, Clustering, high dimensional data.

I. INTRODUCTION

In the last few years and due to technological breakthroughs,
large amounts of continuous data flow are generated every day
and are referred to as data streams. Real-time processing of
these data requires a large amount of memory and presents a
significant challenge compared to static data due to the many
constraints that must be considered:

• One-time pass: each data object can be read just once.
• Unlimited data: the amount of arriving data is extremely

large to be stored.
• Evolving data over time: the capacity to discern new data

probability distributions over time is known as concept
drift.

Recently, a lot of research [1] [2] [3] has been conducted in
the field of data stream clustering due to the large number
of its applications in different domains. One of the tasks
on data streams is to detect their structure using clustering
approaches. The goal of clustering methods is to group similar
data objects into groups called clusters. However, the nature
of stream data requires the development of new methods
capable of performing an incremental clustering of data while
taking into consideration the constraints mentioned above.
The problem of data stream clustering was mostly done with
numeric data streams. There hasn’t been much research done
on data stream clustering with large textual data because of

the many problems it poses, such as its high dimensionality,
which can’t be solved with the traditional methods of data
stream clustering.

In this paper we propose a new method that combines data
projection model and online clustering in order to continuously
cluster high-dimensional streaming text data. The proposed
method was evaluated using real data sets, it achieves better
clustering quality in comparison with the traditional stream
clustering methods.

Because of its volume, data stream processing cannot store
all incoming data. Only a summary of the input stream
is retained, therefore specific data structures are needed to
gradually summarize it. We distinguish the following most
used data structures [4] [5] [6]:

• Feature vectors: keep the summary of the data instances.
• Prototype arrays: only some representative instances that

summarize the data is kept.
• coreset trees: a summary of the data is kept in a tree

structure.
• grids: keep the data density in the feature space.

In order to process only a part of data stream, the time-
window process usually is applied. The use of window models
aims to reflect which part of the stream history is important,
i.e. the recent history of the stream. There are several types
of time-windows [4]:

• Damped window model: a weight is assigned to each
object that arrives and this weight decreases over time
according to some decay functions. One of such functions
is f(t) = 2−λt , where t is the time passed and λ is the
decay rate (Fig 1.a).

• Sliding window model: which considers the most re-
cent observations in the stream. The window swaps one
instance at each step. The older instance moves out of
the window, and the most recent instance moves into
the window by FIFO style. All instances within the
active sliding window have equal weight and consecutive
windows mostly overlap (Fig 1.b).

• Landmark window model: considers the data in the
data stream from the beginning until the current time
instant. All the instances have the same weight. It doesn’t
differentiate between past and present data which can
affects the results of the model in view of the nature of



Fig. 1. Time window models [8]

the data stream which evolves continuously. (Fig 1.c).

• Tilted window model or the pyramidal time model [7]:
it keeps summaries at different levels of granularity in a
particular moment and based on the recency of data. The
granularity level of weights gradually decreases as data
points get older (Fig 1.d).

All these types of time-windows can be used for clustering
data streams, but the sliding window model is well adapted in
order to keep the topology of the stream. This type of window
will be used as an online process of the stream in the proposed
OTTC model.

The rest of this paper is organized as follows: after we
introduced the basic concepts on data stream clustering in
Section I, we introduce the related work on text clustering
in Section II. The proposed OTTC approach is described in
Section III and the obtained results and comparison with state
of art methods in Section IV. Finally, the paper ends with a
conclusion and some future work for the proposed method.

II. RELATED WORK

A. Data stream clustering algorithms

According to the state of the art and some survey papers
on data stream clustering [5] [8] [9], data stream clustering
algorithms can be divided into 3 main categories: Partitioning-
based methods that divide the data into a number of pre-
defined partitions, where each partition represents a cluster
and where each cluster is formed based on similarity or
distance to the cluster centroids. These methods are known for
their simplicity, their easy implementation and they are very
suitable for datasets with well separated spherical clusters.
There are several partitioning based algorithms proposed in
the literature, the most popular are STREAM [10], Clustream
[7], StreamKM++ [11] and SWClustering [12]. The second
category is Density-based methods that regroup the data into
clusters based on the dense areas that are separated by sparse
areas like DenStream algorithm [13], OPTICS-Stream [14] and
D-Stream [15]. These methods have the ability to handle noise
and detect arbitrary shape clusters but they are sensitive to the
setting of input parameters. Finally, the third category of data
stream clustering algorithms is model-based methods which
assume that data are generated by a mixture of probability
distributions and each component of the mixture represents a
cluster.

The method that we propose in this work is partitioning-
based method and it is based on one of the most well-known

algorithms in the field of data stream clustering called
Clustream proposed by Aggarwal et al [7].
Clustream is a framework that allows to perform clustering
of data streams at different time horizons. The clustering is
divided into two steps: online micro-clustering and offline
macro-clustering. In online micro-clustering, we summarize
the stream and we store statistical information about the data
using micro-clusters, where a micro-cluster is a temporal
extension of the cluster feature vector proposed earlier in
BIRCH clustering method [16]. This kind of data structure
allows to easily compute some basic cluster measures as
cluster centroid and radius that we need in the phase of
clustering. A micro cluster is defined as follows:

For a set of d-dimensional points X1, ..., Xn : Xi =
(X1

i , . . . , X
d
i ) with time stamps T1, ..., Tn:

MC = (
−−→
CF1d,

−−→
CF2d, CF1t, CF2t, N) (1)

where N is the number of d-dimensional data points in cluster,−−→
CF1d and

−−→
CF1d are the linear and squared sum of the N

data points in cluster and CF1t and CF2t are the linear and
squared sum of all timestamps of a cluster.

−−→
CF1d =

N∑
i=1

Xi
−−→
CF2d =

N∑
i=1

X2
i (2)

CF1t =

N∑
i=1

Ti CF2t =

N∑
i=1

T 2
i (3)

In the offline macro-clustering, we obtain the macro-clusters
by applying the k-means algorithm over the micro-cluster
summaries stored before in conjunction with other defined
parameters (such as time horizon and number of clusters).
In the proposed OTTC approach, we will use the Clustream
algorithm as an online step to incrementally cluster high
dimensional text data. Before using this online step, our
proposed method will use two embedding methods in order
to learn the representation of the stream without losing the
structure knowledge of the data.

B. Representation learning

In order to learn the representation space of textual data
there are several embedding methods, as classical vector
representation using TF-IDF or neural networks based models
as BERT.

TF-IDF: is a traditional NLP approach for text representa-
tion that compute the importance of a word in a document in
a collection of documents D. It consists of two terms: Term
Frequency (TF) [17] that reflects the frequency of a term ti
in a document dj , and Inverse Document Frequency (IDF)
[18] which provides a weight to each term ti according to its
frequency in the corpus D.
The TF-IDF of a term t in a given document d is defined as
follows:

tf -idf(t, d,D) = tf(t, d)× idf(t,D) (4)



tf(t, d) =
ft,d∑

t′∈d ft′,d
idf(t,D) = log

N

|{d ∈ D, t ∈ d}|

where ft,d is the frequency of term t in document d,∑
t′∈d ft′,d is the total number of terms in document d, N is

total number of documents and the denominator of the IDF
term represents the number of documents containing the term
t.
The terms with a high score of TF-IDF are the most relevant
terms.
TF-IDF is a method that is simple to calculate and easy to
use, it is used in several machine learning applications, but it
has some drawbacks like the curse of dimensionality since
the size of TF-IDF vectors is equal to the corpus vocabulary
size, also it cannot capture the context and the semantic
meaning of words which makes it a bad choice to represent
textual documents for clustering. Thus, we need an advanced
technique that can convert text to numerical vectors while
capturing the important semantic information such as BERT.

SVD: Before clustering the dataset, the single value decom-
position can be used to learn the representations of the data
and to deal with the sparsity of the stream. The singular value
decomposition (SVD) is a matrix factorization. For example,
the membership matrix M is an |V|×|S| matrix, then we may
write M as a product of three factors:

M = UΣV ∗ , (5)

where U is an orthogonal |V|×|V| matrix, V is an orthogonal
|V| × |S| matrix, V ∗ is the transpose of V , and Σ is an
|V| × |S| matrix that has all zeros except for its diagonal
entries, which are nonnegative real numbers. If σij is the i, j
entry of Σ, then σij = 0 unless i = j and σii = σi ≥ 0. The
σi are the “singular values” and the columns of u and v are
respectively the right and left singular vectors. Then use the
top k eigenvectors of M (resp. M’) corresponding to the k
smallest eigenvalues as the low dimensional representations
of membership matrix (resp. nodes attribute similarity matrix).

Stochastic Neighbor Embedding (SNE) [19]: Let X =
{x1, . . . , xN} be a N samples data set in a high dimen-
sional space endowed with some distance d(·, ·). In general,
in dimension reduction methods for data-visualization, the
goal is to map the high dimensional dataset X to a low
(usually 2 or 3 ) dimensional sample Y = {y1, . . . , yN}
while preserving the topological relationship among X. The
starting point in Stochastic Neighbor Embedding (SNE) is to
convert the available distance d(xi, xj) in the considered high
dimensional space (e.g. the Euclidean distance ∥xi − xj∥) to
some probability pj|i that represents similarity of xj to xi.
To compute this probability/similarity we use a normalized
Gaussian kernel as follows:

pj|i =
exp

(
−∥xi−xj∥2

2σ2
i

)
N∑

k=1,k ̸=i

exp
(
−∥xi−xk∥2

2σ2
i

) , and pi|i = 0, (6)

where σ2
i is the variance of the Gaussian kernel. Note that the

variance σ2
i is dependent on the position of the xi sample.

In order to determine the value of σi, the perplexity param-
eter 2−

∑
j pj|i log2 pj|i is used, which is exactly equal to some

user-defined value u. This computation could be done even by
a binary search [19] or robust root-finding method [20].

In the same manner, in the low-dimensional space, the
probability qj|i from the Euclidean distance ∥yi−yj∥ by using
normalized Gaussian kernel is computed as follows:

qj|i =
exp

(
−∥yi−yj∥2

2

)
N∑

k=1,k ̸=i

exp
(
−∥yi−yk∥2

2

) , and qi|i = 0. (7)

Note that in the low dimensional space we don’t have an
adaptive kernel with respect to the variance. To determine the
coordinates of yi we use the distributions Pi and Qi, corre-
sponding to the probability distribution in the higher and lower
dimensional space respectively. Therefore the coordinates of
yi are obtained by the minimization of the KL divergence
between the distribution Pi and Qi :

CSNE(Y ) =

N∑
i=1

KL(Pi∥Qi) =

N∑
i=1

N∑
j=1,j ̸=i

pj|i log
pj|i

qj|i
, (8)

For the minimization of functional in Equation (8) the follow-
ing gradient is used:

∂CSNE(Y )

∂yi
= 2

∑
j ̸=i

(pj|i − qj|i + pi|j − qi|j)(yi − yj). (9)

Let us remark that in the low dimensional space qj|i ̸= qi|j
while in the high dimensional space pj|i ̸= pi|j , therefore
these probabilities are not symmetric. Another point to remark
is the crowding problem, i.e. even for small values of pj|i
and pi|j we want that the data points yi and yj in the low
dimensional space are well-separated. While some strategies
to compensate the crowding problem in SNE was proposed
[19], this drawback motivates the definition of the t-SNE
approach.

t-Distributed Stochastic Neighbor Embedding (t-SNE)
[21]: In this section we present the t-Distributed Stochastic
Neighbor Embedding (t-SNE ) having two main differences
compared to classical SNE. Firstly, the t-SNE uses symmetri-
cal probability pij =

pj|i+pi|j
2N , which allow that the resulting

gradient of the cost function is simpler and easier to be
optimized.

Secondly, in t-SNE, to define the similarity between the data
points yi and yj in the low dimensional, the probability qij
doesn’t use a Gausssian kernel, but a t-distribution kernel with
one degree of freedom, resulting in the following expression:

qij =
(1 + ∥yi − yj∥2)−1∑

k,l(k ̸=l) (1 + ∥yk − yl∥2)−1 , and qi|i = 0. (10)



With this definition the cost function in the t-SNE writes as
follows:

CtSNE(Y ) = KL(P∥Q) =

N∑
i=1

N∑
j=1,j ̸=i

pj|i log
pj|i

qj|i
, (11)

While its gradient is given by:

∂CtSNE(Y )

∂yi
= 4

∑
j ̸=i

(pj|i − qj|i)(1 + ∥yi − yj∥2)−1(yi − yj)

(12)
Recall that the t-distribution has a far more complex history
than the Gaussian distribution. To simulate a tiny value of
pij using the t-distribution, the distance between yi and yj
must be considerable. This is the mechanism in t-SNE that
compensates for the crowding issue caused by the fact that
neighboring points in low-dimensional space occupy less space
than in high-dimensional space.

III. ONLINE TOPOLOGICAL TEXT CLUSTERING: OTTC

In this section we describe the proposed Online Topological
Text Clustering (OTTC) approach which consists of three
embedding steps and an online incremental clustering. The
embedding steps consist of one textual embedding and two
topological representation learning. For the textual embedding,
the BERT method is used, and for the topological representa-
tion learning, the UMAP is used.

BERT: is a transformer based language model developed
by Google [22] that learns contextual embeddings of words
in sentences using the attention mechanism. A word can
have several representations depending on its context in the
sentence. The model was pre-trained on a huge amount
of textual data and it uses two training strategies: Masked
Language Modelling (MLM) and Next Sentence Prediction
(NSP). MLM consists in predicting the identity of a random
masked input token using its context only while NSP predicts
if two sentences are adjacent or not. BERT has achieved state
of the art results on a wide range of NLP tasks such as text
classification, question answering and Information Extraction.
In our experiments, we used the sentence-transformers model,
precisely all-MiniLM-L6-v2 pre-trained model, to convert our
textual data to a 384 dimensional dense vector space.

UMAP: Let Y = {Y1, . . . , YN} ∈ Rd be a low dimensional
(d << n) representation of X such that Yi represents the
source data point Xi. It is necessary to have a comparison
method in place given the fuzzy simplicial set representations
of both X and Y. If we simply take into account the 1-skeleton
of the fuzzy simplicial sets, we will be able to represent each
one as a fuzzy graph, or more precisely, as a fuzzy set of
edges. In order to evaluate the similarity of two fuzzy sets,
we will be using fuzzy set cross entropy. In light of these
considerations, we shall return to the traditional fuzzy set
notation. To put it another way, a fuzzy set may be defined as
the product of a reference set A and a membership strength
function µ : A → [0, 1]. The same reference set is used to
compare fuzzy sets. We can go from a sheaf representation
P to classical fuzzy sets by setting A = a ∈ (0, 1]P ([0, a))

TABLE I
DATASETS DESCRIPTION

Datasets #documents #classes

Newsgroup20 18 000 20
AG News 127 600 4
BBC News 2225 5

and µ(x) = sup{a ∈ (0, 1]|x ∈ P ([0, a))}.
The cross entropy C of two fuzzy sets (A, µ) and (A, v) is
defined as :

C((A,µ), (A, v)) =
∑
a∈A

(
µ(a) log

(
µ(a)

v(a)

)
+ (1− µ(a))

log

(
1− µ(a)

1− v(a)

))
(13)

By using stochastic gradient descent in a manner similar
to that of t-SNE, we are able to maximize the embedding
Y with regard to the fuzzy set cross entropy C. However, in
order to do this, a differentiable fuzzy singular set functor is
required. If the expected minimum distance between points
is zero, then the fuzzy singular set functor can be used
for these purposes without needing to make a differentiable
approximation. However, if the expected minimum distance
between points is not zero, then we will need to make a
differentiable approximation (chosen from a suitable family
of differentiable functions). This brings the process to its
conclusion: by making use of manifold approximation and
piecing together local fuzzy simplicial set representations,
we are able to generate a topological representation of the
high-dimensional data. Then, in order to reduce the amount
of difference in accuracy between the two topological repre-
sentations, we optimize the data arrangement inside a low-
dimensional space.

The proposed approach is described in the Algorithm 1.

IV. EXPERIMENTAL RESULTS

A. Datasets and test setup

We evaluate the proposed OTTC method on 3 public tex-
tual datasets namely Newsgroup20 [23], AGNews [24] and
BBC News [25] with varying numbers of documents and
different numbers of classes. The summary of datasets is given
in Table I.
Newsgroup: The 20 newsgroups dataset comprises around
18000 newsgroups posts on 20 topics split in two subsets: one
for training and the other one for testing. The split between
the train and test set is based upon messages posted before
and after a specific date.
AG News: is a subdataset of AG’s corpus of news articles
constructed by assembling titles and description fields of
articles from the 4 largest classes of AG’s Corpus. It contains
127600 documents.
BBC News: the dataset consists of 2225 documents from the
BBC News website corresponding to stories in five news areas



Algorithm 1 Online Topological Text Clustering: OTTC
Input:

- Set of documents D = {d1, . . . , dN}; k: number of macro-clusters; q: number of micro-clusters.
- maxkernels: maximum number of micro-clusters; d: the dimension of the target reduced space.
- n: the number of neighborhood to use for local metric approximation.
- n-epochs: is the number of iterations; h: the length of time window.
- min-dist: the minimum distance for the points to be together in the low-dimensional representation.

Output: Set of k clusters.

Contextual embedding:
for all di ∈ D do

Generate document embedding ei by using sentence-transformers of Bert model where ei ∈ E.
end for
# Construct the relevant weighted graph
for e ∈ E do

fs-set[x]← LocalFuzzySimplicialSet(E, e, n)
end for
top-rep←

⋃
e∈E fs-set[e]

# Perform optimization of the graph layout
S ← SpectralEmbedding(top-rep, d)
S ← OptimizeEmbedding(top-rep, S,min-dist, n-epochs)
Initialization:
- Create the first q micro-clusters by applying k-means on the first data that arrives from the stream S.
Online: Micro-cluster maintenance as a new point p arrives, where p ∈ S.
- Compute the distance between the point p and each of the q micro-cluster centroids.
- clu ← the closest micro-cluster to p.
- Calculate the max boundary of clu.
if p is falling within the max-boundary of clu then

- p is assigned to clu
- Update the micro-cluster clu by using the incrementality property.

else
- A new micro-cluster will be created using p.
- Create memory space for the new micro-Cluster.
if its safe then

- We delete the most old micro-cluster.
else

- We merge the two closest micro-clusters.
end if

end if
Offline: Macro-clustering
- Apply k-means over the active micro-clusters during h to get the k macro-clusters.

from 2004-2005.
All the results were obtained by running the experiments on
a PC HP EliteBook 840 G5 with Intel Core i5-8250U CPU,
1.60GHZ and 8Go RAM.
The implementation of Clustream was obtained from frame-
work MOA (Massive Online Analysis) [26], an open-source
benchmarking software for data stream mining which is writ-
ten in JAVA. It contains several machine learning algorithms
and evaluation measures for running experiments.

B. Evaluation measures

To evaluate the clustering results, we used two evaluation
metrics: purity [27] and silhouette score [28].

Purity is an external evaluation criterion of cluster quality,
it compares the clustering results to the true partitions and
represents the percent of data points that were correctly
classified. It is defined as follows:

purity(Ω, C) =
1

N

∑
k

max
c∈C
|ωk ∩ c| (14)

where Ω is the set of resulting clusters, C is the set of true
clusters, N is number of objects and k is number of clusters. A
high degree of purity indicates a successful clustering process.
The purity of a cluster is defined as the proportion of data in
the majority class.
The Silhouette index estimates the average silhouette width



for each sample, cluster, and overall data. Using this method,
each partition may be evaluated by a silhouette depending on
tightness and separation. The average Silhouette can be used
to quantify the quality of the obtained clustering result. This
index can also be an indicator for the number of clusters.

The silhouettes S(i) are created using the following
expression:

S(i) =
(b(i)− a(i))

max {a(i), b(i)}
(15)

where a(i) represents the average dissimilarity of the ith item
to all others in the same cluster, and b(i) represents the average
dissimilarity of the ith object to all other clusters (in the closest
cluster).

The Silhouette index states for −1 ≤ s(i) ≤ 1. If the
silhouette is close to 1, the corresponding data belongs to
a good cluster (well clustered). If the silhouette is close to
zero, the sample is equally far from both closest clusters. If
the silhouette value is close to −1, the sample is misclassified
and is between the clusters. An object’s S(i) is the average
silhouette width for the whole dataset. The ideal number of
clusters is the one with the highest overall average silhouette
width.

C. Results

In the first set of experiments, we prove that the choice of
text embedding method to convert the textual data into numeric
vectors can play an important role on the quality and the results
of clustering. To this end, we tested two different approaches
to represent the text documents. First we applied TF-IDF
model, one of the most frequently used method that reflects the
importance of a word in a document from a corpus, then BERT
(Bidirectional Encoder Representations from Transformers), a
transformers based model which uses pre-trained model to
represents text data into fixed feature vectors. We calculate
the purity and silhouette measures for the two methods on the
three datasets using the algorithm K-means for clustering, in
order to compare the two approaches and choose the one that
improves the clustering results.

The clustering results are presented in Table II. We can
clearly see that the clustering results using text data rep-
resentation with BERT outperform the clustering using text
data representation with TFIDF in all three datasets which
can be explained by the fact that the representation of TF-
IDF does not take into consideration the semantic meaning
and the context of the words in the corpus compared to
BERT. Therefore, we used the BERT model to represent text
documents in the method we proposed and the conducted
experiments.

The second part of experiments that we conducted concern
text stream clustering on the dataset Newsgroup20 using Clus-
tream and different methods of dimensionality reduction with
2 dimensions. The problem using text data is that these type
of datasets are in very high dimensionality and the classical
data stream clustering methods can not be used. We tested 3

TABLE II
CLUSTERING RESULTS USING K-MEANS

Method NewsGroup20 AG News BBC News

Purity Sil Purity Sil Purity Sil
TF-IDF + K-means 0.368 0.007 0.889 0.013 0.280 0.006
BERT + K-means 0.611 0.040 0.957 0.066 0.831 0.036

TABLE III
DATA STREAM CLUSTERING RESULTS

Method Purity Silhouette

OTTC using SVD 0.25 0.37
OTTC using t-SNE 0.57 0.44
OTTC using UMAP 0.63 0.47

approaches: SVD, t-SNE and UMAP.
The results shown in Table III were obtained by setting
the different parameters of the algorithm Clustream in the
Framework MOA as follows: decayHorizon = 1000, evalu-
ationFrequency = 1000, decayThreshold = 0.01, normalize =
True, maxNumKernels = 100, kernelRadiFactor = 2.
From the above table, we can see that UMAP results out-
perform SVD and t-SNE in terms of Purity: 0.63 instead of
0.25 and 0.57 with SVD and t-SNE respectively, and for the
silhouette coefficient, we obtain 0.47 instead of 0.37 with
SVD and 0.44 with t-SNE. We can also notice that the results
obtained with t-SNE and UMAP are very similar as UMAP
is based on t-SNE.
The figures 2, 3 and 4 show a visualization of stream clustering
results based on dimensionality reduction methods that we
mentioned above. The circles in green represent the micro-
clusters, while the circles in red represent the final clusters.

Fig. 2. Stream clustering of Newsgroup20 using SVD



Fig. 3. Stream clustering of Newsgroup20 using t-SNE

Fig. 4. Stream clustering of Newsgroup20 using UMAP

The color of points indicates the real classes of data.
We can confirm by these figures the performance of the UMAP
method over the other methods. It can be observed that the data
points of different clusters in the clustering results with SVD
and t-SNE are not well separated compared to the results that
we obtained with UMAP, where the whole clusters of data
points agglomerated in the same cluster zones.

Reducing the dimensionality of high dimensional data is a
essential step on the text stream data clustering which allows u
to reduce the computational cost and to improve the clustering

TABLE IV
STREAM CLUSTERING RESULTS USING DIFFERENT # OF DIMENSIONS

Method NewsGroup20 AG News BBC News

Purity Sil Purity Sil Purity Sil
OTTC 2 0.63 0.47 0.79 0.73 0.90 0.80

OTTC 10 0.81 0.59 0.88 0.81 0.99 0.90
OTTC 20 0.93 0.56 0.93 0.66 1 0.77
OTTC 30 0.95 0.48 0.60 0.54 0.64 0.50
OTTC 40 0.95 0.34 0.35 0.52 0.27 0.50
OTTC 50 0.99 0.39 0.37 0.52 0.18 0.50

Fig. 5. Variation of silhouette according to number of dimensions

performance. One of the disadvantage of the dimensionality
reduction is the loose of the information by choosing a wrong
number of reduced dimensions.

We evaluate the results of the proposed OTTC method
using different numbers of components for data embedding on
the three textual datasets: Newsgroup20, BBC News and AG
News. For each dataset, the parameters of the stream clustering
algorithm were fixed as follows: For the newsgroup20 and
AG News datasets we set: decayHorizon = 1000, evalua-
tionFrequency = 1000, decayThreshold = 0.01, normalize =
True, maxNumKernels = 100, kernelRadiFactor = 2, horizon
= 1000. And for BBC News, we set: decayHorizon = 200,
evaluationFrequency = 200, decayThreshold = 0.01, normalize
= True, maxNumKernels = 100, kernelRadiFactor = 2, horizon
= 200. The choice of these parameters were obtained using
empirical computations with a cross-validation.

The table IV shows the obtained results. The index of
the OTTC in the Method column indicates the number of
dimensions vectors in the embedding process. The number of
dimensions stop at 50, because overall, after 50 dimensions
the quality of the OTTC approach will decrease.

We plot these results in order to observe the variation
of purity and silhouette measures regarding the number of
dimensions and analyze their impact on the clustering results
and its quality.



Fig. 6. Variation of purity according to number of dimensions

It can be noticed from the figure 5 that the silhouette
of all the three datasets starts to decrease as the number
of components used in the projection using UMAP method
increases after 20 dimensions. For the purity measure (figure
6), the same behavior was observed for the two datasets BBC
News and AG News, which decreased after 20 dimensions,
while for Newsgroup20 dataset, we notice that the purity
sometimes goes up and down depending on the number of
dimensions which can be explained by the nature of dataset
which has a large number of classes that makes high purity
easy to achieve.

V. CONCLUSION

In this paper, we proposed a new method of clustering high
dimensional text data stream called OTTC (Online topolog-
ical text clustering). This method combines the topological
representation learning and the online incremental clustering
model in order to learn the representation of the stream and
regroup similar textual data in a smaller dimension space.
The proposed approach were validated on several textual
datasets and obtained results outperforms the classical methods
in terms of the Purity and Silhouette index. We note also,
that the proposed method is scalable due to the use of the
representation space learning. As future works, meta-data
available in the dataset will be used in order to outperform
the obtained results, and the multi-view context of the problem
will be also analysed.
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