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Synaptic plasticity dynamically shapes the connectivity of neural systems and is key to learning processes in
the brain. To what extent the mechanisms of plasticity can be exploited to drive a neural network and make it
perform some kind of computational task remains unclear. This question, relevant in a bioengineering context,
can be formulated as a control problem on a high-dimensional system with strongly constrained and nonlinear
dynamics. We present a self-contained procedure which, through appropriate spatiotemporal stimulations of the
neurons, is able to drive rate-based neural networks with arbitrary initial connectivity towards a desired functional
state. We illustrate our approach on two different computational tasks: a nonlinear association between multiple
input stimulations and activity patterns (representing digit images), and the construction of a continuous attractor
encoding a collective variable in a neural population. Our work thus provides a proof of principle for emerging
paradigms of in vitro computation based on real neurons.

DOI: 10.1103/PRXLife.2.043014

I. INTRODUCTION

Natural neural networks have long been a key source
of inspiration for machine learning and computing, starting
from Rosenblatt’s perceptron to neuromorphic computing [1]
and nowadays to deep learning. Recently, it was suggested
that biological neural structures might be directly exploited
as a support for vitro computation [2,3]. Progress over the
past decade has made it possible to grow, preserve, and
study brain organoids [4]. The capabilities of stimulating
and recording neural populations [5–7] allow for interfac-
ing these systems, potentially turning brain organoids into
miniature biological computers. Computing with organized
assemblies of neurons could offer considerable advantages
with respect to electronics-based devices, in particular in
terms of low-energy consumption, massive parallel computa-
tion, and continuous learning. However, besides the practical
challenges raised by these technologies [8], it remains unclear
how they could best be used to achieve high-level compu-
tation. The aim of this paper is to address one conceptual
question arising in this bioengineering context: how could
circuits of biological neurons be trained to carry out desired
computational tasks?

Computation with neural cultures has been largely based so
far on the framework of reservoir computing [9,10], in which
the readout of the high-dimensional neural activity is trained
to perform the task of interest. However, reservoir computing
falls short from fully realizing the computational potential
of neural systems, as it does not exploit their capability for
reconfiguration of biological connectivity across time. The
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presence of plasticity mechanisms, involving multiple molec-
ular and cellular processes, is crucial to the formation and
maintenance of experience-related changes to neural function
and circuitry [11]. These mechanisms can potentially be ex-
ploited to shape, through appropriate stimulations, the activity
and the connectivity of networks [12], as has been shown in
specific settings [13]. From a bioengineering point of view,
the question is therefore to determine spatiotemporal stimula-
tion patterns capable of remodeling a plastic neural network
and make it achieve a desired computational task [Fig. 1(a)].
Establishing guiding principles and practical tools to obtain
those stimulation patterns is essential to future progress in
biological computation.

From a mathematical point of view, supervised learning of
a task is generally cast as an optimization problem in very high
dimensions. Given a population of N (artificial) neurons con-
nected through S synaptic connections Ji j , one looks for the
minimum of the cost (loss) function U ({Ji j}) expressing the
mismatch between the target and actual computation carried
out by the network. In artificial nets, the cost U can be gradu-
ally reduced through gradient descent (or one of its stochastic
variants) in the space of connections, until a minimum with
good performance is reached. A key point here is that all
moves in the N2-dimensional interaction space, in particular
the one along the gradient of the cost, ∂U

∂Ji j
, are allowed during

learning.
The situation is much more constrained in the case of

biological networks, in which the learning dynamics can ob-
viously not be arbitrarily chosen, and plasticity mechanisms
set strong limitations about feasible directions. As a concrete
example, consider the case of Hebbian-like plasticity rules,
in which the changes in the connections �Ji j are functions
of the firing rates ri (over some appropriate timescale) of
the neurons. As the number N of neurons is generally much
smaller than the number N2 of synaptic interactions, the
plastic changes �Ji j are highly interdependent, and cannot
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FIG. 1. Computational targets for plastic neural networks. (a) Our goal is to reconfigure a naive neural network and reach some target, either
structural (a specific connectivity state) or functional (for instance, the network is required to implement some input-output associations). This
reshaping is achieved through a learning process, in which appropriate spatiotemporal stimulations of the neurons exploit intrinsic plasticity
mechanisms. (b) The computational target, here the functional task in panel (a), is reached through a learning cycle. Prior to the learning
process, the naive network associates the inputs with random outputs (left). Our algorithm computes the best control to be applied to the
network to modify its connectivity through plastic changes. Applying this control stimulation to the neural population results in an enhancement
of the network performance (middle). The control is then reoptimized and applied during a new stimulation period. After multiple iterations,
the correct input-to-output association is achieved (right).

be individually tuned to match the gradient components ∂U
∂Ji j

.
This fundamental limitation makes supervised learning with
biologically plausible rules conceptually much more intricate
than with unconstrained dynamics. In addition, the magnitude
of synaptic modifications is hard to control in biological net-
works, while the capability to implement adaptive learning
rates is generally regarded as a key ingredient in machine
learning.

In the present paper, we show that in silico neural networks
that obey plausible plasticity mechanisms can be effectively
trained, through the application of adequate control stimula-
tions, to carry out very diverse computational tasks. These
stimulations vary with time and from neuron to neuron, and
they are obtained by solving a sequence of optimization
problems. Intuitively, the control stimulations are capable
of inducing adequate neural activity, progressively driving
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FIG. 2. Stages of the learning cycle: planning of control stimulations, reconfiguration under plasticity effects, and connectivity estimation.
In each cycle, a control stimulation f ∗

i is applied to the neurons i in the network, generating stationary firing rates ri (middle). In turn this
activity pattern leads, through the plasticity rule, to specific strengthening or weakening of the connections Ji j , indicated by the changes in the
thicknesses of the connection arrows (top). Once the control period halts, few short and random stimulations are applied to the neurons, and
the corresponding activities are recorded (bottom, right). These data are then used to update the estimate of the network connectivity, and to
plan the optimal control for the next cycle (bottom, left).

the network connectivity through its intrinsic Hebbian-like
plasticity towards a desired state [Fig. 1(a)]. Figure 1(b) sum-
marizes our learning protocol, which relies on multiple cycles
of stimulations and recordings of the neural population. At
the beginning of each cycle, the responses of the network to
a few short probing stimulations are recorded, and used to
infer the connectivity of the network. Based on this estimate of
the connectivity, we plan a control stimulation pattern, which
is subsequently applied to the neurons. Under this control,
plastic changes to the connections take place and enhance the
network performance in achieving the desired computation.
The procedure is iterated until the computational target is
reached.

II. MODEL

A. Dynamics of neural activity

We consider a network of N neurons, characterized by their
firing rates r(t ) = {ri(t )} at time t and the time-dependent

synaptic connectivity matrix J(t ) = {Ji j (t )} (Fig. 2). By con-
vention, Ji j refers to the coupling from the presynaptic neuron
j to the postsynaptic neuron i. The neural population includes
NE excitatory (E ) and NI inhibitory (I) neurons, which con-
strains the signs of the corresponding synaptic interactions.
The activities of the neurons obey the standard dynamical rate
equations

τn
dri

dt
(t ) = −ri(t ) + �

⎛
⎝∑

j

Ji j (t ) r j (t ) + fi(t )

⎞
⎠, (1)

where τn is the membrane relaxation time, and fi(t ) is a
time-dependent control stimulation on neuron i, which can
be dynamically controlled at will in the range [ fmin; fmax].
The input-to-rate transfer function � is a sigmoidal func-
tion, ranging between zero and maximal frequency rmax [see
Methods and the Supplemental Material (SM) [14], Sec. 1].
Control stimulations fi are expressed in units of rmax, while
connections Ji j are dimensionless (SM, Sec. 1).
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B. Synaptic plasticity

Plasticity induces activity-dependent changes in the in-
teractions. While the precise rules describing plasticity are
still debated in neuroscience, we use a simple and general
model presenting three essential qualitative features: Hebbian
associativity, regression towards a baseline (homeostasis), and
bounded synaptic strengths. The equation for the synaptic
dynamics is

τs
dJi j

dt
(t ) = η(ε j ) [ri − θ (ε j )] r j︸ ︷︷ ︸

Hebbian

−β1 |Ji j |
[
r2

i − θ0(ε j )
2
]︸ ︷︷ ︸

homeostasis 1

− β2 sgn(Ji j ) h2(|Ji j | − J̄ )︸ ︷︷ ︸
homeostasis 2

. (2)

In the equation above, ε j = E or I is the presynaptic neu-
ron type, and h2(u) = u2 if u � 0, 0 if u < 0. The first
term assumes that changes in the connections derive from a
Hebbian-like covariance rule with a postsynaptic threshold
depending on the neuron type [15]. The last two terms ac-
count for homeostatic feedback [16–19], biasing the activity
of the postsynaptic neuron towards a baseline activity θ0,
and imposing a soft clipping of synaptic amplitudes outside
the range [−J̄; +J̄]. Plasticity for excitatory and inhibitory
connections is assumed to have different learning rates η(E )
and η(I ) and is associated with different thresholds θ (E ) and
θ (I ) to enhance the stability of the network activity states. The
parameters β1 and β2 control the strengths of the homeostatic
constraints.

The learning rule in Eq. (2) is flexible, and it can de-
scribe Hebbian as well as anti-Hebbian learning. The former
is obtained when η(ε j ) is positive, independently of the presy-
naptic neuron type ε j . To accommodate for anti-Hebbian
inhibition [20], one chooses η(E ) > 0, η(I ) < 0. We report
results with both choices of rules below. We stress that
anti-Hebbian here refers to a negative feedback between cor-
relations and synaptic strength change.

While the associative learning rule above can be easily
modified, a key assumption we rely on is that synaptic changes
are slow compared to the fast variations in the activity, i.e.,
τn � τs (see Methods and the SM, Sec. 2). Due to this as-
sumption, only the slow variations (on the τs timescale) of the
stimulations f (t ) = { fi(t )} matter. Furthermore, the neural ac-
tivities ri are quasistationary and locked to the slowly varying
inputs. In mathematical terms, the right-hand side of Eq. (1)
vanishes.

C. Target state of the network

Our goal is to train the neural network connectivity J to
meet some target, either structural or functional [Fig. 1(a)].
In the former case, the network connectivity is asked to reach
some value, say, Jtarget. The training procedure should ensure
that the loss

Utask(J) =
∑
i, j

wεi,ε j

[
Ji j − J target

i j

]2
(3)

decays towards zero over the training time. We introduce
weights wεi,ε j depending on the neuron types to ensure that

the four classes of connections E , I → E , I are equally con-
tributing to Utask (Methods).

In the functional case, the target is not the connectivity it-
self as above, but the computation carried out by the network.
The neurons i in the network are partitioned into three subpop-
ulations, referred to as input (“in”), processing (“proc”), and
output (“out”). The network is required to implement a set of
npairs input/output mappings, that is, produce desired activities
rμ

i of the neurons i in the “out” subpopulation in response
to specific input stimulations fμ applied to the neurons j in
the “in” subpopulation, with μ = 1, . . . , npairs. A possible loss
associated with this association task reads

Utask(J) =
npairs∑
μ=1

∑
i∈out

[
ri(J, fμ) − rμ

i

]2
, (4)

where ri(J, f ) refers to the stationary solution of Eq. (1); see
Methods for alternative choices of the loss. The task may be
made harder by requiring that the “in” and “out” neurons share
no direct connections, and communicate through the neurons
in the “proc” subnetwork.

III. TRAINING LOOP: SUPERVISED CONTROL
OF HEBBIAN PLASTICITY

Our training procedure is based on a sequence of learning
cycles, labeled by k = 0, 1, 2, . . . and sketched in Fig. 2. Each
cycle k can be decomposed in three steps:

(i) Estimation of the current connectivity, Jk , through fast
probing of the responses of the network to random stimuli.

(ii) Calculation of the optimal control to be applied, f∗
k , to

shift the network connectivity state towards the desired target.
(iii) Application of this control during the period �t , lead-

ing to a reorganization of the network through its intrinsic
plasticity mechanisms.

The learning process stops when the value of the loss Uk is
considered small enough that the target has been reached. We
now give more details about the steps above; technicalities can
be found in Methods.

A. Estimation of the network connectivity

Determining and updating the optimal control stimulation
requires knowing, to some degree of accuracy, the state of
connectivity Jk [21]. To mimic realistic conditions, Jk can-
not be accessed through direct measurements. We therefore
infer the connectivity based on multiple recordings of the
activity (Fig. 2). We probe the network stationary activity
states rν = {rν

i } corresponding to various random stimulation
patterns fν = { f ν

i }, where ν = 1, . . . , nprobes. The connectivity
matrix is then estimated so that the stationary equations

rν
i = �

(∑
j

(Jk )i j rν
j + f ν

i

)
(5)

are fulfilled for all i = 1, . . . , N and ν = 1, . . . , nprobes, see
Eq. (1) and Methods. Increasing the number nprobes of record-
ings reduces the error over the estimated connectivity matrix,
but the duration of the whole process should be sufficiently
short not to induce any plastic modification to Jk: hence nprobes

should not exceed τs/τr , where τr is the relaxation time of
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the network activity, which can be estimated from τn and Jk

(Methods). In practice, the connectivity varies little after each
control stimulation period, and few recordings are needed to
update our estimate.

B. Calculation of optimal control

Ideally, one would like the change of connectivity during
one cycle, �J = Jk+1 − Jk , to align along the direction of
steepest descent of the loss U , i.e., �J ∝ −∂U/∂J|Jk How-
ever, the connections obey the plasticity rule in Eq. (2), and
their dynamics is not directly and arbitrarily controllable.
From an informal point of view, the best we can hope for is
to find a stimulation that will enhance neuronal activities in
such a way as to move connections in a direction as aligned as
possible with the gradient of U ; see Fig. 3(a).

Let us call �J(f,�t, Jk ) the change in the connections
produced by applying the stimulation f for a period of time �t
to the network with initial connectivity state Jk . In principle,
�J is obtained by integrating the Hebbian-like plasticity rule
in Eq. (2) during the time interval (under fixed stimulation).
Then, the best control is formally given by

f∗
k = argmin

f
U (Jk + �J(f,�t, Jk )). (6)

Solving this optimization problem and finding the absolute
minimum can be quite hard. We use a gradient descent pro-
cedure in the space of the controls f , not to be confused with
the training dynamics over J, which is guaranteed to return
a local minimum at least. We stress that this optimization
step is an abstract computation, unrelated to any physical or
biological process, and is done on a computer separate from
the neural model; see Fig. 2. Informally speaking, each cycle
can be thought of as an approximate gradient descent of U in
the J-space, whose precise direction is determined by another
gradient descent in the f-space. This double process is shown
in Fig. 3(b).

The determination of f∗
k in Eq. (6) via gradient descent is

a nontrivial computational problem due to the nonlinearities
in the neural and synaptic dynamics; see Methods. Choosing
�t � τs (SM, Sec. 1) and imposing additional regularization
terms (Methods) ensure that the changes �J remain small at
the end of the learning cycle.

C. Plastic reorganization of the network under
control stimulations

Once the optimal control f∗
k has been computed (in a time

we neglect compared to the timescales at play in the neural
network), it is applied to the neurons for a period �t . The
activities of the neurons rapidly adapt to these external stimu-
lations, and the connections start evolving under the plasticity
dynamical rules.

At the end of this training cycle, the network connectivity
may differ from the expected value Jk + �J(f∗

k ,�t, Jk ) due
to two main factors. First, the estimate Jk , obtained prior to
the stimulation, is not equal to the ground truth connectivity.
The accuracy depends on the number of measurements, and is
limited by the constraint of fast probing as explained above.
Second, the true underlying plastic mechanisms controlling
the network evolution can never be exactly modeled. The

unavoidable mismatch between the network dynamics and
Eq. (2) induces, at the end of the stimulation period, a sys-
tematic bias in the value of the connectivity. To account for
this bias and quantify its consequences, we consider below
two variants of Eq. (2), with different sets of parameters, for
the “true” plastic evolution of the network and for its model
counterpart used to compute �J(f,�t, J) and the optimal
control f∗.

IV. APPLICATIONS

We apply below our learning procedure to two computa-
tional tasks; a third task defined on a small network is detailed
in the SM, Sec. 6, and in the Discussion section.

Task 1: Nonlinear association between all-or-nothing
inputs and digitlike outputs

Definition of the task. A fundamental computation carried
out by neural circuits in organisms is the association of diverse
behavioral (or motor) responses to multiple sensory inputs.
This task is particularly nontrivial to learn when it is nonad-
ditive, as it cannot be realized by linear networks [22], and it
may require recruiting dedicated brain areas [23].

We consider here a toy version of a nonlinear associative
task, in which a subset of Nin input neurons can be stimulated
in npairs distinct ways. Each input stimulation is expected
to elicit an associated activity pattern over Nout output neu-
rons; see Fig. 4(a). For the sake of visual clarity, the output
patterns are represented as digits, with gray/black pixels cor-
responding to neurons with low/high activities arranged on a
rectangular grid. We make sure of the following:

(i) The association task is nonlinear by carefully choosing
the input/output pairs. For instance, the sums of the input
stimulations associated with the output digits 0 and 1 is the
input required to elicit digit 2; however, 2 is quite distinct
from the superimposition of 0 and 1; see Fig. 4(a). As a
result of nonlinearity, the association task cannot be simply
implemented through separate neural pathways, activated by
one input and silent for the other ones.

(ii) There is no direct connection from the input to the
output neurons; see Fig. 4(b). This arrangement mimics the
idealized structures of a modular chip. Hence, the informa-
tion about the input must be processed and conveyed by an
intermediate processing (“proc”) region of the network, which
contains most of the N neurons. This requirement also ensures
that the decrease of the cost function in the initial part of the
training is not due to a simple creation of a linear direct input-
to-output connection, but rather to the creation of a complex
structure.

Training: costs and dynamics. To learn the task, we in-
troduce a cost over the connectivity matrices favoring the
desired input/output associations; see Methods, Eq. (20).
An additional cost aims at regularizing the connectivity and
speeding up convergence towards stationary states of activity;
see Methods.

We start from a network with weak, random connections.
As our spatiotemporal control stimulation is applied to the
neurons [Fig. 4(c)], the connectivity gets modified, and the
costs associated with the task and the regularization decrease,
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FIG. 3. Schematic dynamics of the network and feasible directions in the high-dimensional connectivity space during the training process.
(a) Gray levels show values of the cost U , which quantifies the mismatch between the current connectivity J of the network and the target.
Dark blue balls locate the connectivity J at the beginning of each control stimulation period. The set of all directions in the N2-dimensional
connection space along which U decreases is shown by the cyan area, centered around the direction of steepest descent of U indicated by
the blue arrows. The purple cone symbolically represents the set of all feasible directions for J under the plasticity dynamics, i.e., which
can be reached under any N-dimensional control stimulation f . (1) Initial situation, prior to any control stimulation. The synaptic change
corresponding to a random f may point to a “bad” direction outside the cyan region (orange arrow), while the change associated with the
optimal control stimulation f∗ lies on the edge of the purple cone (red arrow), as close as possible to the best direction (blue arrow). (2) After
one control stimulation period. Repeating the same control stimulation as before would lead to a suboptimal change of J (orange arrow), while
the best stimulation (red arrow) yields a larger decrease in U . (3) Control stimulations are updated to ensure optimal synaptic changes until (4)
all local updates of the previous f∗ lie outside the “good” (cyan) region. We then choose a new initial f , and resume the search for the optimal
f∗ as in cycle (1). This process is iterated, until the changes in U are very small and the optimization is completed, or the feasible and “good”
regions do not overlap any longer [point (5)]. The performance of the network (final value of U ) is then assessed. (b) Decay rate of the loss
during the optimization over the control (top) and resulting loss Uk after each learning cycle k (bottom), for the setting corresponding to Task
1. Abscissa indicates the number n of optimization steps. Vertical dashed lines locate the beginnings of the training cycles k. Top: decay rate
[U (n) − Uk]/�t at step n of the optimization algorithm, calculated with the regularized loss; see Eq. (17). For each cycle, the rate is decreased
through gradient descent over f until a plateau is reached. The optimization then halts, and the control defines f∗

k . At the beginning of the
new cycle, the network connectivity J has changed, the previous control is not optimal any longer, and the optimization process resumes. The
plateau values of the rate increase over cycles, making it progressively harder to find a good control to train the network.
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(c)

(e)

(d)

(a)

input neurons output neurons
Nin = 15 Nout = 15

bulk neurons

(50 E, 20 I)

Nproc = 70

(b)

output

Input

High activity

Low activity

r/rmax

0.01

f/rmax

0.04

(f)

FIG. 4. Task 1: nonadditive input-output association. (a) The npairs = 4 pairs of input-output associations to be learned by the network. Input
patterns: flashes locate the input neurons (out of Nin = 15) subject to a strong stimulus ( fi = fmax), while the other neurons (empty squares)
receive no input ( fi = 0). Output patterns: target activities of the Nout = 15 output neurons (black: ri > 0.04rmax, light gray: ri < 0.01rmax).
(b) Sketch of the network, with the bulk processing area including Nproc = 70 neurons, connecting the input and output neurons. The overall
fractions of excitatory and inhibitory neurons in the network are equal to, respectively, 80% and 20%. (c) Control stimulations fi(t ) (see color
bar for values) applied to the neurons as a function of the learning step. From top to bottom: input, output, bulk inhibitory, and bulk excitatory
neurons. (d) Costs associated with the task (green, left scale) and with regularization (orange, right scale) as functions of the learning cycle.
(e) Activities of the output neurons in response to the input stimulation patterns during learning. The color (black or light gray) of each one of
the npairs × Nout = 60 curves indicates the level of activity requested for the corresponding output neuron [high or low, see panel (a)]. Training
is successful when the black and light gray curves become well separated. (f) Average activities of the output neurons for the four time steps
identified with the dashed line in panel (d), showing how the figures of digit emerge from the initial random image. Black and light gray
activities are consistent with panel (e), with intermediate gray levels defined in the bar.

as shown in Fig. 4(d). The activities of neurons progressively
cluster into two categories, depending on their expected values
in the output patterns [Fig. 4(e)]. The learning process is
characterized by three stages. First, the activities of all out-
put neurons approximately reach the same low activity level
independently of the input pattern, as regularization tends to
decrease the amplitudes of the connections and of the activ-
ities. Then activities start to separate according to the output
patterns. At this stage, one can already guess the output digits;
see Fig. 4(f). We let the protocol proceed until the two groups
(active, inactive) are clearly separated, and the output neuron

activities match the target patterns; compare Figs. 4(a) and
4(f).

Transfer of information and neural representations. How
the information is transferred from the input to the output
neurons and represented in the “proc” area is investigated
in Fig. 5. While the input and output subpopulations in our
network both include Nin = Nout = 15 neurons, the associa-
tive task effectively takes place in a lower-dimensional space
with npairs = 4 dimensions. We show in Fig. 5(a) that learning
progressively concentrates most of the Nout = 15-dimensional
activity in the 4-dimensional subspace spanned by the output
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FIG. 5. Learning dynamics and internal representations for Task 1. (a) Squared norm of the projection of the output activity (over Nout = 15
neurons) orthogonal to the space spanned by the npairs = 4 digit patterns as a function of the number of training cycles. The total activity is
normalized to unity. Blue curve: case of random 0-1 stimulations over the Nin = 15 input neurons; orange: stimulations are random convex
combinations of the npairs inputs. Results were averaged over 10 training trials, and each point is averaged over 50 random input stimulations.
(b) Histograms of interactions Ji j between the neurons in the E and I populations. Dashed lines show the soft bounds in ±J̄ . (c) Output
neuron activities (gray levels) in response to combinations of inputs αμ fμ + αν fν , with 0 � αμ, αν � 1. The bottom left corner corresponds to
vanishing input and the bottom, right and top, left corners to pure inputs associated with, respectively, digits μ and ν. The background colors
(middle squares) indicate the most resembling digits. (Left) case μ = 0, ν = 1: the output of the linear combination of inputs is not the linear
combination of the outputs, as required by the association task. (Right) Case μ = 0, ν = 3: the response to linear combinations of f0 and f3

is approximately additive. (d) Scatter plot of the activities of the 70 bulk neurons for inputs 0,1 (top) and 0,2 (bottom) after training. The
representations associated with patterns 0 and 1 are not correlated, as expected from the orthogonality of f0 and f1 [Fig. 4(a)]. Conversely, the
representations of 0 and 2 are strongly correlated, reflecting the relation f2 = f0 + f1 [Fig. 4(a)].

043014-8



TASK LEARNING THROUGH STIMULATION-INDUCED … PRX LIFE 2, 043014 (2024)

digits. This dimensionality reduction phenomenon is even
stronger when the Nin input neurons are stimulated by random
combinations of the training inputs associated with the digits,
implying the effective creation of a 4-to-4 dimensional chan-
nel upon learning. From a circuit point of view, this functional
channel is supported by a network of connections, whose
histogram is reported in Fig. 5(b). We observe that, during
learning, the E and I subpopulations strengthen their connec-
tions, with the exception of recurrent interactions within the
I neurons that remain weak. The creation of input-specific
sub-networks of activity during the learning process can be
seen in the animation provided in the SM, Sec. 7.1.

We stress that, within this low-dimensional space, the
network computation is not linear as imposed by the nonad-
ditivity of the task. We show in Fig. 5(c) how the network
response to linear combinations of the inputs may largely
differ from the superimposition of the responses to the sin-
gle inputs; see case 0−1 (left). This result confirms that the
network is capable of learning complex behavior beyond the
superimposition of patterns in the low-dimensional subspace
spans by the patterns. On the contrary, in the absence of any
specific constraint imposed by the task, computation appears
to be approximately linear; see the combinations of inputs 0
and 3 producing the 8 digit (right).

Furthermore, we may ask how the network, after training,
is able to process and differentiate the patterns outside the in-
put and output subpopulations. We see in Fig. 5(d) that inputs
produce the activation of a significant fraction of the neurons
in the “proc” area and that many of those neurons respond
specifically to distinct inputs, with stronger correlations in the
evoked activities for more correlated inputs. In particular, the
role of inhibitory neurons is key to the differentiation of input
2 from both 0 and 1, and to depart from additivity as imposed
by the task. Further information about how neurons in the
“proc” region participates in the association task can be found
in the SM, Fig. 6.

Task 2: Ringlike connectivity supporting continuous
attractor dynamics

Definition of the task. We now aim at reshaping network
connectivity into a target matrix Jtarget through learning. The
target connectivity defines a ring attractor, capable of sup-
porting a bump of activity coding for a continuously varying
angle. Ring attractors were first theoretically hypothesized
[24,25], and they have recently been observed in the ellipsoid
body of fly [26]. Neuron connections are organized along
two rings; see Fig. 6(a). Excitatory neurons form the outer
ring, with connections that decay with their distance, while
inhibitory neurons compose the smaller inner ring. The con-
nections between the two rings are such that a bump of activity
on one side of the outer ring induces inhibition on the diamet-
rically opposite side [see Fig. 6(a)]. The position of the bump
is arbitrary in the absence of external input, and is otherwise
attracted by a weak and localized input to the outer neurons.

Control stimulations are computed with the cost function
given by Eq. (3). The time behavior of the cost is shown
in Fig. 6(b) for 10 different random initial networks [see
Fig. 6(c), left, for a realization of the naive connectivity].

After a fast initial decay, the cost relaxes to very low values,
signaling the success of the learning procedure.

Training: network connectivity and stimulations. Snap-
shots of the connectivity at different steps of the learning
process are displayed in Fig. 6(c). The strong similarity
between the network connectivity at the end of learning
[compare Figs. 6(a) and 6(c), step (4)] confers the desired
functional properties of continuous attractors to the network.
We report in Fig. 6(d) the average firing activities of neurons
when a weak input stimulation (intended to pin the bump of
activity at a specific angle) is applied. At the initial state of
learning (1), the network responds by a weak excess activ-
ity simply reflecting the localized pinning input stimulation.
Through training, a subpopulation of neurons emerges, whose
activity is supported by the recurrent connections. This sub-
population varies with the angle associated with the input
stimulation; see (2) and (3). The emergence of receptive fields
is improved with further training cycles (4). Notice that, even
when the target structure is very well reconstructed, the di-
rection of the polarization is not perfect, due to tiny correlated
defects in the connectivity structure. The presence of these de-
fects does not preclude the accuracy of the coding of angular
information in the network [27].

The time behavior of the control stimulations applied to
neurons during learning is shown in Fig. 6(e). We observe
the presence of long-distance (large-angle) correlations at
small times, which disappear at the end of the training. To
better characterize this angular structure, we plot the Fourier
transform (along neuron indices) of the control stimulations
in Fig. 6(f). In the initial stage of training, the stimulation
is essentially represented by cosine and sine waves, with
periods matching the E and I ring extensions. As learning
proceeds, higher and higher wave-number modes are recruited
to refine the short scale structure of the synaptic matrix. This
observation is in agreement with the progressive emergence
of connectivity in Fig. 6(c).

V. DISCUSSION

We have shown how appropriate stimulations can induce
plastic reconfiguration in a network subject to Hebbian-like
plasticity processes and make it capable of accomplishing a
prescribed computation. Our approach could successfully be
applied to different tasks (see also the SM, Sec. 6) and plas-
ticity rules (Hebbian and anti-Hebbian, see the SM, Secs. 5.3
and 4.3). These results can thus be seen as a proof-of-concept
for general-purpose neural training, which would compile a
task into a neural network by externally guiding the intrinsic
learning mechanisms. At its core, our training method ad-
dresses and solves a sort of inverse Hebbian problem: instead
of looking for how synaptic interactions change under external
inputs, we search for an appropriate set of inputs, or control
stimulations implementing desired changes in the interactions
through plasticity mechanisms. Notice that, strictly speaking,
the issue of modifying connectivity with constrained control
is not unique to biological neural networks: neuromorphic cir-
cuits, e.g., based on memristors, can undergo plastic changes
[28], and computation in such networks could be among po-
tential applications of our training protocol. We now discuss
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FIG. 6. Task 2: building a continuous attractor. (a) Target network (left) and connectivity matrix Jtarget (middle). Excitatory neurons (E )
are arranged on the outer ring (NE = 80), and inhibitory neurons (I) on the inner one (NI = 20). Neurons on the E ring have strong excitatory
connections with their neighbors, and project to inhibitory neurons diametrically opposed on the I ring. Inhibitory neurons repress neighboring
neurons on the E ring and repress the opposite side of the I ring, leading to a localization of the activity (bump). Right: Radial plots of receptive
fields of neurons associated with angles 0 (blue), 120 (green), and 240 (red) degrees on the E ring. A weak localized input stimulation is applied
for each angle (Methods) and the activities (averaged over 100 trainings) of all neurons in the stationary state are shown. (b) Task cost evolution
during learning for 10 random naive networks (gray curves); the back line shows the average cost. Four representative learning cycles, labeled
(1), (2), (3), and (4), are referred to in panel (c). (c) Connectivity matrices (top) and receptive fields (bottom) at cycles (1), (2), (3), and
(4), showing different stages of learning. Same color codes as in panel (a). (d) Control stimulations fi(t ) as functions of the learning cycle.
(e) Amplitude f̂ ε

k (t ) = ∑Nε

�=1 f�(t ) cos(2πk �/Nε ) of the Fourier modes k = 0, 1, . . . , Nε/2 associated with the control stimulations shown in
panel (d), for excitatory (ε = E ) and inhibitory (ε = I) neurons. Initially, the control stimulation mainly consists of large waves (low-k Fourier
modes), while at the end of training, modes at large k are used to refine the synaptic structure on short angular scales. Notice the global
suppression at cycle � 750, after the receptive fields are formed.

our results, both from the computational and the bioengineer-
ing/biological points of view.

A. Computational aspects

Constrained learning and approximate gradient descent.
As stressed in the Introduction, plasticity rules strongly con-
strain the manifold of possible changes in the connectivity
matrix, and straightforward gradient descent of the loss is
generally not feasible [Fig. 3(a)]. This fundamental limitation

is clearly present even in the case of very simple tasks train-
able on small networks (SM, Sec. 6 and SM, Fig. 7). As the
number N of neurons increases, the ratio between the number
of control variables (N) and the dimension of the connectivity
space (N2, or a fraction of N2 depending on network sparsity)
diminishes, and the situation ought to become less and less
favorable. Fortunately, this effect is counterbalanced by the
huge increase in the multiplicity of the networks realizing the
task with N [29]. We observe, indeed, that Task 1 is easier to
learn when the size Nproc of the processing area [Fig. 4(b)]
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increases; see SM, Sec. 4.1 and SM, Fig. 3. As a result,
functional targets are easier to reach than structural ones, as
the latter cannot benefit from any multiplicity of solutions.

An additional difficulty is the impossibility of using an
adaptive learning rate, a key ingredient in the convergence of
most machine-learning algorithms. Though some variability
in the duration �t of the control can be considered, this is con-
strained by biological and experimental timescales and cannot
vary over orders of magnitude. As a result, the magnitude of
the changes �J ∝ �t J̇ in the connectivity after each cycle
cannot be tuned at will.

Choice of cost function: structural versus functional targets.
The nature of the cost U has also a deep impact on the time
course of performance throughout the learning process. Any
task could, in principle, be given a structural cost, e.g., by
running gradient descent of the functional cost on a computer
and finding an adequate network J∗ implementing the target
task. However, in the structural case, the value of U is not
immediately informative about the computation carried out by
the network. Good functional performance, such as the ability
to create angle-specific receptive fields in Task 2, see Fig. 6(d),
may be reached for vanishing U only [SM, Sec. 5.3 and SM,
Figs. 8(a) and 8(b)], which is difficult to achieve in practice.
For this reason, functional costs, for which low values of U di-
rectly imply good performances, are preferable. Accordingly,
we find that defining U from the worst input-output mismatch,
see Methods, Eq. (20), rather than from the average over all
pairs as in Eq. (4), gives better performance for Task 1.

A consequence of the multiplicity of solutions in the func-
tional case is that relatively little changes to the initial (and
random) network are generally sufficient to meet the target,
compared to what is needed to meet a structural target. This in-
tuition is corroborated by the analysis reported in SM, Sec. 4.5
and by the animation provided in SM, Sec. 7.2. We observe
that the internal activity of the network remains strongly self-
correlated in time during function-based training, providing
evidence for the ability of the learning procedure to reach a
functional target with moderate changes to the connectivity.

Model uncertainty and robustness. A crucial point to be
addressed in future works is the impact of noise and uncer-
tainty. Dynamical noise, both in the neural activity and in the
synaptic transmission, could be taken into account through
a probabilistic formulation of the control problem. In addi-
tion, one should consider measurement errors in the activity
recordings, affecting the estimation of the connectivity, or in
the stimulation process, leading to inaccurate control of the
network.

Taking into account model uncertainty is more delicate. As
a matter of fact, neither the equations describing the neural
activity dynamics nor the plasticity rules are exactly known.
Any inaccuracy in the model is potentially a source of bias
and of correlated errors in the determination of the stimula-
tion protocol. To estimate the impact of such errors, we have
studied the performance of our learning scheme in a mismatch
setting, in which the plasticity rules governing the evolution
of the connectivity and the ones used for the computation of
the protocol differed. We show in SM, Sec. 4.2, that success-
ful training is achieved even with 10% (relative) mismatches
on the parameters entering the plasticity rules. This result
is a good indication of the robustness of our approach to

uncertainties in the model. Needless to say, controlling errors
in the modeling of the plasticity rules and designing robust
stimulation schemes will be crucial for future developments.

Importance of the range of controls. At the implementation
level, our training procedure involves high-dimensional opti-
mization over the control stimulation f , and requires careful
numerical implementation. A number of parameters in the
optimization loop have to be set, whose choice impacts not
only the outcome but also the speed of learning; see the
SM, Secs. 4 and 5. Of crucial importance is the range of
variation of the control stimulation applicable to the neurons,
fmin � fi � fmax. If the range is wide, a lot of variability
in the control stimulation schemes is possible, and learning
is easy and fast. As fmax − fmin decreases, the cost decays
more slowly [SM, Fig. 3(a)]. Further investigations would be
needed to better understand if a minimal value of fmax − fmin

exists below which the target task is not reachable any longer,
and, more generally, how reachability depends on the task.
Notice that the protocol we have implemented corresponds
to a control strategy with zero time horizon, which optimizes
the cost change �U at each cycle. Global protocols, derived
in the framework of optimal control [30], could possibly
achieve higher performance. However, our high-dimensional
setting with incomplete knowledge (of connectivity) could
suffer from serious error propagation over large time horizons,
making implementation difficult.

Continual learning. The final configuration of the network
(reached at the end of the control scheme) is in general not
a stable state of the learning dynamics and would be lost
over time. This is a general issue with systems undergoing
continual learning [31]. From a computational point of view,
one would either need to reapply stimulations to maintain the
neural circuit in its state or use a cost function that ensures
that the final configuration is stable. From a biological point of
view, plasticity processes can be downregulated in many ways
in vivo [11]. Diminishing plasticity is, for instance, essential
at certain stages of brain development [32].

B. Biological aspects

A new framework, in vitro biological computing. Our work
is deeply motivated by the emerging field of in vitro com-
putation with biological neurons. The main approach in this
domain so far has been reservoir computing [9,10,33–35],
which exploits the capability of randomly connected neural
populations to produce highly variable patterns of activity,
and has been linked to plausible neurobiological mechanisms
[36,37]. Associative effects of plasticity can be exploited
for the sake of learning, and reach performance beyond
standard reservoir setups [38,39]. More targeted approaches
have been proposed to directly exploit plasticity for task-
training, for instance by choosing familiar/unfamiliar inputs
as rewards/punishment [3] or by exploiting stimulation avoid-
ance [40]. Our approach, on the contrary, aims at directly
controlling and training the neural structure through the de-
termination of adequate stimulations to be imposed to the
neurons.

The idea of learning through stimulations is not new to
biology, and it is the basis for the concept of vaccination. The
immune system is endowed with learning mechanisms that
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allow it to respond to pathogens after appropriate stimulations,
e.g., following the administration of a pathogen protein or its
coding RNA sequence. The vaccination scheme (timing and
dosage) is crucial to the quality of the immunization [41], and
it can be designed to enhance the production of the so-called
broadly neutralizing antibodies having large response spectra
[42]. By analogy, one may expect that stimulation protocols
optimized to the learning dynamics of neural systems could
drive them to desired operational states.

Limitations and plausibility. Our modeling approach is
highly simplified and unlikely to capture detailed biological
mechanisms, and it is primarily intended to explore concep-
tual challenges in the training of networks with constrained
plasticity. Though the learning procedure is robust against
mismatches between the “true” and modeled plasticity mech-
anisms (SM, Sec. 4.2), it relies on a number of assumptions
that need to be discussed in terms of their technological and
biological plausibility. First, we have assumed that stimula-
tions could be done at the level of individual neurons: fine
stimulation and recording capabilities are being developed
[43] but, as of today, optogenetic [5,44] and electrophysio-
logical [45] techniques rather allow one to target groups of
nearby neurons. This limitation could be taken into account
in our approach by imposing spatial correlations between
the components of f . Second, our protocol could be adapted
to constrained controls f , e.g., whose components have a
given sign (though excitatory and inhibitory tools are available
[5,46,47]), or discrete (on/off) rather than continuous values.
Though these limitations could in principle be enforced, it
remains to be seen how they would affect the learning pro-
cedure, both in terms of performances and training time.

Separation of neural and plasticity timescales. An impor-
tant hypothesis is that the timescale τr associated with the
relaxation of neural activity is much shorter than the duration
of the control stimulation during a cycle, �t , over which
the connectivity changes. Under this assumption, the neural
activity is stationary, and the estimate of the connectivity
can be updated by probing the network response to a few
random stimuli without inducing synaptic changes [Methods,
Eq. (12)]. Physiological timescales related to single-neuron
dynamics [τn in Eq. (1)] are expected to be of the order of tens
of milliseconds. It is then crucial that network effects do not
slow down the relaxation of the population activity on times
τr � τn; see Methods, Eq. (8). This is ensured in practice
in Task 1 through the introduction of a regularization cost
on the connectivity, Ureg, which prevents the emergence of
slow dynamics modes in the network [Methods, Eq. (13)]. We
have checked that τr remains comparable to τn throughout the
learning process for all the tasks considered here (SM, Sec. 2).
While it is difficult to estimate with precision the timescale τs

associated with plasticity effects in Eq. (2) and, consequently,
the duration �t of control stimulation, a biologically plausible
order of magnitude for �t is of a few tens of seconds (SM,
Sec. 1). Note that this is loosely consistent with meaningful
plastic modifications happening over a few minutes, such
as those shown in [3,40]. We conclude that the hypothesis
τr � �t is satisfied. Furthermore, this estimate of �t would
imply that running hundreds of learning cycles would take a
few hours. We are well aware that these considerations are
speculative and indicative of orders of magnitude at best.

Intensities of stimulations. As emphasized above, having
a large range of stimulation values at our disposal is crucial
for reaching the target task at the end of learning. The values
of fmax we have employed in Tasks 1 and 2 are a few tens of
rmax, see Figs. 4(c) and 6(d); details about how to convert input
currents into rates can be found in the SM, Sec. 1.2. Ultrafast
optogenetics can elicit spikes in genetically modified neurons
with high probability (for sufficient light pulse intensity) up to
hundreds of Hz [48]. Hence, ratios fmax/rmax close to unity are
experimentally accessible. It remains to be seen whether these
techniques could be applied to organoids with similar results.

Dependence on plasticity mechanism. From a modeling
point of view, we have resorted to a coarse-grained description
of activity at the level of firing rates, rather than of spiking
events. Both descriptions are compatible with one another, at
the plasticity [49–51] and activity [52–54] levels, to the point
that artificial spiking networks may be trained by proxy rate-
based models [55]. Plasticity at the spike level is a complex
process involving multiple timescales, delayed effects, and
spike train patterns [56], possibly coexisting with nonsynaptic
plasticity [57], different effects depending on the origin of
the neuron [58], and metaplasticity [51]. The coarse-grained
plasticity rules we consider respect some general principles:
associativity (covariance rule with a threshold, compatible
with experiments [59]), locality (dependence on the post- and
presynaptic neurons [58]), and homeostasis [18]. In addition,
we test the robustness of our approach with two different
plasticity scenarios, based on Hebbian and anti-Hebbian rules
for inhibitory synapses in, respectively, Tasks 2 and 3; see
the SM, Sec. 5.3 for reverse choices of the rules for in-
hibitory synapses. In this context, Hebbian and anti-Hebbian
learning rules induce, respectively, the weakening and the
strengthening of connections between inhibitory neurons with
correlated activity, and they result in increased or diminished
[17] activity. It would be interesting to exhaustively study the
performances of our stimulation protocol over a wider class of
plasticity rules.

Relevance for neuroscience. As emphasized above, our
modeling approach, besides being an oversimplification of the
processes taking place in neurons and in their connections,
focuses on in vitro circuits. Such circuits share many features,
at the molecular and cellular levels, with their counterparts
in the brain of animals, but they also differ in fundamental
ways. In particular, our learning protocol, based on control
stimulations computed externally, was designed to meet bio-
engineering contexts and goals, but is a priori not directly
relevant for neuroscience, e.g., to understand how animals
learn in realistic situations.

From this point of view, the interpretation of the training
stimulation sequence is an important point to consider. We
have observed that, in the case of the structural Task 2, the
structure of the training stimulation adapts to the ring sym-
metry of the target [Figs. 6(d) and 6(e)]. Briefly speaking, the
stimulation protocol engraves Fourier modes on the ring at
finer and finer scales as (training) times pass on. This finding
shows the deep connection between the spatiotemporal pattern
of stimulations and the structure of the target network. Inter-
estingly, the possibility of shaping a network with structured
activity patterns is reminiscent of what is speculated to happen
during postnatal development, for instance in the visual cortex
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[60]. It would be interesting to further investigate this analogy,
in particular if the activity driving neural development could
be interpreted as the result of some sort of control optimiza-
tion.

VI. METHODS

A. Network structure and activation function

The fractions of excitatory and inhibitory subpopulations
are equal to, respectively, 80% and 20%. The synaptic struc-
ture is encoded in the binary matrix C: neuron j is connected
to neuron i if Ci j = 1, and it is not if Ci j = 0. The structure
matrix C is random and fixed during the training, while the
intensities Ji j of the existing connections (Ci j = 1) vary over
time according to Eq. (2).

The neuron activation � is a monotonously increasing
function of the input x (which is dimensionally a frequency,
see the SM) and is chosen to be

�(x) = rmax
ψ (x)

1 + ψ (x)
, where

ψ (x) = r0

rmax
log

[
1 + exp

(
x

r0

)]
(7)

is a differentiable and invertible sigmoid function. Here, rmax

is the maximal firing rate reached for large inputs, and r0 is the
magnitude of the spontaneous firing activity in the absence of
input (SM, Sec. 1).

B. Relaxation dynamics of the network activity

While single-neuron activities are associated with the time
constant τn in Eq. (1), the effective relaxation time τr can be
longer due to network effects. We estimate τr by linearizing
the dynamics of the rates around their stationary values, ri.
Denoting by D the N-dimensional diagonal matrix with ele-
ments Dii = �′(ri ) and zero outside the diagonal, we have

τr = τn

ρmin
,

whereρmin = smallest real part

of the eigenvalues of Id − D · J.
(8)

Estimates of τr are shown for the different tasks in the SM,
Fig. 1.

C. Inference of connectivity

Initialization: estimate of the synaptic structure C and of
the neuron types ε. The support of the synaptic interactions,
Ci j = 0, 1, and the nature of neurons, εi = E/I , are initially
unknown. To determine their values, we start to probe the
network activities rν

i in response to nprobe randomly chosen
stimulation patterns f ν

i , and we rewrite the stationary relations
in Eq. (5) as∑

j

Ji j rν
j = tν

i , where tν
i = �−1

(
rν

i

) − f ν
i (9)

for all i, ν. As the initial number of probing stimulations does
not have to be small (plastic changes would simply affect the
starting state of the connectivity for the training phase), we

can choose nprobe � N , and the linear system above gener-
ically determines the matrix J in a unique way. To avoid
large numerical errors on currents through �−1, the probing
stimulations f ν

i are chosen to be large enough to avoid the
presence of low firing rates (r � 0); see SM, Sec. 1.

Once J has been estimated, we estimate the identity of neu-
rons and the support of the connectivity through, respectively,

εi =
{

E if
∑

j J ji > 0,

I otherwise
(10)

and

Ci j =
{

1 if |Ji j | > Jmin,

0 otherwise,
(11)

where Jmin is a small threshold, set to 10−6. These estimates
of ε and C are left unchanged throughout the training process.

Updating the connectivity estimate after a training period.
Let Ji be the vector of connections incoming onto neuron
i prior to a training stimulation period of duration �t ; the
dimension of Ji is equal to di = ∑

j Ci j . After the training
period, the vector connection is J′

i. To estimate this vector, we
probe the network with nprobes stimuli, and we record the cor-
responding activities. We call R the (nprobes × di )-dimensional
matrix of activities rν

j , and ti the nprobes-dimensional vector
of components tν

i appearing in Eq. (9). The solution to the
constraints R · J′

i = ti is therefore not unique. To lift this
ambiguity, we select the solution J′

i closest (in terms of L2

norm) to the previous estimate Ji. Formally, we obtain [61]

J′
i = �⊥

i · Ji + R+ · ti, (12)

where R+ denotes the pseudoinverse of R, and �⊥
i = Id −

R+ · R is the projector orthogonal to the nprobes-dimensional
space spanned by the rows of R. This updating step is then
iterated over the N neurons i to obtain all the vectors J′

i.

D. Regularization of the connectivity matrix

A common practice in machine learning is to introduce
a regularization cost over the model parameters, hereafter
denoted as Ureg(J), to smooth out the training trajectories.
In addition, regularization can help ensure that the neural
activities reach their stationary values quickly (under fixed
stimulation) through the network dynamics in Eq. (1), which
is important for training and for connectivity estimation.

We impose regularization to bound the modulus σ (J) of the
largest singular value of the connectivity matrix. The rationale
is that a sufficient condition for the network dynamics to have
a unique activity stationary state and converge exponentially
fast to this unique state is that σ (J) < 1; see Eq. (8) and the
SM, Sec. 2.2. For each singular value λk of J, the regulariza-
tion cost is approximately zero if λk � 1, and it grows linearly
as g2 λk for λk � 1. We implement this dependence through a
softplus function:

Ureg(J) = g2

g1

N2∑
k=1

log(1 + e g1 (λk−1)) (13)
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with g2 = 2, g1 = 10. This regularization cost can be ex-
plicitly differentiated with respect to the entries of the
connectivity matrix; see below.

E. Determination of the optimal stimulation f∗

Derivative of the costs with respect to connections and time.
The task cost Utask depends on the connectivity J, both directly
and indirectly through the stationary activity r. The expression
for the total derivative of Utask with respect to an entry of J is,
according to the chain rule,

dUtask

dJi j
= ∂Utask

∂Ji j
+

∑
k

∂Utask

∂rk

∂rk

∂Ji j
, (14)

which requires knowledge of the derivatives of the neuron
firing rates. These can be computed using the implicit func-
tion theorem [62] applied to the stationary equations for the
dynamics, with the result

∂rk

∂Ji j
= [(Id − D · J)−1]k,i Dii r j, (15)

where D was first used in Eq. (8). The gradient of the regu-
larization cost, Ureg in Eq. (13), can be easily expressed using
the derivatives of the singular values: dλk

dJi j
= uk,i vk, j , where uk

and vk denote, respectively, the left and right eigenvectors of
J associated with λk .

In addition, the gradient component associated with the
connection Ji j is set to zero if Ci j = 0 (no connection is
actually present), or if Ji j = 0 and descending the gradient
would violate the constraint on the sign of the interaction
resulting from the presynaptic neuron type, i.e., dU

dJi j
> 0 if

ε j = E or dU
dJi j

< 0 if ε j = I . Notice that knowledge of the
gradients of Utask and Ureg with respect to Ji j gives access to
the time derivatives of these costs (under fixed stimulation)
through the generic formula

U̇ =
∑
i, j

∂U

∂Ji j
J̇i j, (16)

where the latter term can be directly obtained from the dy-
namics over synapses described by Eq. (2).

Objective function and gradient over stimulations. The
total cost U is defined as the sum of the task and regularization
costs, U = Utask + Ureg. To determine the best control stimu-
lation f over the next period, we search for the minimum of
the modified change

�U (f ; γ ) = U (J + �J(f )) − U (J) + �t γ ‖�J(f )‖2,

(17)

where J is the matrix of connectivity estimated through prob-
ing at the end of the previous control stimulation period,
γ = 1/[(J̄/10)2 c N2], and

�J(f ) = [J + �t J̇(f )]ε − J, (18)

where [·]ε indicates that connections have been clipped to
respect their excitatory/inhibitory types ε imposed by the
presynaptic neurons. The last term in Eq. (17) constrains the
change in the interactions to be small over the period of

stimulation, effectively introducing a saturating nonlinearity
over the gradients.

Computing the gradient of �U in Eq. (17) with respect to
the control stimulation components fi requires the expressions
for the derivatives of the costs with respect to the connections
in Eqs. (14) and (15), and with respect to time; see Eq. (16).
In addition, the derivatives of the firing activities are needed.
Using again the implicit function theorem we obtain, see
Eq. (15),

∂rk

∂ fi
= [(Id − D · J)−1]k,i Dii. (19)

To enforce the conditions fmin < fi < fmax, we set the gradi-
ent components of �Utot to zero when these boundaries are
met.

Minimization of the cost. The optimal control f∗ can be
found through an iterative descent of �U in Eq. (17). The
control is updated along minus the gradient of �U (f, γ ),
and the resulting fi’s are clipped if the boundaries fmin or
fmax are crossed. The iterative process halts if the decrease of
�U (f, γ ) is smaller (in absolute value) than some threshold,
or the expected decrease (based on a fit of the previous steps
in the process) is too low. Then, if �U (f, 0) is negative (i.e.,
the cost function is decreasing), the solution is accepted, while
the gradient descent is repeated otherwise.

Details about the implementation, with the pseudocode for
the optimization loop and the values of the hyperparameters
involved, can be found in the SM, Sec. 3.

Task 1

Initialization and setting. Elements of the structure matrix
Ci j are randomly set to 0 or 1 with respective probabilities
1 − cE and cE for excitatory columns (J such that ε j = E )
and 1 − cI and cI for inhibitory ones (ε j = I). To ensure that
the task is not easily implementable, no direct connection
between the Nin input neurons and the Nout output neurons is
present. Initial connections Ji j are drawn uniformly at random
in the ranges [0, J0] if ε j > 0 or [−J0, 0] if ε j < 0. See the
SM, Sec. 1 for parameter values.

Task-associated cost. We define a set of ntask input stim-
ulations fμ (defined over the Ni input neurons) and output
binary activation σμ (over the No output neurons), with μ =
1, . . . , ntask. The goal of training is that output neuron i should
display high or low firing activity in response to input μ when,
respectively, σ

μ
i = H or L. In practice, we enforce that the

firing rates associated with neurons with low (σ = L) and high
(σ = H) activities should differ by more than a prescribed gap
δr = 0.12 rmax. The task cost reads

Utask(J) =
∑

(μ,i):σμ
i =L

∑
(ν, j):σν

j =H �(μ, i; ν, j) eγ �(μ,i;ν, j)∑
(μ,i):σμ

i =L

∑
(ν, j):σν

j =H eγ �(μ,i;ν, j)
,

(20)
where γ = 1/(δr/2)2 and we have introduced the mismatch

�(μ, i; ν, j) = h2
(
rμ

i − rν
j + δr

)
(21)

with

h2(u) = u2 if u > 0, 0 otherwise. (22)
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The exponential factors give more weight to large mismatches
� in the expression of the cost. The dependence of the cost on
J (and on the input stimulations fμ) in Eq. (21) is implicit
through the firing rates ri. Minimizing Utask is thus equivalent
to separating the activities of the H and L neurons as required
by the classification task, i.e., making all �(μ, i; ν, j) = 0.

Analysis of input and output spaces. To characterize how
the association mechanism emerges across training, we con-
vert digits σ

μ
i = High/Low to 1/0 valued arrays. These digits

span an npairs = 4-dimensional space. Given a stimulation f ,
we call rout(f ) the output activity and

‖r⊥
out(f )‖2 = minβ

∥∥∑ntask
μ=1 σ i

μβμ − rout(f )
∥∥2

‖rout(f )‖2
(23)

the normalized squared length of its projection orthogonal
to the digit space. In Fig. 5(a), we report this quantity for
(i) generic inputs f with 0,1 entries with 50-50 probability,
and (ii) random, uniform convex combinations of the inputs
associated with the digits: f = ∑ntask

μ=1 αμfμ with αμ � 0 and∑
μ αμ = 1.

Task 2

Initialization and setting. The connectivity matrix is ini-
tialized as in the classification task above, but no a priori
restriction is imposed to the structure, i.e., cE = cI = 1. See
the SM, Sec. 1 for parameter values.

Task and cost. The structural cost is defined in Eq. (3).
Weights are defined as wεi,ε j = ( ∑

ab[J target
εiε j ]2

ab

)−1
, where

J target
εiε j is the submatrix of Jtarget connecting neurons of type

ε j = E/I to neurons of type εi = E/I . This reweighting en-
sures that large, e.g., E → E , and small, e.g., I → I , blocks
equally contribute to the cost, and are simultaneously and
properly learned during the training process.

The target connectivity is defined as follows. Neurons are
associated with angles on two rings, depending on their types
ε = E or I . The angle attached to the excitatory neuron i is
θE

i = 2 π i
NE

, where NE is the number of excitatory neurons.
A similar formula holds for the NI inhibitory neurons: θ I

i =
2 π i

NI
. The target synaptic connection from neuron j to i reads

J target
i j = Jεi,ε j × M

(
θ

εi
i − θ

ε j

j − π δεi,I ; Kεi,ε j

)
, (24)

where δ.,. denotes the Kronecker delta. The angular modula-
tion is done through the von Mises function,

M(�θ ; K ) = e−K+K cos(�θ ), (25)

which is maximal for vanishing angular separation (�θ = 0)
and decays over the width � K−1/2. Parameter values are
listed in the SM, Sec. 1.

Receptive fields. We apply a weak local input stimulation
fi = 0.06 rmax, fi±1 = 0.028 rmax, fi±2 = 0.012 rmax, fi±3 =
0.004 rmax to induce polarization of neuron i, and we repeat
the process for all i. Results for the activities are averaged
over 100 trials.
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