
HAL Id: hal-04339067
https://hal.science/hal-04339067v2

Preprint submitted on 28 Nov 2024 (v2), last revised 12 Dec 2024 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

Task learning through stimulation-induced plasticity in
neural networks

Francesco Borra, Simona Cocco, Rémi Monasson

To cite this version:
Francesco Borra, Simona Cocco, Rémi Monasson. Task learning through stimulation-induced plasticity
in neural networks. 2024. �hal-04339067v2�

https://hal.science/hal-04339067v2
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr


Task learning through stimulation-induced plasticity in neural networks

Francesco Borra , Simona Cocco , and Rémi Monasson
Laboratoire de Physique de l’Ecole Normale Supérieure, PSL Research,

CNRS UMR8023, Sorbonne Université, 24 rue Lhomond, 75005 Paris, France

Synaptic plasticity dynamically shapes the connectivity of neural systems and is key to learning
processes in the brain. To what extent the mechanisms of plasticity can be exploited to drive
a neural network and make it perform some kind of computational task remains unclear. This
question, relevant in a bioengineering context, can be formulated as a control problem on a high-
dimensional system with strongly constrained and non-linear dynamics. We present a self-contained
procedure which, through appropriate spatio-temporal stimulations of the neurons, is able to drive
rate-based neural networks with arbitrary initial connectivity towards a desired functional state.
We illustrate our approach on two different computational tasks: a non-linear association between
multiple input stimulations and activity patterns (representing digit images), and the construction
of a continuous attractor encoding a collective variable in a neural population. Our work thus
provides a proof of principle for emerging paradigms of in vitro computation based on real neurons.

INTRODUCTION

Natural neural networks have long been a
key source of inspiration for machine learning
and computing, starting from Rosenblatt’s per-
ceptron to neuromorphic computing [1] and to
nowadays deep learning. Recently, it was sug-
gested that biological neural structures might
be directly exploited as a support for vitro
computation [2, 3]. Progress over the last
decade has made it possible to grow, preserve,
and study brain organoids [4]. The capabili-
ties of stimulating and recording neural popu-
lations [5–7] allow for interfacing these systems,
potentially turning brain organoids into minia-
ture biological computers. Computing with or-
ganized assemblies of neurons could offer con-
siderable advantages with respect to electronics-
based devices, in particular in terms of low en-
ergy consumption, massive parallel computa-
tion, and continuous learning. However, besides
the practical challenges raised by these tech-
nologies [8], it remains unclear how they could
be best used to achieve high-level computation.
The aim of this paper is to address one con-
ceptual question arising in this bio-engineering
context: how could circuits of biological neurons
be trained to carry out desired computational
tasks?

Computation with neural cultures has been

largely based so far on the framework of reser-
voir computing [9, 10], in which the readout of
the high-dimensional neural activity is trained
to perform the task of interest. However, reser-
voir computing falls short from fully realizing
the computational potential of neural systems,
as it does not exploit their capability for recon-
figuration of biological connectivity across time.
The presence of plasticity mechanisms, involv-
ing multiple molecular and cellular processes,
is crucial to the formation and maintenance of
experience–related changes to neural function
and circuitry [11]. These mechanisms can po-
tentially be exploited to shape, through appro-
priate stimulations, the activity and the con-
nectivity of networks [12], as has been shown
in specific settings [13]. From a bio-engineering
point of view, the question is therefore to deter-
mine spatio-temporal stimulation patterns ca-
pable of remodeling a plastic neural network
and make it achieve a desired computational
task (Fig. 1(a)). Establishing guiding principles
and practical tools to obtain those stimulation
patterns is essential to future progress in bio-
logical computation.

From a mathematical point of view, super-
vised learning of a task is generally cast as an
optimization problem in very high dimensions.
Given a population of N (artificial) neurons
connected through S synaptic connections Jij ,
one looks for the minimum of the cost (loss)
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function U
(
{Jij}

)
expressing the mismatch be-

tween the target and actual computation car-
ried out by the network. In artificial nets, the
cost U can be gradually reduced through gra-
dient descent (or one of its stochastic variants)
in the space of connections, until a minimum
with good performance is reached. A key point
here is that all moves in the N2-dimensional in-
teraction space, in particular the one along the
gradient of the cost, ∂U

∂Jij
, are allowed during

learning.

The situation is much more constrained in the
case of biological networks, in which the learn-
ing dynamics can obviously not be arbitrarily
chosen, and plasticity mechanisms set strong
limitations about feasible directions. As a con-
crete example, consider the case of Hebbian-like
plasticity rules, in which the changes in the con-
nections ∆Jij are functions of the firing rates ri
(over some appropriate time scale) of the neu-
rons. As the number N of neurons is generally
much smaller than the number N2 of synap-
tic interactions, the plastic changes ∆Jij are
highly inter-dependent, and cannot be individ-
ually tuned to match the gradient components
∂U
∂Jij

. This fundamental limitation makes super-

vised learning with biologically-plausible rules
conceptually much more intricate than with un-
constrained dynamics. In addition, the magni-
tude of synaptic modifications is hard to control
in biological networks, while the capability to
implement adaptive learning rates is generally
regarded as a key ingredient in machine learn-
ing.

In the present paper, we show that in silico
neural networks that obey plausible plasticity
mechanisms can be effectively trained, through
the application of adequate control stimula-
tions, to carry out very diverse computational
tasks. These stimulations vary with time and
from neuron to neuron, and are obtained by
solving a sequence of optimization problems.
Intuitively, the control stimulations are capable
of inducing adequate neural activity, progres-
sively driving the network connectivity through
its intrinsic Hebbian-like plasticity towards a
desired state (Fig. 1(a)). Figure 1(b) summa-
rizes our learning protocol, which relies on mul-

tiple cycles of stimulations and recordings of the
neural population. At the beginning of each cy-
cle, the responses of the network to few short
probing stimulations are recorded, and used to
infer the connectivity of the network. Based on
this estimate of the connectivity, we plan a con-
trol stimulation pattern, which is subsequently
applied to the neurons. Under this control, plas-
tic changes to the connections take place and
enhance the network performance in achieving
the desired computation. The procedure is iter-
ated until the computational target is reached.

MODEL

Dynamics of neural activity

We consider a network of N neurons, char-
acterized by their firing rates r(t) = {ri(t)} at
time t and the time-dependent synaptic connec-
tivity matrix J(t) = {Jij(t)} (Fig. 2). By con-
vention, Jij refers to the coupling from the pre-
synaptic neuron j to the post-synaptic neuron i.
The neural population includes NE excitatory
(E) and NI inhibitory (I) neurons, which con-
strains the signs of the corresponding synaptic
interactions. The activities of the neurons obey
the standard dynamical rate equations

τn
dri
dt

(t) = −ri(t)+Φ

∑
j

Jij(t) rj(t) + fi(t)


(1)

where τn is the membrane relaxation time, and
fi(t) is a time-dependent control stimulation on
neuron i, which can be dynamically controlled
at will in the range [fmin; fmax]. The input-
to-rate transfer function Φ is a sigmoidal func-
tion, ranging between zero and maximal fre-
quency rmax (Methods and SI, Section I). Con-
trol stimulations fi are expressed in units of
rmax, while connections Jij are dimensionless
(SI, Section I).
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Synaptic plasticity

Plasticity induces activity-dependent changes
in the interactions. While the precise rules
describing plasticity are still debated in neu-
roscience, we use a simple and general model
presenting three essential qualitative features:
Hebbian associativity, regression towards a
baseline (homeostasis), and bounded synaptic
strengths. The equation for the synaptic dy-
namics is

τs
dJij
dt

(t) = η(ϵj) (ri − θ(ϵj)) rj︸ ︷︷ ︸
hebbian

− β1 |Jij | (r2i − θ0(ϵj)
2)︸ ︷︷ ︸

homeostasis 1

− β2 sign(Jij) h2
(
|Jij | − J̄

)︸ ︷︷ ︸
homeostasis 2

(2)

In the equation above, ϵj = E or I is the pre-
synaptic neuron type, and h2(u) = u2 if u ≥ 0,
0 if u < 0. The first term assumes that changes
in the connections derive from a Hebbian-like
covariance rule with a post-synaptic threshold
depending on the neuron type [14]. The last two
terms account for homeostatic feedback [15–18],
biasing the activity of the post-synaptic neuron
towards a baseline activity θ0, and imposing a
soft clipping of synaptic amplitudes outside the
range [−J̄ ; +J̄ ]. Plasticity for excitatory and
inhibitory connections are assumed to have dif-
ferent learning rates η(E) and η(I) and are as-
sociated to different thresholds θ(E) and θ(I))
to enhance the stability of the network activity
states. The parameters β1 and β2 control the
strengths of the homeostatic constraints.
The learning rule in Eq. (2) is flexible, and

can describe Hebbian as well as anti-Hebbian
learning. The former is obtained when η(ϵj) is
positive, independently of the pre-synaptic neu-
ron type ϵj . To accommodate for anti-Hebbian
inhibition [19], one chooses η(E) > 0, η(I) < 0.
We report results with both choices of rules be-
low. We stress that anti-Hebbian here refers
to a negative feedback between correlations and
synaptic strength change.

While the associative learning rule above
can be easily modified, a key assumption we
rely on is that synaptic changes are slow com-
pared to the fast variations in the activity, i.e.
τn ≪ τs (Methods and Supplemental Mate-
rial (SM), Section II). Due to this assump-
tion only the slow variations (on the τs time
scale) of the stimulations f(t) = {fi(t)} mat-
ter. Furthermore, the neural activities ri are
quasi-stationary and locked to the slowly vary-
ing inputs. In mathematical terms, the r.h.s. of
Eq. (1) vanishes.

Target state of the network

Our goal is to train the neural network con-
nectivity J to meet some target, either struc-
tural or functional (Fig. 1(a)). In the former
case the network connectivity is asked to reach
some value, say, Jtarget. The training procedure
should ensure that the loss

Utask

(
J
)
=

∑
i,j

wϵi,ϵj

[
Jij − J target

ij

]2
(3)

decays towards zero over the training time. We
introduce weights wϵi,ϵj depending on the neu-
ron types to ensure that the four classes of con-
nections E, I → E, I are equally contributing
to Utask (Methods).

In the functional case, the target is not the
connectivity itself as above, but the compu-
tation carried out by the network. The neu-
rons i in the network are partitioned into three
subpopulations, referred to as input (in), pro-
cessing (proc), and output (out). The network
is required to implement a set of npairs in-
put/output mappings, that is, produce desired
activities rµi of the neurons i in the out subpopu-
lation in response to specific input stimulations
fµ applied to the neurons j in the in subpop-
ulation, with µ = 1, ..., npairs. A possible loss
associated to this association task reads

Utask

(
J
)
=

npairs∑
µ=1

∑
i ∈ out

[
ri
(
J, fµ

)
− rµi

]2
, (4)

where ri(J, f) refers to the stationary solution
of Eq. (1); see Methods for alternative choices
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of the loss. The task may be made harder by
requiring that the in and out neurons share no

direct connections, and communicate through
the neurons in the proc subnetwork.

TRAINING LOOP: SUPERVISED
CONTROL OF HEBBIAN PLASTICITY

Our training procedure is based on a sequence
of learning cycles, labelled by k = 0, 1, 2, ... and
sketched in Fig. 2. Each cycle k can be decom-
posed in three steps:

• Estimation of the current connectivity,
Jk, through fast probing of the responses
of the network to random stimuli.

• Calculation of the optimal control to be
applied, f∗k , to shift the network connec-
tivity state towards the desired target.

• Application of this control during the pe-
riod ∆t, leading to a reorganization of
the network through its intrinsic plasticity
mechanisms.

The learning process stops when the value of
the loss Uk is considered small enough that the
target has been reached. We now give more
details about the steps above; technicalities can
be found in Methods.

Estimation of the network connectivity

Determining and updating the optimal con-
trol stimulation requires knowing, to some de-
gree of accuracy, the state of connectivity
Jk [20]. To mimic realistic conditions, Jk can-
not be accessed through direct measurements.
We therefore infer the connectivity based on
multiple recordings of the activity (Fig. 2). We
probe the network stationary activity states
rν = {rνi } corresponding to various random
stimulation patterns fν = {fνi }, where ν =
1, ..., nprobes. The connectivity matrix is then
estimated so that the stationary equations

rνi = Φ

(∑
j

(Jk)ij r
ν
j + fνi

)
(5)

are fulfilled for all i = 1, ..., N and ν =
1, ..., nprobes, see Eq. (1) and Methods. Increas-
ing the number nprobes of recordings reduces the
error over the estimated connectivity matrix,
but the duration of the whole process should
be sufficiently short not to induce any plastic
modification to Jk: hence nprobes should not ex-
ceed τs/τr,where τr is the relaxation time of the

network activity, which can be estimated from
τn and Jk (Methods). In practice, the connec-
tivity varies little after each control stimulation
period, and few recordings are needed to update
our estimate.

Calculation of optimal control

Ideally, one would like the change of connec-
tivity during one cycle, ∆J = Jk+1 − Jk, to
align along the direction of steepest descent of
the loss U , i.e. ∆J ∝ −∂U/∂J|Jk

However, the
connections obey the plasticity rule in Eq. (2)
and their dynamics is not directly and arbitrar-
ily controllable. From an informal point of view,
the best we can hope for is to find a stimulation
that will enhance neuronal activities in such a
way as to move connections in a direction as
aligned as possible with the gradient of U , see
Fig. 3(a).

Let us call ∆J(f ,∆t,Jk) the change in the
connections produced by applying the stimula-
tion f for a period of time ∆t to the network
with initial connectivity state Jk. In principle,
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∆J is obtained by integrating the Hebbian-like
plasticity rule in Eq. (2) during the time inter-
val (under fixed stimulation). Then, the best
control is formally given by

f∗k = argmin
f

U
(
Jk +∆J(f ,∆t,Jk)

)
. (6)

Solving this optimization problem and finding
the absolute minimum can be quite hard. We
use a gradient descent procedure in the space
of the controls f , not to be confused with the
training dynamics over J, which is guaranteed
to return a local minimum at least. We stress
that this optimization step is an abstract com-
putation, unrelated to any physical or biolog-

ical process, and is done on a computer sepa-
rate from the neural model, see Fig. 2. Infor-
mally speaking, each cycle can be thought of as
an approximate gradient descent of U in the J-
space, whose precise direction is determined by
another gradient descent in the f -space. This
double process is shown in Fig. 3(b).

The determination of f∗k in Eq. (6) via gra-
dient descent is a non trivial computational
problem due to the non-linearities in the neural
and synaptic dynamics, see Methods. Choos-
ing ∆t ≪ τs (SM, Section 1) and imposing ad-
ditional regularization terms (Methods) ensure
that the changes ∆J remain small at the end of
the learning cycle.

Plastic reorganization of the network under
control stimulations

Once the optimal control f∗k has been com-
puted (in a time we neglect compared to the
time scales at play in the neural network), it
is applied to the neurons for a period ∆t. The
activities of the neurons rapidly adapt to these
external stimulations, and the connections start
evolving under the plasticity dynamical rules.

At the end of this training cycle, the network
connectivity may differ from the expected value
Jk+∆J(f∗k ,∆t,Jk) due two main factors. First,
the estimate Jk, obtained prior to the stimula-
tion, is not equal to the ground truth connec-
tivity. The accuracy depends on the number of
measurements, and is limited by the constraint
of fast probing as explained above. Second,
the true underlying plastic mechanisms control-
ing the network evolution can never be exactly
modeled. The unavoidable mismatch between
the network dynamics and Eq. (2) induces, at
the end of the stimulation period, a systematic
bias in the value of the connectivity. To account
for this bias and quantify its consequences, we
consider below two variants of Eq. (2), with dif-
ferent set of parameters, for the ‘true’ plastic
evolution of the network and for its model coun-
terpart used to compute ∆J(f ,∆t,J) and the

optimal control f∗.

APPLICATIONS

We apply below our learning procedure to two
computational tasks; a third task defined on a
small network is detailed in SM, Section VI, and
in the Discussion section.

Task 1: Non-linear association between
all-or-nothing inputs and digit-like outputs

Definition of the task. A fundamental com-
putation carried out by neural circuits in or-
ganisms is the association of diverse behavioural
(or motor) responses to multiple sensory inputs.
This task is particularly non trivial to learn
when it is non additive, as it cannot be real-
ized by linear networks [21], and may require to
recruit dedicated brain areas [22].

We consider here a toy version of a non-linear
associative task, in which a subset of Nin in-
put neurons can be stimulated in npairs distinct
ways. Each input stimulation is expected to
elicit an associated activity pattern over Nout

output neurons, see Fig. 4(a). For the sake of vi-
sual clarity, the output patterns are represented
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as digits, with grey/black pixels corresponding
to neurons with low/high activities arranged on
a rectangular grid. We make sure that

• the association task is non-linear by care-
fully choosing the input/output pairs. For
instance, the sums of the input stimula-
tions associated to the output digits 0 and
1 is the input required to elicit digit 2;
however, 2 is quite distinct from the su-
perimposition of 0 and 1, see Fig. 4(a).
As a result of non-linearity the associa-
tion task cannot be simply implemented
through separate neural pathways, acti-
vated by one input and silent for the other
ones.

• there is no direct connection from the in-
put to the output neurons, see Fig. 4(b).
This arrangement mimics the idealized
structures of a modular chip. Hence, the
information about the input must be pro-
cessed and conveyed by an intermediate
processing (proc) region of the network,
which contains most of the N neurons.
This requirement also ensures that the de-
crease of the cost function in the initial
part of the training is not due to a simple
creation of a linear direct input-to-output
connection, but rather to the creation of
a complex structure.

Training: costs and dynamics. To learn the
task, we introduce a cost over the connectiv-
ity matrices favoring the desired input/output
associations, see Methods, Eq. (20). An addi-
tional cost aims at regularizing the connectivity
and speeding up convergence towards station-
ary states of activity, see Methods.
We start from a network with weak, random

connections. As our spatio-temporal control
stimulation is applied to the neurons (Fig. 4(c)),
the connectivity gets modified, and the costs as-
sociated to the task and to the regularization
decrease, as shown in Fig. 4(d). The activities
of neurons progressively cluster into two cate-
gories, depending on their expected values in
the output patterns (Fig. 4(e)). The learning
process is characterized by three stages. First,

the activities of all output neurons approxi-
mately reach the same low activity level inde-
pendently of the input pattern, as regularization
tends to decrease the amplitudes of the connec-
tions and of the activities. Then activities start
to separate according to the output patterns.
At this stage one can already guess the out-
put digits, see Fig. 4(f). We let the protocol
proceed until the two groups (active, inactive)
are clearly separated, and the output neuron
activities match the target patterns, compare
Fig. 4(a)&(f).

Transfer of information and neural represen-
tations. How the information is transferred
from the input to the output neurons and repre-
sented in the proc area is investigated in Fig. 5.
While the input and output sub-populations in
our network both include Nin = Nout = 15 neu-
rons, the associative task effectively takes place
in a lower-dimensional space with npairs = 4 di-
mensions. We show in Fig. 5(a) that learning
progressively concentrates most of the Nout =
15-dimensional activity in the 4-dimensional
subspace spanned by the output digits. This
dimensionality reduction phenomenon is even
stronger when the Nin input neurons are stim-
ulated by random combinations of the training
inputs associated to the digits, implying the ef-
fective creation of a 4-to-4 dimensional channel
upon learning. From a circuit point of view, this
functional channel is supported by a network
of connections, whose histogram is reported in
Fig. 5(b). We observe that, during learning, the
E and I subpopulations strengthen their con-
nections, with the exception of recurrent inter-
actions within the I neurons that remain weak.
The creation of input-specific sub-networks of
activity during the learning process can be seen
in the animation provided in SI, Section VIIA.

We stress that, within this low-dimensional
space, the network computation is not linear as
imposed by the non-additivity of the task. We
show in Fig. 5(c) how the network response to
linear combinations of the inputs may largely
differ from the superimposition of the responses
to the single inputs, see case 0 − 1 (left). This
result confirms that the network is capable of
learning complex behaviour beyond the super-
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imposition of patterns in the low-dimensional
subspace spans by the patterns. On the con-
trary, in the absence of any specific constraint
imposed by the task, computation appears to
be approximately linear, see combinations of in-
puts 0 and 3 producing the 8 digit (right).
Furthermore, we may ask how the network,

after training, is able to process and differenti-
ate the patterns outside the input and output
sub-populations. We see in Fig. 5(d) that inputs
produce the activation of a significant fraction
of the neurons in the proc area and that many
of those neurons respond specifically to distinct
inputs, with stronger correlations in the evoked
activities for more correlated inputs. In par-
ticular, the role of inhibitory neurons is key to
the differentiation of input 2 from both 0 and 1,
and to depart from additivity as imposed by the
task. Further information about how neurons in
the proc region participates in the association
task can be found in SM, Fig. 6.

Task 2: Ring-like connectivity supporting
continuous attractor dynamics

Definition of the task. We now aim at re-
shaping network connectivity into a target ma-
trix Jtarget through learning. The target con-
nectivity defines a ring attractor, capable of
supporting a bump of activity coding for a con-
tinuously varying angle. Ring attractors were
first theoretically hypothesized [23, 24], and
have recently been observed in the ellipsoid
body of fly [25]. Neuron connections are orga-
nized along two rings, see Fig. 6(a). Excitatory
neurons form the outer ring, with connections
decays with their distance, while inhibitory neu-
rons compose the smaller inner ring. The con-
nections between the two rings are such that a
bump of activity on one side of the outer ring
induces inhibition on the diametrically opposite
side (see Fig. 6(a)). The position of the bump is
arbitrary in the absence of external input, and
is otherwise attracted by a weak and localised
input to the outer neurons.
Control stimulations are computed with the

cost function given by Eq. (3). The time be-

haviour of the cost is shown in Fig. 6(b) for ten
different random initial networks (see Fig. 6(c),
left, for a realization of the naive connectivity).
After a fast initial decay the cost relaxes to very
low values, signalling the success of the learning
procedure.

Training: network connectivity and stimula-
tions. Snapshots of the connectivity at differ-
ent steps of the learning process are displayed
in Fig. 6(c). The strong similarity between
the network connectivity at the end of learn-
ing (compare Figs. 6(a) and (c), step (4)) con-
fers the desired functional properties of contin-
uous attractors to the network. We report in
Fig. 6(d) the average firing activities of neurons
when a weak input stimulation (intended to pin
the bump of activity at a specific angle) is ap-
plied. At the initial state of learning (1), the
network responds by a weak excess activity sim-
ply reflecting the localized pinning input stim-
ulation. Through training, a sub-population of
neurons emerges, whose activity is supported by
the recurrent connections. This sub-population
varies with the angle associated with the input
stimulation, see (2) and (3). The emergence of
receptive fields is improved with further train-
ing cycles (4). Notice that, even when the target
structure is very well reconstructed, the direc-
tion of the polarization is not perfect, due to
tiny correlated defects in the connectivity struc-
ture. The presence of these defects does not
preclude the accuracy of the coding of angular
information in the network [26].

The time behavior of the control stimula-
tions applied to neurons during learning are
shown in Fig. 6(e). We observe the presence
of long-distance (large angle) correlations at
small times, which disappear at the end of the
training. To better characterize this angular
structure, we plot the Fourier transform (along
neuron indices) of the control stimulations in
Fig. 6(f). In the initial stage of training, the
stimulation is essentially represented by cosine
and sine waves, with periods matching the E
and I ring extensions. As learning proceeds,
higher and higher wave number modes are re-
cruited to refine the short scale structure of the
synaptic matrix. This observation is in agree-
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ment with the progressive emergence of connec-
tivity in Fig. 6(c).

DISCUSSION

We have shown how appropriate stimulations
can induce plastic reconfiguration in a network
subject to Hebbian-like plasticity processes and
make it capable of accomplishing a prescribed
computation. Our approach could successfully
be applied to different tasks (see also SM, Sec-
tion VI) and plasticity rules (Hebbian and anti-
Hebbian, see SM, Sections VC and IVC). These
results can be thus seen as a proof-of-concept for
general-purpose neural training, which would
compile a task into a neural network by exter-
nally guiding the intrinsic learning mechanisms.
At its core, our training method addresses and
solves a sort of inverse Hebbian problem: in-
stead of looking for how synaptic interactions
change under external inputs, we search for an
appropriate set of inputs, or control stimula-
tions implementing desired changes in the in-
teractions through plasticity mechanisms. No-
tice that, strictly speaking, the issue of modify-
ing connectivity with constrained control is not
unique to biological neural networks: neuromor-
phic circuits, e.g. based on memristors can un-
dergo plastic changes [27], and computation in
such networks could be among potential appli-
cations of our training protocol. We now discuss
our results, both from the computational and
the bioengineering/biological points of view.

Computational aspects

Constrained learning and approximate gradi-
ent descent. As stressed in the introduction,
plasticity rules strongly constrain the manifold
of possible changes in the connectivity matrix
and straightforward gradient descent of the loss
is generally not feasible (Fig. 3(a)). This funda-
mental limitation is clearly present even in the
case of very simple tasks trainable on small net-
works (Supplemental Material (SM), Section VI
and SM, Fig. 7). As the number N of neurons

increases, the ratio between the number of con-
trol variables (N) and the dimension of the con-
nectivity space (N2, or a fraction of N2 depend-
ing on network sparsity) diminishes, and the
situation ought to become less and less favor-
able. Fortunately, this effect is counterbalanced
by the huge increase in the multiplicity of the
networks realizing the task with N [28]. We ob-
serve, indeed, that Task 1 is easier to learn when
the size Nproc of the processing area (Fig. 4(b))
increases, see SM, Section IVA and SM, Fig. 3.
As a result, functional targets are easier to reach
than structural ones, as the latter cannot bene-
fit from any multiplicity of solutions.

An additional difficulty is the impossibility to
use an adaptive learning rate, a key ingredient
in the convergence of most machine-learning al-
gorithms. Though some variability in the dura-
tion ∆t of the control can be considered, this is
constrained by biological and experimental time
scales and cannot vary over orders of magni-
tude. As a result, the magnitude of the changes
∆J ∝ ∆t J̇ in the connectivity after each cycle
cannot be tuned at will.

Choice of cost function: structural vs func-
tional targets. The nature of the cost U has
also a deep impact on the time course of per-
formance throughout the learning process. Any
task could, in principle, be given a structural
cost, e.g. by running gradient descent of the
functional cost on a computer and finding an
adequate network J∗ implementing the target
task. However, in the structural case, the value
of U is not immediately informative about the
computation carried out by the network. Good
functional performance, such as the ability to
create angle-specific receptive fields in Task 2,
see Fig. 6(d), may be reached for vanishing U
only (SM, Section VC and SM, Fig. 8(a)&(b)),
which is difficult to achieve in practice. For this
reason, functional costs, for which low values of
U directly imply good performances, are prefer-
able. Accordingly, we find that defining U from
the worst input-output mismatch, see Methods,
Eq. (20), rather than from the average over all
pairs as in Eq. (4), gives better performance for
Task 1.

A consequence of the multiplicity of solutions
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in the functional case is that relatively little
changes to the initial (and random) network
are generally sufficient to meet the target, com-
pared to what is needed to meet a structural tar-
get. This intuition is corroborated by the anal-
ysis reported in SM, Section IVE and by the
animation provided in SM, Section VIIB. We
observe that the internal activity of the network
remains strongly self-correlated in time during
function-based training, providing evidence for
the ability of the learning procedure to reach a
functional target with moderate changes to the
connectivity.

Model uncertainty and robustness. A crucial
point to be addressed in future works is the im-
pact of noise and uncertainty. Dynamical noise,
both in the neural activity and in the synap-
tic transmission, could be taken into account
through a probabilistic formulation of the con-
trol problem. In addition, one should consider
measurement errors in the activity recordings,
affecting the estimation of the connectivity, or
in the stimulation process, leading to inaccurate
control of the network.

Taking into account model uncertainty is more
delicate. As a matter of fact, neither the equa-
tions describing the neural activity dynamics,
nor the plasticity rules are exactly known. Any
inaccuracy in the model is potentially a source
of bias and of correlated errors in the determi-
nation of the stimulation protocol. To estimate
the impact of such errors, we have studied the
performance of our learning scheme in a mis-
match setting, in which the plasticity rules gov-
erning the evolution of the connectivity and the
ones used for the computation of the protocol
differed. We show in SM, Section IVB, that
successful training is achieved even with 10%
(relative) mismatches on the parameters enter-
ing the plasticity rules. This result is a good
indication of the robustness of our approach to
uncertainties in the model. Needless to say, con-
trolling errors in the modelling of the plasticity
rules and designing robust stimulation schemes
will be crucial for future developments.

Importance of the range of controls. At the
implementation level, our training procedure in-
volves high–dimensional optimization over the

control stimulation f , and requires careful nu-
merical implementation. A number of param-
eters in the optimization loop have to be set,
whose choice impacts not only the outcome
but also the speed of learning, see SM, Sec-
tions IV&V. Of crucial importance is the range
of variation of the control stimulation applica-
ble to the neurons, fmin ≤ fi ≤ fmax. If the
range is wide, a lot of variability in the control
stimulation schemes is possible, and learning is
easy and fast. As fmax − fmin decreases, the
cost decays more slowly (SM, Fig. 3(a)). Fur-
ther investigations would be needed to better
understand if a minimal value of fmax−fmin ex-
ists below which the target task is not reachable
any longer and, more generally, how reachabil-
ity depends on the task. Notice that the proto-
col we have implemented corresponds to a con-
trol strategy with zero time horizon, which opti-
mizes the cost change ∆U at each cycle. Global
protocols, derived in the framework of optimal
control [29], could possibly achieve higher per-
formance. However, our high-dimensional set-
ting with incomplete knowledge (of connectiv-
ity) could suffer from serious error propagation
over large time horizons, making implementa-
tion difficult.

Continual learning. The final configuration
of the network (reached at the end of the control
scheme) is in general not a stable state of the
learning dynamics and would be lost over time.
This is a general issue with systems undergoing
continual learning [30]. From a computational
point of view, one would either need to re-apply
stimulations to maintain the neural circuit in its
state or use a cost function that ensures that
the final configuration is stable. From a biolog-
ical point of view, plasticity processes can be
downregulated in many ways in vivo [11]. Di-
minishing plasticity is for instance essential at
certain stages of brain development [31].

Biological aspects.

A new framework, in vitro biological com-
puting. Our work is deeply motivated by the
emerging field of in vitro computation with
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biological neurons. The main approach in
this domain so far has been reservoir comput-
ing [9, 10, 32–34], which exploits the capabil-
ity of randomly connected neural populations
to produce highly variable patterns of activity,
and has been linked to plausible neurobiolog-
ical mechanisms [35, 36]. Associative effects
of plasticity can be exploited for the sake of
learning, and reach performance beyond stan-
dard reservoir setups [37, 38]. More targeted
approaches have been proposed to directly ex-
ploit plasticity for task-training, for instance
by choosing familiar/unfamiliar inputs as re-
wards/punishment [3] or by exploiting stimula-
tion avoidance [39]. Our approach, on the con-
trary, aims at directly controlling and training
the neural structure through the determination
of adequate stimulations to be imposed to the
neurons.

The idea of learning through stimulations is not
new to biology, and is the basis for the con-
cept of vaccination. The immune system is en-
dowed with learning mechanisms that allow it
to respond to pathogens after appropriate stim-
ulations, e.g. following the administration of a
pathogen protein or its coding RNA sequence.
The vaccination scheme (timing and dosage) is
crucial to the quality of the immunization [40],
and can be designed to enhance the production
of the so-called broadly neutralizing antibodies
having large response spectra [41]. By analogy,
one may expect that stimulation protocols op-
timized to the learning dynamics of neural sys-
tems could drive them to desired operational
states.

Limitations and plausibility. Our modelling
approach is highly simplified and unlikely to
capture detailed biological mechanisms, and is
primarily intended to explore conceptual chal-
lenges in the training of networks with con-
strained plasticity. Though the learning pro-
cedure is robust against mismatches between
the ’true’ and modelled plasticity mechanisms
(SM, Section IVB), it relies on a number of as-
sumptions that need to be discussed in terms
of their technological and biological plausibil-
ity. First, we have assumed that stimulations
could be done at the level of individual neu-

rons: fine stimulation and recording capabili-
ties are being developed [42] but, as of today,
optogenetic [5, 43] and electrophysiological [44]
techniques rather allow one to target groups
of nearby neurons. This limitation could be
taken into account in our approach by impos-
ing spatial correlations between the components
of f . Second, our protocol could be adapted
to constrained controls f , e.g. whose compo-
nents have a given sign (though excitatory and
inhibitory tools are available [5, 45, 46]), or dis-
crete (on/off) rather than continuous values.
Though these limitations could in principle be
enforced, it remains to be seen how they would
affect the learning procedure, both in terms of
performances and training time.

Separation of neural and plasticity time
scales. An important hypothesis is that the
time scale τr associated to the relaxation of
neural activity is much shorted than the du-
ration of the control stimulation during a cy-
cle, ∆t, over which the connectivity changes.
Under this assumption, the neural activity is
stationary, and the estimate of the connectiv-
ity can be updated by probing the network re-
sponse to few random stimuli without inducing
synaptic changes (Methods, Eq. (12)). Physio-
logical time scales related to single-neuron dy-
namics (τn in Eq. (1)) are expected to be of
the order of tens of milliseconds. It is then cru-
cial that network effects do not slow down the
relaxation of the population activity on times
τr ≫ τn, see Methods, Eq. (8). This is ensured
in practice in Task 1 through the introduction of
a regularization cost on the connectivity, Ureg,
which prevents the emergence of slow dynamics
modes in the network (Methods, Eq. (13)). We
have checked that τr remains comparable to τn
throughout the learning process for all the tasks
considered here (SM, Section II). While it is dif-
ficult to estimate with precision the time scale
τs associated to plasticity effects in Eq. (2) and,
consequently, the duration ∆t of control stim-
ulation, a biologically plausible order of mag-
nitude for ∆t is of a few tens of seconds (SM,
Section I). Note that this is loosely consistent
with meaningful plastic modifications happen-
ing over few minutes such as shown in [3, 39].
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We conclude that the hypothesis τr ≪ ∆t is sat-
isfied. Furthermore, this estimate of ∆t would
imply that running hundreds of learning cycles
would take few hours. We are well aware that
these considerations are speculative and indica-
tive of orders of magnitude at best.

Intensities of stimulations. As emphasized
above, having a large range of stimulation val-
ues at our disposal is crucial for reaching the
target task at the end of learning. The values
of fmax we have employed in Tasks 1 & 2 are
a few tens of rmax, see Figs. 4(c) and 6(d); de-
tails about how to convert input currents into
rates can be found in SM, Section IB. Ultra-
fast optogenetics can elicit spikes in genetically-
modified neurons with high probability (for suf-
ficient light pulse intensity) up to hundreds of
Hz [47]. Hence, ratios fmax/rmax close to unity
are experimentally accessible. It remains to be
seen whether these techniques could be applied
to organoids with similar results.

Dependence on plasticity mechanism. From
a modelling point of view, we have resorted
to a coarse-grained description of activity at
the level of firing rates, rather than of spiking
events. Both descriptions are compatible with
one another, at the plasticity [48–50] and ac-
tivity [51–53] levels, to the point that artificial
spiking networks may be trained by proxy rate-
based models [54]. Plasticity at the spike level is
a complex process involving multiple timescales,
delayed effects and spike train patterns [55],
possible co-existing with non-synaptic plastic-
ity [56], different effects depending on the origin
of the neuron [57] and meta-plasticity [50]. The
coarse-grained plasticity rules we consider re-
spect some general principles: associativity (co-
variance rule with a threshold, compatible with
experiments [58]), locality (dependence on the
post and pre-synaptic neurons [57]), and home-
ostasis [17]. In addition, we test the robust-
ness of our approach with two different plas-
ticity scenarios, based on Hebbian and anti-
Hebbian rules for inhibitory synapses in, re-
spectively, Tasks 2 and 3; see SM, Section VC
for reverse choices of the rules for inhibitory
synapses. In this context, Hebbian and anti-
Hebbian learning rules induce, respectively, the

weakening and the strengthening of connections
between inhibitory neurons with correlated ac-
tivity, and result in increased or diminished [16]
activity. It would be interesting to exhaustively
study the performances of our stimulation pro-
tocol over a wider class of plasticity rules.

Relevance for neuroscience. As emphasized
above, our modelling approach, besides being
an oversimplification of the processes taking
place in neurons and in their connections, fo-
cuses on in vitro circuits. Such circuits share
many features, at the molecular and cellular
levels, with their counterparts in the brain of
animals, but also differ in fundamental ways.
In particular, our learning protocol, based on
control stimulations computed externally, was
designed to meet bioengineering contexts and
goals, but is a priori not directly relevant for
neuroscience, e.g. to understand how animals
learn in realistic situations.
From this point of view, the interpretation of
the training stimulation sequence is an impor-
tant point to consider. We have observed that,
in the case of the structural Task 2, the struc-
ture of the training stimulation adapts to the
ring symmetry of the target (Figs.˜6(d)&(e)).
Briefly speaking, the stimulation protocol en-
graves Fourier modes on the ring at finer and
finer scales as (training) times passes on. This
finding shows the deep connection between the
spatio-temporal pattern of stimulations and the
structure of the target network. Interestingly,
the possibility of shaping a network with struc-
tured activity patterns is reminiscent of what is
speculated to happen during postnatal develop-
ment, for instance in the visual cortex [59]. It
would be interesting to further investigate this
analogy,in particular if the activity driving neu-
ral development could be interpreted as the re-
sult of some sort of control optimization.

METHODS

Network structure and activation function

The fractions of excitatory and inhibitory
subpopulations are equal to, respectively, 80%
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and 20%. The synaptic structure is encoded in
the binary matrix C: neuron j is connected to
neuron i if Cij = 1, and is not if Cij = 0. The
structure matrix C is random and fixed dur-
ing the training, while the intensities Jij of the
existing connections (Cij = 1) vary over time
according to Eq. (2).
The neuron activation Φ is a monotonously

increasing function of the input x (which is di-
mensionally a frequency, see SM) and is chosen
to be

Φ(x) = rmax
ψ(x)

1 + ψ(x)
, where

ψ(x) =
r0
rmax

log

[
1 + exp

(
x

r0

)]
(7)

is a differentiable and invertible sigmoid func-
tion. Here, rmax is the maximal firing rate
reached for large inputs, and r0 is the magni-
tude of the spontaneous firing activity in the
absence of input (SM, Section I).

Relaxation dynamics of the network activity

While single-neuron activities are associated
with the time constant τn in Eq. (1), the effec-
tive relaxation time τr can be longer due to net-
work effects. We estimate τr by linearizing the
dynamics of the rates around their stationary
values, ri. Denoting by D the N -dimensional
diagonal matrix with elements Dii = Φ′(ri) and
zero outside the diagonal, we have

τr =
τn
ρmin

, where

ρmin =
smallest real part

of the eigenvalues of Id−D · J
. (8)

Estimates of τr are shown for the different tasks
in SM Fig. 1

Inference of connectivity

* Initialization: estimate of the synaptic
structure C and of the neuron types ϵ. The

support of the synaptic interactions, Cij = 0, 1
and the nature of neurons, ϵi = E/I, are ini-
tially unknown. To determine their values we
start to probe the network activities rνi in re-
sponse to nprobe randomly chosen stimulation
patterns fνi , and rewrite the stationary relations
in Eq. (5) as∑

j

Jij r
ν
j = tνi , where tνi = Φ−1(rνi )− fνi

(9)
for all i, ν. As the initial number of probing
stimulations does not have to be small (plastic
changes would simply affect the starting state
of the connectivity for the training phase), we
can choose nprobe ≥ N , and the linear system
above generically determines the matrix J in a
unique way. To avoid large numerical errors on
currents through Φ−1, the probing stimulations
fνi are chosen to be large enough to avoid the
presence of low firing rates (r ≃ 0), see SM,
Section I.

Once J has been estimated, we estimate the
identity of neurons and the support of the con-
nectivity through, respectively,

ϵi =

{
E if

∑
j Jji > 0

I otherwise
(10)

and

Cij =

{
1 if |Jij | > Jmin

0 otherwise
, (11)

where Jmin is a small threshold, set to 10−6.
These estimates of ϵ and C are left unchanged
throughout the training process.
* Updating the connectivity estimate after

a training period. Let Ji be the vector of con-
nections incoming onto neuron i prior to a train-
ing stimulation period of duration ∆t; the di-
mension of Ji is equal to di =

∑
j Cij . After

the training period the vector connections is J′
i.

To estimate this vector we probe the network
with nprobes stimuli, and record the correspond-
ing activities. We call R the (nprobes × di)-
dimensional matrix of activities rνj and ti the
nprobes-dimensional vector of components tνi ap-
pearing in Eq. (9). The solution to the con-
straints R · J′

i = ti is therefore not unique. To
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lift this ambiguity we select the solution J′
i clos-

est (in terms of L2 norm) to the previous esti-
mate Ji. Formally, we obtain [60]

J′
i = Π⊥

i · Ji +R+ · ti , (12)

where R+ denotes the pseudo-inverse of R and
Π⊥

i = Id −R+ ·R is the projector orthogonal
to the nprobes-dimensional space spanned by the
rows of R. This updating step is then iterated
over the N neurons i to obtain all the vectors
J′
i.

Regularization of the connectivity matrix

A common practice in machine learning is to
introduce a regularization cost over the model
parameters, hereafter denoted as Ureg(J), to
smooth out the training trajectories. In ad-
dition, regularization can help ensure that the
neural activities reach their stationary values
quickly (under fixed stimulation) through the
network dynamics in Eq. (1), which is impor-
tant for training and for connectivity estima-
tion.

We impose regularization to bound the mod-
ulus σ(J) of the largest singular value of the
connectivity matrix. The rationale is that a
sufficient condition for the network dynamics
to have a unique activity stationary state and
converge exponentially fast to this unique state
is that σ(J) < 1, see Eq. (8) and SI, Section
2.2. For each singular value λk of J, the regu-
larization cost is approximately zero if λk ≪ 1,
and grows linearly as g2 λk for λk ≫ 1. We
implement this dependence through a softplus
function:

Ureg(J) =
g2
g1

N2∑
k=1

log
(
1 + e g1 (λk−1)

)
(13)

with g2 = 2, g1 = 10. This regularization cost
can be explicitly differentiated with respect to
the entries of the connectivity matrix, see below.

Determination of the optimal stimulation f∗

* Derivative of the costs with respect to
connections and time. The task cost Utask

depends on the connectivity J, both directly
and indirectly through the stationary activity r.
The expression for the total derivative of Utask

with respect to an entry of J is, according to
chain rule,

dUtask

dJij
=
∂Utask

∂Jij
+

∑
k

∂Utask

∂rk

∂rk
∂Jij

(14)

which requires knowledge of the derivatives of
the neuron firing rates. These can be computed
using the implicit function theorem [61] applied
to the stationary equations for the dynamics,
with the result:

∂rk
∂Jij

=
[(
Id−D · J

)−1]
k,i

Dii rj , (15)

where D was first used in Eq. (8). The gradi-
ent of the regularization cost, Ureg in Eq. (13),
can be easily expressed using the derivatives of
the singular values: dλk

dJij
= uk,i vk,j , where uk

and vk denote, respectively, the left and right
eigenvectors of J associated to λk.

In addition, the gradient component asso-
ciated to the connection Jij is set to zero if
Cij = 0 (no connection is actually present), or
if Jij = 0 and descending the gradient would
violate the constraint on the sign of the inter-
action resulting from the pre-synaptic neuron
type, i.e. dU

dJij
> 0 if ϵj = E or dU

dJij
< 0 if

ϵj = I. Notice that knowledge of the gradients
of Utask and Ureg with respect to Jij gives ac-
cess to the time derivatives of these costs (under
fixed stimulation) through the generic formula

.
U =

∑
i,j

∂U

∂Jij

.
J ij , (16)

where the latter term can be directly obtained
from the dynamics over synapses described by
Eq. (2).

* Objective function and gradient over
stimulations. The total cost U is defined as
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the sum of the task and regularization costs,
U = Utask + Ureg. To determine the best con-
trol stimulation f over the next period we search
for the minimum of the modified change

∆U(f ; γ) = U
(
J+∆J(f)

)
−U

(
J
)
+∆t γ ∥∆J(f)∥2

(17)
where J is the matrix of connectivity estimated
through probing at the end of the previous con-
trol stimulation period, γ = 1/((J̄/10)2 cN2)
and

∆J(f) = [J+∆t J̇(f)]ϵ − J (18)

where [·]ϵ indicates that connections have been
clipped to respect their excitatory/inhibitory
types ϵ imposed by the pre-synaptic neurons.
The last term in Eq. (17) constrains the change
in the interactions to be small over the period of
stimulation, effectively introducing a saturating
non-linearity over the gradients.

Computing the gradient of ∆U in Eq. (17)
with respect to the control stimulation compo-
nents fi requires the expressions for the deriva-
tives of the costs with respect to the connections
in Eqs. (14),(15), and with respect to time, see
Eq. (16). In addition, the derivatives of the fir-
ing activities are needed. Using again the im-
plicit function theorem we obtain, see Eq. (15),

∂rk
∂fi

=
[(
Id−D · J

)−1]
k,i

Dii . (19)

To enforce the conditions fmin < fi < fmax we
set the gradient components of ∆Utot to zero
when these boundaries are met.

* Minimization of the cost. The optimal
control f∗ can be found through an iterative de-
scent of ∆U in Eq. (17). The control is updated
along minus the gradient of ∆U(f , γ), and the

resulting fi’s are clipped if the boundaries fmin

or fmax are crossed. The iterative process halts
if the decrease of ∆U(f , γ) is smaller (in abso-
lute value) than some threshold, or the expected
decrease (based on a fit of the previous steps in
the process) is too low. Then, if ∆U(f , 0) is neg-
ative (i.e. the cost function is decreasing), the
solution is accepted, while the gradient descent
is repeated otherwise.

Details about the implementation, with the
pseudocode for the optimization loop and the
values of the hyper-parameters involved can be
found in SM, section III.

Task 1

* Initialization and setting. Elements of the
structure matrix Cij are randomly set to 0 or
1 with respective probabilities 1 − cE and cE
for excitatory columns (J such that ϵj = E)
and 1 − cI and cI for inhibitory ones (ϵj = I).
To ensure that the task is not easily imple-
mentable no direct connection between the Nin

input neurons and the Nout output neurons is
present.Initial connections Jij are drawn uni-
formly at random in the ranges [0, J0] if ϵj > 0
or [−J0, 0] if ϵj < 0. See SM, Section I for pa-
rameter values.

* Task-associated cost. We define a set of
ntask input stimulations fµ (defined over the
Ni input neurons) and output binary activa-
tion σσσµ (over the No output neurons), with
µ = 1, ..., ntask. The goal of training is that
output neuron i should display High or Low fir-
ing activity in response to input µ when, re-
spectively, σµ

i = H or L. In practice we en-
force that the firing rates associated to neurons
with low (σ = L) and high (σ = H) activi-
ties should differ by more than a prescribed gap
δr = 0.12 rmax. The task cost reads

Utask(J) =

∑
(µ,i):σµ

i =L

∑
(ν,j):σν

j =H

∆(µ, i; ν, j) eγ ∆(µ,i;ν,j)

∑
(µ,i):σµ

i =L

∑
(ν,j):σν

j =H

eγ ∆(µ,i;ν,j)
(20)
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where γ = 1/(δr/2)2 and we have introduced
the mismatch

∆(µ, i; ν, j) = h2
(
rµi − rνj + δr

)
(21)

with

h2(u) = u2 if u > 0, 0 otherwise. (22)

The exponential factors give more weights to
large mismatches ∆ in the expression of the
cost. The dependence of the cost on J (and on
the input stimulations fµ) in Eq. (21) is implicit
through the firing rates ri. Minimizing Utask is
thus equivalent to separating the activities of
the H and L neurons as required by the classi-
fication task, i.e. making all ∆(µ, i; ν, j) = 0.

* Analysis of input and output spaces.
To characterize how the association mecha-

nism emerges across training, we convert digits
σµ
i =High/Low to 1/0 valued arrays. These dig-

its span a npairs = 4-dimensional space. Given
a stimulation f , we call rout(f) the output ac-
tivity and

∥r⊥out(f)∥2 =
minβ

∥∥∥∑ntask

µ=1 σi
µβµ − rout(f)

∥∥∥2
∥rout(f)∥2

.

(23)
the normalized squared length of its projection
orthogonal to the digit space. In Fig. 5(a),
we report this quantity for: (1) generic inputs
f with 0,1 entries with 50-50 probability, and
(2) random, uniform convex combinations of the
inputs associated to the digits: f =

∑ntask

µ=1 αµfµ
with αµ ≥ 0 and

∑
µ αµ = 1.

Task 2

* Initialization and setting. The connectiv-

ity matrix is initialized as in the classification
task above, but no a priori restriction is im-
posed to the structure, i.e. cE = cI = 1. See
SM, Section I for parameter values.

* Task and cost. The structural cost is de-
fined in Eq. (3). Weights are defined as wϵi,ϵj =(∑

ab[J
target
ϵiϵj ]2ab

)−1
, where J target

ϵiϵj is the sub-

matrix of Jtarget connecting neurons of type
ϵj = E/I to neurons of type ϵi = E/I. This
re-weighting ensures that large, e.g. E → E,
and small, e.g. I → I blocks equally con-
tribute to the cost, and are simultaneously and
properly learned during the training process.

The target connectivity is defined as follows.
Neurons are associated angles on two rings,
depending on their types ϵ = E or I. The
angle attached to the excitatory neuron i is
θEi = 2π i

NE
, where NE is the number of ex-

citatory neurons. A similar formula holds for
the NI inhibitory neurons: θIi = 2π i

NI
. The

target synaptic connection from neuron j to i
reads

J target
ij = Jϵi,ϵj ×M

(
θϵii − θ

ϵj
j − π δϵi,I ;Kϵi,ϵj

)
,

(24)
where δ.,. denotes the Kronecker delta. The
angular modulation is done through von Mises
function,

M(∆θ;K) = e−K+K cos(∆θ) , (25)

which is maximal for vanishing angular sepa-
ration (∆θ = 0) and decays over the width
≃ K−1/2. Parameter values are listed in SM,
Section I.

Receptive fields. We apply a weak local
input stimulation fi = 0.06 rmax, fi±1 =
0.028 rmax, fi±2 = 0.012 rmax, fi±3 =
0.004 rmax to induce polarization of neuron i,
and repeat the process for all i. Results for the
activities are averaged over 100 trials.
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FIG. 1. Computational targets for plastic neural networks.

(a) Our goal is to reconfigure a naive neural network and reach some target, either structural (a specific connectivity

state) or functional (for instance, the network is required to implement some input–output associations). This

reshaping is achieved through a learning process, in which appropriate spatio-temporal stimulations of the neurons

exploit intrinsic plasticity mechanisms.

(b) The computational target, here, the functional task in panel (a), is reached through a learning cycle. Prior to

the learning process, the naive network associates the inputs to random outputs (left). Our algorithm computes the

best control to be applied to the network to modify its connectivity through plastic changes. Applying this control

stimulation to the neural population results in an enhancement of the network performance (middle). The control is

then re-optimized and applied during a new stimulation period. After multiple iterations, the correct input-to-output

association is achieved (right).
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FIG. 2. Stages of the learning cycle: planning of control stimulations, reconfiguration under plasticity

effects, and connectivity estimation

In each cycle, a control stimulation f∗
i is applied to the neurons i in the network, generating stationary firing rates

ri (middle). In turn this activity pattern leads, through the plasticity rule, to specific strengthening or weakening

of the connections Jij , indicated by the changes in the thicknesses of the connection arrows (top). Once the control

period halts, few short and random stimulations are applied to the neurons, and the corresponding activities are

recorded (bottom, right). These data are then used to update the estimate of the network connectivity, and to plan

the optimal control for the next cycle (bottom, left).
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FIG. 3. Schematic dynamics of the network and feasible directions in the high-dimensional connec-

tivity space during the training process.

(a) Grey levels show values of the cost U , which quantifies the mismatch between the current connectivity J of the

network and the target. Dark blue balls locate the connectivity J at the beginning of each control stimulation period.

The set of all directions in the N2-dimensional connection space along which U decreases is shown by the cyan area,

centered around the direction of steepest descent of U indicated by the blue arrows. The purple cone symbolically

represents the set of all feasible directions for J under the plasticity dynamics, i.e. which can be reached under any

N -dimensional control stimulation f .

(1) Initial situation, prior to any control stimulation. The synaptic change corresponding to a random f may point

to a ‘bad’ direction outside the cyan region (orange arrow), while the change associated to the optimal control stim-

ulation f∗ lies on the edge of the purple cone (red arrow), as close as possible to the best direction (blue arrow).

(2) After one control stimulation period. Repeating the same control stimulation as before would lead to a subopti-

mal change of J (orange arrow), while the best stimulation (red arrow) yields a larger decrease in U .

(3) Control stimulations are updated to ensure optimal synaptic changes until (4) all local updates of the previous

f∗ lie outside the ‘good’ (cyan) region. We then choose a new initial f , and resumes the search for the optimal f∗ as

in cycle (1). This process is iterated, until the change in U are very small and the optimization is completed, or the

feasible and ‘good’ regions do not overlap any longer (point (5)). The performance of the network (final value of U)

is then assessed.

(b) Decay rate of the loss during the optimization over the control (top) and resulting loss Uk after each learning

cycle k (bottom), for the setting corresponding to Task 1. Abscissa indicates the number n of optimization steps.

Vertical dashed lines locate the beginnings of the training cycles k. Top: decay rate (U(n) − Uk)/∆t at step n of

the optimization algorithm, calculated with the regularized loss, see Eq. (17). For each cycle, the rate is decreased

through gradient descent over f until a plateau is reached. The optimization then halts, and the control defines f∗k .

At the begining of the new cycle, the network connectivity J has changed, the previous control is not optimal any

longer, and the optimization process resumes. The plateau values of the rate increase over cycles, making progres-

sively harder to find a good control to train the network.
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FIG. 4. Task 1: non-additive input-output association.

(a) The npairs = 4 pairs of input-output associations to be learned by the network. Input patterns: flashes locate the

input neurons (out of Nin = 15) subject to a strong stimulus (fi = fmax), while the other neurons (empty squares)

receive no input (fi = 0). Output patterns: target activities of the Nout = 15 output neurons (black: ri > 0.04rmax,

light gray: ri < 0.01rmax).

(b) Sketch of the network, with the bulk processing area including Nproc = 70 neurons, connecting the input and

output neurons. The overall fractions of excitatory and inhibitory neurons in the network are equal to, respectively,

80% and 20%.

(c) Control stimulations fi(t) (see color bar for values) applied to the neurons as a function of the learning step.

From top to bottom: input, output, bulk inhibitory, and bulk excitatory neurons.

(d) Costs associated with the task (green, left scale) and with regularization (orange, right scale) as functions of the

learning cycle.

(e) Activities of the output neurons in response to the input stimulation patterns during learning. The color (black or

light gray) of each one of the npairs×Nout = 60 curves indicates the level of activity requested for the corresponding

output neuron (high or low, see panel (a)). Training is successful when the black and light gray curves become well

separated.

(f) Average activities of the output neurons for the four time steps identified with dashed line in panel (d), showing

how the figures of digit emerge from the initial random image. Black and light gray activities are consistent with

panel (e), with intermediate gray levels defined in the bar.
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FIG. 5. Learning dynamics and internal representations for Task 1.

(a) Squared norm of the projection of the output activity (over Nout = 15 neurons) orthogonal to the space spanned

by the npairs = 4 digit patterns as a function of the number of training cycles. The total activity is normalized

to unity. Blue curve: case of random 0-1 stimulations over the Nin = 15 input neurons; orange: stimulations are

random convex combinations of the npairs inputs. Results were averaged over 10 training trials, and each point is

averaged over 50 random input stimulations.

(b) Histograms of interactions Jij between the neurons in the E and I populations. Dashed lines show the soft

bounds in ±J̄ .

(c) Output neuron activities (gray levels) in response to combinations of inputs αµ fµ + αν fν , with 0 ≤ αµ, αν ≤ 1.

The bottom left corner corresponds to vanishing input and the bottom, right and top,left corners to pure inputs

associated to, respectively, digits µ and ν. The background colors (middle squares) indicate the most resembling

digits. (Left) case µ = 0, ν = 1: the output of the linear combination of inputs is not the linear combination of the

outputs, as required by the association task. (Right) Case µ = 0, ν = 3: the response to linear combinations of f0
and f3 is approximately additive.

(d) Scatter plot of the activities of the 70 bulk neurons for inputs 0, 1 (top) and 0, 2 (bottom) after training. The

representations associated to patterns 0 and 1 are not correlated, as expected from the orthogonality of f0 and f1
(Fig. 4(a)). Conversely, the representations of 0 and 2 are strongly correlated, reflecting the relation f2 = f0 + f1
(Fig. 4(a)).
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FIG. 6. Task 2: building a continuous attractor.

(a) Target network (left) and connectivity matrix Jtarget (middle). Excitatory neurons (E) are arranged on the

outer ring (NE = 80), and inhibitory neurons (I) on the inner one (NI = 20). Neurons on the E ring have strong

excitatory connections with their neighbours, and project to inhibitory neurons diametrically opposed on the I ring.

Inhibitory neurons repress neighbouring neurons on the E ring and repress the opposite side of the I ring, leading

to a localization of the activity (bump). Right: Radial plots of receptive fields of neurons associated to angles 0

(blue), 120 (green) and 240 (red) degrees on the E ring. A weak localized input stimulation is applied for each angle

(Methods) and the activities (averaged over 100 trainings) of all neurons in the stationary state are shown.

(b) Task cost evolution during learning for 10 random naive networks (gray curves); the back line shows the average

cost. Four representative learning cycles, labelled (1), (2), (3), (4) are referred to in panel (c).

(c) Connectivity matrices (top) and receptive fields (bottom) at cycles (1), (2), (3), (4), showing different stages of

learning. Same color codes as in panel (a).

(d) Control stimulations fi(t) as functions of the learning cycle.

(e) Amplitude f̂ϵ
k(t) =

∑Nϵ
ℓ=1 fℓ(t) cos(2πk ℓ/Nϵ) of the Fourier modes k = 0, 1, ..., Nϵ/2 associated to the control

stimulations shown in panel (d), for excitatory (ϵ = E) and inhibitory (ϵ = I) neurons. Initially, the control

stimulation mainly consists of large waves (low-k Fourier modes), while at the end of training, modes at large k are

used to refine the synaptic structure on short angular scales. Notice the global suppression at cycle ≃ 750, after the

receptive fields are formed.
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