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Introduction

Fractional Brownian motion (fBm) of an arbitrary Hurst parameter H ∈ (0, 1), denoted by {B H (t) : t ∈ R}, is defined, up to a multiplicative constant, as the unique (in distribution) Gaussian process with stationary increments which is globally self-similar of order H. Recall that a stochastic process {F (t) : t ∈ R} is said to be with stationary increments if, for any fixed point t 0 ∈ R, one has:

F (t 0 + u) -F (t 0 ) : u ∈ R law = F (u) -F (0) : u ∈ R ; (1.1)
and it is said to be globally self-similar of order H if, for each fixed positive real number ν, one has:

ν -H F (νt) : t ∈ R law = F (t) : t ∈ R . (1.
2)

The representation of fBm as a well-balanced moving average is given, for every t ∈ R, by the Wiener integral over R:

B H (t) = R |t -s| H-1/2 -|s| H-1/2 dB(s), (1.3) 
with the convention that |t -s| 0 -|s| 0 = log |t -s| -log |s|. FBm was first introduced by Kolmogorov in 1940 as a way for generating Gaussian spirals in Hilbert spaces [START_REF] Kolmogorov | Wienersche Spiralen und einige andere interessante Kurven im Hilbertschen Raum[END_REF]. Later, in 1968, the well-known article [START_REF] Mandelbrot | Fractional Brownian Motions, Fractional Noises and Applications[END_REF] by Mandelbrot and Van Ness emphasised its importance as a model in several areas of application: hydrology, geology, finance, and so on. Since then many applied and theoretical aspects of this stochastic process have been extensively explored in the literature and, among many other things, its sample behavior has been well understood.

Despite its importance in modeling, fBm does not always succeed in giving a sufficiently reliable description of real-life signals. Indeed, fBm suffers from two main limitations:

(a) its Gaussian character, (b) local roughness of its sample paths remains everywhere the same; more precisely, their local and pointwise Hölder exponents are everywhere equal to the Hurst parameter H.

In order to overcome the limitation (b) of fBm, the so-called multifractional Brownian motion (mBm) was introduced, about twenty years ago, independently by Benassi, Jaffard and Roux [START_REF] Benassi | Elliptic gaussian random processes[END_REF] and by Lévy Vehel and Peltier [START_REF] Peltier | Multifractional Brownian Motion : Definition and Preliminary Results[END_REF]. The latter continuous Gaussian process with non-stationary increments can be obtained by substituting to the constant Hurst parameter H in (1.3) a deterministic continuous function H(•) depending on t and with values in the open interval (0, 1). Nowadays mBm has become a quite useful model in the fields of financial modeling and signal processing (see for instance [START_REF] Bianchi | Pathwise identification of the memory function of multifractional Brownian motion with application to finance[END_REF][START_REF] Bianchi | Multifractional properties of stock indices decomposed by filtering their pointwise Hölder regularity[END_REF][START_REF] Bianchi | Modeling stock prices by multifractional Brownian motion: an improved estimation of the pointwise regularity[END_REF]).

In order to overcome the limitations (a) and (b) together, extensions of mBm whose Hurst parameter is a stochastic process or more generally a sequence of stochastic processes were introduced in [START_REF] Ayache | Multifractional Processes with Random Exponent[END_REF][START_REF] Ayache | Wavelet construction of generalized multifractional processes[END_REF]. Other extensions of mBm to frames of heavy-tailed stable distributions were proposed in [START_REF] Stoev | Stochastic properties of the linear multifractional stable motion[END_REF][START_REF] Stoev | Path properties of the linear multifractional stable motion[END_REF][START_REF] Dozzi | Real harmonizable multifractional stable process and its local properties[END_REF]. More recently, [START_REF] Shevchenko | Local times for multifractional square Gaussian processes[END_REF] constructed a multifractional generalized Rosenblatt process belonging to the second order homogeneous Wiener chaos. In our present article, we construct a multifractional process, denoted by {Z(t) : t ∈ R}, which belongs to a homogeneous Wiener chaos of an arbitrary integer order d ≥ 2. The latter multifractional process is not a generalization of the Rosenblatt process but of a process {Y H (t) : t ∈ R} consisting in a very natural chaotic extension of the fBm in (1.3). Namely, it is defined, for all t ∈ R, through the multiple Wiener integral on R d :

Y H (t) = R d t * -x H-d 2 2 -x H-d 2 2 dB x 1 ...dB x d , (1.4) 
where t * = (t, ..., t) ∈ R d and • 2 denotes the Euclidian norm over R d . A class of chaotic self-similar processes with stationary increments, which implicitly includes {Y H (t) : t ∈ R}, had been first introduced and investigated in [START_REF] Mori | The law of the iterated logarithm for self-similar processes represented by multiple wiener integrals[END_REF]. Long time later, {Y H (t) : t ∈ R} was explicitly introduced and studied in its own right in [START_REF] Arras | On a class of self-similar processes with stationary increments in higher order Wiener chaoses[END_REF] through wavelet methods inspired by the ones in [START_REF] Ayache | Multifractional Processes with Random Exponent[END_REF][START_REF] Ayache | Wavelet construction of generalized multifractional processes[END_REF].

Recall that a centred non-Gaussian square integrable real-valued random variable, on the underlying probability space (Ω, F, P), belongs to the homogeneous Wiener chaos of an arbitrary integer order d ≥ 2 when it can be represented by a multiple Wiener integral over R d . We always denote by I d (•) this stochastic integral, and use the classical convention that, for every

f ∈ L 2 (R d ), one has I d (f ) = I d ( f ); the function f being the symmetrization of f , defined, for all (t 1 , ..., t d ) ∈ R d , as f (t 1 , ..., t d ) = 1 d! σ∈S d f (t σ(1) , ..., f (t σ(d) ))
, where S d refers to the set of all permutations of {1, ..., d} (observe that d! is the cardinality of S d ). A very important property of multiple Wiener integrals, which somehow can be viewed as an isometry property, is that, for all function f ∈ L 2 (R d ), one has

E |I d (f )| 2 = d! f 2 L 2 (R d ) ≤ d! f 2 L 2 (R d ) . (1.5) 
Before ending these very short recalls on multiple Wiener integrals, it is worth mentioning that two well-known books on them and related topics are [START_REF] Janson | Gaussian Hilbert Spaces[END_REF][START_REF] Nualart | The Malliavin calculus and related topics[END_REF].

Roughly speaking, we define Z = {Z(t) : t ∈ R}, the multifractional generalization of

Y H = {Y H (t) : t ∈ R}, as Z(t) = Y H(t) (t)
, for all t ∈ R, where H(•) is an arbitrary deterministic continuous function over R with values in the open interval (0, 1). More precisely, let us consider the chaotic stochastic field X = {X(u, v) : (u, v) ∈ R × (0, 1)}, such that, for every (u, v) ∈ R × (0, 1), one has

X(u, v) = R d u * -x v-d 2 2 -x v-d 2 2 dB x 1 ...dB x d . (1.6) 
We mention in passing that, for each fixed v ∈ (0, 1), the stochastic processes

X(•, v) = {X(u, v) : u ∈ R} and Y v = {Y v (u) : u ∈ R} have the same law. The multifractional process Z = {Z(t) : t ∈ R} is defined, for all t ∈ R, as Z(t) = X(t, H(t)) . (1.7)
By expanding, for each fixed (t, H) ∈ R × (0, 1), the kernel function

x → t * -x H-d 2 2 - x H-d 2 2
in (1.4) into a Meyer wavelet basis of L 2 (R d ) (see e.g. [START_REF] Lemarié | Ondelettes et bases hilbertiennes[END_REF][START_REF] Meyer | Wavelets and operators[END_REF][START_REF] Daubechies | Ten Lectures on Wavelets[END_REF]), a random series representation for the chaotic fractional process {Y H (t) : t ∈ R} has been constructed in [START_REF] Arras | On a class of self-similar processes with stationary increments in higher order Wiener chaoses[END_REF], which also has shown that this series is almost surely absolutely convergent, for each fixed (t, H) ∈ R × (0, 1). The main goal of Section 2 of our article is to transpose these two results into the setting of the chaotic stochastic field {X(u, v) : (u, v) ∈ R × (0, 1)}, and more importantly to show that the random series representation of this field is almost surely uniformly convergent in (u, v) on each compact subset of R × (0, 1 

Uniformly convergent random series representation

First, we need to introduce some additional notations. We denote by S(R d ) the Schwartz class, that is the space of the infinitely differentiable complex-valued functions over R d which,

as well as all their partial derivatives of any order, vanish at infinity faster than any power function.

Let E = {0, 1} d \{(0, ..., 0)}. A Meyer wavelet basis of L 2 (R d ) is an orthonormal (or Hilbertian) basis of L 2 (R d ) of the form: 2 jd 2 ψ ( ) (2 j x -k) : j ∈ Z, k ∈ Z d , ∈ E ; (2.1)
for the sake of convenience, one sets:

ψ ( ) j,k (x) = 2 jd 2 ψ ( ) (2 j x -k). (2.
2)

The 2 d -1 real-valued functions ψ ( ) , ∈ E, which generate the basis are called the d-variate

Meyer mother wavelets. They can be expressed as tensor products of ψ 0 and ψ 1 which respectively denote a 1-variate Meyer father and mother wavelet. More precisely, for each = ( 1 , . . . , d ) ∈ E and x = (x 1 , . . . , x d ) ∈ R d , one has that:

ψ ( ) (x) = d l=1 ψ l (x l ) . (2.3)
Let us emphasize that the 1-variate Meyer father and mother wavelet belong to S(R). Morever, their Fourier transforms F(ψ 0 ) and F(ψ 1 ) are infinitely differentiable compactly supported functions satisfying: supp

F(ψ 0 ) ⊂ [-4π 3 , 4π 3 ] , supp F(ψ 1 ) ⊂ ξ ∈ R : 2π 3 ≤ |ξ| ≤ 8π 3 ,
and

F(ψ 0 )(ξ) = 1, for all ξ ∈ [-2π 3 , 2π 3 
]. Thus, in view of (2.3), the d-variate Meyer mother wavelets ψ ( ) , ∈ E, belong to S(R d ) and have infinitely differentiable compactly supported Fourier transforms which vanish in a neighborhood of 0. Using these nice properties of the d-variate Meyer mother wavelets, for each ∈ E, it can be shown (see [START_REF] Ayache | Multifractional Processes with Random Exponent[END_REF][START_REF] Ayache | Wavelet construction of generalized multifractional processes[END_REF] for instance) that the real-valued function Ψ defined, for all (u, v) ∈ R d × [0, 1], as

Ψ (u, v) = R d u -s v-d/2 2 ψ ( ) (s)ds ,
is infinitely differentiable on R d × (0, 1) and satisfies, as well as all its partial derivatives of any order, the following very useful localization property:

∀ (n, p, q) ∈ Z + ×Z d + ×Z + , sup α+ u 2 n (∂ p u ∂ q v Ψ )(u, v) : (u, v) ∈ R d ×(0, 1) < +∞ , (2.4) 
where α is an arbitrary positive fixed real number.

Before giving the random series representation of the field X derived from the Meyer wavelet basis (2.1), let us state the following important lemma borrowed from [START_REF] Arras | On a class of self-similar processes with stationary increments in higher order Wiener chaoses[END_REF].

Lemma 2.1 For each (j, k, ) ∈ Z × Z d × E, let I d (ψ ( ) j,k
) be the multiple Wiener integral over R d of the wavelet function defined in (2.2). That is one has

I d (ψ ( ) j,k ) = R d ψ ( ) j,k (x)dB x 1 ...dB x d . (2.5) 
Then, there exists an event Ω * of probability 1 and a finite positive random variable C d such that, for all ω ∈ Ω * and for each (j, k,

) ∈ Z × Z d × E, one has |I d (ψ ( ) j,k )(ω)| ≤ C d (ω) log(e + |j| + k 1 ) d 2 , (2.6) 
where • 1 denotes the 1-norm over R d ; that is k 1 = d l=1 |k l |, the k l 's being the coordinates of k.

The following proposition provides the random series representation of the field X derived from the Meyer wavelet basis (2.1). The proposition has been obtained in [START_REF] Arras | On a class of self-similar processes with stationary increments in higher order Wiener chaoses[END_REF] with Y H in place of X (see (1.4) and (1.6)).

Proposition 2.2 For each fixed (u, v, ω) ∈ R × (0, 1) × Ω * , one has j∈Z k∈Z d ∈E 2 -jv (Ψ (2 j u * -k, v) -Ψ (-k, v))I d (ψ ( ) j,k )(ω) < +∞ .
This means that the series of real numbers

j∈Z k∈Z d ∈E 2 -jv (Ψ (2 j u * -k, v) -Ψ (-k, v))I d (ψ ( ) j,k )(ω)
is absolutely convergent, and consequently that it converges to a finite limit not depending on the way the terms of the series are ordered. Moreover, for all fixed (u, v) ∈ R × (0, 1), one has, almost surely,

X(u, v) = j∈Z k∈Z d ∈E 2 -jv (Ψ (2 j u * -k, v) -Ψ (-k, v))I d (ψ ( ) j,k ) .
(2.7)

Remark 2.3 From now on and till the end of our article, the chaotic stochastic field X = {X(u, v) : (u, v) ∈ R × (0, 1)} will be systematically identified with its modification

j∈Z k∈Z d ∈E 2 -jv (Ψ (2 j u * -k, v) -Ψ (-k, v))I d (ψ ( ) j,k ) : (u, v) ∈ R × (0, 1) ,
which has just been introduced in Proposition 2.2. Also, we will always assume that X vanishes outside of Ω * , the event of probability 1 introduced in Lemma 2.1. The low and high frequency parts of X are the two chaotic stochastic fields, denoted respectively by

X lf = {X lf (u, v) : (u, v) ∈ R × (0, 1)} and X hf = {X hf (u, v) : (u, v) ∈ R × (0, 1)}, which
vanish outside of Ω * , and are defined, for every (u, v, ω) ∈ R × (0, 1) × Ω * , as:

X lf (u, v, ω) = -1 j=-∞ k∈Z d ∈E 2 -jv (Ψ (2 j u * -k, v) -Ψ (-k, v))I d (ψ ( ) j,k )(ω) (2.8) 
and

X hf (u, v, ω) = +∞ j=0 k∈Z d ∈E 2 -jv (Ψ (2 j u * -k, v) -Ψ (-k, v))I d (ψ ( ) j,k )(ω). (2.9) 
One clearly has, for all (u, v, ω) ∈ R × (0, 1) × Ω, that

X(u, v, ω) = X lf (u, v, ω) + X hf (u, v, ω). (2.10)
Recall that Ω is the underlying probability space.

Let us now state the main result of the present section.

Theorem 2.4 The random series in the right-hand side of (2.7) is, on the event Ω * of probability 1 , uniformly convergent in (u, v), on each compact subset of R × (0, 1).

The following lemma will play a major role in the proof of Theorem 2.4 and in other important proofs in our article.

Lemma 2.5 For all fixed (p, q) ∈ Z d + × Z + , there exists a positive finite random variable C p,q such that, for all (j, u, ω)

∈ Z × R d × Ω * , one has ∈E k∈Z d |I d (ψ ( ) j,k )(ω)| sup v∈(0,1) (∂ p u ∂ q v Ψ )(u -k, v) ≤ C p,q (ω)(log(e + |j| + u 1 )) d 2 . (2.

11)

As a straightforward consequence, for all (j, u, v, ω) ∈ Z × R d × (0, 1) × Ω * , the series

Φ j (u, v, ω) = ∈E k∈Z d I d (ψ ( ) j,k )(ω)Ψ (u -k, v) (2.12)
is absolutely convergent, and the real-valued function

Φ j (•, •, ω) : (u, v) → Φ j (u, v, ω) is well- defined and infinitely differentiable on R d × (0, 1). Moreover, for each (j, u, v, ω) ∈ Z × R d × (0, 1) × Ω * , one has (∂ p u ∂ q v Φ j )(u, v, ω) = ∈E k∈Z d I d (ψ ( ) j,k )(ω)(∂ p u ∂ q v Ψ )(u -k, v),
and the following inequality holds:

sup v∈(0,1) (∂ p u ∂ q v Φ j )(u, v, ω) ≤ C p,q (ω)(log(e + |j| + u 1 )) d 2 .
(2.13)

Proof of Lemma 2.5. It easily follows from (2.4) and from the finiteness of the set E that, for all (p, q) fixed in Z d + × Z + , there is a positive finite deterministic constant c p,q for which the following inequality holds for every (u, k,

) ∈ R d × Z d × E: sup v∈(0,1) (∂ p u ∂ q v Ψ )(u -k, v) ≤ c p,q ( √ d + 1 + u -k 2 ) 2d .
In the sequel, one sets u = ( u 1 , . . . , u d ), where u l denotes the integer part of the l-th coordinate u l of the vector u. Then, using Lemma 2.1, the change of variable m = k + u , the triangle inequality and the inequality

∀ (x, y) ∈ R 2 + , (log(e + x + y)) d 2 ≤ (log(e + x)) d 2 (log(e + y)) d 2 , (2.14) 
one gets, for some positive finite constant C p,q (ω) and for all (j, u, ω) ∈ Z × R d × Ω * , that:

∈E k∈Z d |I d (ψ ( ) j,k )(ω)| sup v∈(0,1) (∂ p u ∂ q v Ψ )(u -k, v) ≤ C p,q (ω) k∈Z d (log(e + |j| + k 1 )) d 2 ( √ d + 1 + u -k 2 ) 2d ≤ C p,q (ω) m∈Z d (log(e + |j| + m + u 1 )) d 2 ( √ d + 1 + u -u -m 2 ) 2d ≤ C p,q (ω) m∈Z d (log(e + |j| + m 1 + u 1 )) d 2 ( √ d + 1 -u -u 2 + m 2 ) 2d ≤ C p,q (ω)(log(e + |j| + u 1 )) d 2 m∈Z d (log(e + m 1 )) d 2 (1 + m 2 ) 2d .
Thus, in view of the fact that

m∈Z d (log(e + m 1 )) d 2 (1 + m 2 ) 2d < +∞ , it turns out that (2.11) is satisfied.
Proof of Theorem 2.4. First, observe that, in view of (2.7) and (2.12), X(u, v, ω) can be expressed, for all (u, v, ω) ∈ R × (0, 1) × Ω * , as:

X(u, v, ω) = j∈Z A j (u, v, ω) , (2.15) 
where, for each j ∈ Z, A j (•, •, ω) is the infinitely differentiable function on R × (0, 1) defined as:

∀ (u, v) ∈ R × (0, 1), A j (u, v, ω) = 2 -jv (Φ j (2 j u * , v, ω) -Φ j (0, v, ω)) . (2.16) 
Thus, for proving the theorem, one has to show that the convergence of the series in (2.15) holds uniformly in (u, v) on each compact subset of R × (0, 1). To this end, it is enough to prove that, for all fixed positive real numbers ν and a < b < 1, one has

j∈Z sup (u,v)∈[-ν,ν]×[a,b] |A j (u, v, ω)| < +∞.
(2.17)

Let us sets

T 1 (ω) = +∞ j=0 sup (u,v)∈[-ν,ν]×[a,b] |A j (u, v, ω)| and T 2 (ω) = -1 j=-∞ sup (u,v)∈[-ν,ν]×[a,b] |A j (u, v, ω)|.
One can derive from (2.16) and (2.13) that

T 1 (ω) ≤ 2C 0,0 (ω) +∞ j=0 2 -ja (log(e + j + 2 j dν)) d 2 < +∞ . (2.18)
On another hand, using the mean value theorem and (2.13), one obtains, for every (j, u, v, ω) ∈

Z -× [ -ν, ν] × [a, b] × Ω * , that |A j (u, v, ω)| ≤ 2 -ja |Φ j (2 j u * , v, ω) -Φ j (0, v, ω)| ≤ 2 j(1-a) |u| d i=1 sup x∈[0∧2 j u,0∨2 j u] |∂ u i Φ j (x * , v, ω)| ≤ dνC 1,0 (ω)2 j(1-a) (log(e + |j| + 2 j dν)) d 2 .
Thus, one gets that

T 2 (ω) ≤ dνC 1,0 (ω) ∞ j=1 2 -j(1-a) (log(e + j + 2 -j dν)) d 2 < +∞ (2.19)
Finally, combining (2.18) and (2.19), it follows that (2.17) is satisfied.

Global behavior

First, we state the main results of the section and then we give their proofs.

Theorem 3.1 Let X lf and X hf be the low and high frequency parts of the field X which were introduced in Remark 2.3. The following two results hold, for all ω ∈ Ω * .

(i) The function

X lf (•, •, ω) : (u, v) → X lf (u, v, ω) is infinitly many times differentiable on R × (0, 1). (ii) For all fixed u ∈ R, the function X hf (u, •, ω) : v → X hf (u, v, ω
) is infinitly many times differentiable on (0, 1). Moreover, for each fixed q ∈ Z + , the function

(∂ q v X)(•, •, ω) : (u, v) → (∂ q v X)(u, v, ω) is continuous on R × (0, 1).
Corollary 3.2 For each (ω, q) ∈ Ω * × Z + , and for all non degenerate compact intervals J ⊂ R and H ⊂ (0, 1), one has:

sup (u,v 1 ,v 2 )∈J ×H 2 |(∂ q v X)(u, v 1 , ω) -(∂ q v X)(u, v 2 , ω)| |v 1 -v 2 | < +∞. (3.1)
Theorem 3.3 For each (ω, q) ∈ Ω * × Z + , and for all non degenerate compact intervals J ⊂ R and H ⊂ (0, 1), one has: Assuming that

sup (u 1 ,u 2 ,v 1 ,v 2 )∈J 2 ×H 2        |(∂ q v X)(u 1 , v 1 , ω) -(∂ q v X)(u 2 , v 2 , ω)| u 1 -u 2 v 1 ∨v 2 1 + log |u 1 -u 2 | q+ d 2 + v 1 -v 2        < +∞. ( 3 
H(•) ∈ C γ L (L) for some γ L ∈ [H(L), 1), (3.4) 
where C γ L (L) denotes the global space of Hölder on L of order γ L . Then, for all ω ∈ Ω * , one has:

sup (t 1 ,t 2 )∈L 2        |Z(t 1 , ω) -Z(t 2 , ω)| t 1 -t 2 H(L) 1 + log |t 1 -t 2 | d 2        < +∞ . (3.5)
Proof of Theorem 3.1. First, we point out that one knows from the proof of Theorem 2.4 that, for all ω ∈ Ω * , one has

X lf (u, v, ω) = -1 j=-∞ A j (u, v, ω) (3.6)
and

X hf (u, v, ω) = +∞ j=0 A j (u, v, ω) , (3.7) 
where the series in (3.6) and (3.7) are uniformly convergent in (u, v) on each compact subset of R × (0, 1). Moreover, one knows that, for each j ∈ Z, the function A j (•, •, ω) is infinitely differentiable on R × (0, 1). Thus, in order to prove the theorem, it is enough to show that, for all (m, q, ω) ∈ Z + × Z + × Ω * , and for each positive real numbers ν and a < b, one has

-1 j=-∞ sup (u,v)∈[-ν,ν]×[a,b] (∂ m u ∂ q v A j )(u, v, ω) < +∞ and +∞ j=0 sup (u,v)∈[-ν,ν]×[a,b] (∂ q v A j )(u, v, ω) < +∞.
This can be done by following the main lines of the proof of (2.18) and (2.19).

Proof of Corollary 3.2. It follows from Theorem 3.1, that for all fixed (u, ω) ∈ R × Ω * , the function X(u, •, ω) is infinitely differentiable on (0, 1); and for all q ∈ Z + , the function

(∂ q v X)(•, •, ω) is continuous.
That is enough to prove that (3.1) holds.

Corollary 3.2 and the following lemma are the two main ingredients of the proof of Theorem 3.3.

Lemma 3.5 For each (ω, q) ∈ Ω * × Z + , and for all non degenerate compact intervals J ⊂ R and H ⊂ (0, 1), one has

sup (u 1 ,u 2 ,v)∈J 2 ×H        |(∂ q v X)(u 1 , v, ω) -(∂ q v X)(u 2 , v, ω)| u 1 -u 2 v 1 + log |u 1 -u 2 | q+ d 2        < +∞. (3.8)
Proof of Lemma 3.5. First, notice that Theorem 3.1 entails that the lemma holds when X in (3.8) is replaced by X lf . Thus, one only has to prove that the lemma is true when X in (3.8) is replaced by X hf . Using the continuity property of the function (

∂ q v X)(•, •, ω) (see Theorem 3.1), one has that sup (u 1 ,u 2 ,v)∈K        |(∂ q v X hf )(u 1 , v, ω) -(∂ q v X hf )(u 2 , v, ω)| u 1 -u 2 v 1 + log |u 1 -u 2 | q+ d 2        < +∞, (3.9) 
where K is the compact subset of R 2 × (0, 1) defined as

K = (u 1 , u 2 , v) ∈ J 2 × H : |u 1 -u 2 | ≥ 2 -1 .
Thus, in order to derive the lemma, it is enough to prove that:

sup (u 1 ,u 2 ,v)∈K        |(∂ q v X hf )(u 1 , v, ω) -(∂ q v X hf )(u 2 , v, ω)| u 1 -u 2 v 1 + log |u 1 -u 2 | q+ d 2        < +∞, (3.10) 
where K is the compact subset of R 2 × (0, 1) defined as

K = (u 1 , u 2 , v) ∈ J 2 × H : |u 1 -u 2 | ≤ 2 -1 .
We will show (3.10) for q = 0; the proof can be done in a rather similar way in the general case where q is an arbitrary nonegative integer. There is no restriction to assume that J = [-ν, ν]

and H = [a, b] ⊂ (0, 1), where ν and a < b are fixed positive real numbers. Let (u 1 , u 2 , v) ∈ K be arbitrary; there is no restriction to assume that u 1 = u 2 since (3.10) is clearly satisfied when u 1 = u 2 . Then, denote by j 0 be the biggest nonegative integer satisfying |u 1 -u 2 | ≤ 2 -j 0 .

Observe that j 0 ≥ 1 and that one has:

2 -(j 0 +1) < |u 1 -u 2 | ≤ 2 -j 0 , (3.11) 
which means that

j 0 = log |u 1 -u 2 | -1 log 2 . (3.12)
Notice that one knows from Lemma 2.5 and (2.16) that the function A 0 (•, •, ω) is infinitely differentiable on R × (0, 1), which implies that it satisfies (3.10). This allows to assume that the sum over j in (3.7) starts from j = 1 instead of j = 0. Thus, one has that

|X hf (u 1 , v, ω) -X hf (u 2 , v, ω)| ≤ S 1 (u 1 , u 2 , v, ω) + S 2 (u 1 , u 2 , v, ω), (3.13) 
where

S 1 (u 1 , u 2 , v, ω) = j 0 j=1 |A j (u 1 , v, ω) -A j (u 2 , v, ω)| (3.14)
and

S 2 (u 1 , u 2 , v, ω) = +∞ j=j 0 +1 |A j (u 1 , v, ω) -A j (u 2 , v, ω)|. (3.15) 
In order to derive appropriate upper bounds for S 1 (u 1 , u 2 , v, ω) and S 2 (u 1 , u 2 , v, ω), notice that there exists a deterministic positive finite constant c such that:

∀ x ≥ 1, log(e + x + 2 x dν) ≤ cx. (3.16) 
Using (3.15), (2.16), the triangle inequality, Lemma 2.5, (3.16), the inequality

∀ (x, y) ∈ R 2 + , (1 + x + y) d 2 ≤ (1 + x) d 2 (1 + y) d 2 ,
(3.11) and (3.12), one gets:

S 2 (u 1 , u 2 , v, ω) ≤ 2 +∞ j=j 0 +1 2 -jv sup (u,v)∈[-ν,ν]×[a,b] |Φ j (2 j u * , v, ω)| ≤ C 2 (ω) +∞ j=j 0 +1
2 -jv log(e + j + 2 j dν)

d 2 ≤ C 2 (ω) +∞ j=j 0 +1 2 -jv j d 2 ≤ C 2 (ω)2 -(j 0 +1)v (1 + j 0 ) d 2 +∞ j=0 2 -ja (1 + j) d 2 ≤ C 2 (ω)2 -(j 0 +1)v (1 + j 0 ) d 2 ≤ C 2 (ω)|u 1 -u 2 | v 1 + log |u 1 -u 2 | d 2 , (3.17) 
where C 2 is a positive finite random variable not depending on (u 1 , u 2 , v) derived from Lemma 2.5,

C 2 = C 2 c d/2 , C 2 = C 2 +∞ j=0 2 -ja (1 + j) d 2 < +∞ and C 2 = (log 2) -d 2 C
2 . On another hand, using (3.14), (2.16), the mean value theorem, the triangle inequality, Lemma 2.5, (3.16), (3.11) and (3.12), one gets:

S 1 (u 1 , u 2 , v, ω) ≤ j 0 j=1 2 j(1-v) |u 1 -u 2 | d i=1 sup (u,v)∈[-ν,ν]×[a,b] |∂ u i Φ j (2 j u * , v, ω)| ≤ C 1 (ω)|u 1 -u 2 | j 0 j=1 2 j(1-v) log(e + j + 2 j dν) d 2 ≤ C 1 (ω)|u 1 -u 2 | j 0 j=1 2 j(1-v) (j + 1) d 2 ≤ C 1 (ω)|u 1 -u 2 |(1 + j 0 ) d 2 2 j 0 (1-v) ≤ C 1 (ω)|u 1 -u 2 | v 1 + log |u 1 -u 2 | d 2 , (3.18) 
where C 1 is a positive finite random variable not depending on (u 1 , u 2 , v) derived from Lemma 2.5,

C 1 = C 1 c d/2 , C 1 = 2 1-a (2 1-b -1) -1 C 1 and C 1 = (log 2) -d 2 C 1 .
Finally, puting together (3.13), (3.17) and (3.18), one obtains (3.10).

Proof of Theorem 3.3. For all (u 1 , u 2 , v 1 , v 2 ) ∈ J 2 × H 2 , one sets:

f (u 1 , u 2 , v 1 , v 2 ) = |(∂ q v X)(u 1 , v 1 , ω) -(∂ q v X)(u 2 , v 2 , ω)| u 1 -u 2 v 1 ∨v 2 1 + log |u 1 -u 2 | q+ d 2 + |v 1 -v 2 |
, with the convention that 0 0 = 0. Observe that one has:

f (u 1 , u 2 , v 1 , v 2 ) = f (u 2 , u 1 , v 2 , v 1 ).
Thus, one gets that:

sup (u 1 ,u 2 ,v 1 ,v 2 )∈J 2 ×H 2 f (u 1 , u 2 , v 1 , v 2 ) = sup (u 1 ,u 2 ,v 1 ,v 2 )∈J 2 ×H 2 f (u 1 , u 2 , v 1 ∨ v 2 , v 1 ∧ v 2 ). (3.19)
Moreover, using the triangle inequality, one obtains that:

sup (u 1 ,u 2 ,v 1 ,v 2 )∈J 2 ×H 2 f (u 1 , u 2 , v 1 ∨ v 2 , v 1 ∧ v 2 ) ≤ sup (u 1 ,u 2 ,v 1 ,v 2 )∈J 2 ×H 2        |(∂ q v X)(u 1 , v 1 ∨ v 2 , ω) -(∂ q v X)(u 2 , v 1 ∨ v 2 , ω)| u 1 -u 2 v 1 ∨v 2 1 + log |u 1 -u 2 | q+ d 2 + |v 1 -v 2 |        + sup (u 1 ,u 2 ,v 1 ,v 2 )∈J 2 ×H 2        |(∂ q v X)(u 2 , v 1 ∨ v 2 , ω) -(∂ q v X)(u 2 , v 1 ∧ v 2 , ω)| |u 1 -u 2 | v 1 ∨v 2 1 + log |u 1 -u 2 | q+ d 2 + |v 1 -v 2 |        ≤ sup (u 1 ,u 2 ,v 1 ,v 2 )∈J 2 ×H 2        |(∂ q v X)(u 1 , v 1 ∨ v 2 , ω) -(∂ q v X)(u 2 , v 1 ∨ v 2 , ω)| u 1 -u 2 v 1 ∨v 2 1 + log |u 1 -u 2 | q+ d 2        + sup (u 1 ,u 2 ,v 1 ,v 2 )∈J 2 ×H 2 |(∂ q v X)(u 2 , v 1 ∨ v 2 , ω) -(∂ q v X)(u 2 , v 1 ∧ v 2 , ω)| |v 1 -v 2 | ≤ sup (u 1 ,u 2 ,v)∈J 2 ×H        |(∂ q v X)(u 1 , v, ω) -(∂ q v X)(u 2 , v, ω)| |u 1 -u 2 | v 1 + log |u 1 -u 2 | q+ d 2        + sup (u,v 1 ,v 2 )∈J ×H 2 |(∂ q v X)(u, v 1 , ω) -(∂ q v X)(u, v 2 , ω)| |v 1 -v 2 | . (3.20) 
Finally, putting together (3.19), (3.20), Corollary 3.2 and Lemma 3.5, one gets that sup

(u 1 ,u 2 ,v 1 ,v 2 )∈J 2 ×H 2 f (u 1 , u 2 , v 1 , v 2 ) < +∞,
which shows that (3.2) holds.

Proof of Corollary 3.4. Using (1.7) and Theorem 3.3, in the case where q = 0, J = L and H = [H(L), H(L)] (see (3.3)), one obtains, for all ω ∈ Ω * , that:

sup (t 1 ,t 2 )∈L 2        |Z(t 1 , ω) -Z(t 2 , ω)| |t 1 -t 2 | H(t 1 )∨H(t 2 ) 1 + log |t 1 -t 2 | d 2 + |H(t 1 ) -H(t 2 )|        < +∞. (3.21)
Then, (3.4) and (3.21) imply that (3.5) holds.

Local behavior

First, we state the main results of the section and then we give their proofs.

Theorem 4.1 Let u 0 ∈ R be an arbitrary fixed point. Then, one has, almost surely, for every q ∈ Z + and non degenerate compact interval H ⊂ (0, 1), that:

sup (u,v)∈[u 0 -1,u 0 +1]×H            |(∂ q v X)(u, v) -(∂ q v X)(u 0 , v)| |u -u 0 | v 1 + log |u -u 0 | q log e + log |u -u 0 | d 2            < +∞. (4.1) 
Corollary 4.2 Let t 0 ∈ R be an arbitrary fixed point. Assume that there exists a constant

γ t 0 ∈ [H(t 0 ), 1) such that the continuous function H(•) satisfies sup t∈R |H(t) -H(t 0 )| |t -t 0 | γt 0 < +∞. (4.2)
Then, one has, almost surely:

sup t∈[t 0 -1,t 0 +1]            |Z(t) -Z(t 0 )| |t -t 0 | H(t 0 ) log e + log |t -t 0 | d 2            < +∞. ( 4.3) 
The following theorem shows that the chaotic multifractional process {Z(t) : t ∈ R} has a local asymptotic self-similarity property rather similar to the one satisfied by the classical Gaussian multifractional Brownian motion (see [START_REF] Benassi | Identifying the multifractional function of a Gaussian process[END_REF][START_REF] Falconer | Tangent fields and the local structure of random fields[END_REF][START_REF] Falconer | The local structure of random processes[END_REF]).

Theorem 4.3 Let t 0 ∈ R be an arbitrary fixed point such that the condition (4.2) holds.

Then, the stochastic process {Z(t) : t ∈ R} is at t 0 , strongly locally asymptotically self-similar of order H(t 0 ) and the tangent process is X(s, H(t 0 )) : s ∈ R . More precisely, let (ν n ) n∈N be an arbitrary sequence of positive real numbers which converges to 0. For each n ∈ N, let T t 0 ,νn Z = (T t 0 ,νn Z)(s) : s ∈ R be the stochastic process with continuous paths, defined, for all s ∈ R, as

(T t 0 ,νn Z)(s) = Z(t 0 + ν n s) -Z(t 0 ) ν H(t 0 ) n . (4.4)
Then, when n goes to +∞, the probability measure induced on C(J ) by (T t 0 ,νn Z)(s) : s ∈ R converges to the one induced on C(J ) by X(s, H(t 0 )) : s ∈ R , where C(J ) denotes the usual Banach space of the real-valued continuous functions over an arbitrary non degenerate compact interval J of the real line equipped with the uniform norm. 

|Z(t) -Z(t 0 )| |t -t 0 | H(t 0 )+η = +∞ ,
which means that the exponent H(t 0 ) in (4.3) is optimal. Moreover, when γ L in (3.3) belongs to H(L), 1 , then, using similar arguments, it can be shown that the exponent H(L) in (3.5) is optimal: one has, almost surely, sup

(t 1 ,t 2 )∈L 2 |Z(t 1 ) -Z(t 2 )| |t 1 -t 2 | H(L)+η = +∞ .
Theorem 4.5 Let δ ∈ (0, +∞) be arbitrary and fixed. One sets R + δ = {u ∈ R; |u| ≥ δ}. Then, for all ω ∈ Ω * and non degenerate compact interval H ⊂ (0, 1), one has:

sup (u,v)∈R + δ ×H            |X lf (u, v, ω)| |u| v log e + log |u| d 2            < +∞ (4.5)
and

sup (u,v)∈R + δ ×H        |X hf (u, v, ω)| log e + |u| d 2        < +∞. (4.6)
Notice that a straightforward consequence of (4.5), (4.6) and (2.10) is that:

sup (u,v)∈R + δ ×H            |X(u, v, ω)| |u| v log e + log |u| d 2            < +∞.
Corollary 4.6 Assume that the continuous function H(•) is with values in a compact interval included in (0, 1) (this means that inf t∈R H(t) > 0 and sup t∈R H(t) < 1). Then, for each fixed ω ∈ Ω * and δ > 0, one has:

sup |t|≥δ            |Z(t, ω)| |t| H(t) log e + log |t| d 2            < +∞. (4.7)
The following lemma will play a crucial role in the proof of Theorem 4.1.

Lemma 4.7 For all fixed integer j ≥ 1 and (u, θ) ∈ R d × [1, +∞), let D j (u, θ) be the finite non-empty set defined as:

D j (u, θ) = ( , k) ∈ E × Z d : u -2 -j k 1 ≤ d j θ 2 -j . (4.8)
Then, for each fixed (u, θ) ∈ R d × [1, +∞) there is a deterministic positive finite constant c * , only depending on (u, θ, d), such that one has, almost surely:

lim sup j→+∞      max ( ,k)∈D j (u,θ) I d (ψ ( ) j,k ) log(2 + j) d 2      ≤ c * . (4.9)
Proof of Lemma 4.7. The lemma can be derived from the Borel-Cantelli Lemma by showing that for some fixed well-chosen deterministic positive finite constant a ≥ 2, one has

+∞ j=1 P max ( ,k)∈D j (u,θ) |I d (ψ ( ) j,k )| > a √ d! log(2 + j) d 2 < +∞. (4.10)
It can easily be seen that, for all j ≥ 1, the following inequality holds:

P max ( ,k)∈D j (u,θ) |I d (ψ ( ) j,k )| > a √ d! log(2+j) d 2 ≤ ( ,k)∈D j (u,θ) P |I d (ψ ( ) j,k )| > a √ d! log(2+j) d 2 . (4.11)
Let us conveniently bound from above the probabilities in the right-hand side of (4.11).

Observe that (1.5) and the equality ψ

( ) j,k L 2 (R d ) = 1 imply, for all (j, k, ) ∈ Z × Z d × E, that E |I d (ψ ( ) j,k )| 2 = d! ψ( ) j,k 2 L 2 (R d ) ≤ d! ψ ( ) j,k 2 L 2 (R d ) = d! . (4.12)
Then (4.12) and Theorem 6.7 in [START_REF] Janson | Gaussian Hilbert Spaces[END_REF] entail that, for all real number α ≥ 2, one has

P |I d (ψ ( ) j,k )| > α √ d! ≤ P |I d (ψ ( ) j,k )| > α I d (ψ ( ) j,k ) L 2 (Ω) ≤ exp -κ d α 2 d , (4.13) 
where κ d is a deterministic positive finite constant only depending on d. Thus, setting in

(4.13) α = a log(2 + j) d 2
, one gets that 

P |I d (ψ ( ) j,k )| > a √ d! log(2 + j) d 2 ≤ exp -κ d a 2 d log(2 + j) = (2 + j) -κ d a 2 d . ( 4 
( ,k)∈D j (u,θ) |I d (ψ ( ) j,k )| > a √ d! log(2 + j) d 2 ≤ c j dθ-κ d a 2 d . (4.16)
Thus, assuming that the constant a has been chosen big enough so that dθ -κ d a 2 d < -1, then it follows from (4.16) that (4.10) holds.

Proof of Theorem 4.1. Using the same arguments as in the proof of Lemma 3.5, it turns out that in order to derive the theorem it is enough to show that (4.1) holds when X in it is repalced by X hf , and one can assume that the sums over j in (3.7) and in (2.9) start from j = 1 instead of j = 0. Also, for the sake of simplicity one focuses on the case where q = 0.

The proof can be done in a rather similar way in the general case where q is an arbitrary nonegative integer.

Let us express the compact interval H as H = [a, b],

where the real numbers a and b are

such that 0 < a < b < 1. Let then (u, v) ∈ [u 0 -1, u 0 + 1] × [a, b] ⊂ R × (0, 1)

be arbitrary

and fixed. There is no restriction to assume that 0 < |u -u 0 | ≤ 2 -15 , since sample paths of X hf are almost surely continuous functions. One denotes by j 1 be the biggest nonegative integer which satisfies |u -u 0 | ≤ 2 -(j 1 -1) . Then, one has:

2 -j 1 < |u -u 0 | ≤ 2 -(j 1 -1) , (4.17) 
which means that

j 1 = 1 + log |u -u 0 | -1 log 2 . ( 4.18) 
One sets

j 2 = j 1 + d log j 1 2a log 2 . ( 4.19) 
Observe that one has j 1 ≥ 16 and j 2 ≥ j 1 + 2. Moreover, for any j ∈ {j 1 + 1, ..., j 2 }, the following inequality holds:

j d a ≥ 2 j-j 1 +2 . (4.20) 
Next, for all integer j ≥ 1, let D j (u 0 ) be the finite non-empty set defined as

D j (u 0 ) = D j (u * 0 , d a )
, where, as usual, u * 0 denotes the vector of R d whose coordinates are all equal to the real number u 0 , and D j (u * 0 , d a ) is defined through (4.8) with u = u * 0 and θ = d a . That is:

D j (u 0 ) = ( , k) ∈ E × Z d : u * 0 -2 -j k 1 ≤ d j d a 2 -j . (4.21) 
Then, Lemma 4.7 entails that one has almost surely, for all integer j ≥ 1, max

( ,k)∈D j (u 0 ) |I d (ψ ( ) j,k )| ≤ C(log(2 + j)) d 2 , (4.22) 
where C is a positive almost surely finite random variable not depending on j. Next, one denotes by D co j (u 0 ) the complement of D j (u 0 ) in E × Z d , that is:

D co j (u 0 ) = ( , k) ∈ E × Z d : u * 0 -2 -j k 1 > d j d a 2 -j . (4.23) 
Let us mention in passing that

D co j (u 0 ) ⊂ d l=1 ( , k) ∈ E × Z d : |u 0 -2 -j k l | > j d a 2 -j , (4.24) 
where k l is the l-th coordinate of k. One can derive from (2.9) (where the sum over j is assumed to start from j = 1 instead of j = 0), (4.21), (4.23) and the triangle inequality that

|X hf (u, v) -X hf (u 0 , v)| ≤ R 1 (u, u 0 , v) + R 2 (u, u 0 , v) + R 3 (u, u 0 , v) + R 4 (u, u 0 , v), (4.25) 
where

R 1 (u, u 0 , v) = j 1 j=1 ( ,k)∈D j (u 0 ) 2 -jv |I d (ψ ( ) j,k )||Ψ (2 j u * -k, v) -Ψ (2 j u * 0 -k, v)|, (4.26) 
R 2 (u, u 0 , v) = +∞ j=j 1 +1 ( ,k)∈D j (u 0 ) 2 -jv |I d (ψ ( ) j,k )||Ψ (2 j u * -k, v) -Ψ (2 j u * 0 -k, v)|, (4.27) R 3 (u, u 0 , v) = j 2 j=1 ( ,k)∈D co j (u 0 ) 2 -jv |I d (ψ ( ) j,k )||Ψ (2 j u * -k, v) -Ψ (2 j u * 0 -k, v)|, (4.28) 
and

R 4 (u, u 0 , v) = +∞ j=j 2 +1 ( ,k)∈D co j (u 0 ) 2 -jv |I d (ψ ( ) j,k )||Ψ (2 j u * -k, v) -Ψ (2 j u * 0 -k, v)|. (4.29)
From now on, our goal is to derive an appropriate upper bound for each term in the righthand side of (4.25). In all the sequel, one assumes that L is an arbitrary large fixed positive integer. Therefore, one has 

c := sup y∈R        k∈Z d log e + y * -k 2 d 2 1 + y * -k 2 L        < +∞. ( 4 
R 2 (u, u 0 , v) ≤ K 2 +∞ j=j 1 +1 2 -jv log(2 + j) d 2 ≤ K 2 +∞ j=0 2 -(j+j 1 +1)v log(2 + j + j 1 + 1) d 2 ≤ K 2 2 -(j 1 +1)v log(e + j 1 + 1) d 2 +∞ j=0 2 -ja log(e + j) d 2 ≤ K 2 |u -u 0 | v log(e + | log |u -u 0 || d 2 , (4.31) 
where K 2 and K 2 are two positive almost surely finite random variables not depending on (u, v).

Next, using (4.29), (2.11), the fact that |u| ≤ |u 0 | + 1, the inequality 2 j > j for all j ∈ Z + , 20

(2.14), (4.17), (4.18) and (4.19), one gets, on the event of probability 1 Ω * , that:

R 4 (u, u 0 , v) ≤ K 4 +∞ j=j 2 +1 2 -jv log e + (|u 0 | + d + 1)2 j d 2 ≤ K 4 2 -(j 2 +1)v (j 2 + 1) d 2 +∞ j=0 2 -ja log e + (|u 0 | + d + 1)2 j d 2 ≤ K 4 2 -(j 2 +1)v (j 2 + 1) d 2 = K 4 2 -j 1 v exp -(v log 2) 1 + d log j 1 2a log 2 + d log(j 2 + 1) 2 ≤ K 4 |u -u 0 | v exp d 2 log j 2 + 1 j 1 ≤ K 4 |u -u 0 | v , (4.32) 
where K 4 , K 4 and K 4 are three positive finite random variables not depending on (u, v), and where

K 4 = K 4 2 + d 2a log 2 d 2 .
Next, observe that using the mean value theorem, it can be shown that, for all fixed ( , j, k) ∈ E × N × Z d , there exists a real number λ j,k (u, u 0 ) ∈ (0, 1) such that: 

Ψ (2 j u * -k, v)-Ψ (2 j u * 0 -k, v) = 2 j (u-u 0 ) d n=1 (∂ yn Ψ ) 2 j u * 0 +λ j,k (u, u 0 )2 j (u * -u * 0 ) . ( 4 
R 1 (u, u 0 , v) ≤ K 1 |u -u 0 | j 1 j=1 2 j(1-v) log(2 + j) d 2 ≤ K 1 |u -u 0 | log(2 + j 1 ) d 2 j 1 j=1 2 (j 1 -j+1)(1-v) ≤ K 1 |u -u 0 |2 (j 1 +1)(1-v) log(2 + j 1 ) d 2 +∞ j=1 2 -j(1-b) ≤ K 1 |u -u 0 | v log(2 + | log |u -u 0 ||) d 2 , (4.34) 
where K 1 and K 1 are two positive almost surely finite random variables not depending on (u, v).

It only remains to obtain a convenient upper bound for R 3 (u, u 0 , v). Notice that, using the equivalence of all norms on R d , one deduces from (2.4) that:

∀ (n, p, q) ∈ N×Z d ×Z, sup α+ u 1 n |∂ p u ∂ q v Ψ (u, v)| : u ∈ R d , v ∈ [a, b] < +∞ , (4.35)
where α is an abritrary positive real number. Next, combining (4.28), (4.33) and (4.35), one obtains that

R 3 (u, u 0 , v) ≤ κ 3 |u-u 0 | j 2 j=1 ( ,k)∈D co j (u 0 ) 2 j(1-v) |I d (ψ ( ) j,k )| 2d + 1 + 2 j u * 0 -k + λ j,k (u, u 0 )2 j (u * -u * 0 ) 1 L (4.36)
where κ 3 denotes a positive finite and deterministic constant. Observe that using the triangle inequality, (4.17) and the fact that λ j,k (u, u 0 ) ∈ (0, 1) one has, for all j ∈ {1, ..., j 1 } and

( , k) ∈ D co j (u 0 ), that 2d + 1 + 2 j u * 0 -k + λ j,k (u, u 0 )2 j (u * -u * 0 ) 1 ≥ 2 j u * 0 -k 1 -λ j,k (u, u 0 ) d 2 j |u -u 0 | + 2d + 1 ≥ 1 + 2 j u * 0 -k 1 .
(4.37) Also observe that using the triangle inequality, the fact that λ j,k (u, u 0 ) ∈ (0, 1), (4.17), (4.23) and (4.20), one obtains, for all j ∈ {j 1 + 1, ..., j 2 } and all ( , k) ∈ D co j (u 0 ), that 

2d + 1 + 2 j u * 0 -k + λ j,k (u, u 0 )2 j (u * -u * 0 ) 1 ≥ 2 j u * 0 -k 1 -λ j,k (u, u 0 ) d 2 j |u -u 0 | + 2d + 1 ≥ 1 2 2 j u * 0 -k 1 + 1 2 2 j u * 0 -k 1 -d 2 j-j 1 +1 + 2d + 1 ≥ 1 2 2 j u * 0 -k 1 + d 2 j d a -d 2 j-j 1 +1 + 2d + 1 ≥ 1 2 (1 + 2 j u * 0 -k 1 ). ( 4 
R 3 (u, u 0 , v) ≤ 2κ 3 |u -u 0 | j 2 j=1 ( ,k)∈D co j (u 0 ) 2 j(1-v) |I d (ψ ( ) j,k )| 1 + 2 j u * 0 -k 1 L . (4.39) 
Next, using (4.39), Lemma 2.1, the inequalities

log e + j + k 1 ≤ log e + j + 2 j u * 0 1 + 2 j u * 0 -k 1 ≤ log e + j + 2 j u * 0 1 d l=1 log e + |2 j u 0 -k l | , 1 + 2 j u * 0 -k 1 L ≥ d l=1 1 + |2 j u 0 -k l | L d ,
(4.24), and (4.30) with Z in place of Z d , it turns out that, on the event of probability 1 Ω * , one has

R 3 (u, u 0 , v) ≤ K 3 |u -u 0 | j 2 j=1 j d 2 2 j(1-v) k∈D co 1,j (u 0 )
log(e + |2 j u 0 -k|)

d 2 1 + |2 j u 0 -k| L d , (4.40) 
where K 3 is a positive finite random variable not depending on (u, v), and where

D co 1,j (u 0 ) = k ∈ Z : |2 j u 0 -k| > j d a . (4.41)
Next, let us assume that η is an arbitrarily small fixed positive real number. using (4.41), and the fact that x → log(e + x) and x → x are increasing functions over R + , one gets that

k∈D co 1,j (u 0 )
log(e + |2 j u 0 -k|)

d 2 1 + |2 j u 0 -k| L d ≤ 2 +∞ j d a log(e + 1 + x) d 2 x L d dx ≤ κ 3 j -( L-d a -η) , (4.42)
where κ 3 is a positive finite deterministic constant not depending on j. Moreover the assumption that L is an arbitrarily large integer allows to assume that

L -d a -η - d 2 > d 2a > 0 . (4.43)
Thus, using the fact that v ∈ [a, b] ⊂ (0, 1), one obtains that

j 2 j=1 j -( L-d a -η-d 2 ) 2 j(1-v) ≤ j 2 /2 j=1 2 j(1-v) + j 2 /2 -( L-d a -η-d 2 ) j 2 j 2 /2 +1 2 j(1-v) ≤ 4 2 1-b -1 -1 2 j 2 (1-v)/2 + j 2 /2 -( L-d a -η-d 2 ) 2 j 2 (1-v) ≤ κ 3 j -( L-d a -η-d 2 ) 2 2 j 2 (1-v) , (4.44) 
where the finite deterministic constant

κ 3 = 4 2 1-b -1 -1 2 ( L-d a -η-d 2 ) + sup n∈N 2 -n(1-b)/2 n ( L-d a -η-d 2 )
.

Moreover, one can derive from (4.18), (4.19) and (4.43) that j 

-( L-d a -η-d 2 ) 2 2 j 2 (1-v) ≤ 4|u -u 0 | v-1 j -( L-d a -η-d 2 ) 2 2 d log(j 1 )/(2a log 2) ≤ 4|u -u 0 | v-1 j -( L-d a -η-d 2 -d 2a ) 2 ≤ 4|u -u 0 | v-1 . ( 4 
R 3 (u, u 0 , v) ≤ K 3 |u -u 0 | v , ( 4 
|Z(t) -Z(t 0 )| |t -t 0 | H(t 0 ) log(e + log |t -t 0 | ) d 2 ≤ U 1 (t 0 ) + U 2 (t 0 ), (4.47) 
where

U 1 (t 0 ) = sup t∈[t 0 -1,t 0 +1] |X(t, H(t)) -X(t, H(t 0 ))| |t -t 0 | H(t 0 ) log(e + log |t -t 0 | ) d 2 (4.48) and U 2 (t 0 ) = sup t∈[t 0 -1,t 0 +1] |X(t, H(t 0 )) -X(t 0 , H(t 0 ))| |t -t 0 | H(t 0 ) log(e + log |t -t 0 | ) d 2 
.

(4.49)

Next, observe that it follows from the assumption that sup

t∈[t 0 -1,t 0 +1] |H(t) -H(t 0 )| |t -t 0 | H(t 0 ) log(e + log |t -t 0 | ) d 2 < +∞ . (4.50)
On the other hand, denoting by H the compact interval included in (0, 1) defined as Proof of Theorem 4.3. It easily follows from (4.4) and (1.7) that, for every n ∈ N, the stochastic process T t 0 ,νn Z = (T t 0 ,νn Z)(s) : s ∈ R can be expressed as the sum of the two stochastic processes T 1 t 0 ,νn X = (T 1 t 0 ,νn X)(s) : s ∈ R and T 2 t 0 ,νn X = (T 2 t 0 ,νn X)(s) : s ∈ R , defined, for all s ∈ R, as: = 0, one gets that

H = H([t 0 -1, t 0 + 1]) = H(t) : t ∈ [t 0 -1, t 0 + 1] , one clearly has that sup t∈[t 0 -1,t 0 +1] |X(t, H(t)) -X(t, H(t 0 ))| |H(t) -H(t 0 )| ≤ sup (u,v 1 ,v 2 )∈[t 0 -1,t 0 +1]×H 2 |X(u, v 1 ) -X(u, v 2 )| |v 1 -v 2 | . ( 4 
U 2 (t 0 ) ≤ sup (u,v)∈[t 0 -1,t 0 +1]×H |X(u, v) -X(u 0 , v)| |u -u 0 | v log(e + log |u -u 0 | ) d 2 < +∞. ( 4 
(T 1 t 0 ,νn X)(s) = X t 0 + ν n s, H(t 0 ) -X t 0 , H(t 0 ) ν H(t 0 ) n (4.54) and (T 2 t 0 ,νn X)(s) = X t 0 + ν n s, H(t 0 + ν n s) -X t 0 + ν n s, H(t 0 ) ν H(t 0 ) n . ( 4 
(T 1 t 0 ,νn X)(s) : s ∈ R law = X(s, H(t 0 )) : s ∈ R .
This equatility in the sense of finite-dimensional distributions and the fact that (T 1 t 0 ,νn X)(s) : s ∈ R and X(s, H(t 0 )) : s ∈ R have continuous paths imply that these two processes induce the same probability distribution on the space of continuous functions C(J ). Thus, in order to derive the theorem, it is enough to show that T 2 t 0 ,νn X, viewed as a random variable with values in the space C(J ), converges to 0 in this space, when n goes to +∞. That is

lim n→+∞ sup s∈J (T 2 t 0 ,νn X)(s) a.s. = 0 . (4.56) 
There is non rectriction to assume that J = [-M, M ] for some fixed positive real number M , and that ν n ∈ (0, 1], for every n ∈ N. Let then I and H be the compact intervals defined as I = [t 0 -M, t 0 + M ] and H = H(I) = H(t) : t ∈ I . It follows from Corollary 3.2 that the positive random variable A defined as Proof of Theorem 4.5 In view of the fact that on the event of probability 1 Ω * the fields X lf and X hf are with continuous paths, one can assume without any restriction that δ = 2.

A = sup (u,v 1 ,v 2 )∈I×H 2 |X(u, v 1 ) -X(u, v 2 )| |v 1 -v 2 | ( 4 
(T 2 t 0 ,νn X)(s) ≤ ν -H(t 0 ) n A sup s∈J H(t 0 + ν n s) -H(t 0 ) . ( 4 
Let H = [a, b] ⊂ (0, 1) be an arbitrary compact interval and let u be an arbitrary real number such that |u| ≥ 2. One denotes by j 3 the biggest positive integer satisfying: |u| ≥ 2 j 3 . Then, one gets that: First, one shows that (4.5) holds. Recall that, for all (v, ω) ∈ (0, 1) × Ω * , one has:

2 j 3 ≤
X lf (u, v, ω) = +∞ j=1
2 jv (Φ -j (2 -j u * , v, ω) -Φ -j (0, v, ω)) , (4.61)

where Φ -j (•, •, ω) is the infinitely differentiable function on R d × (0, 1), introduced in (2.12).

Also, recall that the series in (4.61) is uniformly convergent in (u, v) on each compact subset of R × (0, 1). Using the mean value theorem, one gets, for all (j, v) ∈ N × H, that: 

|Φ -j ( 

Remark 4 . 4

 44 One can derive from Theorem 4.3 and zero-one law that, for any fixed arbitrarily small positive real number η, one has, almost surely, sup t∈[t 0 -1,t 0 +1]

  .53) Finally, putting together (4.52), (4.53) and (4.47), one obtains (4.3).

  .58) Finally, combining (4.2) and (4.58) one obtains (4.56).

2 , 2 ≤ 2 ≤ 2 ≤ 2 < 2 . 3 j=1 2 3 j=1 2 2 = 3 j=1 2 - 2 ≤ C d (ω)|u| v j 3 j=1 2 - 2 ≤ 2 ≤ 2 ,→ z d 2 , 2 - 2 ≤ 2 - 2 - 2 d 2 2 -

 222222323223223222222222222 2 -j u * , v, ω) -Φ -j (0, v, ω)| ≤ 2 -j |u| d n=1 sup (y,v)∈[0∧2 -j u,0∨2 -j u]×H |∂ yn Φ -j (y * , v, ω)|.Then, Lemma 2.5 entails that:|Φ -j (2 -j u * , v, ω) -Φ -j (0, v, ω)| ≤ C d (ω)2 -j |u|(log(e + j + 2 -j |u|)) d (4.62)where C d is a positive finite random variable not depending on u. Thus, one can derive from (4.62), (2.14), (4.59) and (4.60) that:+∞ j=j 3 +1 2 jv |Φ -j (2 -j u * , v, ω) -Φ -j (0, v, ω)| ≤ C d (ω)|u| +∞ j=j 3 +1 2 -j(1-v) (log(e + 1 + j)) d C d (ω)|u|2 -(j 3 +1)(1-v) +∞ l=0 2 -l(1-v) (log(e + 2 + l + j 3 )) d C d (ω)2 j 3 v (log(e + j 3 )) d C d (ω)|u| v (log(e + log |u| ) +∞ , and C d = C d (log(e+ 1 log 2 ))d On the other hand, Lemma 2.5, (4.59),(2.14), and (4.60) imply that:j jv |Φ -j (2 -j u * , v, ω) -Φ -j (0, v, ω)| ≤ Cd (ω) j jv (log(e + j + 2 -j |u|)) d Cd (ω)2 (j 3 +1)v j jv (log(e + (j 3 + 1 -j) + 2 -(j 3 +1-j) |u|)) d jv (log(e + j 3 + 2 j )) d C d (ω)|u| v (log(e + j 3 )) d C d (ω)|u| v (log(e + log |u| ) d (4.64)where Cd is a positive finite random variable not depending on u, C d Finally, (4.63) and (4.64) entail that (4.5) holds. Now, let us show that (4.6) is satisfied. Recall that, for all (v, ω) ∈ (0, 1) × Ω * , one has:X hf (u, v, ω) = +∞ j=0 2 -jv (Φ j (2 j u * , v, ω) -Φ j (0, v, ω)) ,(4.65)where Φ j (•, •, ω) is the infinitely differentiable function on R d × (0, 1), introduced in (2.12).Also, recall that the series in (4.65) is uniformly convergent in (u, v) on each compact subset of R × (0, 1). Next, let us mention that thanks to the convexity property of the function z one has the following inequaty:∀ (x, y) ∈ R 2 + , (x + y) mentions that the inequality ∀ (x, y, z) ∈ R 3 + , log(e + x +yz) ≤ log(e + x + y) + log(e + z) (4.67) holds, since (e + x + yz) ≤ (e + x + y)(e + z) and the logarithm is an increasing function. Using (4.65), the triangle inequality, Lemma 2.5, (4.67) and (4.66), one obtains: |X hf (u, v, ω)| ≤ Ĉd (ω) +∞ j=0 ja log(e + j + 2 j |u|) d Ĉd (ω) +∞ j=0 ja log(e + |u|) + log(e + j + 2 j ) ja log(e + |u|) d 2 + log(e + j + 2 j ) a positive finite random variable not depending on u, Ĉ d = ja log(e + j + 2 j ) d 2 < +∞ . It easily results from (4.68) that (4.6) holds. Proof of Corollary 4.6. The corollary is a straightforward consequence of Theorem 4.5 and (1.7).

  ). Then, thanks to this nice representation, global and local behavior of {X(u, v) : (u, v) ∈ R × (0, 1)} and {Z(t) : t ∈ R} are studied in Sections 3 and 4 of our article, by using a wavelet methodology which is, to a certain extent, inspired by the one introduced in[START_REF] Ayache | Multifractional Processes with Random Exponent[END_REF][START_REF] Ayache | Wavelet construction of generalized multifractional processes[END_REF].

  .46) where K 3 is a positive finite random variable not depending on (u, v).

	Finally, combining (4.25), (4.31), (4.32), (4.34) and (4.46), one obtains the theorem.
	Proof of Corollary 4.2. Using (1.7) and the triangle inequality, one gets that
	sup
	t∈[t 0 -1,t 0 +1]

  |u| < 2 j 3 +1 ,

					(4.59)
	which means that	j 3 =	log |u| log 2	.	(4.60)
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