
HAL Id: hal-04339001
https://hal.science/hal-04339001v1

Preprint submitted on 12 Dec 2023 (v1), last revised 12 Mar 2024 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Quantitative Input Usage Static Analysis
Denis Mazzucato, Marco Campion, Caterina Urban

To cite this version:
Denis Mazzucato, Marco Campion, Caterina Urban. Quantitative Input Usage Static Analysis. 2023.
�hal-04339001v1�

https://hal.science/hal-04339001v1
https://hal.archives-ouvertes.fr

Quantitative Input Usage Static Analysis

Denis Mazzucato, Marco Campion, and Caterina Urban

INRIA & ENS | PSL, {denis.mazzucato,marco.campion,caterina.urban}@inria.fr

Abstract. Programming errors in software applications may produce plau-
sible yet erroneous results, without providing a clear indication of failure. This
happens, for instance, when certain inputs have a disproportionate impact on
the program result. To address this issue, we propose a novel quantitative static
analysis for determining the impact of inputs on the program computations,
parametrized in the definition of impact. This static analysis employs an under-
lying abstract backward analyzer and computes a sound over-approximation of
the impact of program inputs, providing valuable insights into how the analyzed
program handles them. We implement a proof-of-concept static analyzer to
demonstrate potential applications.

1 Introduction

Disastrous outcomes may result from programming errors in safety-critical settings,
especially when they do not result in software failures but instead produce a plausible
yet erroneous outcome. Such bugs are hard to spot since they provide no indication
that something went wrong. A potential source of such errors is when an input variable
has disproportionate impact on the program computations compared to the developers’
expectations. A notable example is the Reinhart and Rogoff article “Growth in a Time
of Debt” [15], which was heavily cited to justify austerity measures around the world
in the following years, and was later discovered to be flawed [12]. Notably, one of the
several programming and methodological errors discovered in the article is the incorrect
usage of the input value relative to Norway’s economic growth in 1964, compromising
the authors’ conclusion. Hence, it is important to employ techniques that enhance the
confidence in the usage of input variables.

In this direction, Barowy et al. [1] proposed a stochastic approach specific for spread-
sheet applications. Such approach is able to estimate the impact of input cells. However,
the lack of mathematical guarantees precludes the employment of such technique in
safety-critical contexts. On the other hand, existing formal methods-based approached
only target qualitative properties about input data usage, e.g., only addressing whether
an input variable is used or not [16, 17].

In this work, we present a novel quantitative input usage framework to discriminate be-
tween input variables with different impact on the outcome of a program. Such knowledge
could either certify intended behavior or reveal potential flaws, by matching the develop-
ers’ intuition on the expected impact of their input with the actual result of the quantita-
tive study. We characterize the impact of an input variable with a notion of dependency
between variables and outputs. Compared to other quantitative notions of dependency,
e.g., quantitative information flow [8, 10], there are some key differences as the informa-
tion we measure or the granularity of input contributions. Our framework is parametric in

2 Denis Mazzucato, Marco Campion, and Caterina Urban

Input preconditions:

angle∈{−4,1}
speed∈{1,2,3}

1 landing_coeff = abs(angle) + speed
2 if landing_coeff < 2 then
3 risk = 0
4 else if landing_coeff > 5 then
5 risk = 3
6 else
7 risk = floor(landing_coeff) - 2

(a) Program for the landing alarm system.

angle

speed

-4 1

1

2

3

3

3

3

0

1

2

(b) Input space composition.

Fig. 1: Program computing landing risk during the airstrip approach.

the choice of impact definition to better fit several factors, such as the program structure,
the environment, the expertise of the developer, and the intuition of the researcher.

We propose an automatic always-terminating sound static analysis leveraging a
backward analyzer to compute an over-approximation of the program semantics. In
particular, this last component takes as input sets of program outputs, called output
buckets, and computes an over-approximation of the input states leading to these
buckets. Then, the end-user chooses the impact definition that best fits their needs, and
our analysis applies such definition on the result of the previous phase. This approach,
parametrized on the impact definition, ensures a more targeted and customizable
analysis. We demonstrate the potential applications of our approach, by evaluating
a proof-of-concept tool of our static analysis against a set of use cases.

Contributions We make the following contributions:

1. In Section 3, we develop a theoretical framework by abstract interpretation [6]
to quantify the impact of input variables by considering two instances of impact:
Outcomes and Range.

2. In Section 4, we present our static analysis and a possible abstract implementation
of the impact instances.

3. Finally, Section 5 evaluates our proof-of-concept against three use cases (six more in
Appendix B): a simplified program from the Reinhart and Rogoff article, a program
extracted from the recent OpenAI keynote, and one from termination analysis.

2 Overview

In this section we present an overview of our quantitative analysis using a simple example.
The program depicted in Figure 1a is a prototype of an aircraft landing alarm system.
The goal of the program is to inform the pilot about the level of risk associated with the
landing approach. It takes two input variables, denoted as angle and speed, for the
aircraft-airstrip alignment angle and the aircraft speed, respectively. A value of 1 repre-
sents a good alignment while -4 a non-aligned angle, whereas 1, 2, 3 denote low, medium,

Quantitative Input Usage Static Analysis 3

and high speed1. A safer approach is indicated by lower speed. The landing risk coefficient
combines the absolute landing angle and speed. The output variable risk is the danger
level with possible values {0,1,2,3}, where 0 represents low danger and 3 high danger.

Figure 1b shows the input space composition of this system, where the label near each
input represents the degree of risk assigned to the corresponding input configuration. It
is easy to note that a nonaligned angle of approach corresponds to a considerably higher
level of risk, whereas the risk with a correct angle depends mostly on the aircraft speed.
Our goal is to develop a static analysis capable of quantifying the contribution of each
input variable to the computation of the output variable risk. Given the connection
between qualitative input usage and information flow analyses [16], it comes natural to
first explore quantitative information flow analyses, formerly introduced by the pioneering
work of Denning [8] and Gray [10]. Such analyses measure information leakage about
a secret through the concept of entropy, based on observations of the program’s output
values. In particular, we focus on the work proposed by Köpf and Rybalchenko [13] which
quantifies an upper bound of the entropy of a program’s input variables by computing an
over-approximation of the set of input-output observations, sometimes called equivalence
classes. They employ Shannon entropy, min-entropy, and other entropies through the
enumeration of these equivalence classes and their respective sizes. The equivalence
classes are partitions of the input space in which two input assignments belong to the
same class whenever the program produces an equivalent output. For example, the
equivalence classes of the program of Figure 1a are Π(P)={{⟨x,y⟩|P(x,y)=z}|z∈
{0,1,2,3}}={{⟨1,1⟩},{⟨1,2⟩},{⟨1,3⟩},{⟨−4,1⟩,⟨−4,2⟩,⟨−4,3⟩}}. We develop our impact
definitions by adapting their approach to our needs in three successive attempts.

First Attempt. The Shannon-entropyH computes the average uncertainty of input values
based on observations of the program’s outcomes, while min-entropy H∞ computes the
worst-case uncertainty. We consider min-entropy as closer to our needs since our aim is
to discover the worst-case impact, i.e., the case in which a variable contributes the most.

H∞(P) def
= log2

|InputP|
|Π(P)|

where InputP is the set of all input values. Computing min-entropy on the program P of
Figure 1a, we obtain H∞(P)=0.58, indicating that the input is highly guessable. Indeed,
when the risk level is 3, the potential values of input variables are angle=−4 and
speed∈1,2,3; for all other output values, the input values are completely determined.
Unfortunately, min-entropy lacks granularity and measures the uncertainty of the input
variables collectively. Instead, our aim is to quantify the individual contributions.

Second Attempt. To address the previous issue, we exploit low and high labels for input
variables, where the former are considered as public, available to the attacker, and the
latter as secret. To assess the impact of each input variable, we prioritize one high
variable at a time, considering all others as low variables. Subsequently, we compute
the min-entropy of the labelled program to quantify the extent of the impact.

We define Pangle(x)
def
=⟨P(x,1),P(x,2),P(x,3)⟩ which represents the sequence of pro-

grams where angle is high and speed is low. Similarly, Pspeed(y)
def
=⟨P(−4,y),P(1,y)⟩

where speed is high and angle is low.

1 We initially focus on discrete values to simplify the example and convey the concept. We
expand to continuous inputs during the use case evaluation in Appendix B.1

4 Denis Mazzucato, Marco Campion, and Caterina Urban

Computing H∞(Pangle) and H∞(Pspeed) yields 0 on both because all equivalence
classes consist of singletons, meaning the number of inputs equals the number of outputs.
Thus, there’s no uncertainty in the value of angle given outputs of Pangle, or in the
value of speed given outputs of Pspeed. Indeed, observing the output ⟨3,3,3⟩ from the
program Pangle implies that angle is −4, while observing ⟨0,1,2⟩ implies that angle
is 1. The same applies to Pspeed where observing ⟨3,0⟩ implies speed=1, ⟨3,1⟩ implies
speed=2, and ⟨3,2⟩ implies speed=3.

However, this approach does not isolate the contributions of high variables; these
outcomes are combined into a tuple of values through the return statement and thus
evaluated together. Consequently, min-entropy cannot distinguish the contribution of
each input variable independently.

Third Attempt. An immediate solution is to develop a similar approach to the one used
for the high-low variables, but instead of using min-entropy for the derived programs
(Pangle and Pspeed), we count the number of outcomes of the partially-applied programs,
cf. programs P(x,1),P(x,2), and P(x,3) for Pangle; P(−4,y) and P(1,y) for Pspeed. These
programs are referred to as Pangle

y and Pspeed
x respectively. Therefore, applied to our

example, we define the outcomes impact definition as HO(Pangle)
def
= max{|Π(Pangle

y)| |
y∈{1,2,3}} and HO(Pspeed)

def
= max{|Π(Pspeed

x)| |x∈{−4,1}}, we retain the maximum
to obtain the worst-case scenario. We obtain HO(Pangle)=2 and HO(Pspeed)=3. This
means that variations of the value of angle result in at most 2 different outputs, while
variations of the value of speed result in at most 3. Effectively, this is the first notion
of impact capable of discriminating the contribution of each input variable on the
program computation, exploiting the number of reachable outcomes from variations
of the value of the input variable under consideration.

Impact Analysis. Overall, the approach proposed by Köpf and Rybalchenko [13] can be
adapted to our needs. Nevertheless, their analysis grows exponentially with the number
of low variables, which in our adaptation corresponds to the number of inputs, minus
one. To address this limitation, we leverage an over-approximation of input-output
observations of the program, focusing solely on the low variables. By doing so, we obtain
the set of input configurations that lead to the same output value by variation on the
value of high variables. As a result, our approach performs the program analysis only one
time. A similar technique could also be used to mitigate such explosion in their work.

The impact definition HO exploits the number of reachable outcomes resulting from
variations in the input variable under consideration. We propose also a second definition
that focuses on the length of extreme reachable values. Both definitions give us different
insights on the program of Figure 1a. In particular, the first quantity indicates which
variation reaches a greater number of output values, while the second tells us which
variation in the values of input variables results in larger differences between output
values. Below, we provide the intuition of both impact definitions.

First Impact Definition (Outcomes). Firstly, we show Outcomesi(P) (derived from
HO), where i is the input variable of interest and P the program under evaluation. This
impact definition counts the number of different outputs reachable through variations
in the input values. Table 1 shows the steps of the impact definition Outcomes. The
intuition behind is that, for each input configuration ⟨x,y⟩ (column InputP), we gather
together the set of input configurations ⟨x′,y′⟩ resulting from variations of ⟨x,y⟩ on the

Quantitative Input Usage Static Analysis 5

Table 1: Impact of for Outcomes(P) and Range(P) definitions for both angle and
speed variables. Computational features are highlighted in blue.

Variable InputP Relevant Traces Outputs Outcomes Range

angle

⟨−4,1⟩ ⟨−4,1⟩→⟨3⟩,⟨1,1⟩→⟨0⟩ {3,0}

2 3

⟨−4,2⟩ ⟨−4,2⟩→⟨3⟩,⟨1,2⟩→⟨1⟩ {3,1}
⟨−4,3⟩ ⟨−4,3⟩→⟨3⟩,⟨1,3⟩→⟨2⟩ {3,2}
⟨1,1⟩ ⟨1,1⟩→⟨0⟩,⟨−4,1⟩→⟨3⟩ {0,3}
⟨1,2⟩ ⟨1,2⟩→⟨1⟩,⟨−4,2⟩→⟨3⟩ {1,3}
⟨1,3⟩ ⟨1,3⟩→⟨2⟩,⟨−4,3⟩→⟨3⟩ {2,3}

speed

⟨−4,1⟩ ⟨−4,1⟩→⟨3⟩,⟨−4,2⟩→⟨3⟩, {3}

3 2

⟨−4,3⟩→⟨3⟩

⟨−4,2⟩ ⟨−4,1⟩→⟨3⟩,⟨−4,2⟩→⟨3⟩, {3}⟨−4,3⟩→⟨3⟩

⟨−4,3⟩ ⟨−4,1⟩→⟨3⟩,⟨−4,2⟩→⟨3⟩, {3}⟨−4,3⟩→⟨3⟩

⟨1,1⟩ ⟨1,1⟩→⟨0⟩,⟨1,2⟩→⟨1⟩, {0,1,2}⟨1,3⟩→⟨2⟩

⟨1,2⟩ ⟨1,1⟩→⟨0⟩,⟨1,2⟩→⟨1⟩, {0,1,2}⟨1,3⟩→⟨2⟩

⟨1,3⟩ ⟨1,1⟩→⟨0⟩,⟨1,2⟩→⟨1⟩, {0,1,2}⟨1,3⟩→⟨2⟩

input variable i alone, column Relevant Traces. Then, we collect the set of reachable
outputs from the set of input configurations ⟨x′,y′⟩ through the program P. As a result,
for each input configuration ⟨x,y⟩, we obtain the set of output values reachable from
⟨x,y⟩ or a variation ⟨x′,y′⟩, column Outputs. Therefore, among all the sets, we return
the maximum size of these sets of output values, column Outcomes. As seen before,
we obtain Outcomesangle(P)=2 and Outcomesspeed(P)=3. The underlying idea
is that a higher number of reachable outputs indicates a greater influence of the input
variable under consideration. The conclusion from Outcomes is that speed has a
greater influence than angle.

Second Impact Definition (Range). The intuition behind this second quantity Rangei

is that, instead of counting how many reachable outputs are from variations of the input
variable i, we yield the difference between maximum and minimum of reachable outputs.
Following again Table 1, we can see that the range of reachable outputs from variations
of angle is, at most, the interval [0,3], with a length of 3. Instead, the range of reachable
outputs from variations of speed is, at most, the interval [0,2], with a length of 2. There-
fore, we obtain Rangeangle(P)=3 and Rangespeed(P)=2, column Range. Hence, we
gain the insight that varying the angle of approach might drastically alter the landing risk,
whereas the speed has less influence. In contrast to the conclusion of Outcomes where
speed has a greater impact than angle. Although it may seem counterintuitive at first,
the difference between the two impact instances is due to the different program traits they
explore. Range quantifies over the variance in the extreme values of the set of output
values, while Outcomes quantifies over the variance in the number of unique output
values. Consequently, changes in angle yield a bigger variation in the degree of risk com-
pared to speed, while changes in speed reach far more risk levels compared to angle.

6 Denis Mazzucato, Marco Campion, and Caterina Urban

Note that, enumerating all possible input configurations is not computationally
practical. Specifically, when dealing with more complex input space compositions, this
approach is highly inefficient or even infeasible (as in the case of continuous input spaces).

Abstract Analysis. To quantify the impact of a program, one can rely solely on the
input-output observations of the program. Thus, our approach is based on an abstraction
of input-output relations, which allows us to automatically infer a sound upper bound
on the program’s impact.

The analysis starts with a set of abstractions called output buckets. A bucket is
an abstract element representing a set of output states. While this abstraction may
limit the ability to precisely reason about the impact of output values within the same
bucket, it permits automatic reasoning across different buckets. Afterwards, an abstract
interpretation based static analyzer propagates each output bucket backward through
the program under consideration. The analyzer returns an abstract element for each
output bucket, representing an over-approximation of the set of input configurations that
lead to the output values inside the starting bucket. This result contains also spurious
input configurations that may not lead to a value inside the output bucket. Based
on the chosen impact definition Impact (e.g., Range or Outcomes), we perform
computations and comparisons on the abstract elements returned by the analysis to
obtain an upper bound k′. By construction, k≤k′, where k is the real (concrete) impact
quantity obtained by the definition Impact.

The sound upper bound discovered by our analysis is always higher than the concrete
one by construction of the theoretical framework. The precision of our analysis is the
distance between these two bounds, it mostly depends on the choice of output buckets
and approximation of the backward analysis.

3 Quantitative Input Data Usage

In this section we present some preliminaries on program computations, then we introduce
our quantitative framework with the formal definitions of Range and Outcomes.

Program Semantics. The semantics of a program is a mathematical characterization of
its behavior for all possible input data. We model the operational semantics of a program
as a transition system ⟨Σ,τ⟩ where Σ is a (potentially infinite) set of program states and
the transition relation τ⊆Σ×Σ describes the feasible transitions between states [6, 5].
The set Ω def

={s∈Σ |∀s′∈Σ. ⟨s,s′⟩ /∈τ} represents the final states of the program.
Let Σn def

={s0...sn−1 |∀i<n. si∈Σ} be the set of all sequences of exactly n program
states. We write ϵ to denote the empty sequence, i.e., Σ0 def

={ϵ}. We define Σ⋆ def
=
⋃

n∈NΣ
n

as the set of all finite sequences, Σ+ def
=Σ⋆\Σ0 as the set of all non-empty finite sequences,

Σ∞
def
={s0... |∀i∈N. si∈Σ} as the set of all infinite sequences, and Σ+∞ def

=Σ+∪Σ∞
as the set of all non-empty finite or infinite sequences. Additionally, let Σ⊥ def

=Σ∪{⊥}.
Given a sequence σ ∈Σ+∞, we write σ0 ∈Σ to denote the initial state of σ and
σω∈Σ⊥ to denote the final state of σ when σ∈Σ+, otherwise σω=⊥ when σ∈Σ∞.
To concatenate two sequences of states σ,σ′ ∈Σ+∞, we write σ ·σ′. It holds that
σ·ϵ=ϵ·σ=σ and σ·σ′=σ whenever σ∈Σ∞. To merge two sets of sequences T⊆Σ+

and T ′⊆Σ+∞, we write T ; T ′
def
={σ·s·σ′ |s∈Σ∧σ ·s∈T∧s·σ′∈T ′} when a finite

sequence in T terminates with the initial state of a sequence in T ′.

Quantitative Input Usage Static Analysis 7

In the rest of the paper, I∈{N,Z,R} represents a set of numerical values. We write
I±∞ to denote I extended with the symbols +∞ and −∞. The set I≥0

def
={n∈I |n≥0}

denotes non-negative numbers. Similarly, we can use other predicates, for instance,
I≤m

def
={n∈I |n≤m} denotes the set of numbers below or equal m∈I.

Given a transition system ⟨Σ,τ⟩, a trace is a non-empty sequence of program states
that respects the transition relation τ , i.e., for every pair of consecutive states s,s′∈Σ
in the trace, it holds that ⟨s,s′⟩∈τ . The trace semantics Λ∈℘(Σ+∞) generated by
a transition system ⟨Σ,τ⟩ is the union between all finite traces that are terminating
in a final state in Ω, and all non-terminating infinite traces [5]:

Λ
def
=

⋃
n∈N≥0

{s0...sn−1∈Σn | ∀i<n−1. ⟨si,si+1⟩∈τ∧sn−1∈Ω}

∪{s0...∈Σ∞ | ∀i∈N. ⟨si,si+1⟩∈τ}
We write ΛJPK to denote the trace semantics of a particular program P. The same
applies for other semantics defined in the rest of paper.

The trace semantics fully describes the behavior of a program. However, reasoning
about a particular property of a program is facilitated by the design of a seman-
tics that abstracts away from irrelevant details about program executions. In our
work, we focus on extensional properties, namely, properties based on the observation
of input-output relations of ΛJPK. Therefore, we employ the dependency semantics
Λ⇝∈℘(Σ×Σ⊥) [16] as an abstraction of the trace semantics removing intermediate
steps, i.e., Λ⇝ def

= {⟨σ0,σω⟩ |σ∈ΛJPK}. Starting from the dependency semantics, we
define our property of interest – quantitative input data usage – and use abstract
interpretation to systematically derive a semantics tailored to reason about this property.

Property. A property is specified by its extension, that is, the set of elements that
manifest such a property [6]. We consider properties of programs, with dependency
semantics in ℘(Σ×Σ⊥), which are sets of sets of dependencies in ℘(℘(Σ×Σ⊥)).

The strongest property of the dependency semantics Λ⇝ is the standard collecting
semantics ΛC∈℘(℘(Σ×Σ⊥)), defined as ΛC def

={ Λ⇝ }, which is satisfied only and
exactly by Λ⇝. Therefore, a program P satisfies a given property F ∈℘(℘(Σ×Σ⊥)),
written P |=F , if and only if P belongs to F , or equivalently, its collecting semantics
ΛC is a subset of F , formally

P |=F ⇔ ΛCJPK⊆F (1)
Our goal is to quantify the impact of a specific input variable on the computation of

the program. To this end, we introduce the notion of impact, denoted by the function
Impacti∈℘(Σ×Σ⊥)→I+∞≥0 , which maps program semantics to a non-negative domain
of quantities, where i represents the input variable of interest in the program under
analysis. We implicitly assume the use of an output descriptor ϕ ∈Σ⊥→ I±∞ to
determine the desired output of a program by observations on program states2. The
output descriptor ϕ is generic enough to cover plenty of use cases, providing the end-user
the flexibility to choose the interpretation and meaning of program outputs.

Example 1. Consider the landing alarm system presented in Figure 1. The program
states are Σ={⟨a,b,c,d⟩|a∈{−4,1}∧b∈{1,2,3}∧c∈N∧d∈{0,1,2,3}}, where a is the

2 The option of returning ±∞ from the output descriptor is to deal with infinite traces,
which do not have a final state (σω=⊥ for any σ∈Σ∞).

8 Denis Mazzucato, Marco Campion, and Caterina Urban

value of angle, b of speed, c of landing_coeff, and d of risk. Here, we abuse the
notation and use Σ as set of tuples instead of a map between variables and values,
the two views are equivalent. The output descriptor is instantiated with

ϕ(x)
def
=

{
d if x=⟨a,b,c,d⟩
+∞ otherwise

In other words, we are interested in the value of risk for terminating traces.

Given an impact definition of interest, we define the k-bounded impact property
B≤k

i ∈℘(℘(Σ×Σ⊥)) as the set of dependency semantics with impact with respect to
the input variable i below the threshold k∈I+∞≥0 . Formally,

B≤ki
def
= {Λ⇝∈℘(Σ×Σ⊥) | Impacti(Λ

⇝)≤k} (2)
We require Impacti to be monotonic, i.e., for any S,S′∈℘(Σ×Σ⊥), it holds that if

S⊆S′ then Impacti(S)≤Impacti(S
′). Intuitively, this ensures that an impact applied

to an over-approximation of the program semantics can only produce a higher quantity,
allowing for a sound k-bounded impact verification.

Next, we formalize the already introduced impact metrics Outcomes and Range.
Given a program P and its variablesV, we assume program states are maps from variables
to a numerical domain, i.e., Σ=V→I. The set ∆⊆V is the set of input variables. We
write Σ|K=K→I for the program states reduced to the subset of variables K⊆V. For
instance Σ|∆ is the set of states restricted to the input variables. The predicate s=K s′

indicates that the two states s,s′∈Σ⊥
∣∣
K

, agree on the values of the variables in K⊆V,
or they are both ⊥, formally s=K s′⇔(s≠⊥∧s′ ≠⊥∧∀v∈K. s(v)=s′(v))∨s=s′=⊥.

Outcomes. Formally Outcomesi∈℘(Σ×Σ⊥)→N+∞ counts the number of different
output values reachable by varying the input variable i∈∆. Intuitively, for any possible
input configuration s∈Σ|∆, we gather the set S∈℘(Σ×Σ⊥) of all input-output state
dependencies with an input configuration that is a variation of s on the input variable
i, i.e., {⟨s0,sω⟩∈S |s0=∆\{i}s}. Then, Outcomesi is the maximal cardinality of the
output values {ϕ(sω) |⟨s0,sω⟩∈S∧s0=∆\{i}s}. Formally,

Outcomesi(S)
def
= sup

s∈Σ|∆
| {ϕ(sω) | ⟨s0,sω⟩∈S∧s0=∆\{i}s} | (3)

where | · | is the cardinality operator, and sup(X) is the supremum operator, i.e., the
smallest q such that q≥x for all x∈X. From the definition above, it is easy to note
that Outcomesi(S) is monotone in the amount of dependencies S. That is, the more
dependencies in input, the higher the impact as only more dependencies can satisfy
the condition of Eq. (3) and hence increase the number of outcomes.

Range. The quantity Rangei ∈ ℘(Σ×Σ⊥)→R+∞
≥0 determines the length of the

range of output values from all the possible variations in the input variable i ∈∆.
This definition employs the auxiliary function Length∈℘(I±∞)→ I+∞≥0 , defined as
follows: Length(X)

def
=supX−infX if X ≠∅, where sup and inf are the supremum

and infimum operators, while Length(X)
def
=0 otherwise. Formally,

Rangei(S)
def
= sup

s∈Σ|∆
Length({ϕ(sω) | ⟨s0,sω⟩∈S∧s0=∆\{i}s})

Similarly to Outcomes, Range is monotone in the amount of dependencies S.

Quantitative Input Usage Static Analysis 9

4 A Static Analysis for Quantitative Input Data Usage

In this section, we introduce a sound computable static analysis to determine an upper
bound on the impact of an input variable i. The soundness of the approach leverages two
elements: (1) an underlying abstract semantics Λ← to compute an over-approximation
of the dependency semantics Λ⇝; and (2) a sound computable implementation of
Impacti, written Impact♮i, used in the property B≤k

i . All proofs are in Appendix A.
To quantify the usage of an input variable, we need to determine the input config-

urations leading to specific output values. As our impact definitions Outcomesi and
Rangei measure over the different output values (i.e., ϕ(sω)) our underlying abstract
semantics will be a backward (co-)reachability semantics starting from disjoint abstract
post-conditions, over-approximating the (concrete) output values of the dependency
semantics. Specifically, we abstract the concrete output values with an indexed set
B♮∈D♮n of n disjoint output buckets, where ⟨D♮,⊑,⊥♮,⊤♮,⊔,⊓⟩ is an abstract state
domain with concretization function γ♮ ∈D♮ →℘(Σ⊥). The choice of these output
buckets is essential for obtaining a precise and meaningful analysis result.

For each output bucket B♮
j∈D♮, our analysis computes an over-approximation of the

dependency semantics restricted to the input configurations leading to γ♮(B♮
j). More for-

mally, let Λ⇝|X
def
={⟨s0,sω⟩∈Λ⇝ |sω∈X} be the reduction of the dependency semantics

Λ⇝ to the dependencies with final states in X. Our static analysis is parametrized by an
underlying backward abstract family3 of semantics Λ←JPK∈D♮→D♮ which computes
the backward semantics Λ←JPKB♮

j from a given output bucket B♮
j∈D♮. The concretiza-

tion function γ←∈(D♮→D♮)→D♮→℘(Σ×Σ⊥) employs γ♮ to restore all possible input-
output dependencies, i.e., γ←(Λ←JPK)B♮

j

def
={⟨s0,sω⟩|s0∈γ♮(Λ←JPKB♮

j)∧sω∈γ♮(B♮
j)}.

We can thus define the soundness condition for the backward semantics with respect
to the reduction of the dependency semantics.

Definition 1 (Sound Over-Approximation for Λ←). For all programs P, and
output bucket B♮

j∈D♮, the family of semantics Λ← is a sound over-approximation of
the dependency semantics Λ⇝ reduced with γ♮(B♮

j), when it holds that:
Λ⇝JPK|γ♮(B

♮
j)

⊆ γ←(Λ←JPK)B♮
j

We define Λ× ∈D♮n →D♮n as the backward semantics repeated on a set of out-
put buckets B♮∈D♮n, that is, Λ×JPKB♮ def

=(Λ←JPKB♮
j)j≤n. Again, the concretization

function γ×∈ (D♮n→D♮n)→D♮n→℘(Σ×Σ⊥) employs the abstract concretization
γ♮ to restore all possible input-output dependencies over all the output buckets, i.e.,
γ×(Λ×JPK)B♮ def

=
⋃

j≤n{⟨s0,sω⟩|s0∈γ♮((Λ×JPKB♮)j)∧sω∈γ♮(B♮
j)}.

Lemma 1 (Sound Over-Approximation for Λ×). For all programs P, output
buckets B♮ ∈ D♮n, and a family of semantics Λ←, the semantics Λ× is a sound
over-approximation of the dependency semantics Λ⇝ reduced to

⋃
j≤nγ

♮(B♮
j):

Λ⇝JPK|⋃
j≤nγ

♮(B
♮
j)

⊆ γ×(Λ×JPK)B♮

Whenever the output buckets cover the whole output space, Λ× is a sound over-
approximation of Λ⇝. The concept of covering for output buckets ensures that no final
states of the dependency semantics, i.e. Ω⇝ def

={sω |⟨s0,sω⟩∈Λ⇝}, are missed from the
analysis.
3 A family of semantics is a set of program semantics parametrized by an initialization.

10 Denis Mazzucato, Marco Campion, and Caterina Urban

Definition 2 (Covering). We say that the output buckets B♮∈D♮n cover the whole
output space whenever Ω⇝⊆

⋃
j≤nγ

♮(B♮
j).

Next, we expect a sound implementation Impact♮i ∈D♮n×D♮n→ I±∞ to return a
bound on the impact which is always higher than the concrete counterpart Impacti.

Definition 3 (Sound Implementation). For all output buckets B♮ and family of
semantics Λ←, Impact♮i is a sound implementation of Impact, whenever

Impacti(γ
×(Λ×JPK)B♮) ≤ Impact♮i(Λ

×JPKB♮,B♮)

The next result shows that our static analysis is sound when employed to verify the
property of interest B≤k

i for the program P. That is, if Impact♮i returns the bound k′,
and k′≤k, then the program P satisfies the property B≤k

i , cf. P |=B≤k
i .

Theorem 1 (Soundness). Let B≤k
i be the property of interest we want to verify for

the program P and the input variable i∈∆. Whenever,
(i) Λ← is sound with respect to Λ⇝, cf. Def. (1), and
(ii) B♮ covers the whole output space, cf. Def. (2), and
(iii) Impact♮i is a sound implementation of Impacti, cf. Def. (3),

the following implication holds:
Impact♮i(Λ

×JPKB♮,B♮)=k′ ∧ k′≤k ⇒ P |=B≤k
i

Finally, we define Range♮i and Outcomes♮i as possible implementations for Rangei

and Outcomesi, respectively. We assume the underlying abstract state domain D♮

is equipped with an operator Project♮i∈D♮→D♮ to project away the input variable i.
The definition of Outcomes♮i first projects away the input variable i from all the given

abstract values, then it collects all intersecting abstract values via the meet operator ⊓.
These intersections represent potential concrete input configurations where variations
on the value of i lead to changes of program outcome, from a bucket to another. We
return the maximum number of abstract values that intersects after projections:

Outcomes♮i(X
♮,B♮)

def
= max {|J| | J∈IntersectAll((Project♮i(X

♮
j))j≤n)} (4)

Note the use of max instead of sup as in the concrete counterpart (Eq. (3)) since the
number of intersecting abstract values is bounded by n, i.e., the number of output
buckets. The function IntersectAll takes as input an indexed set of abstract values
and returns the set of indices of abstract values that intersect together, defined as follows:

IntersectAll(X♮∈D♮n)
def
= {J | J⊆N∧∀j≤n,p≤n. j∈J∧p∈J ∧ X♮

j⊓X
♮
p}

Finding all the indices of intersecting abstract values is equivalent to find cliques
in a graph, where each node represents an abstract value and an edge exists be-
tween two nodes if and only if the corresponding abstract values intersect. Therefore,
IntersectAll can be efficiently implemented based on the graph algorithm by ?].

Similarly, we define Range♮i as the maximum length of the range of the extreme values
of the buckets represented by intersecting abstract values after projections. In such case,
we assume D♮ is equipped with an additional abstract operator Length♮∈D♮→I+∞≥0 ,
which returns the length of the given abstract element, otherwise +∞ if the abstract
element is unbounded or represents multiple variables.

Range♮i(X
♮,B♮)

def
= max {Length♮(K) |K∈I} (5)

where I = {⊔{B♮
j | j∈J} | J∈IntersectAll((Project♮i(X

♮
j))j≤n)}

In Appendix A.2, we prove that the abstract counterparts Range♮i and Outcomes♮i
are sound over-approximations of the concrete counterparts Rangei and Outcomesi.

Quantitative Input Usage Static Analysis 11

5 Experimental Results

The goal of this section is to highlight the potential of our static analysis for quantitative
input data usage. We implemented a proof-of-concept tool in Python 3 that employs the
Interproc4 abstract interpreter to perform the backward analysis. Then, we exploited
this tool to automatically derive a sound input data usage of three different scenarios.
More use cases are shown in the Appendix B. As each impact result must be interpreted
with respect to what the program computes, we analyze each scenario separately.

Growth in a Time of Debt. Reinhart and Rogoff article “Growth in a Time of Debt” [15]
proposed a correlation between high levels of public debt and low economic growth,
and was heavily cited to justify austerity measures around the world. One of the several
errors discovered in the article is the incorrect usage of the input value relative to
Norway’s economic growth in 1964. The data used in the article is publicly available
but not the spreadsheet file. We reconstructed this simplified example based on the
technical critique by Herndon et al. [12], and an online discussion5.

The program 1.1 below computes the cross-country mean growth for the public
debt-to-GDP 60−90% category, key point to the article’s conclusions. The input data
is the average growth rate for each country within this public dept-to-GDP category.
The problem with this computation is that Norway has only one observation in such
category, which alone could disrupt the mean computation among all the countries.
Indeed, the year that Norway appears in the 60−90% category achieved a growth rate
of 10.2%, while the average growth rate for the other countries is 2.7%. With such high
rate, the mean growth rate raised to 3.4%, altering the article’s conclusions.

1 def mean_growth_rate_60_90 (
2 portugal1 , portugal2 , portugal3 ,
3 norway1 ,
4 uk1 , uk2 , uk3 , uk4 ,
5 us1 , us2 , us3):
6 portugal_avg = (portugal1 + portugal2 + portugal3) / 3
7 norway_avg = norway1
8 uk_avg = (uk1 + uk2 + uk3 + uk4) / 4
9 us_avg = (us1 + us2 + us3) / 3

10 avg = (portugal_avg + norway_avg + uk_avg + us_avg) / 4

Listing 1.1: Program computing the mean growth rate in the 60−90% category.

We assume growth rate values between −20% and 20% for all countries, conse-
quentially, the output ranges are between these bounds as well. We instrumented the
output buckets to cover the full output space in buckets of size 1, i.e., {t≤avg<t+1 |
−20≤t≤20}. Results for both Outcomes and Range are shown in Table 2. The
analysis discovers that the Norway’s only observation for this category norway1 has
the biggest impact on the output, as perturbations on its value are capable of reaching
10 different outcomes (cf. column norway1), while the other countries only have 5,
2, and 3, respectively for Portugal, UK, and US. The same applies to Range as the
output buckets have size 1 and all the input perturbations are only capable of reaching
contiguous buckets. Hence, we obtain the same exact results.
4 https://github.com/jogiet/interproc
5 https://economics.stackexchange.com/q/18553

https://github.com/jogiet/interproc
https://economics.stackexchange.com/q/18553

12 Denis Mazzucato, Marco Campion, and Caterina Urban

Table 2: Quantitative input usage for the program 1.1 from Reinhart and Rogoff’s article.

Impact po
rt
ug
al
1

po
rt
ug
al
2

po
rt
ug
al
3

no
rw
ay
1

uk
1

uk
2

uk
3

uk
4

us
1

us
2

us
3

Outcomes 5 5 5 10 2 2 2 2 3 3 3
Range 5 5 5 10 2 2 2 2 3 3 3

Our analysis is able to discover the disproportionate impact of Norway’s only ob-
servation in the mean computation, which would have prevented one of the several
programming errors found in the article. From a review of the program 1.1, it is clear
that Norway’s only observation has a greater contribution to the computation, as it does
not need to be averaged with other observations first. However, such methodological
error is less evident when dealing with a higher number of input observations (1175
observations in the original work) and the computation is hidden behind a spreadsheet.

GPT-4 Turbo. The second use case we present is drawn from Sam Altman’s recent
OpenAI keynote in September 20236, where he presented the GPT-4 Turbo. This new
version of the GPT-4 language model brings the ability to write and interpret code
directly without the need of human interaction. Hence, as showcased in the keynote, the
user could prompt multiple information to the model, such as related to the organization
of a holiday trip with friends in Paris, and the model automatically generates the code
to compute the share of the total cost of the trip and run it in background. In this
environment, users are unable to directly view the code unless they access the backend
console. This limitation makes it challenging for them to evaluate whether the function
has been implemented correctly or not, assuming users have the capability to do so.

From the keynote, we extracted the function share_division which computes the
user’s share of the total cost of a holiday trip to Paris, given the total cost of the
Airbnb, the flight cost, and the number of friends going on the trip.

1 def share_division (
2 airbnb_total_cost_eur ,
3 flight_cost_usd ,
4 number_of_friends):
5 share_airbnb = airbnb_total_cost_eur / number_of_friends
6 usd_to_eur = 0.92
7 flight_cost_eur = flight_cost_usd * usd_to_eur
8 total_cost_eur = share_airbnb + flight_cost_eur

Listing 1.2: Program computing share division for holiday planning among friends.

Regarding the input bounds of share_division, users are willing to spend between
500 and 2000 for the Airbnb, between 50 and 1000 for the flight, and travel with between
2 and 10 friends. As a result, they expect their share, variable total_cost_eur, to
be between 90 and 1900. To compute the impact of the input variables we choose
the output buckets to cover the expected output space in buckets of size 100, i.e.,
{100t+90≤total_cost_eur<min{100(t+1)+90,1900}|0≤t≤19}. The findings are
6 https://www.youtube.com/live/U9mJuUkhUzk?si=HOzuH3-gr_kTdhCt&t=2330

https://www.youtube.com/live/U9mJuUkhUzk?si=HOzuH3-gr_kTdhCt&t=2330

Quantitative Input Usage Static Analysis 13

Table 3: Results of the quantitative analysis.

Impact airb
nb_t

otal
_cos

t_eu
r

flig
ht_c

ost_
usd

numb
er_o

f_fr
iend

s

Outcomes 10 17 9
Range 1099 1709 999

(a) Program 1.2 to compute the share division.

x y

50 10
499 99

(b) Program 1.3.

similar for both the Outcomes and Range analysis, see Table 3a. The input variable
flight_cost_usd has the biggest impact on the output, as perturbations on its value
are capable of reaching 17 different output buckets (resp. a range of 1709 output values),
while the other two, airbnb_total_cost_eur and number_of_friends, only reach
10 and 9 output buckets (resp. have ranges of size 1099 and 999), respectively. These
results confirm the user expectations about the proposed program from ChatGPT: the
flight cost yields the biggest impact as it cannot be shared among friends.

Termination Analysis. This use case comes from the termination category of the
software verification competition sv-comp7. Program 1.3 is adapted from the work
of Gopan and Reps [9, Fig. 1a]. Assuming both input positives, x,y≥0, this program
terminates in x+1 iterations if y>50, otherwise it terminates in x−2y+103 iterations.

1 def example(x, y):
2 counter = 0
3 while x >= 0:
4 if y <= 50:
5 x += 1
6 else
7 x -= 1
8 y += 1
9 counter += 1

Listing 1.3: Timing analysis.

We define counter as the output variable, with output buckets defined as {10k≤
counter<10(k+1) |0≤k<50} and {counter≥500}. These output buckets repre-
sent cumulative ranges of iterations required for termination. The analysis results are
illustrated in Table 3b, they show that the input variable x has the biggest impact. Mod-
ifying the value of x can result in the program terminating within any of the other 50
iteration ranges. On the other hand, perturbations on y can only result in the program
terminating within 10 different iteration ranges. Such difference is motivated by the fact
that y is only used to determine the number of iterations in the case where y is greater
than 50, otherwise it is not used at all. Therefore, two values of y, e.g., y0 and y1, only re-
sult in two different ranges of iterations required to make the program terminate if either
both of them are below 50 or y0<50∧y1≥50 or y0≥50∧y1<50, not in all the cases.

7 https://sv-comp.sosy-lab.org/

https://sv-comp.sosy-lab.org/

14 Denis Mazzucato, Marco Campion, and Caterina Urban

The given results can be interpreted as follows: the speed of termination of this loop
is highly dependent on the value of x, while y has a much smaller impact.

6 Conclusion

We presented an automated and sound analysis to statically quantify the usage of
input variables based on a given impact definition. Our research is inspired by the
works of Barowy et al. [1], which explores the data usage with a stochastic approach
for debugging spreadsheet applications, and Urban and Müller [16], who introduce
the qualitative property of “input data usage”. In our work, we further advanced their
work by considering quantitative properties of input data usage. While the qualitative
property provides insights into the usage or not of program inputs, our work offers
more flexibility providing a quantification of such a usage. We demonstrate potential
applications with a proof-of-concept tool against a set of use cases.

As a future work, we plan to develop a modular tool to support the analysis in a
solid and extensible way. We also plan to introduce heuristics able to automatically (or
iteratively) infer the output buckets, since the choice of the starting buckets is essential
to our quantitative analysis. Future directions could extend fairness certification studies
on neural network models [17, 14]. Our quantitative notion introduces a quantitative
fairness measure. Another promising direction is the exploration of new impact def-
initions capable of handling non-determinism at the transition system level. This could
leverage probabilistic abstract interpretation [7]. Recent developments in quantitative
information flow offer multiple ideas for novel impact definition: Zhang and Kaminski
[19] developed a calculus based on strongest-postcondition-style allowing quantitative
reasoning of information flow, and Henzinger et al. [11] generalized the hierarchy of safety
and liveness properties to quantitative safety and liveness. It could also be interesting to
exploit an impact definition to analyze the impact of abstract domains in static program
analyzers, e.g., by using pre-metrics as defined in [2, 3]. Developing new relational
abstract domains to discover specific non-linear variable relations could drastically
improve the analysis precision, additionally taking into account input distributions.
Further investigations of our analysis could also reveal new perspectives in the context of
timing side-channel attacks [18], broadening the practical applications of our research.

References

[1] D. W. Barowy, D. Gochev, and E. D. Berger. Checkcell: data debugging for
spreadsheets. OOPSLA 2014. https://doi.org/10.1145/2660193.2660207.

[2] M. Campion, M. Dalla Preda, and R. Giacobazzi. Partial (in)completeness in
abstract interpretation: limiting the imprecision in program analysis. POPL 2022,
. https://doi.org/10.1145/3498721.

[3] M. Campion, C. Urban, M. Dalla Preda, and R. Giacobazzi. A formal
framework to measure the incompleteness of abstract interpretations. SAS 2023,
. https://doi.org/10.1007/978-3-031-44245-2_7.

[4] H. Y. Chen, S. Flur, and S. Mukhopadhyay. Termination proofs for linear simple
loops. SAS 2012. https://doi.org/10.1007/978-3-642-33125-1_28.

[5] P. Cousot. Constructive design of a hierarchy of semantics of a tran-
sition system by abstract interpretation. Theor. Comput. Sci. 2002.
https://doi.org/10.1016/S0304-3975(00)00313-3.

https://doi.org/10.1145/2660193.2660207
https://doi.org/10.1145/2660193.2660207
https://doi.org/10.1145/3498721
https://doi.org/10.1145/3498721
https://doi.org/10.1007/978-3-031-44245-2_7
https://doi.org/10.1007/978-3-031-44245-2_7
https://doi.org/10.1007/978-3-642-33125-1_28
https://doi.org/10.1007/978-3-642-33125-1_28
https://doi.org/10.1016/S0304-3975(00)00313-3
https://doi.org/10.1016/S0304-3975(00)00313-3

Quantitative Input Usage Static Analysis 15

[6] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for
static analysis of programs by construction or approximation of fixpoints. POPL
1977. https://doi.org/10.1145/512950.512973.

[7] P. Cousot and M. Monerau. Probabilistic abstract interpretation. ESOP 2012.
https://doi.org/10.1007/978-3-642-28869-2_9.

[8] D. E. Denning. Cryptography and Data Security. Addison-Wesley, 1982.
[9] D. Gopan and T. W. Reps. Lookahead widening. CAV 2006.

https://doi.org/10.1007/11817963_41.
[10] J. W. Gray. Toward a mathematical foundation for information flow security.

IEEE Computer Society 1991. https://doi.org/10.1109/RISP.1991.130769.
[11] T. A. Henzinger, N. Mazzocchi, and N. E. Saraç. Quantitative safety and liveness.

FoSSaCS 2023. https://doi.org/10.1007/978-3-031-30829-1_17.
[12] T. Herndon, M. Ash, and R. Pollin. Does high public debt consistently stifle

economic growth? a critique of reinhart and rogoff. Cambridge Journal of
Economics 2014. https://doi.org/10.1093/cje/bet075.

[13] B. Köpf and A. Rybalchenko. Automation of quantitative information-flow
analysis. SFM 2013. https://doi.org/10.1007/978-3-642-38874-3_1.

[14] D. Mazzucato and C. Urban. Reduced products of abstract do-
mains for fairness certification of neural networks. SAS 2021.
https://doi.org/10.1007/978-3-030-88806-0_15.

[15] C. M. Reinhart and K. S. Rogoff. Growth in a time of debt. American Economic
Review 2010. https://doi.org/10.1257/AER.100.2.573.

[16] C. Urban and P. Müller. An abstract interpretation framework for input data
usage. ESOP 2018. https://doi.org/10.1007/978-3-319-89884-1_24.

[17] C. Urban, M. Christakis, V. Wüstholz, and F. Zhang. Perfectly
parallel fairness certification of neural networks. OOPSLA 2020.
https://doi.org/10.1145/3428253.

[18] W. H. Wong. Timing attacks on RSA: revealing your secrets through the
fourth dimension. ACM Crossroads 2005. https://doi.org/10.1145/1144396.
1144401.

[19] L. Zhang and B. L. Kaminski. Quantitative strongest post: a calculus
for reasoning about the flow of quantitative information. OOPSLA 2022.
https://doi.org/10.1145/3527331.

https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/512950.512973
https://doi.org/10.1007/978-3-642-28869-2_9
https://doi.org/10.1007/978-3-642-28869-2_9
https://doi.org/10.1007/11817963_41
https://doi.org/10.1007/11817963_41
https://doi.org/10.1109/RISP.1991.130769
https://doi.org/10.1109/RISP.1991.130769
https://doi.org/10.1007/978-3-031-30829-1_17
https://doi.org/10.1007/978-3-031-30829-1_17
https://doi.org/10.1093/cje/bet075
https://doi.org/10.1093/cje/bet075
https://doi.org/10.1007/978-3-642-38874-3_1
https://doi.org/10.1007/978-3-642-38874-3_1
https://doi.org/10.1007/978-3-030-88806-0_15
https://doi.org/10.1007/978-3-030-88806-0_15
https://doi.org/10.1257/AER.100.2.573
https://doi.org/10.1257/AER.100.2.573
https://doi.org/10.1007/978-3-319-89884-1_24
https://doi.org/10.1007/978-3-319-89884-1_24
https://doi.org/10.1145/3428253
https://doi.org/10.1145/3428253
https://doi.org/10.1145/1144396.1144401
https://doi.org/10.1145/1144396.1144401
https://doi.org/10.1145/1144396.1144401
https://doi.org/10.1145/1144396.1144401
https://doi.org/10.1145/3527331
https://doi.org/10.1145/3527331

16 Denis Mazzucato, Marco Campion, and Caterina Urban

A Proofs and Additional Definitions

This section contains the proofs of theorems, lemmas, and additional definitions of the
material presented in Section 4.

A.1 Abstract semantics

When possible, we omit the program letter P in the notation.

Proof (Lemma (1), Sound Over-Approximation for Λ×). For all output bucketsB♮∈D♮n,
and a family of semantics Λ←, we prove that the semantics Λ× is a sound over-
approximation of the dependency semantics Λ⇝ reduced to

⋃
j≤nγ

♮(B♮
j).

γ×(Λ×)B♮ by definition of γ×

=
⋃
j≤n

{⟨s0,sω⟩|s0∈γ♮((Λ×(B♮))j)∧sω∈γ♮(B♮
j)} by definition of Λ×

=
⋃
j≤n

{⟨s0,sω⟩|s0∈γ♮(((Λ←(B♮
t))t≤n)j)∧sω∈γ♮(B♮

j)} by indexed set property

=
⋃
j≤n

{⟨s0,sω⟩|s0∈γ♮(Λ←(B♮
j))∧sω∈γ♮(B♮

j)} by definition of γ←

=
⋃
j≤n

γ←(Λ←)B♮
j

From Def. (1), we obtain that ∀j≤n. Λ⇝|γ♮(B
♮
j)
⊆γ←(Λ←(B♮

j)). Thus, by mono-
tonicity of the union operator over set inclusion, it holds that

⋃
j≤nΛ

⇝|γ♮(B
♮
j)
⊆⋃

j≤nγ
←(Λ←(B♮

j)). We conclude by:⋃
j≤n

Λ⇝|γ♮(B
♮
j)
=

⋃
j≤n

{⟨s0,sω⟩∈Λ⇝ |sω∈γ♮(B♮
j)} by definition of Λ⇝|X

={⟨s0,sω⟩∈Λ⇝ |sω∈
⋃
j≤n

γ♮(B♮
j)} by set definition

=Λ⇝|⋃
j≤nγ

♮(B
♮
j)

by definition of Λ⇝|X
⊓⊔

Proof (Λ× is a Sound Over-Approximation of Λ⇝ without reduction). For all output
buckets B♮ ∈ D♮n covering the whole output space (cf. Def. (2)), and a family of
semantics Λ←, we prove that the semantics Λ× is a sound over-approximation of the
dependency semantics Λ⇝ without reduction.

Λ⇝={⟨s0,sω⟩∈Λ⇝ |sω∈Ω⇝} by set definition

⊆{⟨s0,sω⟩∈Λ⇝ |sω∈
⋃
j≤n

γ♮(B♮
j)} by covering, Def. (2)

=Λ⇝|⋃
j≤nγ

♮(B
♮
j)

by definition of Λ⇝|X
⊆γ×(Λ×)B♮ by Lemma (1)

⊓⊔

Quantitative Input Usage Static Analysis 17

Proof (Theorem (1), Soundness). Whenever,

(i) Λ← is sound with respect to Λ⇝, cf. Def. (1), and
(ii) B♮ covers the whole output space, cf. Def. (2), and
(iii) Impact♮i is a sound implementation of Impacti, cf. Def. (3),

we prove that Impact♮i(Λ×JPKB♮,B♮)=k′ ∧ k′≤k ⇒ P |=B≤k
i .

k≥k′=Impact♮i(Λ
×JPKB♮,B♮) by hypothesis

≥Impacti(γ
×(Λ×JPKB♮)) by (iii)

By (i), (ii), and Lemma (1) we obtain that Λ⇝JPK⊆γ×(Λ×JPKB♮). Thus, from the
monotonicity of Impacti it follows that Impacti(Λ

⇝JPK)≤Impacti(γ
×(Λ×JPKB♮)).

It follows that Impacti(Λ
⇝JPK)≤k′. Therefore, by definition of B≤k

i , cf. Eq. (2), it
holds thatΛ⇝JPK∈B≤k

i . From the definition of the collecting semanticsΛCJPK, it follows
that {Λ⇝JPK}⊆B≤k

i . We conclude that P |=B≤k
i by Eq. (1) applied to B≤k

i as F . ⊓⊔

A.2 Abstract Impact Definitions

In order to prove that the impact implementations (cf. Eq. (5) and Eq. (4)) are sound,
we require the output buckets B♮ to be compatible with the output descriptor ϕ.
Intuitively, compatibility to ensure that counting buckets in the abstract instead of
output values does not miss any concrete output value. This condition is necessary
to prove that actual impact implementations is sound, cf. Def. (3).

Definition 4 (Compatibility). Given the output buckets B♮∈D♮n and the output
descriptor ϕ∈Σ⊥→I±∞, we say that B♮ is compatible with ϕ, whenever it holds:

∀sj∈γ♮(B♮
j),sp∈γ♮(B♮

p). ϕ(sj)≠ϕ(sp) ⇒ B♮
j ≠B♮

p

Furthermore, we assume a soundness condition on the project away operator to
ensure that Project♮i(s♮) represents all the concrete states result of perturbations on
the variable i from a state represented by s♮.

Definition 5 (Soundness of Project♮i). Given an abstract value s♮ ∈D♮, for all
s ∈ γ♮(s♮), whenever it exists a state s′ such that s =∆\{i} s

′, then it holds that
s′∈γ♮(Project♮i(s

♮)).

The above condition ensures that no intersection is missed, potentially spurious ones
are allowed by the abstraction.

Before proceeding to prove that Outcomes♮i is a sound implementation of Outcomesi,
we show that Outcomesi is bounded by the number of buckets when the conditions
of covering and compatibility hold for the output buckets.

Lemma 2 (Outcomesi Upper Bound). When the buckets B♮ are compatible, cf.
Def. (4), and cover the whole output space, cf. Def. (2), then Outcomesi(Λ⇝)≤n.

Proof. We notice that Outcomesi(Λ⇝)≤|{ϕ(sω) |sω∈Ω⇝}| as the set of outputs for
the dependency semantics is always bigger than any set of outputs. It is easy to note that
the cardinality of {ϕ(sω) |sω∈Ω⇝} is upper bounded by n since any two output states
sω,s

′
ω that produce different output readings, i.e., ϕ(sω) ≠ϕ(s′ω), belong to different

buckets, i.e., sω∈γ♮(B♮
j)∧s′ω∈γ♮(B♮

p)∧B♮
j ≠B♮

p (by compatibility, cf. Def. (4)). Where
the existence of the two buckets is guaranteed by covering (cf. Def. (2)). Therefore, there
are at most n different output readings. ⊓⊔

18 Denis Mazzucato, Marco Campion, and Caterina Urban

Lemma 3 (Outcomes♮i is a Sound Implementation of Outcomesi). Let i∈V
the input variable of interest, D♮ the abstract domain, Λ← the family of semantics, and
B♮∈D♮n the starting output buckets. Whenever the following conditions hold:

(i) Λ← is sound with respect to Λ⇝, cf. Def. (1), and
(ii) B♮ covers the whole output space, cf. Def. (2),
(iii) B♮ is compatible with ϕ, cf. Def. (4), and
(iv) Project♮i eliminates the variable i from the abstract value, cf. Def. (5),

we show that Outcomes♮i is a sound implementation of Outcomesi.

Proof. From (i), (ii), and the fact that Outcomesi is monotone, we obtain that
Outcomesi(Λ⇝)≤Outcomesi(γ×(Λ×)B♮). By definitions of Outcomes♮i, cf. Eq. (4),
and Outcomesi, cf. Eq. (3), we need to show that:

Outcomesi(Λ⇝)= sup
s∈Σ|∆

| {ϕ(sω) |⟨s0,sω⟩∈Λ⇝∧s0=∆\{i}s} |

≤

Outcomes♮i(X
♮,B♮)=max {|J| |J∈IntersectAll((Project♮i(X

♮
j))j≤n)}

where X♮=Λ×(B♮). First, from (iii) and Lemma (2) we know that Outcomesi is
limited by the number of buckets n. Notably, Outcomesi cannot be unbounded, but
it has to be a number, at most n. Thus, it exists an initial state s∈Σ|∆ such that
Outcomesi(Λ⇝)= |Ss|, where Ss={ϕ(sω) |⟨s0,sω⟩∈Λ⇝∧s0=∆\{i}s}. We conclude
in case this cardinality is 0 as anything returned by Outcomes♮i would be greater. In the
other case, by covering (cf. (ii)), for all dependencies in Ss it exists a bucket B♮

j such
that s′ω∈γ♮(B♮

j).
Furthermore, by compatibility (cf. (iii)), for any pair of dependencies ⟨s0,sω⟩,⟨s′0,s′ω⟩∈

Ss leading to two different outcomes ϕ(sω)≠ϕ(s′ω), we have two different buckets B♮
j,B

♮
p

such that sω ∈ γ♮(B♮
j) and s′ω ∈ γ♮(B♮

p). Note that, by definition of Ss it holds that
s0=∆\{i}s=∆\{i}s

′
0, by transitivity s0=∆\{i}s

′
0.

Let us call X♮
j and X♮

p the corresponding abstract values from the backward analysis
applied to the buckets B♮

j and B♮
p, respectively. From the fact that Λ← is sound with

respect to Λ⇝, cf. (i), it holds that s0 ∈ γ♮(X♮
j) and s′0 ∈ γ♮(X♮

p). By the soundness
condition of Project♮i, cf. (iv), we obtain that both states s0 and s′0 belong to each
other projection, i.e., s0∈γ♮(Project♮i(X

♮
j)) and s′0∈γ♮(Project♮i(X

♮
p)).

Finally, the function IntersectAll applied to the projected preconditions X♮
j and

X♮
p finds an intersection between the indices j and p as Project♮i(X

♮
j)⊓Project♮i(X♮

p)
definitely holds since they share concrete states. Therefore, whenever it exists an in-
tersection in the concrete, the two indices representing the respective precondition
discovered by the backward analysis belong to the set J in Eq. (4). As a consequence,
the maximum cardinality of J takes into account all the possible intersections in Ss,
hence Outcomes♮i(X

♮,B♮)≥|Ss|. ⊓⊔

The approach is based on a similar reasoning for the abstract range implemen-
tation Range♮i with the additional soundness condition for Length♮. Such condi-
tion ensures that the abstract length is always greater than the concrete one, i.e.,
Length♮(s♮)≥Length({ϕ(s) |s∈γ♮(s♮)}).

Quantitative Input Usage Static Analysis 19

B Full Experimental Overview

As continuation of Section 5, we present a full experimental overview of our quantitative
framework with additional use cases. First, we present the analysis for the program in
Figure 1a described in Section 2. Then, we analyze a program extracted from the work
of Barowy et al. [1] on Excel spreadsheets, regarding the computation of a student final
grade. Afterwards, we analyze programs from the literature on termination analysis
as SV-Comp, with two examples proposed by Chen et al. [4]. Finally, we analyze a
synthetic program with loops (with non-linear invariants) to compute a linear expression.
The experimental setup is the same as for the experiments presented in Section 5.

B.1 Landing Risk System

We start with the program described in Figure 1a, computing the landing risk of an
aircraft, given the angle of approach and the aircraft speed. We are interested in studing
what are the differences in their usage with our quantitative framework.

1 def landing_risk (angle , speed):
2 landing_coeff = abs(angle) + speed
3 if landing_coeff < 2 then
4 risk = 0
5 else if landing_coeff > 5 then
6 risk = 3
7 else
8 risk = floor(landing_coeff - 2)

Listing 1.4: Program computing the landing risk of an aircraft.

We apply our quantitative framework to the landing-risk function with the input
bounds of Figure 1a, (angle=−1∨angle=4)∧(speed=1∨speed=2∨speed=3).
Each output risk corresponds to an output bucket, {risk=n |n∈{0,1,2,3}}. The
analysis results are presented in Table 4 and validate the manual computations pre-
sented in the overview. Variations in value of the input angle only result in a single
change to the output, while variations in the speed input can lead to two output
modifications (see column Outcomes). In terms of the length of ranges (column
Range), modifications to the angle input cover the entire spectrum of output values,
whereas to the speed input only span a range of 2.

One could also be interested in the input bounds to cover the full continuous input
space for the aircraft angle of approach, where (−4≤angle≤4)∧(1≤speed≤3), see
Figure 2. In this instance, starting from the same output buckets, the precision of the
abstraction drastically decreases as it only employs convex abstract domains and thus
not able to capture the full input space symmetric characteristics around 0. Indeed, the
analysis result, Figure 3e, is unable to reveal any difference in the input usage of both
input variables. The abstract backward computation of each bucket results in an abstract
region that intersects with any other (after projections). As a consequence, Outcomes
and Range are unable to provide any meaningful information, second row of Table 4.

A possible approach to overcome the non-convexity of the input space is to split
the input space into two subspaces (as a bounded set of disjunctive polyhedra),
−4 ≤ angle ≤ 0 and 0 ≤ angle ≤ 4, third and fourth row of Table 4. In the first
subset −4≤angle≤0, we are able to perfectly captures the input regions that lead

20 Denis Mazzucato, Marco Campion, and Caterina Urban

an
gl
e

speed

-4 -3 -2 -1 0 1 2 3 4

1

2

3

3

3

3

2

3

3

1

2

3

0

1

2

0

0

1

0

1

2

1

2

3

2

3

3

3

3

3

Fig. 2: Input space composition with continuous input values, where −4≤angle≤4
and 1≤speed≤3
speed

−4 0 4

1

2

3

(a) {risk=3}

−4 0 4

(b) {risk=2}

−4 0 4

(c) {risk=1}

an
gl
e

−4 0 4

(d) {risk=0}

(e) Analysis result using the polyhedra domain.
speed

−4 0 4

1

2

3

(f) {risk=3}

−4 0 4

(g) {risk=2}

−4 0 4

(h) {risk=1}

an
gl
e

−4 0 4

(i) {risk=0}

(j) Analysis result after splitting the input space into two subspaces around angle=0.

Fig. 3: Analysis results using Interproc.

to each output bucket with our abstract analyzer. Therefore, we are able to recover the
information that the input configurations from the bucket {risk=3} do not intersect
with the ones from the bucket {risk=0} after projecting away the axis speed. As
the end, our analysis notices that variations in the value of the input angle results in
three possible output values, while variations in the speed input lead to two. Similarly,
regarding the range of values, variations in the angle input cover the entire spectrum of
output values, whereas to the speed input only span a range of 2 since it exists no input

Quantitative Input Usage Static Analysis 21

value such that modifications in the speed value could obtain a range of output values
bigger than 2. The same reasoning applies to the other subspace with 0≤angle≤4.

Input Bounds Buckets Outcomes Range
angle speed angle speed

angle=−1∨angle=4

1≤speed≤3 {risk=n |n∈{0,1,2,3}}

1 2 3 2
−4≤angle≤4 3 3 3 3
−4≤angle≤0 3 2 3 2
0≤angle≤4 3 2 3 2

Table 4: Quantitative input usage for the landing risk program 1.4.

We present the program 1.5, computing the weighted average for the final grade of
a student given the grades of the homework assignments, quizzes and exams. This use
case is extracted from an Excel spreadsheet found in the CheckCell benchmark suite [1].

1 def final_grade (
2 HW1 , HW2 , HW3 , HW4 ,
3 QZ1 , QZ2 , QZ3 , QZ4 ,
4 EX1 , EX2):
5 HW_coeff = 0.2
6 QZ_coeff = 0.3
7 EX_coeff = 0.5
8 HW_avg = HW_coeff * (HW1 + HW2 + HW3 + HW4) / 4
9 QZ_avg = QZ_coeff * (QZ1 + QZ2 + QZ3 + QZ4) / 4

10 EX_avg = EX_coeff * (EX1 + EX2) / 2
11 avg = HW_avg + QZ_avg + EX_avg

Listing 1.5: Program computing the landing risk of an aircraft.

In the original work, Barowy et al. [1] proposed a stochastic analysis to discover
possible transposition errors in this spreadsheet function, errors where digits are
swapped within cells. The student grades are provided in advance for this analysis,
[84,77,92,93,87,90,85,91,84,78]. We can encode such property by defining the input
bounds as vi=xi,0xi,1∨vi=xi,1xi,0, where vi is the input variable and xi,0 and xi,1 are
the two digits of the value of vi. Furthermore, a student is considered to pass the course if
the final grade is greater than or equal to 85. The output buckets to encode this property
are {avg≥85} and {avg<85}, respectively the student passes or fails the course.

In the encoding presented above, the analysis result shows that (single) transposition
errors could affect the student’s graduation if they occur in the homework assignments
HW1, HW2, or QZ1. Note that performing the Range analysis would have no meaning
as output buckets are not limited in size.

Furthermore, additional information on the flow of information can be obtained by
considering different output buckets. For instance, consider the output buckets to convert
grades from [0,100] to [0,10]: {0≤avg<15},{15≤avg<25},...,{95≤avg≤100}, one
bucket each final grade rounded up. The analysis shows that (single) transposition errors
are able to affect, at most, one grade point in the final grade for homework assignments
and quizzes. Instead, errors in exam grades are far more impactful, as they can affect up
to 3 grade points in the final grade. As one can notice, with the current input bounds,

22 Denis Mazzucato, Marco Campion, and Caterina Urban

we allow only two values for each input variable, thus one expects a maximum possible
influence of one point, but instead the analysis returns up to 3. This imprecision is caused
again by the non-convex input space, therefore the abstraction considers vi=xi,0xi,1∨
vi=xi,1xi,0 as a convex region, min{xi,0xi,1,xi,1xi,0}≤vi≤max{xi,0xi,1,xi,1xi,0}.

The last experiment on this use case is to consider the input bounds to cover the full
input space for the student grades, 0≤vi≤100, and the output buckets to encode the
student final grade rounded up. Surprisingly, even with the larger input bounds, the
analysis results are identical to the previous experiments in terms of the Outcomes
analysis, meaning that each homework assignment and quiz can alter one grade only,
compared to quizzes which they alter three. The Range analysis shows that changes
in the homework assignments and quizzes can affect the final grade up to 24 units,
while changes in the exam grades can affect the final grade up to 44 units (considering
the final grade units between 0 and 100).

The takeaway of the analysis results is that the final grade is partially affected by
homework assignments and quizzes, while exam grades are far more impactful.

B.2 Termination

This use case comes from the software verification competition SV-Comp8, where
the goal is to verify the termination of a program. Program termination_a 1.6 and
termination_b 1.7 have originally been proposed by Chen et al. [4], respectively these
are Example (2.16) and Example (2.21) of such work.

1 def termination_a (x, y):
2 while x > 0:
3 x = y
4 y = y - 1
5 result = x + y
6 return result

Listing 1.6: Program Ex2.16 from software verification competition SV-Comp.

Program termination_a returns the value of y whenever x = 0, otherwise it
returns −1. We assume both input variables are positive up to 1000, 0≤x≤1000 and
0≤y≤1000. Regarding such a function, it is interesting to study its behaviors around 0,
thus the output bucket are {result < 0},{result=0}, and {result > 0}. With the
above parameters, the analysis Outcomes returns 1 for both input variables. Such result
is not too interesting, but by looking at the internal stages of the analysis we notice that
perturbations on the value of the variable x may be able to produce from an output
negative value to zero or a positive one (and viceversa). While perturbations on the
value of the variable y are only able to produce from zero to positive (and viceversa).

As a second experiments, we consider the buckets from -1 to 19, {result=n |−1≤
n≤19}, and we notice that the analysis Outcomes returns 1 for the input variable
x and 19 for y, meaning that the variable y is able to affect far more output values
than x. However, combing the results of the previous experiment, only the variable
x is able to affect the negative output values.

1 def termination_b (x, y):
2 while x > 0:

8 https://sv-comp.sosy-lab.org/

https://sv-comp.sosy-lab.org/

Quantitative Input Usage Static Analysis 23

3 x = x + y
4 y = -y - 1
5 result = x + y
6 return result

Listing 1.7: Program Ex2.21 from software verification competition SV-Comp.

This second program termination_b returns the value of y whenever x=0, oth-
erwise it returns −1. Unfortunately, the backward analysis does not capture a precise
loop invariant, thus both the analyses, Outcomes and Range, are inconclusive in
such case. The key takeaway is that our analysis is highly dependent on the precision
of the underlying backward analysis.

As a conclusion, even though SV-Comp proposes challenging benchmarks for ter-
mination, reachability, and safety analyses, they are not amenable for information flow
analysis. Most of the time, their examples involve loops with complex invariant, but
as input-output relations, the variables involved are just zeroed out after the loop.
Drawing examples from their dataset is less appealing to our work.

B.3 Linear Loops

The last use case, program linear_expression depicted in 1.8, computes the linear
expression (5x+2y) via repeated additions. Note that the invariant of the loop is indeed
non-linear (result=i∗x and result=result′+i∗y respectively for the first and
second loop, where result′ is the value of result before entering the second loop),
but the loop is executed a fixed number of times, thus the analysis is able to compute
the exact output buckets through loop unrolling.

1 def linear_expression (x, y):
2 result = 0
3 i = 0
4 while i < 5:
5 result = result + x
6 i += 1
7 i = 0
8 while i < 2:
9 result = result + y

10 i += 1

Listing 1.8: Program computing the linear expression (5x+2y) via repeated additions.

For the analysis the input bounds are 0≤x≤1000 and 0≤y≤1000, while the output
buckets are {n∗100≤result<(n+1)∗100 |n≤70}. Both analyses, Outcomes and
Range, show that x has an impact 5

2 times bigger than y on the output. Thus, the
impact quantity provides insight about the termination speed. Indeed, the loop for x
is executed 5 times, while the one for y only 2.

	Quantitative Input Usage Static Analysis

