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Abstract: This paper proposes the method pELECTRE Tri, a novel probabilistic Multi-Criteria De-
cision Making (MCDM) method using the traditional ELECTRE Tri, probability distribution, and
Monte Carlo simulation to support informed decision-making in complex and uncertain decision
environments. The proposed method is illustrated through a case study involving the renovation of
three social housing buildings. The paper provides new insights into the application of probabilistic
sorting MCDM in the context of energy efficiency in buildings and highlights the benefits of using
probabilities rather than crisp values to categorize alternatives enabling stakeholders to make better
use of available resources, especially when dealing with a large dataset of energy measures with
different features. The methodology implemented in Python (DOI: 10.5281/zenodo.7967655) is
available as an open source.

Keywords: multi-criteria decision making; ELECTRE Tri; energy retrofitting; sustainability

1. Introduction

Most of the energy in the building sector is consumed by existing buildings, while
only 1–3% of existing buildings are replaced by new buildings annually [1,2]. According
to the International Energy Agency, the building sector is a highly cost-effective area for
reducing energy consumption. As part of the efforts to decrease energy usage and carbon
dioxide emissions, 25 policy recommendations have been published focusing on energy
efficiency. If these recommendations are adopted globally, it could result in annual savings
of 7.6 giga tons of carbon dioxide emissions and 1950 million tons of the oil equivalent in
annual energy consumption by the year 2030 [3,4].

Building retrofitting is a process which includes the removal, installation, replacement,
and rearrangement of components that the existing building did not possess when con-
structed initially [5]. Energy use can be reduced significantly in existing buildings through
proper retrofitting, ranging from 50% to 85% [6–10]. Building retrofit evaluations are chal-
lenging to initiate because the building and its environment are complex systems with
multiple criteria to consider. These criteria are related to economic, technical, ecological,
social, comfort, and aesthetical aspects in which all subsystems can influence overall energy
efficiency and interdependence between subsystems, which plays a significant role [11].

Energy retrofitting typically reduces the energy consumption of a building through
energy efficiency measures such as improved thermal insulation, thermal load reduction,
solar shading, the replacement of inefficient equipment, and the implementation of re-
newable energy technologies. Building energy retrofitting benefits the environment, the
economy, and the society. Environmental benefits include reduced greenhouse emissions,
social benefits include improved occupant health and comfort, and economic benefits can
be a cost-effective way of increasing the asset value of an existing building rather than
constructing a new building. Existing building retrofitting presents numerous challenges
and opportunities. A key challenge is the presence of numerous uncertainties, including
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climate change, service change, human behavior, and government policy change, all of
which have a direct impact on the choice of retrofit technologies and the project outcome.
Other difficulties may include financial constraints and barriers, perceived long payback
periods, and operational interruptions. Buildings’ subsystems are highly interdependent.
On a technical level, different retrofit measures may have varying effects on the associated
building subsystems. The quantitative and qualitative nature of various criteria adds to the
complexity of the analysis [12–15]. There are trade-offs between retrofitting project benefit
categories due to the diverse interests and goals of stakeholders. For example, reducing
life-cycle carbon emissions may be the priority of the local government but not the interest
of the other stakeholders. When discussing the effectiveness of a retrofit intervention,
improving the occupant’s comfort, specifically thermal, visual, and acoustic comforts, is
frequently an issue. As a result, when discussing building energy retrofits, it is necessary to
consider the trade-offs between these objectives in terms of embodied emissions, opera-
tional emissions, occupant comfort, and investment costs [16–20]. The energy retrofitting
of a residential building in Orlando, USA was carried out with the help of several energy
efficiency measures and the results indicated an annual energy saving of up to 29% [21]. In
a case study conducted in Australia to convert an existing residential house to a net zero
energy house, the results indicated a 50% increase in the thermal efficiency [22].

The multi-criteria decision making (MCDM) approach is gaining popularity in energy
retrofit decision processes because of its adaptability and potential to reach a tradeoff
among various conflicting criteria and to foster communication among stakeholders [23].
An important challenge is to deal with the probabilistic nature of much data considered in
the decision process.

Section 2 provides a review of the literature on the use of MCDM methods in decision-
making problems in energy retrofitting of existing buildings and shows the necessity of
using probabilistic values in MCDM. Section 3 describes the methodology used to introduce
the probabilistic ELECTRE Tri approach. Section 4 illustrates the implementation of the
methodology in a real-world case study of a social housing project [24]. Section 5 discusses
the results of using the probabilistic ELECTRE Tri method to categorize various energy
alternatives in terms of probabilities. Finally, the paper ends with conclusions.

2. Literature Review

Multi-criteria decision making is a subfield of operational research that is used to aid
decision making in complex scenarios with opposing and conflicting criteria [25–27]. It
enables the systematic integration of both quantitative and qualitative analyses to attain
informed decisions [28]. When different MCDM methods are applied to the same problem,
they produce different results because they deal differently with performance measures
and criteria weights. Furthermore, in MCDM problems, the best compromise solution is
recommended based on the information available in the given decision situation, rather
than the “true” result, as some engineering methods would provide [29,30].

During the last few decades, several new types of MCDM have been developed and
the maturity of the existing ones has improved, thus increasing their application to real-
world problems. The main differences between these methods are related to the complexity
of the problems that can be formulated and solved, the weighting methods of the criteria,
the representation of thresholds, the possibility of uncertain data, and finally, the type of
data aggregation [31,32]. MCDM shares a number of fundamental principles, which include
outlining a set of actions aimed at addressing the problem at hand, establishing at least
two different criteria to evaluate each action, the use of thresholds, and having a decision
maker responsible for making the final decision [33]. Decisions made through MCDM are
justifiable and clear because they are documented and traceable due to them being one of
the widely used techniques to support sustainability assessment in the context of energy
systems. The ability to consider multiple criteria and objectives at once make MCDM
methods well accepted in the domain of energy retrofitting decision processes [34–36]. The
ideal solution is a trade-off between a variety of energy and non-energy factors such as
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economic, environmental, technical, social, and regulatory factors, among others. The social
factors of a sustainable building are the most overlooked, though they are occasionally
investigated. However, some studies mentioned building characteristics that promote social
sustainability [37,38]. It is not expected of a building to exhibit the best environmental,
economic, and social performance at the same time, as these are often contradictory. As a
result, balancing the impacts on these dimensions over its entire life cycle is a critical factor
in achieving sustainable buildings. Sustainability assessments are designed to collect and
disseminate information to help with decision-making [39].

The application of the MCDM approach to energy building renovation has advantages
in comparison to the traditional single criterion analysis method because it can give the
comprehensive score/ranking of the alternatives under the effect of various multiple crite-
ria, whereas the single criterion analysis is deemed insufficient [40,41]. The stakeholders
are likely to turn to intuition in the event of a lack of well-defined practices in the use of
decision-making tools [42]. MCDM methods decompose the problem of decision making
into steps, compare the relative importance of the criteria, and select the optimal alternative
from a set of alternatives in a fuzzy, uncertain, and risky environment [43]. The following
steps can be used to describe decision-making [44]: problem identification, goal and objec-
tive outlining, criteria establishment, alternative identification, decision-making method
selection, criterion assessment of alternatives, review, and outcome validation.

The existing MCDM approaches can be classified into two main school of thoughts [45,46]:

- aggregation methods or the American school of thought;
- outranking methods or the French school of thought.

2.1. Aggregation Methods

In the aggregation method, the view of the decision-maker is disaggregated in the
sense that the decision-maker is assumed to have a complete preference system. This
preference system allows them to express their preferences on all aspects of the decision
problem and it can be derived by asking the decision-maker relevant questions.

The aggregation methods use a functional approach that base their methods on the use
of value or usability. These approaches typically ignore the possibility of data inaccuracies
or uncertainty, as well as decision-maker preferences. This set of methods is closely related
to an operational approach that employs a single criterion for synthesis. The primary
methods include the Multi-Attribute Value/Utility Theory (MAUT), Analytic Hierarchy
Process (AHP), Analytic Network Process (ANP), Simple Multi-Attribute Rating Technique
(SMART), Utility Additive (UTA), Measuring Attractiveness by a Categorical Based Evalu-
ation Technique (MACBETH), and Technique for Order Preferences by Similarity to Ideal
(TOPSIS) [47].

The MAUT method is based on the fundamental assumption that a single usability
function, which takes into account all relevant criteria, can effectively capture the decision-
maker’s preferences. The MAUT aggregation method was used to evaluate five different
energy production alternatives [48]. The method of the AHP is considered the most well-
known and widely used functional method within the aggregation methods. The AHP
enables decision-makers to prioritize their decision-making problems, whereas the ANP
is a more complex variation that allows for the construction of a network model with
links between criteria, variants, and feedback. The AHP is a compensatory method in
which a high score on one criterion can compensate for a low score on another criterion.
In the energy sector, the method of AHP is widely used. The AHP was used to propose
an energy efficiency rating system based on criteria for existing buildings in Egypt [49].
The AHP was also used to show how experts prioritize various factors and contexts in
their decisions to implement energy efficiency retrofits in the United States [50]. Addi-
tionally, the AHP technique was used to select the most suited scenario for electricity
generation from four scenarios [51]. The AHP was also used to rank assessment themes
and identify the stakeholders’ priorities in Malaysia’s refurbishment building assessment
scheme [52]. In the SMART, the decision-maker uses a value function to mathematically



Energies 2023, 16, 5296 4 of 25

convert criteria values to a common internal scale. The SMART was used to determine
decision-makers preferences for subjective criteria related to the design of sustainable and
resilient buildings [53]. The UTA method extracts the decision-makers’ preferences from
a reference set of variants. The MACBETH compares individual variants in a pairwise
comparison matrix and aggregates criterion preferences as a weighted average using qual-
itative evaluations. The fuzzy MACBETH model was used to explore the inefficiencies
and uncertainties related with South European solid waste management systems [54]. The
TOPSIS method is constructed on the assumption that the positive ideal alternatives have
the best level for all the criteria values and the negative ideal alternatives have the worst
level for the criteria values. In a geometrical sense, the optimal alternative should have the
shortest distance from the positive ideal solution while having the longest distance from
the negative ideal solution. Each criterion is expected to have an increasing or decreasing
monotonically utility, making it relatively easy to determine the positive ideal and negative
ideal solutions [55]. The TOPSIS was used to propose a novel approach for benchmarking
building energy performance using a number of criteria including energy consumption,
indoor comfort, and environmental impact [56]. A combination of the TOPSIS and pairwise
comparison method was used to rank and select the best renovation option for a given
building [57]. The TOPSIS and AHP were used to determine the optimum energy recovery
technologies based on financial, environmental, and technical criteria [58].

2.2. Outranking Methods

In the outranking method, the solution is closer to the human way of thinking. The
basic assumption is that the decision-maker explores the assertion that “alternative i is at
least as good as alternative k”, and the only pre-existing preferences they have is an idea of
the relative importance of the criteria.

The outranking methods employ a relational model that makes use of the outranking
relation. This relationship involves comparing pairs of decision options and determining
whether one option significantly outperforms the other. The Preference Ranking Orga-
nization Method for Enrichment Evaluations (PROMETHEE) and ELimination et Choix
Traduisant la REalité (ELECTRE) methods are two prominent techniques [47].

The PROMETHEE method was first introduced by Brans as an outranking method
to rank and choose from a limited set of alternatives. Brans and Vincke further expanded
the original method. A finite set of predetermined alternatives is evaluated using multiple
criteria, with each criterion assigned a weight and a suitable preference function selected.
The preference function expresses the degree of preference for different evaluations [59].
Six methods, each with a specific purpose, have been developed within the PROMETHEE
family to solve MCDM problems. PROMETHEE I is intended for partial ranking of alterna-
tives, whereas PROMETHEE II is intended for full ranking. PROMETHEE III improves
indifferences by allowing them to rank alternatives based on overlapping intervals com-
puted from interval flows. PROMETHEE IV is used to rank alternatives completely or
partially when the set of viable solutions is continuous [60,61]. PROMETHEE V maximizes
the total outranking flow of alternatives for a continuous problem by using constraints [62].
PROMETHEE VI incorporates the decision maker preferences, resulting in variations in
criteria weights [63]. The PROMETHEE method was used to evaluate the thermal perfor-
mance of different building renovation alternatives based on multiple criteria, including
cost, energy efficiency, environmental impact, and social acceptance using a case study
of a masonry building in Algeria. The outcomes were used to rank the alternatives and
determine the best renovation option [64]. The PROMETHEE method was used to select
energy retrofit measures for buildings and districts in a district of Milan, Italy, involving
a comprehensive evaluation of the retrofit measures based on multiple criteria, such as
energy performance, cost, environmental impact, and social factors. The proposed method
is used to evaluate and rank different retrofit measures for buildings and the district as a
whole. The findings of the study indicate that the proposed method can effectively identify
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the most appropriate retrofit measures for both individual buildings and the district, taking
into account various criteria and stakeholder preferences [65].

ELECTRE is a family of MCDM that was developed in the 1960s by Bernard Roy
and his colleagues at the European consultancy company SEMA [66]. The ELECTRE
method, which was originally designed to select the best alternative from a given set,
has evolved to address three key types of decision problems: choosing, ranking, and
sorting [67]. Although there are several versions of the ELECTRE method, they are all
based on the same fundamental concepts but differ in their procedures and purpose. For
instance, ELECTRE I was developed to solve choice problems [68], whereas ELECTRE
IS and ELECTRE IV were developed by introducing indifference and veto thresholds,
respectively [66]. ELECTRE II, an updated version of ELECTRE I, addresses ranking
problems by defining two outranking relations. The primary distinction between ELECTRE
I and ELECTRE II is how the outranking relation is defined. ELECTRE II introduces
two outranking relations: weak outranking and strong outranking, whereas ELECTRE I
considers only one type of outranking. ELECTRE III, which can be thought of as a fuzzy
outranking relation, was developed to address the ranking problem [69]. ELECTRE IV, a
variant of ELECTRE III, was developed to deal with situations where criteria weights are
difficult to define or are intentionally omitted [70]. The ELECTRE III and ELECTRE IV
methods construct outranking relations using different preference domains. The primary
difference between the two techniques, however, is found in their distillation procedures.
ELECTRE IV uses the number of criteria in each preference domain, whereas ELECTRE III
uses a membership function value. A methodology was proposed to assist municipalities in
Portugal for improving their energy sustainability through the development of an Energy
Action Plan (EAP) using ELECTRE III to evaluate 16 actions in the framework [71].

To address the sorting issue, the most recent members of the ELECTRE family, ELEC-
TRE Tri [72], ELECTRE Tri-C [73], and ELECTRE Tri-nC [74], were developed. ELECTRE
Tri was developed to sort and categorize alternatives based on their ability to satisfy specific
conditions. It assigns alternatives to different categories based on their similarity between
the alternatives and the reference profiles which must be defined properly to ensure a robust
categorization process [72,75]. The ELECTRE Tri method was used to classify 16 distinct
sustainable energy technologies for electricity generation based on their compliance with
the Clean Development Mechanism (CDM) using six different economic, environmental,
and social criteria to sort the sixteen alternatives into three priority categories [76]. A
comparative evaluation was conducted by using ELECTRE Tri and the Data Envelopment
Analysis (DEA) to evaluate 41 biogas industries in Austria. The industries were classified
into four categories based on economic, environmental, and social criteria [77]. In Portugal,
the ELECTRE Tri method was used to assess the energy efficiency of school buildings [78].
The ELECTRE Tri-nC technique was used to aid decision-making by categorizing alter-
native energy retrofit measures into three distinct categories for public buildings in the
Apulia region of Italy [23].

A multi-criteria analysis is a suitable approach for comparing and defining a retrofit
program in order to select alternatives for the renovation of social housing. In this context,
the ELECTRE Tri method is regarded as the most appropriate approach due to the following
reasons. It is well-suited for complex problems with multiple criteria and alternatives,
and makes use of a variety of qualitative and quantitative evaluation scales. It categorizes
alternatives based on performance, rather than ranking them from best to worst, which
enables the decision-makers to rank them subjectivity. The use of boundary reference
profiles and categorization provides information on overall performance, allowing for an
absolute classification of each alternative. This characteristic is especially important when
choosing an energy renovation alternative which should have a high overall performance
rather than just relative performance. Finally, the ELECTRE Tri method incorporates various
thresholds as well as a user-defined cutting level, which take into account uncertainties in
calculations and performance evaluations while avoiding compensation.
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Previous research typically used crisp values to represent alternative performance and
assumed that evaluation data for decision-making remains constant. However, this assump-
tion does not reflect reality as external factors often cause data to vary. A comprehensive
criteria system may include both qualitative and quantitative data in the decision matrix,
making it challenging to use crisp numbers to carry out subjective evaluations. Due to the
inherent uncertainty of human cognitive capabilities, limited knowledge, data estimations,
and the complex nature of environments, decision-makers may find it difficult to express
their opinions using exact and definite values. For instance, economic uncertainties may
arise due to the fluctuation of raw material prices while environmental uncertainties may
be caused by the imprecise measuring of environmental impacts. Often, uncertainty is
ignored for avoiding complications in decision-making, resulting in solutions which are far
away from reality. In order to address these shortcomings, it is necessary to incorporate
uncertainty into decision-making [79]. In practice, decision-making problems are often
complex and uncertain, making it impossible to comprehensively understand and consider
all aspects of the problem thoroughly. As a result, decision-makers may be presented with
incomplete or imprecise information about alternative evaluations or the relative impor-
tance of each criterion for an in-depth analysis [80]. Given these complexities, imprecision,
and uncertainties, there is a need for the MCDM method that can effectively address these
issues in the context of energy systems, which are acceptable to all the stakeholders.

ELECTRE Tri deals with fuzziness by assigning alternatives to categories. A fuzzy
value represents a value with a degree of membership or truth assigned to it. It reflects the
level of certainty or ambiguity associated with the value. Fuzzy values are commonly used
in fuzzy logic, which allows for the modeling of vagueness or uncertainty. For instance, in
fuzzy sets, a value can be partially true or partially belong to a particular set based on its
degree of membership. However, these values are crisp, not imprecise. An imprecise value
is characterized by a lack of precision or specificity. It refers to a value that has limited detail
or lacks exactness. Imprecise values can arise due to various reasons, such as evaluation
errors, approximations, or incomplete information. Unlike fuzzy values, imprecise values
do not inherently involve assigning degrees of membership or truth. They are more about
expressing a range or uncertainty in the value itself. The precision can be expressed using a
probability distribution function (PDF) or a probability density function which provides
information about the likelihood of different values occurring within a given range.

Therefore, the main aim of this paper is to introduce imprecision in the expression of
values by using probabilistic distributions.

3. Method

In this section, we provide an overview of the ELECTRE Tri method and Monte Carlo
approach; then, the probabilistic extension of the ELECTRE Tri method, proposed in this
paper, is explained. The flowchart of the proposed probabilistic ELECTRE Tri procedure is
given in Figure 1.

3.1. Description of the ELECTRE Tri Method

ELECTRE Tri is a decision-making method that uses an outranking approach to sort
and categorize alternatives based on their ability to satisfy specific conditions. ELECTRE Tri
does not require pairwise comparisons between alternatives since they do not compete with
each other; instead, it assigns alternatives to different categories based on the similarity
between the alternatives and the reference profiles which must be defined properly to
ensure a robust categorization process [72,75]. To implement ELECTRE Tri methodology,
two primary stages must be accomplished. The initial stage involves establishing an
outranking relation between alternatives and reference profiles achieved by calculating
concordance and discordance indices using the same computation process as ELECTRE III.
The following stage involves assigning alternatives to categories based on the outranking
relation established in the initial stage achieved by calculating the pessimistic and optimistic
procedures [81]. In order to use ELECTRE Tri, it is necessary to establish distinct and non-
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overlapping ordered categories, each of which is represented by reference profiles. These
reference profiles serve as both the upper reference profile for a given category and the
lower reference profile for the subsequent category [82].

 

ff

tt

tt−1

Figure 1. Flowchart of the proposed probabilistic ELECTRE Tri method.

Once the fundamental features of the ELECTRE Tri technique have been established,
its application requires the following inputs and parameters [83]:

- Alternatives: The set of scenarios or options available from which the decision-maker
can choose.

- Criteria: The attributes/factors used to evaluate the alternatives, which can be quanti-
tative or qualitative.

- Weights: The relative importance of each criterion is determined by using weights.
- Performance matrix: A matrix displaying how each alternative performs against each

criterion. In the case of a criterion with an increasing performance preference, the
higher the evaluation of the alternative on this criterion, the better the alternative
performs on this criterion. The criteria with decreasing performance preferences are
multiplied by “−1” to align them with the other criteria’s increasing performance
preferences, thus unifying the calculation [84].

- Thresholds: Thresholds are used to determine the minimum acceptable performance
level for each criterion. If an alternative does not meet the threshold value for a
criterion, it is considered unacceptable.

- Preference threshold (p): The minimum degree of preference that an alternative must
have over another alternative to be considered as outranking it.

- Indifference threshold (q): The maximum degree of difference between two alterna-
tives that can be tolerated without affecting the preference relation between them.

- Veto threshold (v): The maximum degree of preference that can be given to an alterna-
tive despite its poor performance on some criteria.

- Cutting level (λ): The cutting level is defined as the smallest credibility index value
that is consistent with the assertion alternative ai which is superior to reference
profile bk, noted aiSbk. The default value of the cutting level used in the ELECTRE
Tri method is 0.75, but it can be adjusted to suit the specific case being studied.
To determine the appropriate cutting level, factors such as the desired precision in
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ranking the alternatives, the goals to be achieved, and the problem constraints need to
be considered.

The steps of ELECTRE Tri method are:

Step 1: Calculate partial concordance indices.

The concordance index ci(ai, bk) expresses the degree in favor of the hypothesis that
alternative ai is at least as good as reference profile bk [85]. The partial concordance is

ci(ai, bk) =















0 if
[

gj(bk)− gj(ai)
]

≥ pj(bk)

1 if
[

gj(bk)− gj(ai)
]

≤ qj(bk)
pj(bk)+gj(ai)−gj(bk)

pj(bk)−qj(bk)
otherwise

(1)

where:

gj(bk)—the value of the reference profile bk for the criterion j;
gj(ai)—alternative ai evaluation on the criterion j;
pj(bk)—preference threshold indices for the criterion j and reference profile bk;

qj(bk)—indifference threshold indices for the criterion j and reference profile bk.

In order to consider the opposing assertion, and the performance of the reference
profile bk with respect to alternative ai , it is necessary to calculate the concordance indices
in the reciprocal way cj(bk, ai).

Step 2: Calculate global concordance indices.

The global concordance index c
(

ai, bk

)

can be calculated after computing the partial
concordance index for all the criteria. The global concordance is

c(ai, bk) =
∑

n
j=1 wj.cj.(ai, bk)

∑
n
j=1 wj

(2)

where wj is the weight of the criterion j. It is necessary to calculate the global concordance
indices in the reciprocal way (bk, ai).

Step 3: Calculate the discordance indices.

The discordance index expresses the degree of evidence against the hypothesis that
alternative ai is at least as good as reference profile bk [85]. The discordance index is

dj(ai, bk) =















0 i f
[

gj(bk)− gj(ai)
]

≤ pj(bk)

1 i f
[

gj(bk)− gj(ai)
]

> vj(bk)
gj(bk)−gj(ai)−pj(bk)

vj(bk)−pj(bk)
otherwise

(3)

where vj(bk) are the veto threshold for the criterion j and reference profile bk. In order to
consider the opposing assertion, it is necessary to calculate the discordance indices in the
reciprocal way dj(bk, ai).

Step 4: Calculate the credibility index of the outranking relation.

In the ELECTRE Tri method, a degree of credibility is calculated to establish the
relationship between the alternatives and the reference profiles. This value measures the
proximity of each alternative to each reference profile and is compared to the cutting level
λ to ascertain if a preference for an alternative over a reference profile can be established or
not [86]. The credibility index is

σ(ai, bk) = C(ai, bk)∏
j∈J

1 − Dj(ai, bk)

1 − C(ai, bk)
(4)
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where j stands for all the criteria for which Dj(ai, bk) ≥ C(ai, bk).
When the decision-maker considers that it is not appropriate to define the veto threshold,

the credibility index coincides with the global concordance index. Once all credibility indexes
σ(ai, bk) have been calculated, they are compared to the cutting level λ which has a value in
the range of [0.5 − 1.0] and must be greater than [1 − heighest weight/total weight] [87,88].
This relationship allows the definition of the outranking relation that each alternative has
with the reference profile.

The degree of credibility for σ(bk, ai) is calculated from the global concordance C
(

bk, ai

)

and the discordance D
(

bk, ai

)

.
There are four types of relationships that can be established between each perfor-

mance alternative ai and each reference profile bk by the value of σ(ai, bk), σ(bk, ai), and λ,
represented in Figure 2.
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Figure 2. Schematic relationship between the alternative and the profile.

- If σ(ai, bk) > λ and σ(bk, ai) > λ,
then ai I bk: ai is indifferent to bk.

- If σ(ai, bk) > λ and σ(bk, ai) < λ,
then ai > bk: ai is preferred to bk.

- If σ(ai, bk) < λ and σ(bk, ai) > λ,
then ai < bk: ai is not preferred to bk.

- If σ(ai, bk) < λ and σ(bk, ai) < λ,
then ai R bk: ai is incomparable to bk.

The second stage of the ELECTRE Tri method involves assigning alternatives to classes
based on the outranking relation obtained in the first stage. The optimistic and pessimistic
rules are the two assignment procedures proposed by ELECTRE Tri. The outcomes of the
two procedures do not necessarily coincide. The optimistic rule assigns the alternative
ai to the lowest class Ch for which the upper profile bk is preferred to ai, i.e., bk > ai.
The pessimistic rule assigns the alternatives to the highest class such that ai outranks bk,
i.e., aiSbk.

3.2. Description of the Monte Carlo Method

The Monte Carlo method is a statistical technique for estimating operations in complex
systems that rely on random sampling and statistical modeling. It can be used to apply a
method to a set of probability functions by generating a set of data repeatedly. The method
is applied to the generated data set; one data point is sampled from each distribution.
By repeating this process a large number of times, the method generates results that
are representative of the underlying distributions of the input data, allowing for the
incorporation of the uncertainty present in the data into the decision-making process.

The Probability Density Function (PDF) is used to integrate data fluctuation into the
performance matrix [89]. A probability density function is a mathematical expression that
describes the probability distribution of a continuous random variable [90]. PDFs can be
used to represent the distribution of various types of phenomena, including the normal,
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uniform, Poisson, and exponential distributions. These curves allow the expression and
measurement of knowledge of the input data based on their parameters. Although any
PDF can be used, in what follows, the normal distribution is used without reducing the
generality of the method. The decision to use the normal distribution is based on the
following two main reasons:

- The normal distribution is commonly used to represent real-world values, especially
in fields such as economics, social sciences, and natural sciences, where the true
distribution of the data is unknown exactly.

- When a large number of samples are taken, the normal distribution is a frequent
approximation for the distribution of data, even if it is not the true underlying distri-
bution [91]. This has been demonstrated by statisticians such as Pierre-Simon Laplace
through experimentation in various fields, where the normality of the data is observed
to increase with sample size.

The normal distribution, noted N (µ, σ2), is described by two parameters: the mean
value µ and the standard deviation σ. It is worth noting that the variance is v = σ2. As a
result, the calculations will be done with the mean value µ and the variance v as parameters.

The following steps need to be followed in order to implement the proposed method.

Step 1: Select values from Probability Distribution Functions (PDFs).

The underlying assumption is that the values are provided in the form of Probabil-
ity Distribution Functions rather than crisp values. Therefore, the performance of each
alternative with respect to each criterion is considered as a probability distribution, taking
into consideration the data uncertainty. The performance of an alternative a regarding a
criterion j is:

Sa

(

Cj

)

= Fj(x) (5)

where Fj is the probability density function of the criterion j.
The first step is to select a value from each distribution. As a result, a new performance

matrix is formed using the values selected from the distributions.

Step 2: ELECTRE Tri implementation.

Once the data set is obtained, ELECTRE Tri is used to calculate the optimistic and
pessimistic ranking of each alternative. In the traditional ELECTRE Tri, the alternatives are
assigned to a single category in the optimistic and pessimistic rankings (Table 1).

Table 1. Example of optimistic and pessimistic rankings obtained in single categories.

Alternative C1 C2 C3 C4 C5 Alternative C1 C2 C3 C4 C5

a1.1 X a1.1 X
a1.2 X a1.2 X
a1.3 X a1.3 X

Step 3: Obtaining a set of outcomes.

The final step is to repeat the first two steps several times to generate a large number
of optimistic and pessimistic rankings. The number of times each alternative is classified
in each category is calculated by memorizing the ranking of each alternative. As a result,
the outcomes are a distribution of alternatives in the categories. These two sets of rankings
for each alternative are then converted into percentages to obtain tables that display the
probability of each alternative ranking in each category (Table 2).
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Table 2. Example of optimistic and pessimistic rankings obtained in multiple categories.

Alternative C1 C2 C3 C4 C5 Alternative C1 C2 C3 C4 C5

a1.1 10.2 25.9 63.9 0 0 a1.1 0 15.7 63.6 21 0
a1.2 0 0 100 0 0 a1.2 0 0 6.4 93.6 0
a1.3 0 2.5 45.7 39.3 12.5 a1.3 0 0 13.2 62.3 24.5

One of the primary benefits of the outlined procedure is the ability to obtain more
detailed results. These tables not only categorize the alternatives, but also show their
sensitivity to changes in the input data.

A computational algorithm has been developed to automate the probabilistic
ELECTRE Tri method enabling rapid and efficient processing [92]. The method assigns
alternatives into different ranking categories named as Ck, which are defined by upper and
lower boundary reference profiles named as Bk. The decision makers have the flexibility to
define the boundary reference profiles; their performance is used to establish the ranking
categories. The Python programming language is selected for the implementation of the
method due to its readability, user-friendliness, popularity, and versatility in terms of
computer support.

4. Case Study

4.1. Description

The proposed methodology is illustrated by using a social housing project consisting of
sixty-seven apartments made up of three adjacent buildings (called B1, B2 and B3) located
in the region of Lyon, France and built in 1973. The apartments range in size from one
to five rooms and cover a total living area of 4815 m2 (Figures 3 and 4). An independent
consultancy office carried out a thermal diagnosis (Figure 5), which involved calculating the
primary energy consumption of the residences using a regulatory calculation approach. The
buildings were classified with respect to regulatory energy and greenhouse gas emission
labels. Prospective areas of improvement to enhance the energy label were identified by
the consultants.

ffi
ff 𝐶𝐵

ffi

 

Figure 3. Overview of the social housing complex used to illustrate the methodology [24].

The assessment of the thermal state of the residential buildings also revealed short-
comings in the envelope of all the three buildings (Figure 5). An estimation of the overall
heat transfer coefficient, H, was conducted and compared to a reference coefficient Hmax

which serves as a benchmark for the overall heat transfer coefficient relative to the envelope.
The comparison clearly showed that the buildings are insufficiently insulated. The initial
assessment revealed that the thermal losses of the three residential buildings were evenly
distributed. The two most significant sources of loss were discovered to be air renewal and
windows, which contributed 28% and 25%, respectively. This was due to the use of obsolete
single-glazed wooden windows in the building’s envelope and a high rate of air change
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in the single-flow ventilation system with self-regulating extract units. Thermal bridges
and external walls made the second most significant contribution, accounting for 21% and
19% of the losses, respectively. The thermal bridges are critical because the presence of an
electric underfloor heating system causes major losses at the points where the walls and
floors converge. According to the evaluation, the initial steps in any renovation project
should include implementing passive measures to reduce heat loss. These measures are
especially desirable as they are usually inexpensive and easy to implement. These measures
may include thermal insulation enhancement, efficient ventilation system installation, or
thermal bridge removal with external insulation.

 

ffi 𝐻 ffi 𝐻
ffi

ffi

ffi

Figure 4. Top view of the social housing complex [24].
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Figure 5. Heat loss distribution of the buildings [24].

4.2. Identification of Potential Renovation Scenarios

Several renovation scenarios, consisting of elementary actions aimed at achieving
specific goals, were considered. These elementary actions were chosen in collaboration
with designers and manufacturers to ensure alignment with the project objectives. The
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elementary actions were combined to create global renovation scenarios, with a particular
emphasis on cohesion and compatibility. The goal is to create renovation scenarios that
improve thermal comfort and usability for tenants while reducing energy consumption
and greenhouse gas emissions. To accomplish this, the renovation options are divided into
seven distinct classes, each with its own specific set of individual energy performance im-
provement actions, as outlined in the European Energy Performance of Buildings Directive
2010/31/EU and Energy Efficiency Directive 2012/27/EU.

Seven global renovation scenarios were created by combining various elementary
renovation actions (Table 3) in a variety of coherent ways:

- S1: Maintain existing individual electric heating and domestic hot water systems.
- S2: Improve individual electric heating and domestic hot water systems in version 1.
- S3: Improve individual electric heating and domestic hot water systems in version 2.
- S4: Individual electric heating and individual thermodynamic domestic hot water.
- S5: Individual gas heating and domestic hot water.
- S6: Individual electric heating and collective thermodynamic domestic hot water.
- S7: Individual electric heating and collective solar domestic hot water.

Table 3. The basic elementary actions [24].

Class Options

Existing electric
floor heating

Connected
Disconnected

Auxiliary heating

Existing electric radiant heater
Smart and connected electric radiant heater
Smart and connected electric storage heater
Low temperature hot water radiators
Automated towel warmer

Domestic hot
water production

Existing individual electric hot water tank
Smart and connected individual electric hot water tank
Smart and connected individual thermodynamic hot water tank
Individual condensing gas boiler
Collective thermodynamic
Individual solar hot water tank with centralized solar hot water tank

Ventilation system Existing controlled mechanical ventilation
Controlled mechanical ventilation with single-flow and a
humidity-sensitive extract unit

Local energy production

None
Roof photovoltaic solar panels
Roof thermal solar panels
Roof hybrid solar panels

External joinery
replacement

None
All external joinery double glazing
All external joinery triple glazing
Only on the balcony windows double glazing

External wall insulation
Existing wall insulation
External thermal insulation

These seven classes of global renovation scenarios were further subdivided into four
variants designated as Si.1 to Si.4 where i = 1, 2, . . . , 7. In order to analyze their effect
on performance, in each variant, the type of renewable energy production and joineries
were modified while the heating and domestic hot water systems remained the same.
For example, in some renovation scenarios, the installation of solar photovoltaic energy
production or only the replacement of balcony windows were considered, whereas in others,
all exterior windows were replaced and solar thermal energy production was installed. A
total of 28 possible scenarios were considered (Figure 6).
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Figure 6. Identification of global renovation scenarios from the basic elementary actions [24].

4.3. Identification and Weighting of the Evaluation Criteria

This step involves developing a comprehensive set of criteria to evaluate the per-
formance of the compared scenarios in terms of achieving the project objectives. Table 4
contains a set of criteria divided into four categories: technical, economic, environmen-
tal, and social. Each criterion will be evaluated using qualitative, quantitative, or binary
methods, depending on the evaluation unit. The decision-makers must decide on the
criteria that will be used to evaluate the effectiveness of the compared scenarios. The
criteria serve as performance indicators and they must be quantifiable in the sense that
they can be measured, at least qualitatively, in order to assess the expected performance of
each scenario in relation to the criterion under consideration. It is beneficial to classify the
criteria into families, especially given their large number. This classification allows for a
more in-depth investigation of the issue by emphasizing how the scenarios balance one
another. It also simplifies the process of determining weights because weights can be allo-
cated first between criteria within the same family and then between families themselves.
Furthermore, grouping by family allows for the retention of a greater number of criteria for
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a decision analysis. One of the difficulties in selecting criteria is that their number must be
kept to a minimum in order to avoid introducing redundancy or repeatability phenomena.
A sound decision should be based on few, distinct, complementary criteria [65,93].

Table 4. Identification of assessment criteria with their respective weights.

Category Weight Criteria Description Units
Absolute
Weight

Economic 45%

g1.1 Investment cost € excl. taxes 12.27
g1.2 Reinvestment cost over a period of 30 years € excl. taxes 10.64
g1.3 Possibility of financial subsidy € excl. taxes 4.09
g1.4 Operating cost € excl. taxes 12.27
g1.5 Energy cost effectiveness of the solution €/kWh/(m2·year) 5.73

Technical 25%

g2.1 Ease to integrate into existing building 5-point scale 7.14
g2.2 Implementation in occupied space Yes/No 10.71
g2.3 Maintenance/Serviceability 5-point scale 3.57
g2.4 Ease of monitoring/Energy management 5-point scale 3.57

Social 25%

g3.1 Impact of the cost on the tenant € excl. taxes 6.14
g3.2 Level of thermal comfort 5-point scale 4.77
g3.3 Level of acoustic comfort 5-point scale 2.05
g3.4 Aesthetics and space requirements 5-point scale 2.05

Environmental 15%
g4.1 Energy consumption reduction kWh/m2·year 7.50
g4.2 Carbon dioxide emissions avoided Ton of CO2/year 5.00
g4.3 Production place Km 2.50

Once the assessment criteria have been defined, it is imperative to establish their
relative importance in the context of decision-making. This involves determining whether
criterion “A” is more important to the decision-maker’s final choice than criterion “B” and
quantifying the ratio of prevalence between them. To accomplish this, weights must be
assigned to each of the selected criteria in the multi-criteria analysis. There are several
methods for determining the appropriate weight to be assigned to each criterion. The Simos
procedure or card method is a popular method, particularly in the context of outranking
methods [94]. This method allows decision-makers, even those without prior knowledge of
the multi-criteria analysis, to express their preferences for weighing criteria in each context.
It involves presenting a set of cards corresponding to each criterion and asking decision-
makers or expert groups to rank the criteria on a grid in increasing order of importance. It is
possible to group together several criteria of equal importance and leave gaps between two
consecutive cards to indicate an importance difference. Following this ranking, normalized
weightings are assigned to the criteria [95]. The Simos procedure was revised and renamed
the SRF procedure in 2002. The updated method introduced the Z ratio, which represents
the weight of the most important criterion in relation to the least important. The ratio Z
allows the normalization of the obtained criterion weights. As a result, changes in Z cause
changes in the criterion weights [96].

Three independent steps are involved in determining the weights of the criteria. The
first step is to assign an absolute weight to each of the categories of criteria using the SRF
weighting procedure. The second step involves independently ranking the sub-criteria
within each family and assigning them a relative weight. Finally, the absolute weights
of each criterion are determined by multiplying their relative weights with those of the
corresponding family weights. This method ensured that the weights were normalized and
the significance of each criterion in the decision-making process was reflected.

4.4. Performance Matrix

Twenty-eight energy retrofit scenarios were developed by combining elementary
renovation measures. To determine the economic viability of each scenario, information
was gathered from suppliers and maintenance companies on the purchase, installation, and
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maintenance costs of each component. Furthermore, the reinvestment costs over a period
of thirty years were calculated based on the average lifespan of each component in the
scenarios. This thirty-year period corresponds to standard building maintenance intervals.
Engineering and sociology consultants (specialists in building and energy transition) were
consulted to assess the technical and social performance of the energy retrofit scenarios.
Qualitative criteria were evaluated for each elementary action within the same system
category (such as domestic hot water production) using a scoring system ranging from 0 to
5. This approach was used for all the classes of elementary actions and criteria to generate
an overall score on a linear distribution scale for each scenario. This results in a score on a
scale of 5 representing the performance of each scenario for the criteria g2.1, g2.3, g2.4, g3.2,
g3.3, and g3.4.

Collaboration with engineering consultants was used to compare the energy perfor-
mance of the scenarios. The modeling tool employed simulates the behavior of the building,
its various components, and systems. Multiple simulations were run to determine the
primary and final energy consumption of each scenario by varying the input parame-
ters such as the heating system, domestic hot water production, window type, and local
energy production.

The evaluation process, with the collaboration and assistance of technical equipment
suppliers and installers, technical engineering offices, a specialized sociology firm, and
rental management experts, enabled the construction of the performance matrix. It includes
the evaluations of each global renovation scenario shown based on the various criteria.

The data uncertainty is accounted for by representing it as probability density func-
tions, specifically the normal distribution. The mean value µ and the variance v = σ2 are
required to define the normal distribution for each alternative related to each criterion. The
mean value is derived from the performance matrix, whereas the variance fluctuates based
on the criterion under consideration.

Variance is denoted by Var in the performance matrix in Tables 5 and 6. To ensure
uniform treatment of uncertainty in the decision-making process, a variance value of
0.1 is applied to all criteria, which helps to maintain model consistency and minimizes
complexity. The variance value can be reassessed using statistical models that consider the
data’s evolution over time.

Table 5. Performance matrix of the global renovation scenarios—(Part 1).

Scenarios

Economical Technical

g1.1 g1.2 g1.3 g1.4 g1.5 g2.1 g2.2 g2.3 g2.4

€ excl. € excl. € excl. € excl. €/kwh/m2·year 0 . . . 5 Yes/No 0 . . . 5 0 . . . 5

S1.1 0.00 1,757,134 0.00 82,701 0.00 5.00 Yes 4.38 3.57
S1.2 1,008,654 551,661 952,088 41,346 5933 3.33 Yes 5.00 3.57
S1.3 1,260,874 711,361 991,697 36,119 6591 3.00 Yes 5.00 3.57
S1.4 905,165 551,661 917,604 42,268 5457 3.67 Yes 5.00 3.57
S2.1 1,239,757 551,661 955,885 40,971 6771 2.33 Yes 4.38 4.29
S2.2 1,397,247 625,566 996,168 28,230 6736 1.67 Yes 3.75 3.57
S2.3 1,636,981 785,266 1,035,489 23,290 7185 1.33 Yes 3.75 3.57
S2.4 1,282,394 390,966 995,521 28,762 6255 2.00 Yes 3.75 3.57
S3.1 1,344,232 610,011 957,187 41,692 7140 2.00 Yes 4.38 5.00
S3.2 1,522,330 683,916 1,031,776 28,197 7087 1.33 Yes 3.75 4.29
S3.3 1,751,844 843,616 1,070,386 23,760 7526 1.00 Yes 3.75 4.29
S3.4 1,385,515 449,316 1,030,933 28,758 6545 1.67 Yes 3.75 4.29
S4.1 1,531,907 775,596 1,070,213 32,638 6586 1.67 Yes 3.75 5.00
S4.2 1,635,756 849,501 1,110,816 19,664 6342 1.00 Yes 3.13 4.29
S4.3 1,899,185 1,009,201 1,149,305 15,369 6895 0.67 Yes 3.13 4.29
S4.4 1,517,360 614,901 1,109,597 20,507 5980 1.33 Yes 3.13 4.29
S5.1 1,427,140 787,239 1,124,178 26,341 5284 1.33 No 2.50 2.86
S5.2 1,555,978 861,144 1,131,706 12,639 5229 0.67 No 1.88 2.14
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Table 5. Cont.

Scenarios

Economical Technical

g1.1 g1.2 g1.3 g1.4 g1.5 g2.1 g2.2 g2.3 g2.4

€ excl. € excl. € excl. € excl. €/kwh/m2·year 0 . . . 5 Yes/No 0 . . . 5 0 . . . 5

S5.3 1,796,800 1,020,844 1,204,438 10,007 5867 0.33 No 1.88 2.14
S5.4 1,492,598 626,544 1,131,267 12,444 5027 1.00 No 1.88 2.14
S6.1 1,372,026 811,447 1,030,582 35,809 6507 1.67 Yes 3.13 2.86
S6.2 1,526,016 885,352 1,071,164 22,827 6466 1.00 Yes 2.50 2.14
S6.3 1,717,070 1,045,052 1,109,732 18,439 6767 0.67 Yes 2.50 2.14
S6.4 1,377,529 650,752 1,070,150 23,678 5934 1.33 Yes 2.50 2.14
S7.1 1,404,394 847,315 995,961 37,880 6790 1.00 No 0.63 0.71
S7.2 1,533,952 921,220 1,070,209 24,669 6603 0.33 No 0.00 0.00
S7.3 1,771,679 1,080,920 1,109,007 20,125 7057 0.00 No 0.00 0.00
S7.4 1,432,939 686,620 1,035,825 25,267 6251 0.67 No 0.00 0.00
Var 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

Table 6. Performance matrix of the global renovation scenarios—(Part 2).

Scenarios

Social Environmental

g3.1 g3.2 g3.3 g3.4 g4.1 g4.2 g4.3

€ excl. 0 . . . 5 0 . . . 5 0 . . . 5 kWh/m2·Year Ton of CO2/Year km

S1.1 368 0.00 5.00 4.00 0.00 0.00 0.00
S1.2 182 2.78 5.00 4.00 170 65 418
S1.3 159 3.33 5.00 4.00 191 74 690
S1.4 186 2.22 5.00 4.00 166 64 418
S2.1 168 4.44 4.00 4.00 183 71 2368
S2.2 141 4.44 4.00 4.00 207 80 2448
S2.3 118 5.00 4.00 4.00 228 88 2720
S2.4 144 3.89 4.00 4.00 205 79 2448
S3.1 162 2.22 3.00 2.00 188 73 2368
S3.2 133 2.22 3.00 2.00 215 83 2448
S3.3 113 2.78 3.00 2.00 233 90 2720
S3.4 136 1.67 3.00 2.00 212 82 2448
S4.1 114 2.22 1.00 0.00 233 90 2314
S4.2 86 2.22 1.00 0.00 258 99 2394
S4.3 66 2.78 1.00 0.00 275 106 2666
S4.4 91 1.67 1.00 0.00 254 98 2394
S5.1 164 0.56 0.00 1.00 270 5 2425
S5.2 0 0.56 0.00 1.00 298 33 2505
S5.3 113 1.11 0.00 1.00 306 50 2777
S5.4 137 0.00 0.00 1.00 297 32 2505
S6.1 138 3.89 5.00 5.00 211 81 2618
S6.2 110 3.89 5.00 5.00 236 91 2698
S6.3 90 4.44 5.00 5.00 254 98 2970
S6.4 114 3.33 5.00 5.00 232 89 2698
S7.1 142 4.44 3.00 3.00 207 80 2548
S7.2 114 4.44 3.00 3.00 232 89 2628
S7.3 93 5.00 3.00 3.00 251 97 2900
S7.4 117 3.89 3.00 3.00 229 88 2628
Var 0.1 0.1 0.1 0.1 0.1 0.1 0.1

4.5. Identification of Thresholds

To compare each alternative based on each criterion, it is essential to establish thresh-
olds. These thresholds determine whether an alternative is preferred, equivalent, inferior,
or incomparable to a boundary reference profile. These thresholds take into account the im-
perfect nature of data when evaluating alternative performances, as well as the subjectivity
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that may affect criterion definition. As a result, it is necessary to define these thresholds for
each criterion.

The ELECTRE Tri method allows decision-makers to define these thresholds based
on their preferences and the importance of performance gaps, such as investment costs.
Decision-makers, on the other hand, may lack expertise in certain criteria and struggle
to define these thresholds. These tolerance thresholds are expressed as a percentage of
the average performance for each criterion. The decision was motivated by practical
considerations such as the large number of criteria and the experimental nature of the
methodology. The thresholds can easily be modified through the parameter adjustment
γ, thereby facilitating the analysis of the impact on scenario rankings. The indifference
threshold is

qj = γq.µj (6)

where:

- γq = 5% is the indifference threshold;
- µj represents the average performance of all the scenarios on a given criterion defined by

µj = µ
(

gj

)

=
∑

m
i=1 gj(Si)

m
(7)

The preference threshold is
pj = γp.µj (8)

where γp = 15% is the preference threshold.
The veto threshold is

vj = γv.µj (9)

where γv = 30% is the veto threshold.

4.6. Identification of Boundary Reference Profiles

The ranking categories are defined by boundary reference profiles and are denoted
by b0, b1, . . . , bk, . . . , bq. The boundary reference profiles represent the boundary between
two consecutive ranking categories, thus the lower boundary reference profile of a better
category is also the upper boundary reference profile of a worse consecutive category. It
is important to note that b0 is the lowest boundary reference profile and bq is the highest
boundary reference profile.

Six boundary reference profiles have been identified: B =
{

b0, b1, b2, b3, b4, b5} in
order to establish and define five distinct categories: C =

{

C1, C2, C3, C4, C5}, where b1

is the boundary between C1 and C2 and b2 is the boundary between C2 and C3, and so
on. The set of boundary reference profiles is typically constructed through an interactive
process between the analyst and the decision-maker, making the use of the ELECTRE Tri
method more time-consuming and complex (Table 7).

4.7. Degree of Credibility Index

The degree of credibility is calculated to measure the proximity of each alternative to
each boundary reference profile and is compared to a cutting level λ. Through trial and
error, it was determined that a cutting level of λ = 0.75 was appropriate. It is worth noting
that a higher cutting level may result in alternatives that cannot be compared.

4.8. Sorting Procedure

In the final step, two sorting procedures, specific to the ELECTRE Tri method, are
carried out to assign the alternatives to ranking categories: the “pessimistic ranking” and
the “optimistic ranking”. The treatment of the incomparability (R) relationship varies
between the two procedures. In the optimistic ranking, an incomparability relationship
moves an alternative to the next higher performance category, while in the pessimistic
ranking, it moves an alternative to the next lower performance category (Table 8).
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Table 7. Identification of the boundary reference profiles and thresholds.

Criteria b0 b1 b2 b3 b4 b5 qj pj vj

g1.1 −4,224,020 −1,667,495 −1,528,955 −1,418,833 −1,330,025 212,825 70,942 212,825 468,215
g1.2 −3,749,830 −928,689 −837,382 −680,856 −602,593 −273,185 39,260 117,781 259,118
g1.3 −304,916 963,728 1,031,134 1,071,156 1,111,178 1,356,896 50,819 152,458 335,408
g1.4 −174,020 −38,545 −28,729 −24,522 −18,913 −5698 1436 4309 9480
g1.5 −16,904 −6853 −6717 −6376 −5491 926 309 926 2037
g2.1 −0.46 0.71 1.20 1.54 2.09 5.00 0.08 0.23 0.51
g2.2 0.00 0.00 0.00 1.00 1.00 1.00 0.00 1.00 2.00
g2.3 −0.90 1.93 2.60 3.26 4.00 5.00 0.15 0.45 0.98
g2.4 −0.90 1.98 2.35 3.30 4.28 5.00 0.15 0.45 0.99
g3.1 −778 −160 −137 −115 −99 −46 7.00 21 45
g3.2 −0.86 1.78 2.23 3.74 4.19 5.00 0.14 0.43 0.94
g3.3 −0.90 1.00 2.10 3.36 4.08 5.00 0.15 0.45 0.99
g3.4 −0.82 0.59 1.87 3.14 4.41 5.00 0.14 0.41 0.90
g4.1 −66 194 223 234 257 340 11 33 74
g4.2 −22 60 74 82 90 117 4.00 11 24
g4.3 −6616 −2737 −2657 −2496 −2376 338 113 338 744

Table 8. Optimistic and pessimistic rankings obtained with the probabilistic ELECTRE Tri procedure.

Alternative C1 C2 C3 C4 C5 Total Alternative C1 C2 C3 C4 C5 Total

S1.1 100 100 S1.1 100 100
S1.2 28.4 71 0.6 100 S1.2 28.4 71 0.6 100
S1.3 0.7 65.8 33.3 0.2 100 S1.3 0.7 65.8 33.3 0.2 100
S1.4 41.9 58 0.1 100 S1.4 41.9 58 0.1 100
S2.1 14.5 82.6 2.9 100 S2.1 14.5 82.6 2.9 100
S2.2 0.2 3.1 53.9 42.8 100 S2.2 0.2 3.1 53.9 42.8 100
S2.3 2.2 7.3 65.7 24.8 100 S2.3 2.2 7.3 65.7 24.8 100
S2.4 0.1 3 57.8 39.1 100 S2.4 0.1 3 57.8 39.1 100
S3.1 14.4 82.3 3.3 100 S3.1 14.4 82.3 3.3 100
S3.2 1.3 4.3 94.4 100 S3.2 1.3 4.3 94.4 100
S3.3 7.4 34.9 57.7 100 S3.3 7.4 34.9 57.7 100
S3.4 6.4 93.6 100 S3.4 6.4 93.6 100
S4.1 100 100 S4.1 100 100
S4.2 0.4 99.6 100 S4.2 0.4 99.6 100
S4.3 33 67 100 S4.3 33 67 100
S4.4 100 100 S4.4 100 100
S5.1 100 100 S5.1 100 100
S5.2 100 100 S5.2 100 100
S5.3 92.9 7.1 100 S5.3 92.9 7.1 100
S5.4 100 100 S5.4 100 100
S6.1 0.1 40.7 58.1 1.1 100 S6.1 0.1 40.7 58.1 1.1 100
S6.2 0.3 11.6 87.9 0.2 100 S6.2 0.3 11.6 87.9 0.2 100
S6.3 21.7 75.9 2.4 100 S6.3 21.7 75.9 2.4 100
S6.4 0.3 0.7 94 5 100 S6.4 0.3 0.7 94 5 100
S7.1 100 100 S7.1 100 100
S7.2 100 100 S7.2 100 100
S7.3 100 100 S7.3 100 100
S7.4 100 100 S7.4 100 100

5. Results and Discussion

The purpose of this section is to compare the results of the newly implemented
procedure to those obtained by using the traditional ELECTRE Tri method. The results are
presented in the form of percentage rankings of the alternatives in each category. Firstly,
the results obtained with the new procedure will be compared to those of the traditional
ELECTRE Tri method to determine the additional information provided and the appropriate
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methods of analysis. Secondly, the impact of incorporating variance into the data will be
investigated to determine if all alternatives are affected in the same way.

The resulting table shows the percentage of each alternative classified in each category.
This new way of representing the results adds significant information. The results obtained
with and without the new procedure are compared in Table 9. This was applied to the
case study, with the emphasis on the optimistic sorting of the four scenarios: ‘S2.1’, ‘S2.2’,
‘S2.3’, and ‘S2.4’. This analysis holds true for the other alternatives as well as for the
pessimistic ranking.

Table 9. Optimistic ranking obtained with and without the probabilistic ELECTRE Tri procedure for
four scenarios.

Alternative C1 C2 C3 C4 C5 Alternative C1 C2 C3 C4 C5 Total

S2.1 X S2.1 0 14.5 82.6 2.9 0 100
S2.2 X S2.2 0 0.2 3.1 53.9 42.8 100
S2.3 X S2.3 0 2.2 7.3 65.7 24.8 100
S2.4 X S2.4 0 0.1 3 57.8 39.1 100

The probabilistic results shown on the righthand side of Table 9 give useful information
about the alternatives.

Focusing on the alternative S2.1, it is clear that it is classified in category 3 in the
traditional ELECTRE Tri method (lefthand side of Table 9). The new probabilistic procedure
demonstrates that, by incorporating data fluctuation, this alternative is classified as 82.6%
in category 3, 14.5% in category 2, and 2.9% in category 4.

This probabilistic classification gives information on the possibility of ranking alterna-
tives in the face of uncertainty and variance. When comparing two alternatives that appear
to be ranked equally, the percentage of ranking in other categories allows for differentiation.
Let us consider two alternatives classified in different categories, ‘S2.2’ and ‘S2.4’, by using
the traditional ELECTRE Tri method. These two alternatives are also classified in categories
2, 3, and 5 due to the incorporation of fluctuation. However, the alternative ‘S2.2’ is classi-
fied in category 5 more frequently at 42.8% than the alternative ‘2.4’, which is only 39.1%
in C5. These findings may lead to the conclusion that the ‘S2.2’ alternative outperforms
the ‘S2.4’ alternative, allowing decision-makers to distinguish between two alternatives
that initially appeared to be identical. This allocation enables a more detailed examination
of elementary actions. The alternatives are carefully constructed to examine the impact
of elementary actions on rankings. This additional information allows us to determine
whether an elementary action improves the overall performance of an alternative.

Table 10 summarizes the outcomes of four alternatives: S2.1, S2.2, S3.1, and S3.2. All
Group 2 options include an electric radiant panel and an existing electric floor, while all
Group 3 options include electric storage heating but not electric floor heating. Otherwise,
these two families of alternatives are identical, with solar panels on the roof distinguishing
the index 2 alternatives from the index 1 alternatives. Alternatives with index 1 do not have
an autonomous energy system. By analyzing these results, it is clear that the alternatives,
which include solar panels, are better classified.

Table 10. Optimistic ranking obtained for four scenarios.

Alternative C1 C2 C3 C4 C5 Total

S2.1 0 14.5 82.6 2.9 0 100
S2.2 0 0.2 3.1 53.9 42.8 100
S3.1 0 14.4 82.3 3.3 0 100
S3.2 0 1.3 4.3 94.4 0 100

Alternatives do not respond uniformly to the distributions applied by criteria. Some
alternatives have been classified into four distinct categories, whereas others have only
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been classified into one. Table 11 corresponds to the optimistic sorting obtained with the
new procedure for the alternatives of family 2: ‘S2.1’, ‘S2.2’, ‘S2.3’, and ‘S2.4’, and family 7:
‘S7.1’, ‘S7.2’, ‘S7.3’, and ‘S7.4’. Both alternative families were subjected to fluctuations with
similar standard deviations.

Table 11. Optimistic ranking of the alternatives of family 2 and 7’s global renovation scenarios.

Alternative C1 C2 C3 C4 C5 Total Alternative C1 C2 C3 C4 C5 Total

S2.1 0 14.5 82.6 2.9 0 100 S7.1 0 100 0 0 0 100
S2.2 0 0.2 3.1 53.9 42.8 100 S7.2 0 100 0 0 0 100
S2.3 0 2.2 7.3 65.7 24.8 100 S7.3 0 100 0 0 0 100
S2.4 0 0.1 3 57.8 39.1 100 S7.4 0 100 0 0 0 100

Based on their fluctuation values, the alternatives of family 2 can be classified into four
distinct categories, whereas the alternatives of family 7 are consistently classified in the
same category. This classification discrepancy is influenced by a variety of factors, including
the performance of the alternatives’ proximity to the established thresholds. Even minor
data deviations can cause the threshold to be exceeded, resulting in a different classification.
Furthermore, the weight assigned to each criterion being evaluated is important, because
a change in performance for a criterion with a high weight is more likely to affect the
overall results.

6. Validation

It is necessary to ensure that the results obtained are consistent in order to validate
the new procedure. To accomplish this, the results with a very low variance should be
identical to those obtained by implementing only the crisp values. The algorithm was
first implemented by using the traditional ELECTRE Tri method without the Monte Carlo
procedure. The algorithm was then implemented a second time, this time incorporating
the new procedure and using a very low variance (v = 0.000001) with a repetition number
of 10,000. Because the variance was so low, each alternative was classified in the same
category as the one obtained with the traditional ELECTRE Tri method.

7. Conclusions

Multi-criteria decision analysis (MCDA) methods provide a valuable tool for under-
standing complex environmental problems by taking into account a variety of evaluation
criteria and the classification of different alternatives. Despite the availability of data, it
is critical to recognize the inherent uncertainty and variability of this information. To
account for these uncertainties, it is proposed that data in the analysis be represented by
probability distributions. It is possible to effectively address these probability distributions
and fluctuations in data by integrating multi-criteria decision analysis methods, such as
ELECTRE Tri, with a Monte Carlo implementation, resulting in a more robust ranking
of alternatives.

The proposed new procedure adds significant Information by providing the percent-
age of rankings for each alternative within each category, allowing for a more detailed
differentiation of alternatives. This method also makes it easier to compare alternatives
that were previously ranked at the same level, allowing for a more detailed examination of
the performance of individual actions within scenarios. To fully reap the benefits of this
method, decision-makers must first understand the process, including how different data
and parameters affect the results.

Furthermore, because they use the same performance matrix to group the input data
for the analysis process, this procedure can be combined effectively with other multi-criteria
decision analysis methods to ensure that no important information is overlooked. This
method allows for a more comprehensive understanding of the sensitivity of the results to
the input data and can help identify a wider range of potential outcomes by generalizing
the use of probability distributions rather than crisp values.
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48. Yilan, G.; Kadirgan, M.A.N.; Çiftçioğlu, G.A. Analysis of electricity generation options for sustainable energy decision making:

The case of Turkey. Renew. Energy 2020, 146, 519–529. [CrossRef]
49. AbdelAzim, A.I.; Ibrahim, A.M.; Aboul-Zahab, E.M. Development of an energy efficiency rating system for existing buildings

using Analytic Hierarchy Process—The case of Egypt. Renew. Sustain. Energy Rev. 2017, 71, 414–425. [CrossRef]
50. Medal, L.; Sunitiyoso, Y.; Kim, A. Prioritizing Decision Factors of Energy Efficiency Retrofit for Facilities Portfolio Management.

J. Manag. Eng. 2021, 37, 04020109. [CrossRef]
51. Tang, C.; Xu, D.; Chen, N. Sustainability prioritization of sewage sludge to energy scenarios with hybrid-data consideration: A

fuzzy decision-making framework based on full consistency method and fusion ranking model. Environ. Sci. Pollut. Res. Int.

2021, 28, 5548–5565. [CrossRef]
52. Kamaruzzaman, S.N.; Lou, E.C.W.; Wong, P.F.; Wood, R.; Che-Ani, A.I. Developing weighting system for refurbishment building

assessment scheme in Malaysia through analytic hierarchy process (AHP) approach. Energy Policy 2018, 112, 280–290. [CrossRef]
53. Mirzaee, S.; Fannon, D.; Ruth, M. A comparison of preference elicitation methods for multi-criteria design decisions about

resilient and sustainable buildings. Environ. Syst. Decis. 2019, 39, 439–453. [CrossRef]
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