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Abstract37

We introduce the Longest Common Circular Factor (LCCF) problem in which, given strings S38

and T of length n, we are to compute the longest factor UV of string S whose cyclic shift V U39

occurs as a factor of string T . The LCCF is a new similarity measure that is an extension of the40

classic Longest Common Factor problem to circular pattern matching. We show that the LCCF41

problem can be solved in Õ(n) time 1. Our algorithm is randomized (Las Vegas). We apply42

1 The Õ notation ignores factors polylogarithmic with respect to the instance size (encoded in binary).
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techniques of internal pattern matching (in case U and V are not highly periodic) and Lyndon43

roots (otherwise) and reduce the problem to computing an intersection of 4D rectangles.44

2012 ACM Subject Classification Theory of computation → Pattern matching45

Keywords and phrases longest common factor, circular pattern matching, internal pattern46

matching, intersection of hyperrectangles47

1 Introduction48

We introduce a new variant of the Longest Common Factor (LCF) Problem, called the49

Longest Common Circular Factor (LCCF) Problem. In the LCCF problem, given two strings50

S and T , both of length n, we seek for the longest factor of S whose cyclic shift occurs as a51

factor of T . The LCCF is a new string similarity measure that is 2-approximated by the52

LCF. We show that the exact value of LCCF be computed efficiently.53

A linear-time solution to the LCF problem is one of the best known applications of the54

suffix tree [2]. Just as the LCF problem was an extension of the classical pattern matching,55

the LCCF can be seen as an extension of the circular pattern matching problem. The latter56

can also be solved in linear time using the suffix tree and also admits a number of efficient57

solutions based on practical approaches [4, 9, 10, 11, 16, 20, 24, 27], also in the approximate58

variant [6, 7, 17, 19], as well as an indexing variants [3, 20, 21] and the problem of detecting59

various circular patterns [25]. The LCCF problem is also related to the notion of unbalanced60

translocations [8, 12, 26, 28, 29].61

The problem in scope can be formally stated as follows.62

Longest Common Circular Factor (LCCF)
Input: Two strings S and T of length n each
Output: A longest pair of factors, F of S and F ′ of T , for which there exist strings U
and V such that F = UV and F ′ = V U ; we denote LCCF(S, T ) = (F, F ′)

63

Our main result is the following.64

Main result. The LCCF problem can be solved in O(n log6 n) time by a randomized (Las65

Vegas) algorithm.66

For simplicity, we will only consider computing the length of the LCCF. However, a67

corresponding pair of factors can be retrieved in a straightforward way from the algorithm.68

2 Preliminaries69

We consider strings over an integer alphabet Σ. If W is a string, then by |W | we denote70

its length and by W [1], . . . ,W [|W |] its characters. By x = W [i . . j] we denote a fragment71

of W between the ith and jth character, inclusively. If i = 1, it is called a prefix, and if72

j = |W |, it is called a suffix. The string W [i] . . .W [j] that corresponds to the fragment x is73

called a factor of W . We say that two fragments match if their corresponding factors are the74

same. By W [i . . j) we denote the fragment W [i . . j − 1]. Fragments are futher denoted by75

lowercase letters. Let us note that a factor of a given string that is specified by a fragment76

can be represented by its endpoints in O(1) space.77

By WR we denote the reversal of the string W . By per(W ) we denote the shortest period78

of W . String W is highly periodic iff per(W ) ≤ |W |/3.79
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By the type of a fragment u (type(u)) we mean the largest k such that 2k ≤ |u|. We denote80

by LCCFa,b(S, T ) = (F, F ′) the longest common circular factor of S, T such that F = UV ,81

F ′ = V U , U is of type a, and V is of type b. We also say that it is the type-(a, b) LCCF.82

Our strategy is to compute LCCFa,b(S, T ) = (F, F ′) independently for each a, b ≤ logn, and83

afterwards compute the longest alternative (over all pairs (a, b)) as the final result.84

2.1 Synchronizing Functions85

Let W be a string of length n. By Ft(W ) we denote the set of fragments of W of length86

t and by Nt(W ) we denote the set of non-highly-periodic fragments of W of length t. By87

Ft(x) and Nt(x) we denote subsets of these sets defined for a fragment x of W .88

A function sync : F2τ−1(W ) 7→ Fτ (W ) ∪ {⊥} is called τ -synchronizing if it satisfies the89

following conditions for each fragment x ∈ F2τ−1(W ) (see [22]):90

If sync(x) = ⊥, then Nτ (x) = ∅;91

If sync(x) 6= ⊥, then sync(x) ∈ Nτ (x);92

If two fragments x, x′ ∈ F2τ−1(W ) are matching and sync(x) = x[s . . s+τ) then sync(x′) =93

x′[s . . s + τ) for the same s. In other words, if x = W [p . . q] and x′ = W [p′ . . q′], then94

sync(x) = W [p+ s . . p+ s+ τ) and sync(x′) = W [p′ + s . . p′ + s+ τ).95

The elements of Fτ (W ) for τ = 2k are called here τ -basic fragments.96

I Example 1. Let DBF(u) be the identifier of a τ -basic fragment u of W in the Dictionary97

of Basic Factors, see [14], and π be a permutation of all (linearly many) τ -basic identifiers.98

Each identifier is an integer in the range [1 . . n]. For a fragment x of size 2τ − 1, we could99

define sync(x) as the first τ -basic fragment u (from the left) with minimmal DBF(u). Then100

sync satisfies the conditions of the synchronizing function. If we take a random permutation101

π, then it has other useful properties in expectation, as shown in the lemma below.102

The set of τ -synchronizers for a fragment x, denoted by SYNCτ (x), is sync(F2τ−1(W )) ∩103

Nτ (x). It follows from the construction of a τ -synchronizing function of [22] and of [23].104

I Lemma 2. For all τ = 2i, τ ≤ n, one can construct in O(n logn) total time a τ -105

synchronizing function (stored in an array) such that for each fragment x the expected number106

of τ -synchronizers is O(|x|/τ).107

Proof. Let Bτ (S) = {y ∈ Nτ (S) : per(y[1 . . τ − 1]) ≤ τ
3 or per(y[2 . . τ ]) ≤ τ

3}. A set of108

integers A is called d-sparse if min{|a− b| : a, b ∈ A, a 6= b} ≥ d. The following claim was109

presented as [22, Lemma 4.4.7].110

I Claim 3. Bτ (S) is a union of two τ
3 -sparse sets.111

For a step function f on integers, by Steps(f) we denote the number of positions such112

that f(x) 6= f(x+ 1). The following fact shows the existence of a τ -synchronizing function113

with a small number of steps and that it can be constructed efficiently. It was presented as114

Lemma 4.4.8 in [22]; it is also present in the non-periodic case of [23].115

I Claim 4. For a string S of length n, there exists a τ -synchronizing function sync such that116

Steps(sync(F2τ−1(S))) = O(n/τ). Moreover, this function satisfies P[sync(x) = y] ≤ 3
τ for117

y ∈ Nτ (x) \ Bτ (x) and it can be constructed (as an array) in O(n) time.118

We can now proceed to the proof of the lemma. The construction of a τ -synchronizing119

function of Claim 4 can be applied. The fact that |SYNCτ (x) ∩ Bτ (S)| = O(|x|/τ) in120

expectation follows from Claim 3 and the fact that |SYNCτ (x)∩ (Nτ \ Bτ (S))| = O(|x|/τ) in121

expectation follows from Claim 4. J122
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3 Nonperiodic-Nonperiodic Case123

We say that a string U of type a is a-highly periodic if it has a period that is at most124

2a−1/3. We consider now LCCFa,b(S, T ) = (F, F ′) such that F = UV , F ′ = V U , U is of125

type a, V is of type b, U is not a-highly periodic, and V is not b-highly periodic. We call it126

nonperiodic-nonperiodic case.127

We extend the function sync to all fragments by defining sync(u) as the 2k−1-synchronizer128

of the prefix of u of size 2k, where k = type(u).129

Let us define basic fragments called the left k-window and the right k-window:130

LeftWink(W, i) = W [i− 2k+1 . . i− 1], RightWink(W, i) = W [i . . i+ 2k+1 − 1]131

For two triples ∆1 = (x, i, y), ∆2 = (y, i′, x), where x is a fragment both in LeftWin(i, S)132

and in RightWina(i′, T ) and y is a fragment both in RightWin(i, S) and in LefttWinb(i′, T )133

define the pair CAND(∆1,∆2) = (F, F ′) of fragments in S and T as follows, see Figure 1.134

Relation of pairs of triples (∆1,∆2) to LCCFa,b
Let j, k be starting positions of fragments x, y in S.
Let j′, k′ be starting positions of fragments x, y in T .
l := j′ − i′ + i− j, r := k − i+ i′ − k′

Then CAND(∆1,∆2) = (F, F ′), where
F := S[i− l . . i+ r], F ′ := T [i′ − r . . i′ + l].

(F, F ′) is a candidate for LCCFa,b(S, T )

135

Due to synchronization for any pair of a, b-triples ∆1 = (x, i, y), ∆2 = (y, i′, x) there are136

exactly two fragments U, V of types a and b, such that UV is ”anchored” at i in S and V U is137

”anchored” at i′ in T , sync(U) = x, sync(V ) = y and [UV, V U ] is a potential common circular138

factor. If CAND(∆1,∆2) = (F, F ′), then (F, F ′) = (UV, V U), l = |U |, r = |V |.139

For a string W we introduce the following sets of 2k−1-synchronizers:140

LeftSynchk(W, i) = SYNC2k−1(LeftWink+1(W, i))141

RightSynchk(W, i) = SYNC2k−1(RightWink+1(W, i))142

Define Triplesc,d(W ) = {(x, i, y) : x ∈ LeftSynchc(W, i), y ∈ RightSynchd(W, i), i ∈143

[1 . . |W |]}.144

Using the terminology of triples and function CAND (giving correspondence between pairs145

of triples and pairs of fragments), a scheme of a general algorithm can be written informally146

as follows:147

Algorithm Compute-LCCFa,b(S)

1. Compute the sets Triplesa,b(S) and Triplesb,a(T ).

2. Find a pair of triples ∆1 ∈ Triplesa,b(S), ∆2 ∈ Triplesb,a(T )
such that CAND(∆1,∆2) corresponds to LCCFa,b(S, T ).

148

I Lemma 5. In the nonperiodic-nonperiodic case the algorithm Compute-LCCFa,b correctly149

computes LCCFa,b(S, T ).150
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However there are two difficulties in this approach that need to be overcome if the complexity151

should be O(n).152

Firstly, we cannot consider individually each combination, since the number of possible153

pairs (i, i′) is quadratic. We overcome this problem by a reduction to a geometric problem of154

the intersection of families of 4D rectangles.155

Secondly, there is a difficulty of dealing with the case of highly periodic U or V . We156

overcome it by using the machinery of runs and Lyndon roots of strings. In periodic case the157

role of synchronizers is played by fragments which are Lyndon roots.158

4 4-Families-Problem159

We reduce the second statement in the algorithm Compute-LCCFa,b to 4-Families-Problem.160

A 4-tuple (F1, F2, F3, F4) of strings agrees with a 4-tuple (F ′1, F ′2, F ′3, F ′4) iff161

F ′1 is a suffix of F1, F2 is a prefix of F ′2
F3 is a suffix of F ′3, F ′4 is a prefix of F4;

162

see Figure 1.163

Our main auxiliary problem is defined as follows:164

4-Families-Problem
Input: A family FS of 4-tuples (F1, F2, F3, F4) of factors of S and a family FT of
4-tuples (F ′1, F ′2, F ′3, F ′4) of factors of T , where m = |FS |+ |FT |
Output: A 4-tuple (F1, F2, F3, F4) ∈ FS which agrees with (F ′1, F ′2, F ′3, F ′4) ∈ FT that
maximizes |F ′1|+ |F2|+ |F3|+ |F ′4|

165

2a+1 2b+1

• •

F1

• •

F2

x
• •

F3

••

F4

y
U V

ij k

2b+1 2a+1

• •

F ′3

• •

F ′4

y

• •

F ′1

• •

F ′2

x

V U

i′k′ j′

Figure 1 (F1, F2, F3, F4) agrees with (F ′
1, F ′

2, F ′
3, F ′

4) iff CAND((x, i, y), (y, i′, x)) corresponds to
a common circular factor UV , where U = F ′

1 F2, V = F3 F ′
4.

Denote Wina,b(W, i) = LeftWina(W, i)RightWinb(W, i).166

For each triple (x, i, y) ∈ Triplesa,b(W ) such that x starts at position j and y starts at position
k we denote by Ψa,b(x, i, y) the following factorization (F1, F2, F3, F4) of Wina,b(W, i):

F1 = S[i− 2a+1 + 1 . . j), F2 = S[j . . i), F3 = S[i . . k), F4 = S[k . . i+ 2b+1).

Moreover, by Ψ′a,b(x, i, y) we denote (F3, F4, F1, F2).167
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I Observation 6. For two triples ∆1 = (x, i, y), ∆2 = (y, i′, x) CAND(∆1,∆2) is a common168

circular factor iff Ψ(∆1) agrees with Ψ′(∆2).169

In the lemma below with high probability means, as usually, that the error probability is170

O(n−c) for any specified constant c > 0.171

I Proposition 7. After O(n log2 n)-time preprocessing, in the nonperiodic-nonperiodic case172

the LCCFa,b problem can be reduced to a 4-Families-Problem(FS ,FT ) in which m =173

O(n logn) with high probability.174

Proof. If (F1, F2, F3, F4) ∈ F1 agrees with (F ′1, F ′2, F ′3, F ′4) ∈ F2, then S and T contain a175

common circular factor of length |F ′1|+ |F2|+ |F3|+ |F ′4|; see Fig. 1. We will now show that176

if LCCFa,b(S, T ) = (F, F ′), then the solution to 4-Families-Problem(F1,F2) is at least |F |.177

Assume that F = x1x2 and F ′ = y2y1 where x1 matches y1, x2 matches y2, 2a ≤ |x1| ≤
2a+1 − 1, and 2b ≤ |x2| ≤ 2b+1 − 1. Let i be the starting position of fragment x2 and i′

be the starting position of the fragment y1. Let τ1 = 2a−1, τ2 = 2b−1, x′1 and y′1 be the
prefixes of x1 and y1, respectively, of length 2τ1 − 1, x′2 and y′2 be the prefixes of x2 and y2,
respectively, of length 2τ2 − 1, and:

x = syncτ1(x′1) = syncτ1(y′1), y = syncτ2(x′2) = syncτ2(y′2).

Let j and k′ be the starting positions of the synchronizing occurrences of x in x′1 and y′1 and
k and j′ be the starting positions of the synchronizing occurrences of y in x′2 and y′2. Then
in the above construction, we will have (F1, F2, F3, F4) in F1 where

F1 = S[i− 2a+1 + 1 . . j), F2 = S[j . . i), F3 = S[i . . k), F4 = S[k . . i+ 2b+1).

and (F ′1, F ′2, F ′3, F ′4) in F2 where

F ′3 = T [i′ − 2a+1 + 1 . . j′), F ′4 = T [j′ . . i′), F ′1 = T [i′ . . k′), F ′2 = T [k′ . . i′ + 2b+1).

Moreover, (F1, F2, F3, F4) agrees with (F ′1, F ′2, F ′3, F ′4) due to the existence of (F, F ′) and its178

weight |F ′1|+ |F2|+ |F3|+ |F ′4| equals |F | = |F ′|.179

The preprocessing of Lemma 2 takes O(n log2 n) time. Afterwards, for given a and b, the180

above construction produces, with high probability, two families F1, F2 with |F1|, |F2| =181

O(n). J182

5 Periodic-Periodic Case183

We consider now LCCFa,b(S, T ) = (F, F ′) such that F = UV , F ′ = V U , U is of type a, V is184

of type b, U is a-highly periodic, and V is b-highly periodic.185

For a string W , by HPerPref(U) and HPerSuf(W ) we denote the maximal highly periodic186

prefix and suffix of U . Let us start with the following simple observation; see Fig. 2.187

I Observation 8. Let W and W ′ be two strings for which the strings X = HPerSuf(W ) and188

Y = HPerPref(W ′) have the same Lyndon root λ. Then the longest highly periodic suffix of189

W that is also a prefix of W ′ has length at least min(|X|, |Y |)− |λ|.190

Let us recall that Lyndon roots of runs can be computed in constant time after linear-time191

preprocessing [13] and that the 2-period query problem can be solved within the same192

complexities [23] (for a simplified solution of this problem, see [5]).193

For a fragment u denote by Lyndons(u) the set of fragments in u corresponding to the
first/second/last occurrence of Lyndon root in the maximal highly periodic suffix of u (if
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λ

|λ|

*

W

λ

|λ|

W ′

Figure 2 Illustration of Observation 8.

there is any such prefix/suffix) and by Lyndons′(u) the set of fragments in u corresponding to
the first/penultimate/last occurrence of Lyndon root in the maximal highly periodic prefix
of u (if there is any such prefix/suffix). We can redefine

Triplesa,b(S) = { (x, i, y) : x ∈ Lyndons(LeftWina(i)), y ∈ Lyndons′(RightWinb(i)) };

see Fig. 3.194

α

x1

α

x2

α

x3

β

y1

β

y2

β

y3

i

2b
2b+1

2a
2a+1

Figure 3 Triplesa,b(S) for position i contains (xp, i, yq) for p, q ∈ {1, 2, 3}.

I Lemma 9. The algorithm Compute-LCCFa,b(S) for redefined triples correctly solves the195

periodic-periodic case.196

Let us redefine: FS = {Ψ(x, i, y) ∈ Triplesa,b(S)}, FT = {Ψ′(x, i, y) ∈ Triplesa,b(T )}197

I Proposition 10. In the periodic-periodic case LCCF(S, T ) corresponds to a solution of198

4-Families-Problem(FS ,FT ) for FS ,FT defined above.199

6 Nonperiodic-Periodic Case200

Finally we consider the case that LCCFa,b(S, T ) = (F, F ′) such that F = UV , F ′ = V U , U201

is of type a, V is of type b, and either U is a-highly periodic or V is b-highly periodic. This202

case can be reduced to 4-Families-Problem directly by combining the techniques of the203

previous two sections.204

I Proposition 11. After O(n log2 n)-time preprocessing, in the nonperiodic-nonperiodic205

case the LCCFa,b problem can be reduced to a 4-Families-Problem(FS ,FT ) in which206

m = O(n logn) with high probability.207
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7 Solution to 4-Families-Problem208

In this section we show how to solve the 4-Families-Problem.209

7.1 Intersecting 4D Rectangles210

We define a d-rectangle (d ≥ 2) as a Cartesian product of d closed intervals, such that at211

least d− 2 of them are singletons. E.g., {3} × [2, 5]× [1, 7]× {0} is a 4-rectangle. In other212

words, a d-rectangle is an isothetic hyperrectangle of dimension at most 2. Two d-rectangles213

[a1, b1]×· · ·× [ad, bd] and [a′1, b′1]×· · ·× [a′d, b′d] are called compatible if, for each i ∈ {1, . . . , d},214

[ai, bi] or [a′i, b′i] is a singleton.215

We consider two families of 4-rectangles with weights and wish to find a pair of intersecting216

rectangles, one per family, with maximum total weight. The general problem of finding217

such an intersection of two families of m weighted hyperrectangles in d dimensions can be218

solved in O(m log2dm) time by an adaptation of a classic approach [15]. Below we consider219

a special variant of the problem that has a much more efficient solution.220

Max-Weight Intersection of Compatible Rectangles in 4D
Input: Two families R1 and R2 of 4-rectangles in Z4 with integer weights containing
m rectangles in total, such that each R1 ∈ R1 and R2 ∈ R2 are compatible
Output: Check if there is an intersecting pair of 4-rectangles R1 ∈ R1 and R2 ∈ R2
and, if so, compute the maximum total weight of such a pair

221

A very similar problem was considered as Problem 3 in [18] for an arbitrary d. The sole222

difference is that the weight of an intersection of two d-rectangles R1 ∈ R1 and R2 ∈ R2 in223

that problem was the maximum `1-norm of a point in R1 ∩ R2. A solution to Problem 3224

for d = 4 in the case that the 4-rectangles are compatible working in O(m log3 m) time and225

O(m log2 m) space was given as [18, Lemma 5.8]. The algorithm presented in that lemma226

actually solves the Max-Weight Intersection of Compatible Rectangles in 4D227

problem and applies it for specific weight assignment of the 4-rectangles on the input. It228

uses hyperplane sweep and a variant of an interval stabbing problem. Henceforth we will use229

the following result.230

I Fact 12 ([18, see Lemma 5.8]). Max-Weight Intersection of Compatible Rect-231

angles in 4D can be solved in O(m log3 m) time and O(m log2 m) space.232

7.2 Computations on Factor Intervals233

The main tool in the solution are factor intervals. Before we describe them and how we234

operate on them, let us recall the basic properties of the suffix tree. Let us start with the235

following known fact.236

I Fact 13 ([1]). Let W be a string of length n and T be its suffix tree. After O(n)-time237

preprocessing, given a fragment x of W , one can compute its locus in T in O(log logn) time.238

Let W be a string of length n. Let us consider the lexicographic order of factors of W .239

For two strings X and Y such that X ≤ Y , by [X,Y ] we denote the set of factors F of W240

such that X ≤ F ≤ Y . This set is referred to as a factor interval.241

Similarly as for integers, one can define a factor hyperrectangle as a Cartesian product of242

factor intervals and a factor d-rectangle as a Cartesian product of d factor intervals such that243

at most two of them are not singletons. In our algorithm we will construct factor intervals244
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and factor 4-rectangles and use the following lemma to transform them into integer intervals245

and 4-rectangles.246

I Lemma 14. Let W be a string of length n and A be a family of factor intervals whose247

endpoints are factors of W . In O(n + |A| log logn) time one can construct a function f248

that maps factor intervals into integer intervals such that, for any P,Q ∈ A, P ∩Q 6= ∅ iff249

f(P ) ∩ f(Q) 6= ∅. Moreover, if P is a singleton, so is f(P ).250

Proof. First we preprocess string W to support lexicographically minimal factors of W251

starting with given fragment x using Lemma 16. This step takes O(n) time.252

For each factor X of string W , we define function g as g(X) = (r, |X|) where r is a rank253

of the lexicographically minimal suffix of W starting with fragment of X. We can observe254

that for any factors X, Y , X ≤ Y iff g(X) ≤ g(Y ).255

Since we are interested only in values of function g for endpoints of intervals from A we256

can compute all such values of function g in |A| log logn time, sort all those pairs in linear257

time (using radix sort), and then define function g′(X) as a rank of a pair in obtained sorted258

sequences.259

Finally for each interval P = [X,Y ], we define f(P ) = (g′(X), g′(Y )). J260

Let # be a character that is greater than all the letters in Σ.261

I Observation 15. Assume that P and Q are factors of W . Then P is a prefix of Q iff262

Q ∈ [P, P#] and a suffix of Q iff QR ∈ [PR, PR#].263

As suggested in the above observation, in factor intervals we will also use, as right264

endpoints, strings of the form F# where F is a factor of W . In order to transform them265

into integer intervals with Lemma 14, we will compute the maximum factor of W that starts266

with F .267

I Lemma 16. Let W be a string of length n. After O(n)-time preprocessing, given a fragment268

x of W , one can compute the lexicographically minimal/maximal factor of W that starts with269

a factor matching x in O(log logn) time.270

Proof. First we compute in O(n) time, the suffix tree of string W . Additionally we add to271

each explicit node the index of the lexicographically minimal/maximal suffix from its subtree.272

This can be easily done in O(n) time by traversing the suffix tree. The last ingredient of our273

solution is preprocessing of the suffix tree for supporting weighted ancestor queries. Using274

solution from Fact 13 the preprocessing requires O(n) time and each weighted ancestor query275

can be answered in O(log logn) time.276

Given fragment x of W starting at position i. We locate leaf v of suffix tree corresponding277

to the suffix W [i . . n]. Using weighted ancestor query we locate the highest ancestor u of278

v, such that depth of u is greater than (or equal to) |x|. The resulting lexicographically279

minimal/maximal factor of W (that starts with x) is the lexicographically minimal/maximal280

suffix stored in the node u. J281

7.3 Algorithm for 4-Families-Problem282

We are now ready to show a solution to 4-Families-Problem.283

I Lemma 17. 4-Families-Problem can be solved in O(n+m log3 n) time and O(m log2 n)284

space.285
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Proof. We construct two sets of factor 4-rectangles with weights, R1 and R2, from FS
and FT over the concatenation STSRTR. For every (F1, F2, F3, F4) ∈ FS , we add a factor
rectangle

{FR1 } × [F2, F2#]× [FR3 , FR3 #]× {F4} with weight |F2|+ |F3|

to R1. For every (F ′1, F ′2, F ′3, F ′4) ∈ FT , we add a factor rectangle

[(F ′1)R, (F ′1)R#]× {F ′2} × {(F ′3)R} × [F ′4, F ′4#] with weight |F ′1|+ |F ′4|

to R2. By Observation 15, the solution of 4-Families-Problem corresponds to two286

intersecting 4-rectangles R1 ∈ R1 and R2 ∈ R2 with maximum total weight.287

Lemma 16 can be used to transform strings X# to factors of STSRTR. Then we apply288

Lemma 14 to transform factor 4-rectangles to standard 4-rectangles, dimension per dimension.289

Finally, we use Fact 12 to conclude. J290

As a consequence of Propositions 7, 10, and 11 applied for all a, b and the above lemma we291

obtain the main result.292

I Theorem 18 (Main result). The LCCF problem can be solved in O(n log6 n) time by a293

randomized (Las Vegas) algorithm.294

8 Conclusions295

We have presented an O(n log6 n)-time randomized algorithm for computing the Longest296

Common Circular Factor (LCCF) of two strings of length n. Let us recall that the Longest297

Common Factor (LCF) of two strings can be computed in O(n) time. We leave an open298

question if the LCCF problem can also be solved in linear time and if there exists a similarly299

efficient deterministic algorithm that solves this problem.300
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