Quasi-Linear-Time Algorithm for Longest Common Circular Factor

Mai Alzamel, Maxime Crochemore, Costas S Iliopoulos, Tomasz Kociumaka, Jakub Radoszewski, Wojciech Rytter, Juliusz Straszyński, Tomasz Waleń, Wiktor Zuba

To cite this version:

Mai Alzamel, Maxime Crochemore, Costas S Iliopoulos, Tomasz Kociumaka, Jakub Radoszewski, et al.. Quasi-Linear-Time Algorithm for Longest Common Circular Factor. 30th Annual Symposium on Combinatorial Pattern Matching (CPM 2019), Nadia Pisanti and Solon P. Pissis, Jun 2019, Pisa, Italy. pp.25:1-25:14, 10.4230/LIPIcs.CPM.2019.25 . hal-04338883

HAL Id: hal-04338883

https://hal.science/hal-04338883

Submitted on 12 Dec 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Quasi-Linear-Time Algorithm for Longest Common Circular Factor

Mai Alzamel
Department of Informatics, King's College London, London, UK mai.alzamel@kcl.ac.uk (iD) https://orcid.org/0000-0002-7590-9919
\section*{Maxime Crochemore}
Department of Informatics, King's College London, London, UK maxime.crochemore@kcl.ac.uk
\section*{Costas S. Iliopoulos}
Department of Informatics, King's College London, London, UK
costas.iliopoulos@kcl.ac.uk (iD https://orcid.org/0000-0003-3909-0077
\section*{Tomasz Kociumaka}
Institute of Informatics, University of Warsaw, Warsaw, Poland kociumaka@mimuw.edu.pl
(iD https://orcid.org/0000-0002-2477-1702
Jakub Radoszewski
Institute of Informatics, University of Warsaw, Warsaw, Poland jrad@mimuw.edu.pl (D) https://orcid.org/0000-0002-0067-6401
\section*{Wojciech Rytter}
Institute of Informatics, University of Warsaw, Warsaw, Poland
rytter@mimuw.edu.pl
(iD https://orcid.org/0000-0002-9162-6724
\section*{Juliusz Straszyński}
Institute of Informatics, University of Warsaw, Warsaw, Poland j.straszynski@mimuw.edu.pl (D) https://orcid.org/0000-0003-2207-0053
Tomasz Waleń
Institute of Informatics, University of Warsaw, Warsaw, Poland walen@mimuw.edu.pl
(iD https://orcid.org/0000-0002-7369-3309
\section*{Wiktor Zuba}
Institute of Informatics, University of Warsaw, Warsaw, Poland w.zuba@mimuw.edu.pl

[^0][^1]techniques of internal pattern matching (in case U and V are not highly periodic) and Lyndon roots (otherwise) and reduce the problem to computing an intersection of 4D rectangles.

2012 ACM Subject Classification Theory of computation \rightarrow Pattern matching

Keywords and phrases longest common factor, circular pattern matching, internal pattern matching, intersection of hyperrectangles

1 Introduction

We introduce a new variant of the Longest Common Factor (LCF) Problem, called the Longest Common Circular Factor (LCCF) Problem. In the LCCF problem, given two strings S and T, both of length n, we seek for the longest factor of S whose cyclic shift occurs as a factor of T. The LCCF is a new string similarity measure that is 2 -approximated by the LCF. We show that the exact value of LCCF be computed efficiently.

A linear-time solution to the LCF problem is one of the best known applications of the suffix tree [2]. Just as the LCF problem was an extension of the classical pattern matching, the LCCF can be seen as an extension of the circular pattern matching problem. The latter can also be solved in linear time using the suffix tree and also admits a number of efficient solutions based on practical approaches $[4,9,10,11,16,20,24,27]$, also in the approximate variant $[6,7,17,19]$, as well as an indexing variants $[3,20,21]$ and the problem of detecting various circular patterns [25]. The LCCF problem is also related to the notion of unbalanced translocations [8, 12, 26, 28, 29].

The problem in scope can be formally stated as follows.

Longest Common Circular Factor (LCCF)

Input: Two strings S and T of length n each
Output: A longest pair of factors, F of S and F^{\prime} of T, for which there exist strings U and V such that $F=U V$ and $F^{\prime}=V U$; we denote $\operatorname{LCCF}(S, T)=\left(F, F^{\prime}\right)$

Our main result is the following.
Main result. The LCCF problem can be solved in $\mathcal{O}\left(n \log ^{6} n\right)$ time by a randomized (Las Vegas) algorithm.

For simplicity, we will only consider computing the length of the LCCF. However, a corresponding pair of factors can be retrieved in a straightforward way from the algorithm.

2 Preliminaries

We consider strings over an integer alphabet Σ. If W is a string, then by $|W|$ we denote its length and by $W[1], \ldots, W[|W|]$ its characters. By $x=W[i . . j]$ we denote a fragment of W between the i th and j th character, inclusively. If $i=1$, it is called a prefix, and if $j=|W|$, it is called a suffix. The string $W[i] \ldots W[j]$ that corresponds to the fragment x is called a factor of W. We say that two fragments match if their corresponding factors are the same. By $W[i . . j)$ we denote the fragment $W[i . . j-1]$. Fragments are futher denoted by lowercase letters. Let us note that a factor of a given string that is specified by a fragment can be represented by its endpoints in $\mathcal{O}(1)$ space.

By W^{R} we denote the reversal of the string W. By $\operatorname{per}(W)$ we denote the shortest period of W. String W is highly periodic iff $\operatorname{per}(W) \leq|W| / 3$.

By the type of a fragment u (type $(u))$ we mean the largest k such that $2^{k} \leq|u|$. We denote by $\operatorname{LCCF}_{a, b}(S, T)=\left(F, F^{\prime}\right)$ the longest common circular factor of S, T such that $F=U V$, $F^{\prime}=V U, U$ is of type a, and V is of type b. We also say that it is the type- (a, b) LCCF. Our strategy is to compute $\operatorname{LCCF}_{a, b}(S, T)=\left(F, F^{\prime}\right)$ independently for each $a, b \leq \log n$, and afterwards compute the longest alternative (over all pairs (a, b)) as the final result.

2.1 Synchronizing Functions

Let W be a string of length n. By $\mathcal{F}_{t}(W)$ we denote the set of fragments of W of length t and by $\mathcal{N}_{t}(W)$ we denote the set of non-highly-periodic fragments of W of length t. By $\mathcal{F}_{t}(x)$ and $\mathcal{N}_{t}(x)$ we denote subsets of these sets defined for a fragment x of W.

A function sync : $\mathcal{F}_{2 \tau-1}(W) \mapsto F_{\tau}(W) \cup\{\perp\}$ is called τ-synchronizing if it satisfies the following conditions for each fragment $x \in \mathcal{F}_{2 \tau-1}(W)$ (see [22]):

- If $\operatorname{sync}(x)=\perp$, then $\mathcal{N}_{\tau}(x)=\emptyset ;$
- If $\operatorname{sync}(x) \neq \perp$, then $\operatorname{sync}(x) \in \mathcal{N}_{\tau}(x) ;$
- If two fragments $x, x^{\prime} \in \mathcal{F}_{2 \tau-1}(W)$ are matching and $\operatorname{sync}(x)=x[s \ldots s+\tau)$ then $\operatorname{sync}\left(x^{\prime}\right)=$ $x^{\prime}[s \ldots s+\tau)$ for the same s. In other words, if $x=W[p \ldots q]$ and $x^{\prime}=W\left[p^{\prime} \ldots q^{\prime}\right]$, then $\operatorname{sync}(x)=W[p+s \ldots p+s+\tau)$ and $\operatorname{sync}\left(x^{\prime}\right)=W\left[p^{\prime}+s \ldots p^{\prime}+s+\tau\right)$.
The elements of $\mathcal{F}_{\tau}(W)$ for $\tau=2^{k}$ are called here τ-basic fragments.
- Example 1. Let $\operatorname{DBF}(u)$ be the identifier of a τ-basic fragment u of W in the Dictionary of Basic Factors, see [14], and π be a permutation of all (linearly many) τ-basic identifiers. Each identifier is an integer in the range $[1 \ldots n]$. For a fragment x of size $2 \tau-1$, we could define $\operatorname{sync}(x)$ as the first τ-basic fragment u (from the left) with minimmal $D B F(u)$. Then sync satisfies the conditions of the synchronizing function. If we take a random permutation π, then it has other useful properties in expectation, as shown in the lemma below.

The set of τ-synchronizers for a fragment x, denoted by $\operatorname{SYNC}_{\tau}(x)$, is $\operatorname{sync}\left(\mathcal{F}_{2 \tau-1}(W)\right) \cap$ $\mathcal{N}_{\tau}(x)$. It follows from the construction of a τ-synchronizing function of [22] and of [23].

- Lemma 2. For all $\tau=2^{i}, \tau \leq n$, one can construct in $\mathcal{O}(n \log n)$ total time a τ synchronizing function (stored in an array) such that for each fragment x the expected number of τ-synchronizers is $\mathcal{O}(|x| / \tau)$.
Proof. Let $\mathcal{B}_{\tau}(S)=\left\{y \in \mathcal{N}_{\tau}(S): \operatorname{per}(y[1 \ldots \tau-1]) \leq \frac{\tau}{3}\right.$ or $\left.\operatorname{per}(y[2 \ldots \tau]) \leq \frac{\tau}{3}\right\}$. A set of integers A is called d-sparse if $\min \{|a-b|: a, b \in A, a \neq b\} \geq d$. The following claim was presented as [22, Lemma 4.4.7].
- Claim 3. $\mathcal{B}_{\tau}(S)$ is a union of two $\frac{\tau}{3}$-sparse sets.

For a step function f on integers, by $\operatorname{Steps}(f)$ we denote the number of positions such that $f(x) \neq f(x+1)$. The following fact shows the existence of a τ-synchronizing function with a small number of steps and that it can be constructed efficiently. It was presented as Lemma 4.4.8 in [22]; it is also present in the non-periodic case of [23].
Claim 4. For a string S of length n, there exists a τ-synchronizing function sync such that $\operatorname{Steps}\left(\operatorname{sync}\left(\mathcal{F}_{2 \tau-1}(S)\right)\right)=\mathcal{O}(n / \tau)$. Moreover, this function satisfies $\mathbb{P}[\operatorname{sync}(x)=y] \leq \frac{3}{\tau}$ for $y \in \mathcal{N}_{\tau}(x) \backslash \mathcal{B}_{\tau}(x)$ and it can be constructed (as an array) in $\mathcal{O}(n)$ time.

We can now proceed to the proof of the lemma. The construction of a τ-synchronizing function of Claim 4 can be applied. The fact that $\left|\mathrm{SYNC}_{\tau}(x) \cap \mathcal{B}_{\tau}(S)\right|=O(|x| / \tau)$ in expectation follows from Claim 3 and the fact that $\left|\mathrm{SYNC}_{\tau}(x) \cap\left(\mathcal{N}_{\tau} \backslash \mathcal{B}_{\tau}(S)\right)\right|=O(|x| / \tau)$ in expectation follows from Claim 4.

3 Nonperiodic-Nonperiodic Case

We say that a string U of type a is a-highly periodic if it has a period that is at most $2^{a-1} / 3$. We consider now $\operatorname{LCCF}_{a, b}(S, T)=\left(F, F^{\prime}\right)$ such that $F=U V, F^{\prime}=V U, U$ is of type a, V is of type b, U is not a-highly periodic, and V is not b-highly periodic. We call it nonperiodic-nonperiodic case.

We extend the function sync to all fragments by defining $\operatorname{sync}(u)$ as the 2^{k-1}-synchronizer of the prefix of u of size 2^{k}, where $k=\operatorname{type}(u)$.

Let us define basic fragments called the left k-window and the right k-window:

$$
\operatorname{LeftWin}_{k}(W, i)=W\left[i-2^{k+1} \ldots i-1\right], \operatorname{RightWin}_{k}(W, i)=W\left[i \ldots i+2^{k+1}-1\right]
$$

For two triples $\Delta_{1}=(x, i, y), \Delta_{2}=\left(y, i^{\prime}, x\right)$, where x is a fragment both in $\operatorname{LeftWin}(i, S)$ and in $\operatorname{RightWin}\left(i^{\prime}, T\right)$ and y is a fragment both in $\operatorname{RightWin}(i, S)$ and in $\operatorname{LefttWin}_{b}\left(i^{\prime}, T\right)$ define the pair $\operatorname{CAND}\left(\Delta_{1}, \Delta_{2}\right)=\left(F, F^{\prime}\right)$ of fragments in S and T as follows, see Figure 1.

Relation of pairs of triples $\left(\Delta_{1}, \Delta_{2}\right)$ to $\mathrm{LCCF}_{a, b}$
Let j, k be starting positions of fragments x, y in S.
Let j^{\prime}, k^{\prime} be starting positions of fragments x, y in T.
$l:=j^{\prime}-i^{\prime}+i-j, r:=k-i+i^{\prime}-k^{\prime}$
Then $\operatorname{CAND}\left(\Delta_{1}, \Delta_{2}\right)=\left(F, F^{\prime}\right)$, where

$$
F:=S[i-l \ldots i+r], F^{\prime}:=T\left[i^{\prime}-r \ldots i^{\prime}+l\right] .
$$

$\left(F, F^{\prime}\right)$ is a candidate for $\operatorname{LCCF}_{a, b}(S, T)$

Due to synchronization for any pair of a, b-triples $\Delta_{1}=(x, i, y), \Delta_{2}=\left(y, i^{\prime}, x\right)$ there are exactly two fragments U, V of types a and b, such that $U V$ is "anchored" at i in S and $V U$ is "anchored" at i^{\prime} in $T, \operatorname{sync}(U)=x, \operatorname{sync}(V)=y$ and $[U V, V U]$ is a potential common circular factor. If $\operatorname{CAND}\left(\Delta_{1}, \Delta_{2}\right)=\left(F, F^{\prime}\right)$, then $\left(F, F^{\prime}\right)=(U V, V U), l=|U|, r=|V|$.
For a string W we introduce the following sets of 2^{k-1}-synchronizers:
$\operatorname{LeftSynch}_{k}(W, i)=$ SYNC $_{2^{k-1}}\left(\operatorname{LeftWin}_{k+1}(W, i)\right)$
$\operatorname{RightSynch}_{k}(W, i)=\operatorname{SYNC}_{2^{k-1}}\left(\operatorname{RightWin}_{k+1}(W, i)\right)$
Define $_{\operatorname{Triples}_{c, d}}(W)=\left\{(x, i, y): x \in \operatorname{LeftSynch}_{c}(W, i), y \in \operatorname{RightSynch}_{d}(W, i), i \in\right.$ [1.. |W|]\}.

Using the terminology of triples and function CAND (giving correspondence between pairs of triples and pairs of fragments), a scheme of a general algorithm can be written informally as follows:

Algorithm Compute-LCCF ${ }_{a, b}(S)$

1. Compute the sets $\operatorname{Triples}_{a, b}(S)$ and $\operatorname{Triples}_{b, a}(T)$.
2. Find a pair of triples $\Delta_{1} \in \operatorname{Triples}_{a, b}(S), \Delta_{2} \in \operatorname{Triples}_{b, a}(T)$ such that $\operatorname{CAND}\left(\Delta_{1}, \Delta_{2}\right)$ corresponds to $\operatorname{LCCF}_{a, b}(S, T)$.

- Lemma 5. In the nonperiodic-nonperiodic case the algorithm Compute-LCCF ${ }_{a, b}$ correctly computes $\operatorname{LCCF}_{a, b}(S, T)$.

Denote $\mathrm{Win}_{a, b}(W, i)=\operatorname{LeftWin}_{a}(W, i) \operatorname{RightWin}_{b}(W, i)$.
For each triple $(x, i, y) \in \operatorname{Triples}_{a, b}(W)$ such that x starts at position j and y starts at position k we denote by $\Psi_{a, b}(x, i, y)$ the following factorization $\left(F_{1}, F_{2}, F_{3}, F_{4}\right)$ of $\mathrm{Win}_{a, b}(W, i)$:

$$
F_{1}=S\left[i-2^{a+1}+1 \ldots j\right), \quad F_{2}=S[j \ldots i), \quad F_{3}=S[i \ldots k), \quad F_{4}=S\left[k \ldots i+2^{b+1}\right) .
$$

Moreover, by $\Psi_{a, b}^{\prime}(x, i, y)$ we denote $\left(F_{3}, F_{4}, F_{1}, F_{2}\right)$.

- Observation 6. For two triples $\Delta_{1}=(x, i, y), \Delta_{2}=\left(y, i^{\prime}, x\right) \operatorname{CAND}\left(\Delta_{1}, \Delta_{2}\right)$ is a common circular factor iff $\Psi\left(\Delta_{1}\right)$ agrees with $\Psi^{\prime}\left(\Delta_{2}\right)$.

In the lemma below with high probability means, as usually, that the error probability is $\mathcal{O}\left(n^{-c}\right)$ for any specified constant $c>0$.

- Proposition 7. After $\mathcal{O}\left(n \log ^{2} n\right)$-time preprocessing, in the nonperiodic-nonperiodic case the $\operatorname{LCCF}_{a, b}$ problem can be reduced to a 4-FAMILIes-Problem $\left(\mathcal{F}_{S}, \mathcal{F}_{T}\right)$ in which $m=$ $\mathcal{O}(n \log n)$ with high probability.

Proof. If $\left(F_{1}, F_{2}, F_{3}, F_{4}\right) \in \mathcal{F}_{1}$ agrees with $\left(F_{1}^{\prime}, F_{2}^{\prime}, F_{3}^{\prime}, F_{4}^{\prime}\right) \in \mathcal{F}_{2}$, then S and T contain a common circular factor of length $\left|F_{1}^{\prime}\right|+\left|F_{2}\right|+\left|F_{3}\right|+\left|F_{4}^{\prime}\right|$; see Fig. 1. We will now show that if $\operatorname{LCCF}_{a, b}(S, T)=\left(F, F^{\prime}\right)$, then the solution to 4 -Families-Problem $\left(\mathcal{F}_{1}, \mathcal{F}_{2}\right)$ is at least $|F|$.

Assume that $F=x_{1} x_{2}$ and $F^{\prime}=y_{2} y_{1}$ where x_{1} matches y_{1}, x_{2} matches $y_{2}, 2^{a} \leq\left|x_{1}\right| \leq$ $2^{a+1}-1$, and $2^{b} \leq\left|x_{2}\right| \leq 2^{b+1}-1$. Let i be the starting position of fragment x_{2} and i^{\prime} be the starting position of the fragment y_{1}. Let $\tau_{1}=2^{a-1}, \tau_{2}=2^{b-1}, x_{1}^{\prime}$ and y_{1}^{\prime} be the prefixes of x_{1} and y_{1}, respectively, of length $2 \tau_{1}-1, x_{2}^{\prime}$ and y_{2}^{\prime} be the prefixes of x_{2} and y_{2}, respectively, of length $2 \tau_{2}-1$, and:

$$
x=\operatorname{sync}_{\tau_{1}}\left(x_{1}^{\prime}\right)=\operatorname{sync}_{\tau_{1}}\left(y_{1}^{\prime}\right), \quad y=\operatorname{sync}_{\tau_{2}}\left(x_{2}^{\prime}\right)=\operatorname{sync}_{\tau_{2}}\left(y_{2}^{\prime}\right) .
$$

Let j and k^{\prime} be the starting positions of the synchronizing occurrences of x in x_{1}^{\prime} and y_{1}^{\prime} and k and j^{\prime} be the starting positions of the synchronizing occurrences of y in x_{2}^{\prime} and y_{2}^{\prime}. Then in the above construction, we will have $\left(F_{1}, F_{2}, F_{3}, F_{4}\right)$ in \mathcal{F}_{1} where

$$
F_{1}=S\left[i-2^{a+1}+1 \ldots j\right), \quad F_{2}=S[j \ldots i), \quad F_{3}=S[i \ldots k), \quad F_{4}=S\left[k \ldots i+2^{b+1}\right)
$$

and $\left(F_{1}^{\prime}, F_{2}^{\prime}, F_{3}^{\prime}, F_{4}^{\prime}\right)$ in \mathcal{F}_{2} where

$$
F_{3}^{\prime}=T\left[i^{\prime}-2^{a+1}+1 \ldots j^{\prime}\right), \quad F_{4}^{\prime}=T\left[j^{\prime} \ldots i^{\prime}\right), \quad F_{1}^{\prime}=T\left[i^{\prime} \ldots k^{\prime}\right), \quad F_{2}^{\prime}=T\left[k^{\prime} \ldots i^{\prime}+2^{b+1}\right) .
$$

Moreover, $\left(F_{1}, F_{2}, F_{3}, F_{4}\right)$ agrees with $\left(F_{1}^{\prime}, F_{2}^{\prime}, F_{3}^{\prime}, F_{4}^{\prime}\right)$ due to the existence of $\left(F, F^{\prime}\right)$ and its weight $\left|F_{1}^{\prime}\right|+\left|F_{2}\right|+\left|F_{3}\right|+\left|F_{4}^{\prime}\right|$ equals $|F|=\left|F^{\prime}\right|$.

The preprocessing of Lemma 2 takes $\mathcal{O}\left(n \log ^{2} n\right)$ time. Afterwards, for given a and b, the above construction produces, with high probability, two families $\mathcal{F}_{1}, \mathcal{F}_{2}$ with $\left|\mathcal{F}_{1}\right|,\left|\mathcal{F}_{2}\right|=$ $\mathcal{O}(n)$.

5 Periodic-Periodic Case

We consider now $\operatorname{LCCF}_{a, b}(S, T)=\left(F, F^{\prime}\right)$ such that $F=U V, F^{\prime}=V U, U$ is of type a, V is of type b, U is a-highly periodic, and V is b-highly periodic.

For a string W, by $\operatorname{HPerPref}(U)$ and $\operatorname{HPerSuf}(W)$ we denote the maximal highly periodic prefix and suffix of U. Let us start with the following simple observation; see Fig. 2.

- Observation 8. Let W and W^{\prime} be two strings for which the strings $X=\operatorname{HPerSuf}(W)$ and $Y=\operatorname{HPerPref}\left(W^{\prime}\right)$ have the same Lyndon root λ. Then the longest highly periodic suffix of W that is also a prefix of W^{\prime} has length at least $\min (|X|,|Y|)-|\lambda|$.

Let us recall that Lyndon roots of runs can be computed in constant time after linear-time preprocessing [13] and that the 2-period query problem can be solved within the same complexities [23] (for a simplified solution of this problem, see [5]).

For a fragment u denote by Lyndons (u) the set of fragments in u corresponding to the first/second/last occurrence of Lyndon root in the maximal highly periodic suffix of u (if

- Figure 2 Illustration of Observation 8.
there is any such prefix/suffix) and by $\operatorname{Lyndons}^{\prime}(u)$ the set of fragments in u corresponding to the first/penultimate/last occurrence of Lyndon root in the maximal highly periodic prefix of u (if there is any such prefix/suffix). We can redefine

$$
\operatorname{Triples}_{a, b}(S)=\left\{(x, i, y): x \in \operatorname{Lyndons}\left(\operatorname{LeftWin}_{a}(i)\right), y \in \operatorname{Lyndons}^{\prime}\left(\operatorname{RightWin}_{b}(i)\right)\right\}
$$

- Lemma 9. The algorithm Compute- $\operatorname{LCCF}_{a, b}(S)$ for redefined triples correctly solves the periodic-periodic case.

Let us redefine: $\mathcal{F}_{S}=\left\{\Psi(x, i, y) \in \operatorname{Triples}_{a, b}(S)\right\}, \mathcal{F}_{T}=\left\{\Psi^{\prime}(x, i, y) \in \operatorname{Triples}_{a, b}(T)\right\}$

- Proposition 10. In the periodic-periodic case $\operatorname{LCCF}(S, T)$ corresponds to a solution of 4-Families-Problem $\left(\mathcal{F}_{S}, \mathcal{F}_{T}\right)$ for $\mathcal{F}_{S}, \mathcal{F}_{T}$ defined above.

6 Nonperiodic-Periodic Case

Finally we consider the case that $\operatorname{LCCF}_{a, b}(S, T)=\left(F, F^{\prime}\right)$ such that $F=U V, F^{\prime}=V U, U$ is of type a, V is of type b, and either U is a-highly periodic or V is b-highly periodic. This case can be reduced to 4-FAMILIES-Problem directly by combining the techniques of the previous two sections.

- Proposition 11. After $\mathcal{O}\left(n \log ^{2} n\right)$-time preprocessing, in the nonperiodic-nonperiodic case the $\operatorname{LCCF}_{a, b}$ problem can be reduced to a 4-Families-Problem $\left(\mathcal{F}_{S}, \mathcal{F}_{T}\right)$ in which $m=\mathcal{O}(n \log n)$ with high probability.

7 Solution to 4-Families-Problem

In this section we show how to solve the 4-Families-Problem.

7.1 Intersecting 4D Rectangles

We define a d-rectangle $(d \geq 2)$ as a Cartesian product of d closed intervals, such that at least $d-2$ of them are singletons. E.g., $\{3\} \times[2,5] \times[1,7] \times\{0\}$ is a 4 -rectangle. In other words, a d-rectangle is an isothetic hyperrectangle of dimension at most 2 . Two d-rectangles $\left[a_{1}, b_{1}\right] \times \cdots \times\left[a_{d}, b_{d}\right]$ and $\left[a_{1}^{\prime}, b_{1}^{\prime}\right] \times \cdots \times\left[a_{d}^{\prime}, b_{d}^{\prime}\right]$ are called compatible if, for each $i \in\{1, \ldots, d\}$, $\left[a_{i}, b_{i}\right]$ or $\left[a_{i}^{\prime}, b_{i}^{\prime}\right]$ is a singleton.

We consider two families of 4-rectangles with weights and wish to find a pair of intersecting rectangles, one per family, with maximum total weight. The general problem of finding such an intersection of two families of m weighted hyperrectangles in d dimensions can be solved in $\mathcal{O}\left(m \log ^{2 d} m\right)$ time by an adaptation of a classic approach [15]. Below we consider a special variant of the problem that has a much more efficient solution.

Max-Weight Intersection of Compatible Rectangles in 4D

Input: Two families \mathcal{R}_{1} and \mathcal{R}_{2} of 4-rectangles in \mathbb{Z}^{4} with integer weights containing m rectangles in total, such that each $R_{1} \in \mathcal{R}_{1}$ and $R_{2} \in \mathcal{R}_{2}$ are compatible
Output: Check if there is an intersecting pair of 4-rectangles $R_{1} \in \mathcal{R}_{1}$ and $R_{2} \in \mathcal{R}_{2}$ and, if so, compute the maximum total weight of such a pair

A very similar problem was considered as Problem 3 in [18] for an arbitrary d. The sole difference is that the weight of an intersection of two d-rectangles $R_{1} \in \mathcal{R}_{1}$ and $R_{2} \in \mathcal{R}_{2}$ in that problem was the maximum ℓ_{1}-norm of a point in $R_{1} \cap R_{2}$. A solution to Problem 3 for $d=4$ in the case that the 4 -rectangles are compatible working in $\mathcal{O}\left(m \log ^{3} m\right)$ time and $\mathcal{O}\left(m \log ^{2} m\right)$ space was given as [18, Lemma 5.8]. The algorithm presented in that lemma actually solves the Max-Weight Intersection of Compatible Rectangles in 4D problem and applies it for specific weight assignment of the 4 -rectangles on the input. It uses hyperplane sweep and a variant of an interval stabbing problem. Henceforth we will use the following result.

Fact 12 ([18, see Lemma 5.8]). Max-Weight Intersection of Compatible RectANGLES IN 4D can be solved in $\mathcal{O}\left(m \log ^{3} m\right)$ time and $\mathcal{O}\left(m \log ^{2} m\right)$ space.

7.2 Computations on Factor Intervals

The main tool in the solution are factor intervals. Before we describe them and how we operate on them, let us recall the basic properties of the suffix tree. Let us start with the following known fact.

- Fact 13 ([1]). Let W be a string of length n and \mathcal{T} be its suffix tree. After $\mathcal{O}(n)$-time preprocessing, given a fragment x of W, one can compute its locus in \mathcal{T} in $\mathcal{O}(\log \log n)$ time.

Let W be a string of length n. Let us consider the lexicographic order of factors of W. For two strings X and Y such that $X \leq Y$, by $[X, Y]$ we denote the set of factors F of W such that $X \leq F \leq Y$. This set is referred to as a factor interval.

Similarly as for integers, one can define a factor hyperrectangle as a Cartesian product of factor intervals and a factor d-rectangle as a Cartesian product of d factor intervals such that at most two of them are not singletons. In our algorithm we will construct factor intervals
and factor 4-rectangles and use the following lemma to transform them into integer intervals and 4-rectangles.

- Lemma 14. Let W be a string of length n and \mathcal{A} be a family of factor intervals whose endpoints are factors of W. In $\mathcal{O}(n+|\mathcal{A}| \log \log n)$ time one can construct a function f that maps factor intervals into integer intervals such that, for any $P, Q \in \mathcal{A}, P \cap Q \neq \emptyset$ iff $f(P) \cap f(Q) \neq \emptyset$. Moreover, if P is a singleton, so is $f(P)$.

Proof. First we preprocess string W to support lexicographically minimal factors of W starting with given fragment x using Lemma 16. This step takes $\mathcal{O}(n)$ time.

For each factor X of string W, we define function g as $g(X)=(r,|X|)$ where r is a rank of the lexicographically minimal suffix of W starting with fragment of X. We can observe that for any factors $X, Y, X \leq Y$ iff $g(X) \leq g(Y)$.

Since we are interested only in values of function g for endpoints of intervals from \mathcal{A} we can compute all such values of function g in $|A| \log \log n$ time, sort all those pairs in linear time (using radix sort), and then define function $g^{\prime}(X)$ as a rank of a pair in obtained sorted sequences.

Finally for each interval $P=[X, Y]$, we define $f(P)=\left(g^{\prime}(X), g^{\prime}(Y)\right)$.
Let \# be a character that is greater than all the letters in Σ.

- Observation 15. Assume that P and Q are factors of W. Then P is a prefix of Q iff $Q \in[P, P \#]$ and a suffix of Q iff $Q^{R} \in\left[P^{R}, P^{R} \#\right]$.

As suggested in the above observation, in factor intervals we will also use, as right endpoints, strings of the form $F \#$ where F is a factor of W. In order to transform them into integer intervals with Lemma 14, we will compute the maximum factor of W that starts with F.

- Lemma 16. Let W be a string of length n. After $\mathcal{O}(n)$-time preprocessing, given a fragment x of W, one can compute the lexicographically minimal/maximal factor of W that starts with a factor matching x in $\mathcal{O}(\log \log n)$ time.

Proof. First we compute in $\mathcal{O}(n)$ time, the suffix tree of string W. Additionally we add to each explicit node the index of the lexicographically minimal/maximal suffix from its subtree. This can be easily done in $\mathcal{O}(n)$ time by traversing the suffix tree. The last ingredient of our solution is preprocessing of the suffix tree for supporting weighted ancestor queries. Using solution from Fact 13 the preprocessing requires $\mathcal{O}(n)$ time and each weighted ancestor query can be answered in $\mathcal{O}(\log \log n)$ time.

Given fragment x of W starting at position i. We locate leaf v of suffix tree corresponding to the suffix $W[i \ldots n]$. Using weighted ancestor query we locate the highest ancestor u of v, such that depth of u is greater than (or equal to) $|x|$. The resulting lexicographically minimal/maximal factor of W (that starts with x) is the lexicographically minimal/maximal suffix stored in the node u.

7.3 Algorithm for 4-Families-Problem

We are now ready to show a solution to 4-FAMILIES-PROBLEM.

- Lemma 17. 4-Families-Problem can be solved in $\mathcal{O}\left(n+m \log ^{3} n\right)$ time and $\mathcal{O}\left(m \log ^{2} n\right)$ space.

Proof. We construct two sets of factor 4-rectangles with weights, \mathcal{R}_{1} and \mathcal{R}_{2}, from \mathcal{F}_{S} and \mathcal{F}_{T} over the concatenation $S T S^{R} T^{R}$. For every $\left(F_{1}, F_{2}, F_{3}, F_{4}\right) \in \mathcal{F}_{S}$, we add a factor rectangle

$$
\left\{F_{1}^{R}\right\} \times\left[F_{2}, F_{2} \#\right] \times\left[F_{3}^{R}, F_{3}^{R} \#\right] \times\left\{F_{4}\right\} \text { with weight }\left|F_{2}\right|+\left|F_{3}\right|
$$

to \mathcal{R}_{1}. For every $\left(F_{1}^{\prime}, F_{2}^{\prime}, F_{3}^{\prime}, F_{4}^{\prime}\right) \in \mathcal{F}_{T}$, we add a factor rectangle

$$
\left[\left(F_{1}^{\prime}\right)^{R},\left(F_{1}^{\prime}\right)^{R} \#\right] \times\left\{F_{2}^{\prime}\right\} \times\left\{\left(F_{3}^{\prime}\right)^{R}\right\} \times\left[F_{4}^{\prime}, F_{4}^{\prime} \#\right] \text { with weight }\left|F_{1}^{\prime}\right|+\left|F_{4}^{\prime}\right|
$$

to \mathcal{R}_{2}. By Observation 15 , the solution of 4-Families-Problem corresponds to two intersecting 4-rectangles $R_{1} \in \mathcal{R}_{1}$ and $R_{2} \in \mathcal{R}_{2}$ with maximum total weight.

Lemma 16 can be used to transform strings $X \#$ to factors of $S T S^{R} T^{R}$. Then we apply Lemma 14 to transform factor 4-rectangles to standard 4-rectangles, dimension per dimension. Finally, we use Fact 12 to conclude.

As a consequence of Propositions 7, 10, and 11 applied for all a, b and the above lemma we obtain the main result.

- Theorem 18 (Main result). The LCCF problem can be solved in $\mathcal{O}\left(n \log ^{6} n\right)$ time by a randomized (Las Vegas) algorithm.

8 Conclusions

We have presented an $\mathcal{O}\left(n \log ^{6} n\right)$-time randomized algorithm for computing the Longest Common Circular Factor (LCCF) of two strings of length n. Let us recall that the Longest Common Factor (LCF) of two strings can be computed in $\mathcal{O}(n)$ time. We leave an open question if the LCCF problem can also be solved in linear time and if there exists a similarly efficient deterministic algorithm that solves this problem.

——References

1 Amihood Amir, Gad M. Landau, Moshe Lewenstein, and Dina Sokol. Dynamic text and static pattern matching. ACM Trans. Algorithms, 3(2):19, 2007. URL: https://doi.org/ 10.1145/1240233.1240242, doi:10.1145/1240233.1240242.

2 Alberto Apostolico, Maxime Crochemore, Martin Farach-Colton, Zvi Galil, and S. Muthukrishnan. 40 years of suffix trees. Commun. ACM, 59(4):66-73, 2016. URL: https://doi.org/10.1145/2810036, doi:10.1145/2810036.
3 Tanver Athar, Carl Barton, Widmer Bland, Jia Gao, Costas S. Iliopoulos, Chang Liu, and Solon P. Pissis. Fast circular dictionary-matching algorithm. Mathematical Structures in Computer Science, 27(2):143-156, 2017. URL: https://doi.org/10.1017/ S0960129515000134, doi:10.1017/S0960129515000134.
4 Md. Aashikur Rahman Azim, Costas S. Iliopoulos, Mohammad Sohel Rahman, and M. Samiruzzaman. A fast and lightweight filter-based algorithm for circular pattern matching. In Pierre Baldi and Wei Wang, editors, Proceedings of the 5th ACM Conference on Bioinformatics, Computational Biology, and Health Informatics, BCB '14, Newport Beach, California, USA, September 20-23, 2014, pages 621-622. ACM, 2014. URL: https://doi.org/10.1145/2649387.2660804, doi:10.1145/2649387.2660804.
5 Hideo Bannai, Tomohiro I, Shunsuke Inenaga, Yuto Nakashima, Masayuki Takeda, and Kazuya Tsuruta. The "runs" theorem. SIAM J. Comput., 46(5):1501-1514, 2017. URL: https://doi.org/10.1137/15M1011032, doi:10.1137/15M1011032.

6 Carl Barton, Costas S. Iliopoulos, and Solon P. Pissis. Fast algorithms for approximate circular string matching. Algorithms for Molecular Biology, 9:9, 2014. URL: https://doi. org/10.1186/1748-7188-9-9, doi:10.1186/1748-7188-9-9.
7 Carl Barton, Costas S. Iliopoulos, and Solon P. Pissis. Average-case optimal approximate circular string matching. In Adrian-Horia Dediu, Enrico Formenti, Carlos Martín-Vide, and Bianca Truthe, editors, Language and Automata Theory and Applications - 9th International Conference, LATA 2015, Nice, France, March 2-6, 2015, Proceedings, volume 8977 of Lecture Notes in Computer Science, pages 85-96. Springer, 2015. URL: https: //doi.org/10.1007/978-3-319-15579-1_6, doi:10.1007/978-3-319-15579-1 _6.
8 Domenico Cantone, Simone Faro, and Arianna Pavone. Sequence searching allowing for non-overlapping adjacent unbalanced translocations. CoRR, abs/1812.00421, 2018. URL: http://arxiv.org/abs/1812.00421, arXiv:1812.00421.
9 Kuei-Hao Chen, Guan-Shieng Huang, and Richard Chia-Tung Lee. Exact circular pattern matching using the bndm algorithm. In Proceedings of the 28th Workshop on Combinatorial Mathematics and Computation Theory, pages 152-161. National Penghu University of Science and Technol- ogy, Penghu, 2011.
10 Kuei-Hao Chen, Guan-Shieng Huang, and Richard Chia-Tung Lee. Exact circular pattern matching using bit-parallelism and q-gram technique. In Proceedings of the 29th Workshop on Combinatorial Mathematics and Computation Theory, pages 18-27. National Taipei College of Business, Institute of Information and Decision Sciences, Taipei, 2012.
11 Kuei-Hao Chen, Guan-Shieng Huang, and Richard Chia-Tung Lee. Bit-parallel algorithms for exact circular string matching. Comput. J., 57:731-743, 2013. doi:10.1093/comjnl/ bxt023.
12 Da-Jung Cho, Yo-Sub Han, and Hwee Kim. Alignment with non-overlapping inversions and translocations on two strings. Theor. Comput. Sci., 575:90-101, 2015. URL: https: //doi.org/10.1016/j.tcs.2014.10.036, doi:10.1016/j.tcs.2014.10.036.
13 Maxime Crochemore, Costas S. Iliopoulos, Marcin Kubica, Jakub Radoszewski, Wojciech Rytter, and Tomasz Walen. Extracting powers and periods in a word from its runs structure. Theor. Comput. Sci., 521:29-41, 2014. URL: https://doi.org/10.1016/j.tcs.2013.11. 018, doi:10.1016/j.tcs.2013.11.018.
14 Maxime Crochemore and Wojciech Rytter. Jewels of Stringology. World Scientific, 2003. doi:10.1142/4838.
15 Herbert Edelsbrunner. A new approach to rectangle intersections part i. International Journal of Computer Mathematics, 13:209-219, 1983. doi:10.1080/00207168308803364.
16 Kimmo Fredriksson and Szymon Grabowski. Average-optimal string matching. J. Discrete Algorithms, 7(4):579-594, 2009. URL: https://doi.org/10.1016/j.jda.2008.09.001, doi:10.1016/j.jda.2008.09.001.
17 Kimmo Fredriksson and Gonzalo Navarro. Average-optimal single and multiple approximate string matching. ACM Journal of Experimental Algorithmics, 9(1.4):1-47, 2004. URL: https://doi.org/10.1145/1005813.1041513, doi:10.1145/1005813.1041513.
18 Szymon Grabowski, Tomasz Kociumaka, and Jakub Radoszewski. On abelian longest common factor with and without RLE. Fundam. Inform., 163(3):225-244, 2018. URL: https://doi.org/10.3233/FI-2018-1740, doi:10.3233/FI-2018-1740.
19 Tommi Hirvola and Jorma Tarhio. Bit-parallel approximate matching of circular strings with k mismatches. ACM Journal of Experimental Algorithmics, 22, 2017. URL: https: //doi.org/10.1145/3129536, doi:10.1145/3129536.
20 Costas S. Iliopoulos, Solon P. Pissis, and M. Sohel Rahman. Searching and indexing circular patterns. In Mourad Elloumi, editor, Algorithms for Next-Generation Sequencing Data, Techniques, Approaches, and Applications., pages 77-90. Springer, 2017. URL: https: //doi.org/10.1007/978-3-319-59826-0_3, doi:10.1007/978-3-319-59826-0_3.

21 Costas S. Iliopoulos and M. Sohel Rahman. Indexing circular patterns. In Shin-Ichi Nakano and Md. Saidur Rahman, editors, WALCOM: Algorithms and Computation, Second International Workshop, WALCOM 2008, Dhaka, Bangladesh, February 7-8, 2008., volume 4921 of Lecture Notes in Computer Science, pages 46-57. Springer, 2008. URL: https: //doi.org/10.1007/978-3-540-77891-2_5, doi:10.1007/978-3-540-77891-2_5.
22 Tomasz Kociumaka. Efficient Data Structures for Internal Queries in Texts. PhD thesis, University of Warsaw, October 2018. URL: https://www.mimuw.edu.pl/~kociumaka/ files/phd.pdf.
23 Tomasz Kociumaka, Jakub Radoszewski, Wojciech Rytter, and Tomasz Walen. Internal pattern matching queries in a text and applications. In Piotr Indyk, editor, Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2015, San Diego, CA, USA, January 4-6, 2015, pages 532-551. SIAM, 2015. URL: https://doi. org/10.1137/1.9781611973730.36, doi:10.1137/1.9781611973730.36.
24 Jie Lin and Donald A. Adjeroh. All-against-all circular pattern matching. Comput. J., $55(7): 897-906,2012$. URL: https://doi.org/10.1093/comjnl/bxr126, doi:10.1093/ comjnl/bxr126.
25 Jie Lin, Yue Jiang, and Don Adjeroh. Circular pattern discovery. Comput. J., 58(5):10611073, 2015. URL: https://doi.org/10.1093/comjnl/bxu009, doi:10.1093/comjnl/ bxu009.
26 H. Ogiwara, T. Kohno, H. Nakanishi, K. Nagayama, M. Sato, and J. Yokota. Unbalanced translocation, a major chromosome alteration causing loss of heterozygosity in human lung cancer. Oncogene, 27(35):4788-4797, 2008. doi:10.1038/onc.2008.113.
27 Robert Susik, Szymon Grabowski, and Sebastian Deorowicz. Fast and simple circular pattern matching. In Aleksandra Gruca, Tadeusz Czachórski, and Stanislaw Kozielski, editors, Man-Machine Interactions 3, Proceedings of the 3rd International Conference on Man-Machine Interactions, ICMMI 2013, Brenna, Poland, October 22-25, 2013, volume 242 of Advances in Intelligent Systems and Computing, pages 537-544. Springer, 2013. URL: https://doi.org/10.1007/978-3-319-02309-0_59, doi:10.1007/ 978-3-319-02309-0_59.
28 Dorothy Warburton. De novo balanced chromosome rearrangements and extra marker chromosomes identified at prenatal diagnosis: clinical significance and distribution of breakpoints. Am. J. Hum. Genet., 49(5):995-1013, 1991. URL: https://www.ncbi.nlm.nih. gov/pubmed/1928105.
29 Brooke Weckselblatt, Karen E. Hermetz, and M. Katharine Rudd. Unbalanced translocations arise from diverse mutational mechanisms including chromothripsis. Genome Res., $25(7): 937-947,2015$. doi:10.1101/gr. 191247.115.

[^0]: - Abstract

 We introduce the Longest Common Circular Factor (LCCF) problem in which, given strings S and T of length n, we are to compute the longest factor $U V$ of string S whose cyclic shift $V U$ occurs as a factor of string T. The LCCF is a new similarity measure that is an extension of the classic Longest Common Factor problem to circular pattern matching. We show that the LCCF problem can be solved in $\tilde{\mathcal{O}}(n)$ time ${ }^{1}$. Our algorithm is randomized (Las Vegas). We apply

[^1]: 1 The $\tilde{\mathcal{O}}$ notation ignores factors polylogarithmic with respect to the instance size (encoded in binary).

