N

N
N

HAL

open science

A bias-variance perspective of data-driven control

Kévin Colin, Yue Ju, Xavier Bombois, Cristian Rojas, Hakan Hjalmarsson

» To cite this version:

Kévin Colin, Yue Ju, Xavier Bombois, Cristian Rojas, Haikan Hjalmarsson. A bias-variance perspective

of data-driven control. 2023. hal-04338871

HAL Id: hal-04338871
https://hal.science/hal-04338871

Preprint submitted on 12 Dec 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-04338871
https://hal.archives-ouvertes.fr

A bias-variance perspective of data-driven
control

Kévin Colin ***, Yue Ju*™**, Xavier Bombois *******
Cristian Rojas**, Hakan Hjalmarsson ***,

* Centre for Advanced Bio Production, KTH
** Division of Decision and Control Systems, KTH Royal Institute of
Technology, Sweden
*** Laboratoire Ampére, UMR CNRS 5005, Ecole Centrale de Lyon,
Université de Lyon, France
% Centre National de la Recherche Scientifique (CNRS), France

Abstract: Data-driven control, the task of designing a controller based process data, find
application in a wide range of disciplines and the topic has been subject to intense research
over more than half a decade. The main purpose of this contribution is to elucidate on the
commonalities between data-driven control and parameter estimation. In particular, we discuss
the bias-variance trade-off, i.e. rather than aiming for the optimal controller one should aim
for a constrained version, that, for example, may be characterized by tunable parameters,
corresponding to hyperparameters in parameter estimation. To keep technicalities at a minimum,
still capturing the essential features of the problem, we consider a quadratic open loop control
problem applied to a finite impulse response system. We consider the problem of minimizing
the expected control cost and first show that, for our setting, model-based data-driven control
outperforms other methods. We then make a systematic study of 3 different controller structures
and two different (model-based) data-driven tuning techniques and illustrate their behaviours

numerically.

Keywords: Data-driven control, Bayes control, Regularization and Kernel Methods

1. INTRODUCTION

A typical situation in control design is that physical
knowledge of the system needs to be complemented with
experimental data. Standard practice is to identify a model
in the best way possible and then adjust the control
objective to account for model errors (often in a crude
way). Throughout the years a substantial body of research,
including robust and adaptive control, has been built up
on how to do this in a systematic way. Identification for
control emerged in the end of the 1980s, first focusing on
model-based control using models of restricted complexity,
but also leading to methods for direct tuning of the
controller from data [Hjalmarsson et al. 1998, Hjalmarsson
2005, Gevers 2005, Bazanella et al. 2023, Formentin et al.
2014.

Recently, there has been a new surge of interest in the
topic. Spurred by advances in regularized parameter esti-
mation [Pillonetto et al. 2022], model kernels accounting
for the expected degradation of the control cost have been
proposed [Formentin and Chiuso 2021]. Another approach
to account for noisy data in the control design has been
to use the average risk framework, leading to what could
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be called Bayes control methods [Scampicchio et al. 2019,
Formentin and Chiuso 2021, Ferizbegovic et al. 2021].
In data-driven predictive control, Willems’ behavioural
framework [Willems et al. 2005] is leveraged [Coulson et al.
2019, Berberich et al. 2021, van Waarde et al. 2022]. The
control designs employ collected input-output trajectories
in constraints together with regularization terms in the
control objective. An attempt to unify these techniques
can be found in Breschi et al. [2023]. We point to Caré
et al. [2023] for an exposé of how regularization has been
employed in data-driven control. The double special issue
on data-driven control [Dérfler 2023a;b] contain many in-
teresting contributions to the field.

A topic that has been discussed for almost half a century
has been whether model based or direct control design is
to be preferred, see, e.g., the recent editorials in [Dorfler
2023a;b]. However, one may notice that such a classifi-
cation is hard to make precise. For example, in model
reference control, the model may be parametrized directly
in terms of the desired controller Hjalmarsson [2005], and
very recently it has been shown that techniques based on
the behavioural framework are closer to being model based
than previously believed [Chiuso 2023]. The objective of
this contribution is to switch focus to the bias/variance
trade-off which controls the long-run performance of any
data-driven control method. While many of the mentioned
contributions deal with this issue, we believe its role and
techniques that can be employed warrant to be highlighted
and will help further developments in the field. This is a



well known topic in parameter estimation Ljung [1999a],
Pillonetto et al. [2022], and the main purpose of this paper
is to connect closer these, to an outsider, disparate topics.
The purpose is thus not to propose any new data-driven
control method (although we use three controller struc-
tures that do not seem to have been considered before),
but rather to showcase the key elements of the problem
and the tools that exist. We have deliberately chosen a
very simple open-loop quadratic control problem to propel
our message. In similar spirit we consider the simplest pos-
sible data-generating mechanism, namely a finite-impulse
response model subject to white Gaussian noise.

The paper unfolds by first describing the considered set-
ting in Section 2, followed by the main section, Section 3,
where the essential ingredients of data-driven control are
discussed. Sections 4-5 outline the specifics of the resulting
tuning methods, which are illustrated numerically in Sec-
tion 8. In Section 9 we provide some concluding remarks.

Notation. The set of real-valued matrices of dimension
n x m will be denoted R™*™. We denote by j the complex
number which satisfies j2 = —1. For any complex number
x, its conjugate is denoted by T and its real part by
R(x). The identity matrix of dimension n x n will be
denoted by I,,. AT denotes the transpose of any matrix
A. The notation X ~ N(a,B) denotes that X is a
normally distributed random variable with mean vector
a and covariance matrix B and the probability density
function of X is denoted by N(x;a,B).

2. CONSIDERED FRAMEWORK

The purpose of this paper is to showcase the parallels
between data-driven control and parameter estimation. In
order to present them and preserve clarity, we will consider
a very basic feed-forward linear control problem.

2.1 System

Consider a single-input single-output (SISO) discrete-
time linear time-invariant (LTT) system S given by

y(t) = G(2)ult) +e(t) (1)
where y(t) € R, u(t) € R and e(t) € R are the output,
input and measurement noise at the time instant ¢ re-
spectively. Moreover, we will assume that the noise e is
zero-mean, white and Gaussian distributed with variance
o2. For simplicity, we will consider that G(z) is a finite
impulse response (FIR) of order n with impulse response
G(z) = Yiyb;z~". We will introduce the following no-
tation G(z,0) = I'(2)0, I'(z) = [1,z71,--- 27"] and
0= [603017 to ;en]—r~

2.2 A simple feedforward control problem

Given a filtered white noise reference signal r(t) with
power spectrum density ®,.,.(w) which is non-zero at all
frequencies w €] — m, 7|, we wish to compute the control
input u which minimizes the following infinite horizon cost

. 1
T1—1>I-?&[-100 T ; ET[(T(t) B

where A > 0 is an user-defined penalization coefficient.
We will consider a feedforward control u(t) = F(z)r(t)

G(z)u(t))* + Au(t)?)

where F'(z) is the feedforward controller. Using Parseval’s
theorem and injecting the latter in the control cost, we get

J(F / Qr.a() Py (w)dw

Qra(e’) = |1 — F(°)G(e)]? + AF(e)]%. (2)
Because the integrand is non-negative and ®,..(w) > 0
at all w, the optimal feedforward controller Fz(z) is such
that its frequency response minimizes Q ¢ frequency wise
which implies

G~H(e)
YD) (3)
14 M\/|G(e?w)]
which is to be interpreted as the frequency function of a
stable, possibly non-causal, filter.

Fg(ejw) =

The twist of the problem is now that G is unknown.
Instead we have N;4 samples from (1) at our disposal.
Next, we will introduce the identification framework.

2.8 The mazimum likelihood estimate
The dataset will be denoted by D and is given by

D ={(u(®),y(t)) [t=1,---, Nia}.
where u is generated in open loop. For convenience, let
y = [y(1) y(2) -+ y(Nig)]" and @ be the lower tri-
angular Toeplitz matrix whose first column is given by
[u(1),--- ,u(N;q)]T. Under the given assumptions, the
maximum likelihood of @ is given® by

6=(@ @) '@y (4)
The white Gaussian noise assumption of the noise e implies
that & ~ N(6,P), where P = 02(®7®)~!

3. DATA-DRIVEN CONTROL
3.1 Expected control cost and a bias/variance perspective

Consider now any data-driven feedforward controller
Fp(z). This will be a random quantity due to the presence
of noise in the collected data D. The long-run performance
of the controller, i.e. the average cost when the process
of collecting data D, computing Fp, and applying the
controller to the same system (1), is given by the expected
control cost, defined by

V(Fp,G) =E[J(Fp,G)] = % / E [Qrp,c(e)] ®rr(w)dw (5)

where E denotes expectation with respect to the data D.
Using that Qr ¢ is quadratic in F, we have 2

E [QFD,G] - Qr.¢ = Quirp).¢ — QrFg.c + (1G> + N Var[Fp],

Variance increase >0

Bias increase >0

where Var[Fp] = E[|Fp —E[Fp]|?]. Above, the bias
increase and the variance increase terms represent the
increase in the control cost due to the systematic error and
the variability of the data driven controller, respectively.
Exactly as in parameter estimation, the minimal control
cost is obtained by balancing these two terms. There is
thus a bias-variance trade-off also in data-driven control.
The main point of this contribution is to showcase that
the same techniques as used in parameter estimation can
be used to this end.

1 This implies that we know the order n of G(z). The order can be
verified with, e.g., residual tests Ljung [1999b].

2 We drop the frequency argument for brevity and clarity.




3.2 First observations

The first observation to be made is that, under the given

assumptions, @ in (4) is a sufficient statistic and that it
follows from this that it is sufficient to, in the class of
data-driven controllers, consider those that are function of

6. This follows from the following result.
Theorem 1. Suppose that S is a sufficient statistic for
D. Let Fp be a data-driven controller abd define Fg =
E [Fp|S]. Then

V(Fs,G) < V(Fp,G)
with equality if and only if Fp = Fg with probability 1.

Proof: This is essentially the Rao-Blackwell theorem

(Theorem 1.7.8 Lehmann and Casella [1998]). Using that

J is strictly convex in F', Jensen’s inequality gives
J(Fs,G) <E[J(Fp,G)|S]

and taking the expectation gives the result. ]

The interpretation of Theorem 1 is that it is sufficient to
consider only model-based data-driven controllers. There-
fore, in the following, we will denote by G(z) = I'(2)8, and
index a data-driven controller with subscript G, e.g. Fa,

suggesting that in terms of data it is a function of 0 only
(albeit the relationship may be involved).

Our next observation is that there is no uniformly opti-
mal data-driven controller. Paralleling the parameter esti-
mation case, this is seen by taking Fisx = F for a particu-
lar system G. This controller, which ignores any informa-
tion in the data set D, will have V(Fz, G) = J(Fg, G), i.e.
the minimum possible cost when the true system happens
to be G, but will of course give poor performance when
the true system G is far from G.

8.8 Tuning methods

So suppose that we have a parametrized family of data-
driven controllers® Fy(z,n), n € D,. So how can we tune
1 to leverage the bias-variance trade-off? Again drawing
on the parameter estimation problem, one may use risk
minimization techniques or take a Bayes approach.

Risk minimization. The idea in risk minization is to min-
imize an estimate of V(Fx(n),G). An obvious possibility

is to use the ML-estimate V(F,

=(),G), giving
vLrT = argmin V(Fga(n), G),
neD,

which we will call ML-risk tuning, but also other estimates
may be considered. For example the bias in the ML-
estimate may be removed as in SURE [Stein 1981]. To
apply risk minimization we need to derive an expression
for V(Fé(n),é). To this end, we will assume that the
identification experiment is such that as the sample size
Niq grows, & — 6, and hence Fa(n) — Fg(n). It is
straightforward to show that

E [QFG(U),G} = 1+an+ﬁn+ﬁm (6)
where

ay = (IG?+ )
(|FG(77)|2 + Aamv + Fa)Ar, .6 + Fa(n)Aan, E)

3 For brevity of notation we will use the notation Fea(n) for Fg(-,m).

By = —G(Agne+ Fa(n))
where
AG v () =Eg [|[Fa(e™,n) — Fa(e™,n)[?]

Ag.p =Eq [Fe(n)] — Fa(n)
Both Ag,, v and Ag,, r depend on the parametrization
of F(n). These quantities are in general not easy to com-
pute. One way to handle this is to use sampling techniques.
Another approach is to use Gauss’ approximation formula.
Below we show how this is done. Introduce

G(e’) = R+ jI, G(e?¥) = R+ 41

. . T
b =10k 0] ==[R-RI-1I]

Then, a second order Taylor approximation of Fg(n) —

Fg(n) with respect to [R 1]T is given by

1
Fg(n) = Fo(n) = Fe(n)dc + 505F&()da
giving
S
Agmy = Fo(n) E (6665 F&(n) (7)

(F&(n) E [063¢]) (8)
where the vector F§,(n ) € C? and the matrix F{(n) € C**2
are, respectively, the gradient and the Hessian matrix of
Fe(n) with respect to [R I]T. Now, from the properties of
0 and the definition of G it follows

E [5g(ej“’)6g(ej“)] = A(7)PA(e?) T

1
AGnV"’f

where
1 cos(w) ...
0 sin(w) ...
Using the approximations (7)-(8) in the expressions for a,,
and f3,, gives an approximation of E [Qr_ (n),c(e/*)], that
we denote by O Fé(n)g(ej‘“), and integrating this quantity
I (Fe(n), G)
to V(Fa(n),G). The minimizer to V(Fg(n),G) gives a
controller that approximates ML-risk tuning.

cos(nw)

Ae?) = sin(nw)

with respect to w gives an approximation V(

Bayes control.  One may arrive at Bayes tuning by taking
a Bayesian perspective as in [Scampicchio et al. 2019], or
from a Bayes perspective [Ferizbegovic et al. 2021]. Both
these contributions consider model reference control and
here we will follow the latter exposé adapted to the control
problem considered here.

Let us introduce a non-negative weighting function p(0)
encoding how important it is to obtain a good control
performance should the system really be 8. We then form
the weighted criterion

Fg) = / V(Fs, G(6))p(0)d6

With pge(D) denoting the probability density function for
the data when 6@ corresponds to the true system, we can,
after interchanging the order of the integrals, write

/ / / Qr,.c(6)Pe(D)p(8)d6 dD dw

As the 1ntegrand is non-negative and the inner integral is
independent of @, the data-driven controller minimizing
the weighted criterion W is given frequency-by-frequency
by

Fp p(e’*) :=arg min Qpé,p(ej“’) (9)

Fe



where Op.p(e7%) = [ Qr.c(e)(¢’*) po(D) p(8) db. For the
case of a parametrized data-driven controller Fi(n), the
minimizing 7 is given by

nBT(D)—argmm—/ Qr Fa(m).D( (e7“) dw
nebD,

We call this Bayes tuning (BT) of 7.

3.4 Some novel leads for balancing bias vs variance

The certainty equivalence (CE) controller consists of
replacing the unknown G in (3) by the ML-estimate G.

For risk minimization, again paralleling the parameter
estimation problem, a meaningful trade-off can only be
achieved by keeping in rein the degrees of freedom in F
as otherwise the variance term will dominate. To see this,
consider (6) and let us assume that we let the parametriza-
tion of Fs(n) completely free, we call this parametrization
unstructured, and that we use ML-risk tuning. Then tak-
ing CE-controller as Fj, gives V(F@(n),é) equal to the
minimum of QF,(;v i.e. the minimum cost that can be
achieved, implying that it is the CE controller that will be
obtained in ML-risk tuning (MLRT). In Section 4 we will
see that Bayes tuning (BT) is able to handle unstructured
controller parametrizations in a meaningful way.

To illustrate the concepts of this paper we will use the
following alternatives, which, in line with Theorem 1, all
are model-based:

e shrinked certainty equivalence:
G (edw)=1

Fag(e?¥,n) =n ————t—— 10
n(€’,m) =n 15 A/ [Gee)2 (10)
e kernel-based certainty equivalence
) é 6jw’ -1
Fio(eh, ) = — 1) (1)

L+ A/|G (e, )2

where G (e’*,m) is a kernel estimate of G, employing,
for example, the stable-spline (SS) kernel [Pillonetto
et al. 2011] and n the vector gathering the kernel
hyperparameters.

e input penalized certainty equivalence:

N pjw)—1
Fple?”, nfw)) = — (12)
L+ n(w)/[G(e72)?
where w — n(w) is a non-negative function to be
tuned. We will explain later the intuition behind this
choice of controller.

4. BAYES CONTROL FOR FIR MODELS

In this section we will derive the Bayes controller for (1).
For this model, pg(D) = N (y; ®6,0%1y,,) and taking the
weighting function as p(6) = N (0;0,Pg) gives

Qrp = / Qr.c N(y; 80,021y,,) N(0;0,Pg) dO
It is straightforward to show that
Qrp = (@) (|1 = FGP+ (A +Ag)|F) @, (13)

whereNC;’ =T and Ag(e’¥) := I'(e7*)PT*(e/%), where in
turn P := (Py' + P~1)7!, where P = ¢2(®'®)"!, and

where 0 := P®Ty/024  and where ¢(y) is a constant of no
consequence for the considerations. As (13) has the same
format as (2), save that the input penalty A is replaced
by A + Ag(e’?). We can interpret this as that the input
penalty has been made frequency dependent with higher
penalty at frequencies where Ag is large. It also directly
follows that the Bayes controller (9) is given by

G~l(e/)
1+ (A4 Ag(e/v)/|G(e)]?
Thus, if W is taken as design criterion, the overall optimal
data-driven controller can be interpreted as model based

(using the model G’) obtained from a criterion where the
input penalty is frequency dependent.

FB D(GJ ) (14)

Before proceeding, we remark that the weighting p(6)
does not have to be integrable. In the setting above,
we can take p(@) = c¢ where ¢ is an arbitrary positive
constant. Redoing the calculations gives that the Bayes
controller still is given by (14), but with 6 being the ML-
estimate (4) and P = P, implying that A is the variance
of the least-squares estimate in the frequency domain.
According to [Chiuso 2023], in a predictive control context
this corresponds to a version of the DeePC-controller for
certain settings of the hyperparameters in that algorithm.

In the following sections we will detail how the "hyper-
parameter" 7 in the different controllers in Section 3.4 are
tuned when MLRT and BT are employed. However, in or-
der to apply BT, we need to perform similar approximation
for W(Fg) as we did for the MLRT-method.

5. SHRINKAGE OF THE CE CONTROLLER

Let us consider the shrinkage strategy Fyp(n) in (10)
which can be rewritten as Fy,(n) = nFg with Fp is the
CE controller, i.e., the controller (3) where G is replaced
by G. In this case, we only have one hyperparameter 7 to
be tuned which is a proportional constant of the CE con-
troller. This strategy keeps the number of hyperparameters
to be tuned minimal which is advantageous since the larger
the number of hyperparameters to be tuned, the larger the
variance. Let us discuss the tuning of n with both MLRT
and BT approaches.

Evaluating the integrand Ep[Qp, 4] of the risk function

see (5)) and the integrand Q,, ~ of the Bayes approach
Fp,G
(see (9)) at Fp = Fgu(n) = nFg, we successively get

Ep[Qp, (m).a] =1 = 20R(GEp[Fg)) + n*(IGI* + NEp[| Fe|?]
Op, (. = 1= 21R(GED[Fg)) + 0 (1G> + Ac + NEp||Fg|?]

where Ag(e/®) := T'(e/)PT*(e/%) with P = o2(® " ®)~!

and T'(z) = (1,z7%---,27"). They are both convex
quadratic function with respect to n for which the min-
imum is easy to compute However, we face two problems:
we have to be able the compute the integral over all the fre-
quencies | — 7, | which can be computationally expensive
depending on the system complexity and both integrands
depend on the moments E[F;] and E[|Fg|?] for which
there is no closed-form expression. We can solve both
problems by approximating the integral over a regular
frequency gridding and both moments E[F] and E[|F|?]

4 In a Bayesian setting G and P are the posterior mean and variance
of the frequency function.



can be approximated by drawing several sample systems
Gsample(%) = I'(2)0sampie With Osgmpre a sample drawn
from N(6,P).

6. APPLICATION-ORIENTED REGULARIZATION

Using kernel-based regularization is a common practice
in parameter estimation especially when some prior knowl-
edge on the system is available such as stability. In [For-
mentin and Chiuso 2021], the kernel is designed with the
control objective in mind for the model reference control
problem. A penalty term which corresponds to the control
degradation performance cost is added to the identification
problem in addition to a model kernel-regularization term.
However, the hyperparameters of the kernel are kept fixed
in their approach. Our approach differs from [Formentin
and Chiuso 2021] on two accounts: (i) the structure of the
controller is fixed and equal to the CE controller Fi.(n)

computed based on the regularized estimate 6(n) with,
e.g., the SS kernel and (i¢) we tune 1 by minimizing the
risk or Bayes control cost with Fp = Fie(n), i..e, we take
into account the direct effect of 7 on both control costs. Let
us give more details on the implementation of the MLRT
and BT of n. Injecting Fi.(n) (see (11)) into the integrand
Ep[Qp,. ()¢l for the MLRT approach gives

Ep(Qp, (m).¢)l =1 = 2R(GEp[Frc(m)]) + (IG? + NEp[| Fre (m)[°]
while the integrand Q rp.¢ for the BT approach is
Q. (m& = 1= 2R(CED[Fie (M) + (G + Ag + NED(| Fiee ()]]

However, we get the same issues as for the shrinkage.
Hence, we should approximate the integral with a fre-
quency gridding and both moments with a sampling ap-
proach. But, another issue is met: the optimization prob-
lems are both non-convex and we do not have a closed-form
expression of the integrand with respect to m. One can
consider a gradient free optimization algorithms such as
the simplex method in order to circumvent this issue. This
renders this control design computationally demanding.

7. INPUT PENALIZED CE

The motivation for the input penalized CE-controller
Fip(n) (12) stems from Bayes control, cf. (14). In fact, if
the function 7 is determined using Bayes tuning , we will
recover (14) corresponding to a constant weighting p(8).

However, one may also tune the function 7 using risk-
minimization. This will give another bias-variance trade-
off. The approximation Q Fé(n),g(ej“’) (see the paragraph
on risk minimization in Section 3.3) to E[QFr.(,).cl, see
(6), in this case becomes a rational function in n(w),
having a derivative with a third order numerator. One can
thus, frequency-by-frequency, obtain n(w) by computing
the solutions to this third order polynomial and taking
the solution resulting in the smallest cost. We omit the
details due to space limitations.

Remark 1. In this paper, we focused on the design of
the frequency response of the proposed controllers. One
can compute a filter which will approximate the obtained
frequency responses using, e.g., the Yule-Walker approach
so that the controllers can be implemented. However, it is
important to check that the generated filters will stabilize
the loop before. This can be done using robust control
tools as described in, e.g., [Formentin and Chiuso 2021].

Table 1. Average control cost with different

controllers.
| MLRT | BT
Fg (CE) | Fp,p | Optimal Fgp, | 11.638 | 13.160
15293 | 8.945 | 0.953 Fr. | 7.845 5.007
F; 9.346 8.945

8. NUMERICAL EXAMPLE

For G(z) in (1), we consider a truncation of the impulse
response of the following system

0.5000 — 0.4150271 4 0.08162 2
1+ 0.0200z—! — 0.73952—2

to obtain a FIR system whose first 35 impulse response
coefficients (i.e., n = 34) are @ = [0y, - - - ,034]7 and we set
G(z) = Zfio 0;2~". The noise variance is to 02 = 0.1. The
reference output signal r(¢) considered for the feedforward

control is a zero-mean white Gaussian noise filtered by
0.5/(1—0.5z71).

For the identification, we generate N;q = 500 data with
an input «(t) which is a white Gaussian noise of variance
0.05. The average signal to noise ratio is -8 dB which
corresponds to a highly noisy case. Hence, we could expect
relatively poor control performance with the CE approach.

The design of the proposed methods will be done in the
frequency domain as explained in the previous sections.
However, the frequency responses are defined for all the
frequencies in the continuous interval |-, 7] and thus can-
not be evaluated numerically. We will consider a regular
gridding of the half interval [0, 7] with 500 gridding points
since the control cost on the other interval is the same. All
the control designs and their performance evaluation will
be based on this grid. Finally, we will consider 100 different
noise realizations in order to approximate V(F,G) in (5)
with the average of the obtained costs.

In Table 1, we give the average control cost V(F,G)
observed with the CE controller Fp, the Bayes unstruc-
tured controller Fp p (see (14)) and the three proposed
parametrized controllers Fyy,, Fj. and Fj, whose hyperpa-
rameters are tuned with both MLRT and BT. Firstly, all
the proposed methods improve upon the CE controller to
a varying degree. Secondly, we observe that which tuning
method that performs the best depends on the controller.
Risk-based tuning performs best for the shrinkage and
input penalized controllers, while Bayes tuning is better
for the kernel-based controller. Note that the cost for Fj,
with the BT approach is the same as for F p, which was
mentioned in Section 7.

In this example, application-oriented hyperparameter
tuning strategies are the best ones, with a better perfor-
mance obtained with the risk minimization tuning. As a
comparison, we also simulated the CE controller regular-
ized with the SS kernel for which both hyperparameters
are tuned using the Empirical Bayes methods and we
obtained an average cost of 11.659 which is twice worse
than the application-oriented design with MLRT. This
shows that taking the intended application of the identified
model (here control) into account in the hyperparameter
tuning may be a good practice as it improves the control
performance.



9. CONCLUSIONS

In this contribution we have elucidated on the bias-
variance trade-off that exists for all data-driven control
design techniques. Drawing from parameter estimation,
we have outlined two basic techniques that exists: Risk
minimization and Bayes tuning. We have also, in what
can be seen as a case study, studied how these techniques
manifest themselves when applied to three different control
structures. In regards to this case study, it is interesting
to notice that Bayes controller (14) strongly connects
to standard practice of detuning the control criterion in
case of uncertainty. However, rather than the engineering
solution of increasing the input penalty A, a more elaborate
scheme is employed where the penalty is made frequency
dependent, with higher penalty at frequencies where the
uncertainty is large. This suggests that research in this
area may significantly impact engineering solutions of
data-driven control.

We noted early on for our setting that, thanks to that 0 is
a sufficient statistic, it was sufficient to study model-based
data-driven control methods. Let us reassure ourselves
that this is indeed the case. It is clear that all controllers
(10)-(12), and (14), are employing the ML-estimate G.
Now, also 7 is tuned using data. However, as can be
easily verified, the only way the data enters in the used
tuning criteria is through G, and thus all approaches are
model-based as claimed. We remark that in the case of
an ARX-model, the parameter estimate @ and 7 ® form
a sufficient statistic. The situation is thus slightly more
complicated in this case but notice that the dimension of
this statistic is invariant with respect to the sample size,
and thus any data-driven controller can be based on this
statistic without sacrificing statistical properties. Other
model structures such as output-error, ARMAX, or Box-
Jenkins do not have this property.

While we have employed the simple setting of single-input
single-output open loop quadratic control, we believe that
it is rather straightforward to generalize our findings to
other, essentially, quadratic control problems, such as LQG
and MPC.
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