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Abstract

To maintain stable power system operation, damping control systems are
used in conventional power plants, known as Power System Stabilizers (PSS).
However, to derive suitable controller parameters, the current methods re-
quire dynamic models that are difficult to maintain and update, and in some
cases, might not be available. This makes it challenging for grid operators to
maintain system stability when the system is under stringent operating con-
ditions or undergoes the loss of major transmission corridors, which would
require a new stabilizer design to provide adequate damping.

Leveraging the availability of real-time measurements and “probing” tech-
nologies, this paper provides a complementary approach that does not re-
quire power system simulation models, but is based on system identification
techniques that allow to derive simple and accurate models based on data
collected on the system. The proposed method allows to monitor the per-
formance of damping controllers and even to perform redesign based on the
models derived with system identification. The resulting redesign could be
used to update PSS parameters and improve damping without the need of
removing existing damping control systems from service.

Keywords: Power system monitoring, PSS redesign, system identification

1. Introduction

Power System Stabilizers (PSS) are a well established technology used to
provide damping for electro-mechanical oscillations via a synchronous ma-
chine excitation control system (ECS) by placing the PSS in cascade with
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an Automatic Voltage Regulator (AVR) [1]. It is to be noted that similar
damping controllers are used in Flexible Alternating Current Transmission
Systems (FACTS) [2] and High-Voltage Direct Current (HVDC) links [3]. It
is also to be noted that, with the increasing adoption and maturity of new
measurement technologies, new damping control schemes leveraging real-time
data have been proposed (see, e.g., [4]). While these new controllers might
be suitable for new installations, in this paper, we will focus on conventional
PSS controllers that are deployed in existing plants.

In the case of conventional PSS, to perform their damping function sat-
isfactorily, their control parameters need to be adequately designed to pro-
vide damping over a range of different conditions and for different oscilla-
tory modes (if required). This is typically carried out during a power plant
commissioning, during scheduled maintenance or required tests [5], and in-
volves an off-line design process using simulation models and an on-line re-
calibration [6]. Such process is obviously laborious, time consuming and re-
quires specialized knowledge, and therefore, it is not carried out as regularly
as needed1. Even with careful design and regular update of PSS parameters,
under stringent operating conditions and the loss of important transmission
corridors [7], the performance of the PSS may still degrade, without a pos-
sibility of quickly updating the design of each generator controller or other
devices contributing to damping control [8, 9], which weakens the system
stability margins. This has led, for example, to major recent oscillatory inci-
dents in Europe (such as the ones observed in 2016 [10], in 2017 [11] and in
2021 [12]) and will continue to challenge its operation with additional expan-
sions [13], with a 2021 report from an European Expert Panel highlighting
the importance of better assessment in operational planning and real-time
operations for the critical transmission system corridors w.r.t. dynamic sta-
bility [12].

One of the major challenges with the physics-based model approach for
PSS design is the dynamic model itself [14]. Adequate models are required
for control design, and maintaining these models updated regularly is chal-

1A notable exception is the US Western Interconnection, which establishes perfor-
mance criteria for PSS via standard VAR-501-WECC-3.1 and enforces requirements, see:
https://www.nerc.com/pa/Stand/Pages/VAR501WECC3.1RI.aspx.
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lenging even only at the plant level [15], let alone for the entire power grid. A
continental European model only first become available in 2015 [16] and it is
not currently used in operational planning, let alone for PSS design. Mean-
while, the use of new measurement technologies has become advantageous in
the development and application of real-time monitoring of system dynamics
[17] and to perform root-cause analysis of oscillatory issues at the local level
[18].

These new measurement technologies enable system identification tech-
niques [19] to derive simple and accurate models of power systems by in-
jecting small “probing” signals at well chosen locations of the power system.
As shown in, e.g., [20], system identification has already been proven useful
for the monitoring of the damping ability of the power system i.e., to verify
whether this damping ability remains satisfactory at a given moment in time.
The measurement-based model used to perform this monitoring is a model
of the closed-loop system, i.e., the system with the dynamics of the PSS con-
troller. In this paper, the main contribution is to show that, if the probing
signal is injected at the output of the PSS controller, we can not
only identify a model of the closed-loop system (allowing the monitor-
ing of the damping ability of the current PSS controller), but also derive,
from this closed-loop model, a simple and accurate model of the
open-loop system i.e., the system as seen by the PSS controller.
This property is crucial. Indeed, if the monitoring algorithm (which is based
on the closed-loop model) detects a drop in the damping ability of the current
PSS controller, it is necessary to redesign the PSS controller in order to in-
crease its damping performance. This can only be done if an open-loop model
is available. Note furthermore that, because the open-loop system may be
unstable, identifying a model of this open-loop system is generally a difficult
task that can be tackled elegantly using the approach proposed in this paper.

If the performance of the current PSS controller has dropped, the PSS
controller can thus be redesigned based on the open-loop model derived from
the identified closed-loop model. For this purpose, we can make use of the
numerous model-based control design techniques existing in the literature2

2It is to be noted that, as opposed tomodel-based techniques, the literature also proposes
a number of fully data-driven techniques (see, e.g., [21]).
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The current field practice for PSS design and tuning is based on classical con-
trol methods [22]. Several sophisticated control design techniques have been
discussed in the literature, some summarized in [1, 6]. All these techniques
could be used to redesign the PSS controller based on the open-loop model.
In this paper, inspired by [23], we formulate the PSS redesign problem as an
optimization problem. The advantage of this formulation is that it allows to
maximize the damping while limiting the control effort. Even though other
techniques may also achieve the compromise between sufficient damping and
acceptable control efforts (e.g., the one in [23]), to the author’s knowledge,
very little attention has been devoted in the literature to the importance of
taking into account the control efforts (and its limits) in the design of a PSS
controller.

To sum up, this paper presents an integrated procedure, based on system
identification techniques, to monitor the damping ability of a PSS controller
and to redesign this PSS controller when its performance has dropped. In a
power system, there may be several PSS controllers and retuning all of them
may lead to coordination issues. To avoid this problem, we will here focus
on the monitoring and the potential redesign of the PSS controller in one
particular machine using measurements obtained at this machine (i.e., the
other PSS controllers will not be re-tuned).

The reminder of this paper is organized as follows. In Section 2 the
problem statement is delineated and notation is described. In Section 3 the
methodology for data-driven PSS damping performance monitoring is out-
lined while in Section 4 the methodology for PSS redesign is described. Sec-
tion 5 presents a proof-of-concept example illustrating the proposed method-
ology. Finally, conclusions and future works are outlined in Section 6.

2. Problem Statement

In this paper, we consider a power plant equipped with a PSS damping
controller and that is interconnected with a power grid. The PSS damp-
ing controller uses a measurement of the speed w of the rotor shaft of the
power plant to compute a correction signal that is applied to the AVR control
loop and that aims at increasing the damping of eventual electro-mechanical
oscillations that could arise due to disturbances in the power network (see
Figure 1). It is clear that such a controller is crucial to help maintain the
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Figure 1: PSS control strategy in a power plant. The signal v(t) represents the influence
of the random load changes on w(t). The probing signal r(t) is equal to zero except during
an identification experiment (see Section 3).

stability of a power system. As already mentioned in the introduction, if we
can assume that the PSS controller will achieve sufficient performance at its
commissioning, it is not guaranteed that this performance can be maintained
over time due to possible changes of the dynamics of the power plant and/or
of the power network. Because these changes are nowadays more and more
frequent, it is crucial, on the one hand, to have a methodology allowing a
close monitoring of the PSS performance and, on the other hand, to have
also a methodology allowing to redesign the PSS controller if the monitoring
algorithm detects a drop in the PSS performance. In this paper, we propose
a procedure that integrates two of such methodologies, and show that both
objectives can be achieved using measurement data collected on the power
system and with mathematical models derived/identified based on these data.

If we have a high-fidelity simulator of the power system (i.e., the power
plant equipped with the PSS controller and the power grid to which this
power plant is connected), the performance of the PSS controller can be
evaluated by determining the damping of the poles of a linearized version
of this power system and by checking that these dampings are all above a
certain threshold. If such high-fidelity simulator is not available or no longer
accurate due to changes in the power system, an alternative approach is to
identify a linear model (i.e., a transfer function model) of the power sys-
tem around its current operating condition and to subsequently compute
the dampings of the poles of that model (which are estimates of the actual
dampings). In order to identify this model, we can inject a small probing
signal at a given location, measure its effect on a measured variable of the
power system and subsequently identify the closed-loop transfer function T0
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between the probing signal and this measured variable. Note that, in this
approach, the obtained model will be an accurate representation of the cur-
rent situation of the power system. This is an important advantage with
respect to the approach based on an high-fidelity simulator whose accuracy
can be deteriorated due to changes in either the power plant or the power
grid. Consequently, this data-driven approach is particularly interesting for
the monitoring of the PSS performance. Indeed, if we perform this identifi-
cation at a regular basis, we can monitor this performance by verifying that
the minimal damping of the poles of the identified model T̂ of T0 remain
above a certain threshold.

For monitoring purposes, the measured variable mentioned in the previ-
ous paragraph and the location at which the probing signal is injected can
be chosen in a rather arbitrary way. In this paper, we will inject the probing
signal at the output of the PSS controller and choose the rotor shaft speed w
as the measured variable (see Figure 1). These choices have indeed the ad-
vantage that the identified model T̂ between this probing signal and w can
be used to derive a model Ĝ of the open-loop system between the output of
the PSS controller and the rotor shaft speed w (i.e. the open-loop system
that the PSS controller regulates). This model Ĝ is indeed crucial to be
able to redesign the PSS controller whenever the performance of the current
PSS controller will be deemed too low by the monitoring algorithm. Since
Ĝ will be deduced from the identified model T̂ , the whole procedure for PSS
monitoring and redesign can be implemented using solely measurement data
collected on the power system and the probing signal.

Notations. We will denote continuous-time signals as x(t) with t ∈ R
and continuous-time transfer functions as H(s) with s representing both the
Laplace variable and the derivation operator. We can thus write y(t) =
H(s)u(t) for the linear relation between a continuous-time input signal u(t)
and a continuous-time output signal y(t). Discrete-time signals will be de-
noted as x[n] with n an integer. If x[n] is the sampled version of x(t), we have

that x[n]
∆
= x(t = nTs) with Ts the sampling time. Discrete-time transfer

functions will be denoted as H(z) with z representing both the Z-transform
variable and the shift operator. Consequently, we can write y[n] = H(z)u[n]
for the linear relation between a discrete-time input signal u[n] and a discrete-
time output signal y[n].
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3. PSS Performance Monitoring: a data-driven monitoring algo-
rithm exploiting probing

In this section, we present the data-driven approach to evaluate the per-
formance of the current PSS controller. Because the dynamics of the power
system may change over time, the procedure described in this section must
thus be repeated at regular basis.

Let us first say a few words about how we can model the power system
based on data. From the point-of-view of the PSS controller and assuming
that the power system is operating around an equilibrium, we can use the
following linear representation of the power system (see also Figure 1):

w(t) = G0(s)u(t) + v(t) (1)

u(t) = −K(s)w(t) (2)

where K(s) is the continuous-time transfer function of the PSS controller,
w(t) is the rotor shaft speed, u(t) is the output of the PSS controller and
v(t) represents the stochastic disturbance acting on the system due to random
load changes3. In (1), G0(s) represents the dynamics of the power system
between u(t) and w(t) and therefore embeds the dynamics of the AVR, of the
generator and of the power grid to which the generator is connected. Since
we assume that the power system is operating around an equilibrium, we can
therefore assume that these dynamics can be represented by a linear transfer
function G0(s).

The system (1)-(2) is a so-called closed-loop system for which we will use
the shorthand notation [K(s) G0(s)]. The performance of the PSS controller
K(s) is generally deemed satisfactory if the dampings of the poles of this
closed-loop system are all larger than a certain threshold β (say β = 12%).

3Since (1)-(2) is a representation of the power system around an equilibrium, these
signals in fact represent the deviations of the signals with respect to the setpoint.
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The poles of the closed-loop system (1)-(2) can be determined by computing
the poles of any4 of the four so-called closed-loop transfer functions:

1

1 +K(s)G0(s)
,

K(s)

1 +K(s)G0(s)
,

G0(s)

1 +K(s)G0(s)
and

K(s)G0(s)

1 +K(s)G0(s)
. (3)

Let us introduce some notations for further reference. For any given K
and G, the minimal damping of the poles of the closed-loop system [K G]
will be denoted by ξmin(K,G). If T denotes one of the four closed-loop
transfer functions of [K G], we will also use the notation ξmin(T ) for the
same quantity i.e., ξmin(T ) = ξmin(K,G). We will use these notations for
continuous-time and for discrete-time transfer functions K, G and T , assum-
ing that the sampling time Ts has been chosen appropriately so that, e.g.,
ξmin(T (z)) = ξmin(T (s)) when T (z) is the discrete-time version of T (s).

Using these notations, the performance of the PSS controller K(s) will
be deemed satifactory whenever the following condition holds:

ξmin(K(s), G0(s)) > β (4)

If the controller K(s) can be assumed fully known, the open-loop system
G0(s) is of course unknown5. Consequently, to be able to evaluate the PSS
performance, we will need to identify a model of G0 or a model of one of
the four closed-loop transfer functions (3) in order to be able to check (4).
Since G0 may be unstable in some cases and since the identification of stable
transfer functions are easier in practice, we have here decided to identify a
model of one of the stable closed-loop transfer functions (3), in particular:

T0(s) =
G0(s)

1 +K(s)G0(s)
(5)

Let us describe the experiment we will devise to collect the data that are
required for the identification of a model of T0: we will excite the closed-
loop system (1)-(2) with a small probing sign r(t) at the output of the PSS

4If we assume that the product K(s)G0(s) happens without pole-zero cancellation,
these four closed-loop transfer functions have indeed the same poles.

5As mentioned in Section 2, the system G0(s) can also change over time. We will
however suppose that G0(s) will remain constant during the identification experiment
described in this section.
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controller (see Figure 1). This small probing signal can be chosen as a white
noise or as a sum of sinusoids at different frequencies (i.e., a multisine).
During the identification experiment, (1)-(2) therefore becomes:

w(t) = G0(s)u(t) + v(t) (6)

u(t) = −K(s)w(t) + r(t) (7)

Note that (6)-(7) can be rewritten in the following closed-loop form:

w(t) = T0(s) r(t) +
1

1 +K(s)G0(s)
v(t)︸ ︷︷ ︸

vcl(t)

(8)

where the signal vcl(t) (which is a function of v(t) as shown in (8)) is also a
stochastic disturbance that can be assumed to be statistically independent
from the probing signal r(t). Using (8), we observe that, if we identify the
transfer function between the known excitation signal r(t) and the measur-
able signal w(t), we will obtain a model of the closed-loop transfer function
T0(s) (from which we will be able to assess the damping ability of the PSS
controller).

For this purpose, we can use the so-called prediction-error identification
methodology [19] that uses discrete-time data collected on the system (6)-(7)
with a sampling time Ts:

ZN = {w[n], r[n] | n = 1, ..., N} (9)

where N represents the number of collected data (NTs is the duration of
experiment). Due to (8), the input-output data in ZN can be related as
follows:

w[n] = T0(z) r[n] +H0(z) e[n] (10)

with T0(z) the discrete-time version of T0(s), e[n] a zero-mean white noise,
andH0(z) a monic transfer function guaranteeing that the time-seriesH(z, θ0) e[n]
has the same power spectrum as the discrete-time version of vcl(t).

In the prediction error identification framework, we also need to de-
fine a so-called model structure M = {T (z, θ), H(z, θ) | θ ∈ Rk} i.e., a
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parametrization for the to-be identified models of T0(z) and H0(z) (θ is the
parameter vector gathering the k coefficients of the numerators and denom-
inators of T (z, θ) and H(z, θ)). Based on the data set ZN and the chosen
model structure M, the optimal parameter vector θ̂N can be deduced as
follows [19]:

θ̂N = argmin
θ

1

N

N∑
n=1

ϵ2[n, θ] (11)

ϵ[n, θ] = H−1(z, θ) (w[n]− T (z, θ)r[n]) . (12)

In general, the order of the parametrized transfer functions T (z, θ) and
H(z, θ) in M are chosen in such a way that the prediction error ϵ[n, θ̂N ]
is close enough to a white noise [19]. If that is the case, we can say that
the model structure M is full-order and that θ̂N is a consistent estimate of
the so-called unknown true parameter vector θ0 i.e., the parameter vector
such that T (z, θ0) = T0(z) and H(z, θ0) = H0(z). In this case, we can also
assess the modeling error θ̂N − θ0. Indeed, it is shown in [19] that θ̂N is
(asymptotically) normally distributed around the true parameter vector θ0
and with a covariance matrix Pθ that can be estimated using θ̂N and ZN [19].
Using this statistical property, we can derive an ellipsoid Uθ̂N

centered at θ̂N
and containing, at a certain probability level, the true parameter vector θ0.
The size of this uncertainty ellipsoid Uθ̂N

is directly related to the covariance
matrix Pθ and will decrease if the number of data N increases (Pθ indeed
converges to zero when N → ∞) [19].

Let us now come back to our problem of evaluating the PSS performance,
which boils down to verifying that (4) holds. Note also that ξmin(K(s), G0(s))
is by definition equal to ξmin(T0(s)) = ξmin(T0(z)). Now, recall that, using the
data ZN and the criterion (11), we obtain a model T (z, θ̂N) for the unknown
closed-loop transfer function T0. Consequently, we have that ξmin(T (z, θ̂N))
is an estimate for ξmin(T0(z)) and we can verify whether the PSS performance
is satisfactory by checking whether:

ξmin(T (z, θ̂N)) > β. (13)

A finer condition to check the PSS performance can be deduced by making
use of the parametric uncertainty ellipsoid Uθ̂N

. Let us for this purpose de-
rive, based on Uθ̂N

, an uncertainty interval I for the unknown ξmin(T0(z)) =
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ξmin(T0(s)):
I = {ξmin(T (z, θ)) | θ ∈ Uθ̂N

}. (14)

It is clear that, if θ0 lies in Uθ̂N
, ξmin(T0(z)) = ξmin(T (z, θ0)) also lies in I.

Assuming that this is the case, (4) holds if all elements ξ of I are larger than
β i.e.,

ξ > β ∀ξ ∈ I. (15)

If the latter condition is verified, we have then a strong indication that the
PSS performance remains satisfactory and no action will be undertaken. In
the opposite case, we will need to update the PSS controller to restore the
performance. The procedure for this purpose will be detailed in the next
section.

Remark. In order to verify (15), we need an explicit expression of the
interval I (the definition (14) for I is indeed implicit). Due to nonlinear
relation between θ and ξmin(T (z, θ)), an exact explicit description for this
interval is not available. However, I can be easily approximated using a
gridding approach (i.e., by generating a number of grid points θi in Uθ̂N

and
by computing ξmin(T (z, θi)) for all these grid points θi). Another approach
based on a linearization of the relation between θ and ξmin(T (z, θ)) is given
in [24, 20].

4. Redesign: PSS controller update in case when its performance
is deemed unsatisfactory

As mentioned above, if (15) is not verified, the damping ξmin(T0) =
ξmin(K,G0) is likely to be too low to guarantee sufficient damping of the
power system when major disturbances arise. Consequently, the PSS con-
troller K(s) needs to be updated in order to restore the desired damping
performance. This will be achieved by replacing the original controller K(s)
in (1)-(2) by a new controller Knew(s).

Because of the complex dynamics of the open-loop system G0(s) (e.g., it
may be unstable in some cases), we will require a model of G0(s) in order to
redesign the PSS controller. This model of G0 will be derived from the model
T (z, θ̂N) of the closed-loop transfer function T0(s) that has been identified in
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the monitoring procedure. For this purpose, let us observe that:

T0(s) =
G0(s)

1 +K(s)G0(s)
=⇒ G0(s) =

T0(s)

1−K(s)T0(s)
(16)

Using this relation and the fact that T (z, θ̂N) is a model of T0(s), we can
derive the following discrete-time model G(z, θ̂N) of the unknown continuous-
time system G0(s):

G(z, θ̂N) =
T (z, θ̂N)

1−K(z)T (z, θ̂N)
(17)

where K(z) is the discrete-time version of the original controller K(s). Note
that we use the expression of the original controller K in (16) and in (17)
since T (z, θ̂N) has been identified based on data collected on the power sys-
tem operated with this original controller (see (6)-(7)).

As usual in the model-based control design paradigm, the controller Knew

will be synthetised in such a way that Knew achieves the desired control ob-
jective when applied to the model G(z, θ̂N) of G0. Denoting Knew(z) the
discrete-time version of Knew(s), the main control objective is of course to
have the largest possible value for ξmin(Knew(z), G(z, θ̂N)). However, if con-
sidered alone, this objective may lead to overly large control signals u[n] =
−Knew(z)w[n]. Consequently, the objective of maximizing ξmin(Knew(z), G(z, θ̂N))
must be balanced by the objective of having a control action that remains lim-
ited. In the H∞ control design framework [25], this can be achieved by con-

straining the H∞-norm of the closed-loop transfer function Knew(z)

1+Knew(z)G(z,θ̂N )
.

In the same H∞ control framework, a good practice (in order to ensure the
robustness of the controller with respect to the uncertainty of the model) is
also to limit the H∞-norm of the closed-loop transfer function 1

1+Knew(z)G(z,θ̂N )

(the so-called sensitivity function) to be less6 than 2 [25].

This leads to the following model-based control design problem whose
solution is the controller Knew(z):

arg max
K̃

ξmin(K̃(z), G(z, θ̂N)) (18)

6Other weightings can also be considered to further shape the sensitivity function [25].
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subject to

∥∥∥∥∥
( 0.5

1+K̃(z) G(z,θ̂)
γ K̃(z)

1+K̃(z) G(z,θ̂)

)∥∥∥∥∥
∞

< 1 (19)

where K̃(z) is the decision variable of the optimization problem (18)-(19) and
γ is a tuning parameter that is chosen in order to limit the control action
in a satisfactory manner. Note that (19) implies that7 the solution Knew

of (18)-(19) satisfies:∥∥∥∥∥ 1

1 +Knew(z) G(z, θ̂)

∥∥∥∥∥
∞

< 2 and

∥∥∥∥∥ Knew(z)

1 +Knew(z) G(z, θ̂)

∥∥∥∥∥
∞

<
1

γ
(20)

From this expression, it is clear that the larger γ, the less aggressive the
control action will be. The optimization problem (18)-(19) can be solved for
different values of γ to see how large γ can be chosen while guaranteeing a
sufficient value of the damping.

Such control design formulation is relatively classical in H∞ control [26,
23]. In practice, if the structure of the PSS controller was not a priori fixed
(see below), the optimization problem (18)-(19) could have been solved ele-
gantly using LMI optimization. However, in many cases, the structure of the
PSS controller (K(s) and Knew(s)) is constrained to be a washout filter or a
washout filter followed by two lead-lag filters8. In other words, the decision
variable K̃(s) in the optimization problem (18)-(19) is constrained to have
one of the following two structures:

K̃(s) = kw
tw s

1 + tw s
(21)

K̃(s) = kw
tw s

1 + tw s

1 + t1 s

1 + t2 s

1 + t3 s

1 + t4 s
(22)

Due to this fixed structure, redesigning the PSS controller (i.e., determining
Knew(s)) boils down to retuning the values of the coefficients in the con-
sidered structure i.e., retuning kw and tw for (21) or kw, tw, t1, t2, t3 and

7In the H∞ framework, the constraint (19) is generally more complex. However, finer

weighting is not necessary in this case because sufficient shaping of 1/(1+Knew(z) G(z, θ̂))
is indirectly imposed by the objective of maximal damping.

8Note that other fixed controller structures could also be similarly considered.
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t4 for (22). In the numerical illustration (see Section 5), we will see that a
washout filter structure (21) can be sufficient to achieve sufficient damping
performance9. An important consequence of the fixed controller structure
is that the optimization problem (18)-(19) becomes non-linear. There are
different ways to tackle this non-linear optimization problem. Here, since
the number of controller parameters to be determined in Knew is limited, we
will use Bayesian optimization which implements a smart gridding process
by modeling both the objective function and the constraint of (18)-(19) as a
so-called Gaussian process (see [27]).

The (fixed structure) controller Knew is thus the solution of the op-
timization problem (18)-(19). The minimal damping of the closed loop
[Knew(z) G(z, θ̂N)] is by definition equal to ξmin(Knew(z), G(z, θ̂N)). Be-
fore applying the updated controller Knew to the power system (and forms
in this way the closed-loop system [Knew G0] having a minimal damping
ξmin(Knew, G0)), a first verification consists in checking that ξmin(Knew(z), G(z, θ̂N)) >
β. Similarly as in Section 3, it is also good practice to determine an uncer-
tainty interval Inew for ξmin(Knew, G0):

Inew =

{
ξmin(Knew(z), G(z, θ)) | G(z, θ) =

T (z, θ)

1−K(z)T (z, θ)
and θ ∈ Uθ̂N

}
(23)

and by checking that all elements of Inew are larger than β. This uncertainty
interval Inew can here also be approximated using a gridding approach.

When the above verifications are completed, the new PSS controller can
be implemented and we can return to the monitoring mode. An additional
verification can be carried out by performing the identification procedure of
the previous section on the updated closed-loop system to verify that the
PSS performance has indeed be restored.

9If the controller structure is (22), a washout filter can be obtained by putting t1 =
t2 = t3 = t4 = 0.
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5. Case study

5.1. Scenario

5.1.1. Considered power system model

In order to provide a proof-of-concept of the integrated monitoring and
redesign procedure, we have developed a power system simulation model that
we will use as true real-life system. More precisely, we consider the power
system represented in Figure 2. Recall that, by power system, we here mean
the interconnection of the power grid and of the power plant whose PSS con-
troller has to be monitored. In Figure 2, the power plant is represented by
G1 and the power grid to which it is connected consists in four buses (B1,
B2, B3 and B4), four lines (L1, L2, L3, and L4), a load (Load in Figure 2)
and a block Grid that represents the remainder of the power grid and that is
here modeled using an Infinite Bus [28]. The power plant G1 is here chosen
as a synchronous generator controlled as shown in Figure 1 with an AVR
controller and a PSS controller. The modeling details will be given in the
next subsection.

In normal operation (i.e., when there is no identification experiment be-
ing conducted), this power system will be entirely driven by the so-called
random load changes i.e., the variation of the load Load with respect to its
steady state value. Similarly as in [29], these random load changes will be
here modeled as a zero-mean Gaussian white noise eload with standard devi-
ation 0.0577 (see Figure 2). Note that this white noise is the phenomenon
causing the stochastic disturbance v in (1).

In order to assess the damping ability of the PSS controller from the large-
signal perspective, we will need to be able to subject the power system to
a large disturbance. In order to simulate such a large disturbance, inspired
by [30], we will suppose that the variation of the load with respect to its
steady state value is the sum of the Gaussian white noise eload (of relatively
small amplitude) and of a large pulse signal pload (see block Pulse in Fig-
ure 2). Finally, when an identification experiment is performed (see Section
3), a probing signal r must be added at the output of the PSS controller (see
Figure 1). This probing signal r and the load changes eload and pload will be
the sole exogenous inputs of the power system simulation model considered
in this case study; they are therefore represented at the bottom of Figure 2
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(see the hatched red box).

In the considered power system simulator, the to-be-monitored PSS con-
troller has the form of a washout filter and has been pre-designed as:

K(s) = kw
tw s

tw s+ 1
with kw = 9.5 and tw = 1.41 (24)

By linearizing10 between r and w the power plant simulation model with
the PSS controller (24), we determine the closed-loop transfer function T0

and we observe that ξmin(T0) = 16.84%. Note that this minimal damping of
16.84% corresponds to a complex pole at a frequency of 10.6 rad/s (≈ 1.69
Hz). Since ξmin(T0) = 16.84% is larger than β = 12%, the PSS controller
achieves satisfactory performance in this initial situation.

A dynamical change is introduced to this power system by removing
Line L4 (i.e., this line is tripped). By linearizing the power plant simula-
tion model between r and w in this new situation, we obtain a new closed-
loop transfer function T0 and we observe that the critical mode has now a
much lower damping of ξmin(T0) = 7.08% at a frequency of 6.5 rad/s (≈ 1
Hz). This damping ξmin(T0) = 7.08% is now (much) smaller than β = 12%
i.e., the PSS performance is no longer satisfactory. We will see that this
performance drop can be detected using our identification-based monitoring
procedure (see Section 3) and a new PSS controller can be designed using
the procedure presented in Section 4.

For the identification of the model T (z, θ̂N) of T0 in the monitoring pro-
cedure (see Section 3), we will apply, for a duration of twenty minutes, a
multisine probing signal r(t) given by:

r(t) = A

50∑
k=1

sin(ωkt+ ϕk) (25)

with A = 1.1× 10−3, random phase shifts ϕk (k = 1, ..., 50) and ωk =
k
2
rad/s

(k = 1, ..., 50) (the frequencies ωk thus range from 0.5 rad/s till 25 rad/s).
For the chosen random phase shifts ϕk (k = 1, ..., 50), the maximal amplitude

10This linearization is performed according to the approach described in [31].
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of this multisine r(t) is 0.016. As we will see in the next subsection, the
perturbation induced by this probing signal will be completely acceptable.

Figure 2: Power system simulation model developed using Modelica and the OpenIPSL
library with exogenous inputs eload, pload and r.

5.1.2. Modeling details

Following well established approaches [32], the power system simulator
described in the previous subsection is developed with the Modelica lan-
guage https://modelica.org/, the Modelica Standard Library (MSL)
https://doc.modelica.org/, the Open-Instance Power Systems Library (OpenIPSL) [33],
and assembled using the Dymola software http://dymola.com/. All OpenIPSL
models used to develop the system models in this paper are open-source soft-
ware and can be found online at https://openipsl.org. In the sequel, when re-
ferring to the model components in these figures, we will use the typewriter
font and the Modelica dot notation.

Let us first describe the power plant (denoted G1 in Figure 2) in more
details. The power plant model G1 is given in Figure 3 and contains the
two control loops depicted in Figure 1. As shown in Figure 3, G1 contains
a synchronous machine represented using a 6-th order model (PSAT.Order6
from OpenIPSL), an excitation control system (that includes the AVR) rep-
resented with the PST.AVRtypeIII model, and a single-input PSS controller
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modeled with the PSAT.PSSTypeII. Note that both the excitation control
system and the PSS controller have limiters enabled. Note also that the
PSS model PSAT.PSSTypeII includes three transfer functions in cascade: a
washout filter with gain kw × tw and time constant tw, and two lead-lag
compensators, with gains K, T1 and T2, each (see Figure 4). Note that by
setting T1 = T2 = 0 and K = 1, the PSS controller has the form (24).

Synchronous

Machine

Excitation 
Control 
SystemPSS

Figure 3: Power plant model inside of G1 in Figure 2 developed using Modelica and com-
ponents from the OpenIPSL library. The probing input r(t) is indicated with a red arrow
and the signals Vt(t) and w(t) used in the two control loops of Figure 1 are represented
with a blue and a green arrow, respectively (the signals r and w will also be used to

identify the model T (z, θ̂N ) of T0).

Figure 4: Inside the PSS PST.PSSTypeII component model.

The complete simulation models can be found online at
https://github.com/ALSETLab/PSSMonitoringAndRedesign.

We can run simulations on that simulation model by applying the exoge-
nous inputs described in the previous subsection. Note that the simulations
will all be performed with a variable integration step, but all the signals will
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nevertheless be re-sampled to have a fixed sampling time of 1/60 s.

Let us say a few words on how the exogenous inputs are applied to the
simulation model. As mentioned in the previous subsection, the random load
changes are modeled by a zero-mean Gaussian white noise eload with standard
deviation 0.0577. This white noise is generated by the block whiteNoise in
Figure 2 with a sample time of 1/60 s. The component, globalSeed in the
same figure specifies a fixed number for initialization of a pseudo random
number generator. The value is constant to keep the same noise for all sim-
ulations, as recommended in [34].

As already mentioned in the previous subsection, the large pulse distur-
bance pload will be generated via the block Pulse in Figure 2. In this block,
we can specify the amplitude and the duration of pload.

The probing signal r(t) defined in (25) is applied to the output of the PSS
controller via the component Multisine (see Figure 3). Within this compo-
nent, as shown in Figure 5, the signal r is in fact represented by a time vs.
data table (see the MultisineData component, which is a CombiTimeTable

block from the MSL). This allows to keep the definition of the probing signal
generic. Observe that, in Figure 5, there are also other blocks that help to
define when r is applied and when it is set to zero.

Figure 5: Inside the Multisine component model.

Before illustrating the methodologies introduced in Sections 3 and 4 on
this power system simulation model, let us present an example of possible
simulations. In this example, the simulation scenario follows a sequence of
actions:
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A. at t = 0 s, initialization and start of the simulation,

B. at t = 0.1 s, the Gaussian withe noise eload (i.e., the stochastic load)
starts driving the system and stays present throughout the simulation
until t = 1245 s,

C. at t = 0.5 s, Line 4 is removed/tripped (the dynamics of the power
system change),

D. at t = 15 s, the probing noise r(t) (see (25)) is applied until t = 1215 s,
corresponding to 20 minutes of probing,

E. at t = 1215 s, r(t) = 0 until t = 1245 s,

Note that pload is set to zero throughout this simulation. In the left column of
Figure 6, we represent, from t = 0 to t = 1245 s, the signals Vt (plot (a)) and
w (plot (b)) obtained via this simulation as well as the exogenous inputs r
(plot (c)) and eload (plot (d)) (a zoom on the particular time interval [0 45] s
is given in the right column). As mentioned in Section 5.1.1, we observe in
plot (c) that the maximal amplitude of the probing signal r is indeed equal
to 0.016.

The combined effect of r and eload on the internal variables Vt and w can
be observed in plots (a) and (b) in the time interval [15 1215] s while the
effect of only eload can be observed in the same plots in the time interval
[1215 1245] s. In these plots, we observe that the perturbation induced by
the probing signal is, as indicated at the end of the previous subsection, com-
pletely acceptable: the maximal excursions of the signals Vt and w around
their steady state are indeed respectively equal to 0.02 p.u. and 0.002 rad/s,
which are very small values. Note that the control signals u and Efd also
never hit their limits when the probing signal is added.

In plots (e) and (f) of Figure 6, we can observe the long transient of the
system dynamics after the tripping of line L4 (occurring at t = 0.5 s). This
long transient of about 10 seconds is consistent with the fact that the PSS
controllerK given in (24) only achieves a very small damping of 7.08% in this
new situation (see Subsection 5.1.1) and also confirms that, in this new situ-
ation, the damping ability of the PSS controller (24) is no longer satisfactory.
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Note finally that the transient mentioned above has disappeared before
the application of the probing signal (i.e., at t = 15 s). Consequently, if the
data set ZN (see (9)) is collected from t = 15 s till t = 1215 s, these data
will be representative of the power system with line L4 removed.

5.2. Monitoring

In Section 5.1.1, via linearization between r and w of the power system
simulation model with line L4 removed, we have obtained the closed-loop
transfer function T0. The modulus of the frequency response of this transfer
function is represented in Figure 7 (dashed blue curve). This transfer func-
tion T0 is characterized by ξmin(T0) = 7.08% (the small damping of T0 is also
evidenced by the sharp peak around 6.5 rad/s (≈ 1 Hz) in Figure 7). Since
ξmin(T0) = 7.08% is smaller than β = 12%, (4) does not hold.

Let us see whether we can detect this problem using the identification
procedure of Section 3. For this purpose, we will use prediction error identi-
fication to obtain a (discrete-time) model T (z, θ̂N) of T0. In order to identify
the model T (z, θ̂N), we need to collect the data set (9). For this purpose, we
will apply the probing signal r defined in (25) during twenty minutes11 on the
power system simulation model with the tripped line L4 and we will collect
the corresponding output signal w. As mentioned at the end of Section 5.1.2,
these data can e.g. be the data collected between t = 15 s and t = 1215 s
in the simulation of Figure 6. In this simulation, the data are collected with
a sampling rate of 60 samples per second. In order to avoid the numerical
errors inherent to discrete-time transfer functions with a sampling rate that
is too large with respect to their main dynamics, we decimate these data with
a factor 3 yielding a sampling rate of 20 samples per second (or Ts = 0.05 s).
This corresponds to a Nyquist frequency of 10 Hz (or 63 rad/s) which is
approximately one decade above the main dynamics of T0 (see Figure 7).

The obtained data set ZN (see (9)) is thus characterized by N = 24000.
Using an ARMAX model structure M of order 4, the data set ZN and the
criterion (11), we determine an optimal parameter vector θ̂N that yields a
nearly12 white prediction error ϵ[n, θ̂N ]. This identification procedure thus

11We will analyze the impact of a smaller probing duration at the end of this section.
12Even though one of the residual tests on ϵ[n, θ̂N ] [19, page 511] is not fully satisfied,
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Figure 6: Nonlinear simulation results. Left column, time period t = [0 − 1245] s, right
column t = [0 − 45] s. Vertical red lines indicate a specific actions from the list in
Section 5.1.2.
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yields a fourth order model T (z, θ̂):

T (z, θ̂N) =
0.001353 + 0.000571 z−1 + 0.003511 z−2 − 0.005439 z−3

1− 2.3 z−1 + 1.964 z−2 − 0.7605 z−3 + 0.1719 z−4

and, since ϵ[n, θ̂N ] is almost white, we can also determine the parametric
uncertainty ellipsoid Uθ̂N

.

Figure 7: Magnitude plot of T0(s) (blue dashed) and of T (z, θ̂) (red solid). The shaded

area around |T (ejωTs , θ̂N )| is the projection in the frequency domain of the parametric
uncertainty region Uθ̂N

.

In Figure 7, we compare the modulus of the frequency response of T (z, θ̂)
with the one of T0(s) and we observe that T (z, θ̂) is a close estimate13 of
T0. In this figure, we also represent with the shaded area the uncertainty
of the identified model in the frequency domain (obtained by projecting the
parametric uncertainty ellipsoid Uθ̂N

in the frequency domain) and we see
that the uncertainty is very small in the frequency band of interest.

this fourth order ARMAX model structure seems acceptable. Indeed, increasing the order
or using a Box-Jenkins model structure do not improve this residual test.

13Note that the transfer function T0(s) obtained via linearization of the power system
simulation model is a transfer function of order 12, but, as shown in Figure 7, this transfer
function can relatively be well approximated by the fourth order transfer function T (z, θ̂N ).
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Let us now use T (z, θ̂N) to compute the estimate ξmin(T (z, θ̂N)) of ξmin(K,G0) =
7.08% as well as the uncertainty interval14 I (see (14)). We obtain ξmin(T (z, θ̂N)) =
6.97% and the uncertainty interval I is given by [6.41 7.53] % (using the ap-
proach in [24, 20]) and by [6.54 7.41] % (using the gridding approach with
1000 randomly chosen grid points in Uθ̂N

). We observe that ξmin(T (z, θ̂N)) =
6.97% is a close estimate of ξmin(K,G0) = 7.08% and that ξmin(K,G0) =
7.08% lies in the uncertainty intervals obtained using both approaches. It
is also clear that (15) is not satisfied and thus the identification procedure
allows to detect that the PSS performance has been degraded due to the loss
of the line. We therefore decide to redesign the PSS controller.

Before redesigning the PSS, let us first analyze the influence of the ex-
periment duration on the above result. If we reduce the experiment duration
to 10 minutes (resp. 5 minutes), we obtain as expected a larger uncertainty
interval I = [6.20 7.81] % (resp. I = [6.07 8.44] %). Both intervals are
computed using the approach in [24, 20]. However, the alteration of PSS
performance can be still detected since (15) remains not satisfied in both
situations.

5.3. PSS controller redesign

5.3.1. Redesign

We have thus detected that the original controller K(s) leads to a de-
graded performance with a damping ξmin(K,G0) = 7.08% which is much too
low. We therefore apply the procedure described in Section 4 to obtain a
new PSS controller Knew with an acceptable performance. We will assume
that this new controller has the same structure as the original controller15:

Knew(s) = kw,new
tw,new s

tw,new s+ 1
(26)

Following the procedure in Section 4, we first compute G(z, θ̂N) using (17)

14Using the insights in [35], we here determine the size of Uθ̂N
to guarantee that I is a

99%-confidence interval.
15This simple structure is here not a limitation. In order to verify that, we have also

solved the (convex) optimization problem (18)-(19) in the case where no particular con-
troller structure is imposed and we have not observed a better performance than the one
obtained with the washout filter structure.
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and the model T (z, θ̂N) identified using the experiment of 20 minutes16. In
order to analyze the effect of the tuning parameter γ, we solve the optimiza-
tion problem (18)-(19) with γ = 0.025 and with γ = 0.05. The controller
Knew,1 obtained with γ = 0.025 is characterized by kw,new = 22.4455 and
tw,new = 0.5217. The (in theory less aggressive) controller Knew,2 obtained
with γ = 0.05 is characterized by kw,new = 12.6924 and tw,new = 0.5602.
In Figure 8, Knew,1(s) and Knew,2(s) are compared to the original controller
K(s).

Figure 8: Magnitude plot of K(s) (black solid), of Knew,1(s) (red dashed) and of Knew,2(s)
(blue dash-dotted).

Since the constraint (19) in the optimization problem yielding Knew,1(s)

is less stringent, the obtained damping ξmin(Knew,1, G(z, θ̂N)) = 38.51% is

higher than the one obtained with Knew,2(s) i.e., ξmin(Knew,2, G(z, θ̂N)) =
13.54%. The uncertainty intervals Inew are respectively Inew = [36.83 40.05] %
for Knew,1(s) and Inew = [12.95 14.15] % for Knew,2(s). Since the elements of
these two intervals are all above β = 12%, those two controllers can be im-
plemented on the power system in lieu of the original controller K(s). The
above analysis indeed indicates that they could strongly improve the PSS
performance.

16In this case, the obtained model G(z, θ̂) happens to be unstable.
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5.3.2. Verification of the performance of Knew,1(s) and Knew,2(s) using linear
analysis on the power system simulation model

We have thus implemented those two controllers on the power system
simulation model. Let us denote by T0,new,1(s) (resp. T0,new,2(s)) the lin-
earization of the dynamics between r and w of the power system simulation
model when Knew,1(s) (resp. Knew,2(s)) is implemented as the PSS con-
troller. The modulus of the frequency response of these two closed-loop
transfer functions is represented in Figure 9 and compared with the mod-
ulus of the closed-loop transfer function T0 corresponding to the original
controller K(s) (see (24)). We directly observe the less sharper peak in
T0,new,1(s) and T0,new,2(s) indicating a larger damping. More precisely, with
Knew,1(s), we obtain ξmin(T0,new,1) = 39.26% while, with Knew,2(s), we obtain
ξmin(T0,new,2) = 13.78%. This is entirely in accordance with the predictions

that have been made on the basis of the model G(z, θ̂N) at the end of the
previous subsection and we also observe that 39.26 % (resp. 13.78%) lies in
the uncertainty interval Inew corresponding to Knew,1(s) (resp. Knew,2(s)).

Figure 9: Magnitude plot of T0(s) (blue dashed) of T0,new,1(s) (red dashdotted) and of
T0,new,2(s) (black solid)

An identification experiment on the updated power system simulation
model with the same multisine probing signal r(t) as in Section 5.2 yields
a model T (z, θ̂N) with a minimal damping of 36% when Knew,1(s) is imple-

mented as the PSS controller. A similar experiment yields a model T (z, θ̂N)
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with a minimal damping of 13.52% when Knew,2(s) is implemented. As ex-
pected, such identification experiments could therefore confirm that these
two PSS controllers achieve satisfactory performance.

5.3.3. Verification of the performance of Knew,1(s) and Knew,2(s) for large
load disturbance on the power system simulation model

The linear analysis performed in the previous section seems to indicate
that Knew,1(s) and Knew,2(s) will show better damping ability than the origi-
nal controller K(s) when the power system is subject to a large disturbance.
We will now verify this in practice on the nonlinear power system simulation
model. We will for this purpose make use of the block Pulse in Figure 2.
Recall that this block allows to add, to the random load change eload, a pulse
signal pload. The amplitude and the duration of pload will be here first fixed
respectively to 1.25 p.u. (125 MW) and to eight cycles (i.e., 8/60 s). It is
clear that such a pload can be considered as a massive load disturbance.

In order to evaluate the performance of the controllers K(s), Knew,1(s)
and Knew,2(s) under this massive load disturbance, we have performed a
simulation on the power system simulation model when each of these three
controllers are implemented as the PSS controller. In this simulation, the
probing signal r is set to zero, the Gaussian white noise eload is applied dur-
ing the whole simulation and the large pulse disturbance pload is applied at
t = 1245 s. The modification of the load with respect to its set-point is thus
given by plot (e) in Figure 10. In the same figure, we compare the terminal
voltage Vt(t) (plot (a)), the rotor shaft speed w(t) (plot (b)), the control
action u(t) (plot (c)) and the field voltage Efd(t) (plot (d)) obtained in the
simulations with the three different controllersK(s), Knew,1(s) andKnew,2(s).
Note that, in plots (c) and (d), the horizontal dashed red lines correspond
to the min. and max. voltage limits of the PSS controller (generating u(t))
and of the AVR controller (generating Efd(t)).

In these plots, we clearly see that the three controllers lead to a sta-
ble behaviour under this massive disturbance. However, as can be seen in
plot (b), the transient behaviour is strongly reduced by replacing the orig-
inal controller K(s) by the new controllers. With K(s), we indeed observe
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Figure 10: Performance of K(s) (blue), Knew,1(s) (orange) and Knew,2(s) (yellow) under
a large load disturbance pload of amplitude 1.25 p.u. and with a duration of 8 cycles.

28



a transient of about 10 seconds17, while the transient only lasts 2 seconds
with Knew,1(s) and 4 seconds with Knew,2(s). This confirms the improved
damping performance expected from Section 5.3.1.

It is important to note that the less aggressive new controller Knew,2(s)
achieves this reduced damping with control efforts that are similar to (in
fact, even slightly smaller than) the one with the original controller K(s)
(see plots (c) and (d) in Figure 10). As expected, the controller Knew,1(s)
(achieving very high damping) goes hand in hand with (slightly) larger con-
trol efforts. It is however to be noted that these (slightly) larger control
efforts are only observed for approximately one second after the applica-
tion of pload. After this initial second, the control efforts with Knew,1(s) and
Knew,2(s) become similar.

From these plots, it also clear that, for Knew,1(s) and Knew,2(s), the PSS
output u(t) never reaches its limit, while the limit for Efd is only hit during
the on-set of the large disturbance pload (i.e., for about 0.5 s). Note that this
seems unavoidable for such a drastic load change pload and that this is also
the case for the original controller K.

Let us now perform the same analysis with a pulse of even higher am-
plitude (i.e., 1.3275 p.u.) and a (much) larger duration of 22 cycles. With
this even more massive load disturbance, we perform the same simulation
as above (the only difference is that eload is set to zero to make the plots
clearer). This leads to Figure 11 that has the same structure as Figure 10.
In this figure, we clearly see that the original controller K(s) destabilizes
the power system. When analyzing the blue line in plot (b), it is indeed
obvious that the machine loses synchronism shortly after t ≈ 1248 s. This
is a direct result of the PSS output u(t) reaching its maximum voltage limit
at this moment (as shown in plot (c)). Meanwhile, in plot (d), it can also
be observed how the AVR is fighting to stabilize the machine during the
transient but its response is bounded by its limit even before t = 1248 s.
In contrast, we observe how Knew,1 and Knew,2 are able to keep the system
stable (see orange and yellow curves in plots (a)-(d)). Similarly as what was
the case in Figure 10, the transient is shorter with Knew,1 (see plot (b)) and,

17A similar transient has also been observed in plot (f) of Figure 6.
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during the first second after the application of pload, Knew,1 leads to a larger
u(t) than Knew,2(s) (see plot (c)). However, as shown in plot (d), the field
voltage Efd with Knew,1 makes first its return to a region within the limits.
Regardless, both controllers can effectively stabilize the power system for this
disturbance pload of amplitude 1.3275 p.u. and of duration equal to 22 cycles
while it is not the case with the original PSS controller.

Note that the original controller K(s) still stabilizes the power system
when a pulse of amplitude 1.3275 p.u. and of duration equal to 21 cycles is
applied. In other words, for a pulse load disturbance of amplitude 1.3275 p.u.,
21 cycles is the longest duration before destabilization for the original con-
troller K(s). With Knew,2, we can go to 24 cycles before destabilization and,
with the controller Knew,1 achieving the highest damping, we can even go
to 26 cycles before destabilization. Consequently, Knew,1(s) and Knew,2(s)
can effectively stabilize the system for a longer period than the original PSS
design, which implies that the stability region for the system has been ex-
panded with Knew,1(s) and Knew,2(s). The stability analysis discussed above
is summarized in Table 1 and is illustrated in Figures 12 and 13 where we see
the performance of the controllers Knew,1(s) and Knew,2(s) for pulses having
the duration given in Table 1 and a duration just slightly larger. Figures 12
and 13 have the same structure as Figure 11 and are obtained using a similar
simulation (i.e., eload is set to zero and the pulse pload is applied at t = 1245 s).

PSS controller Maximal duration (in cycles) before destabilization
K(s) 21
Knew,1 26
Knew,2 24

Table 1: Stability analysis for the PSS controllers K(s), Knew,1(s) and Knew,2(s) for a
pulse disturbance pload of amplitude 1.3275 p.u.

From the analysis in this subsection, we can thus conclude that the con-
trollers Knew,1(s) and Knew,2(s) strongly improve the performance with re-
spect to the controller K(s), validating in this way the procedure proposed
in Sections 3 and 4 for the monitoring and the redesign of the PSS controller.
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Figure 11: Performance of K(s) (blue), Knew,1(s) (orange) and Knew,2(s) (yellow) under
a large load disturbance pload of amplitude 1.3275 p.u. and with a duration of 22 cycles.
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Figure 12: Performance of Knew,1(s) for a pulse disturbance pload of amplitude 1.3275 p.u.
and with a duration of 26 cycles (blue) and of 27 cycles (orange).
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Figure 13: Performance of Knew,2(s) for a pulse disturbance pload of amplitude 1.3275 p.u.
and with a duration of 24 cycles (blue) and of 25 cycles (orange).
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6. Conclusions

Even though the application of Power System Stabilizers for damping
power system oscillations is a well established practice in the power indus-
try, keeping these damping controller parameters adequately tuned is still
a major challenge as shown in recent major oscillatory incidents in Europe
[10, 11]. Unfortunately, these types of events indicate that damping perfor-
mance, while regularly monitored for entire networks, is not assessed continu-
ously at specific plants, until it is too late, i.e. major incidents occur. While
there are well established methods for PSS design based on physics-based
power grid simulation models, issues with access, maintenance and update
of such models makes the entire PSS tuning process complex and infrequent.

In this paper, an alternative approach based entirely on measurements
and system identification techniques is proposed, with the aim of comple-
menting the existing real-time performance monitoring and PSS redesign
methods. In the proposed integrated procedure, damping performance mon-
itoring is applied regularly or is triggered after a major disturbance (e.g. such
as a line loss) and injects a low-amplitude probing signal into the machine’s
AVR that can help to get damping estimates directly related to a specific gen-
erator. These estimates are accompanied with a confidence interval, which
can help in operator decision making.

One of such decisions would be to improve the controller performance if
the monitored damping is too low. To this end, we include in the integrated
procedure a method that can help to redesign the PSS parameters such that
a better damping performance is achieved. Together with the new param-
eters, a prediction of the potential damping along with confidence intervals
is provided. In other words, before applying the new design, the operator
would have a good idea of what damping to expect, within a (potentially
small) range. These confidence interval can help the operator decide to ap-
ply the new design (or not), e.g. if the uncertainty is low, the new design is
safe to apply.

To illustrate the proposed methods, nonlinear simulations were conducted
using a nonlinear power system simulation model driven with stochastic load
changes and a probing signal. Using this model, we illustrate how the PSS
damping performance can be monitored using the application of the probing
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signal. Note that the amplitude of this probing signal can be made as small
as desired by increasing the duration of the probing experiment. Such an
approach can be used to minimize the excitation of the system dynamics
and to avoid reaching the excitation system limits while at the same time
providing the necessary accuracy for the damping estimate. As for the PSS
redesign, we illustrate how new PSS designs can be obtained based on the
model identified during the probing experiment. Finally, we illustrate how
these new control designs perform under large disturbances after being im-
plemented, effectively providing adequate damping when they are needed the
most.

Future work will expand this study to address other types of oscillatory
phenomena, such as intra-plant oscillations [32] and inter-area oscillations
[36] over multiple operating conditions. The approach also needs to be ex-
tended to consider coordinated probing for enhanced damping performance
monitoring and PSS redesign of both generators [22] and power electronic-
based damping control systems [8].
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“INELFE — europe’s first integrated onshore HVDC interconnection,”
in 2012 IEEE Power and Energy Society General Meeting, 2012, pp.
1–8, ISSN: 1944-9925.

[10] ENTSO-E Sub-Group System Dynamics and Protection, “Analysis of
CE Inter-Area Oscillations of 1st December 2016,” ENTSO-E, 2017,
Available online: https://tinyurl.com/ENTSOE2016, Accessed: June
28, 2022.

[11] ——, “Oscillation Event 03.12.2017,” 2018, Available online:
https://tinyurl.com/ENTSOE2017, Accessed: June 28, 2022.

[12] ICS Investigation Expert Panel, “Continental Europe Synchronous Area
Separation on 08 January 2021,” ENTSO-E, p. 144, 2021, Available
online: https://tinyurl.com/ENTSOE2021, Accessed: June 28, 2022.

[13] O. Butkevych and V. Chyzhevskyi, “Some features of electromechanical
oscillations modes identification in power systems,” in Power Systems
Research and Operation: Selected Problems, ser. Studies in Systems, De-
cision and Control, O. Kyrylenko, A. Zharkin, O. Butkevych, I. Blinov,
I. Zaitsev, and A. Zaporozhets, Eds. Springer International Publishing,
2022, pp. 47–70.

[14] D. Kosterev, C. Taylor, and W. Mittelstadt, “Model validation for the
august 10, 1996 WSCC system outage,” IEEE Transactions on Power
Systems, vol. 14, no. 3, pp. 967–979, 1999.

[15] J. Undrill, L. Pereira, D. Kosterev, S. Patterson, D. Davies, S. Yang,
and B. Agrawal, “Generating unit model validation: WECC lessons
and moving forward,” in 2009 IEEE Power & Energy Society General
Meeting, 2009, pp. 1–5, ISSN: 1932-5517.
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