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Embedded real-time systems are tightly integrated with their physical environment. Their correctness depends
both on the outputs and timeliness of their computations. The increasing use of multi-core processors
in such systems is pushing embedded programmers to be parallel programming experts. However, parallel
programming is challenging because of the skills, experiences, and knowledge needed to avoid common parallel
programming traps and pitfalls. This paper proposes the ForeC synchronous multi-threaded programming
language for the deterministic, parallel, and reactive programming of embedded multi-cores. The synchronous
semantics of ForeC is designed to greatly simplify the understanding and debugging of parallel programs.
ForeC ensures that ForeC programs can be compiled efficiently for parallel execution and be amenable to
static timing analysis. ForeC’s main innovation is its shared variable semantics that provides thread isolation
and deterministic thread communication. All ForeC programs are correct by construction and deadlock-free
because no nondeterministic constructs are needed. We have benchmarked our ForeC compiler with several
medium-sized programs (e.g., a 2.274 line ForeC program with up to 26 threads and distributed on up to 10
cores, which was based on a 2.155 line non-multi-threaded C program). These benchmark programs show that
ForeC can achieve better parallel performance than Esterel, a widely used imperative synchronous language for
concurrent safety-critical systems, and is competitive in performance to OpenMP, a popular desktop solution
for parallel programming (which implements classical multi-threading, hence is intrinsically nondeterministic).
We also demonstrate that the worst-case execution time of ForeC programs can be estimated to a high degree
of precision.

CCS Concepts: • Computing methodologies→ Parallel programming languages; • Software and its
engineering→ Semantics; Source code generation.
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1 INTRODUCTION
We present the programming language ForeC1, aimed at programming parallel safety-critical
embedded systems deployed on multi-core processors. The most important challenges raised by the
design and implementation of such a system are:

(A) It must be dependable and functionally safe [22, 37, 93]. Certification is often required w.r.t.
safety standards such as DO-178B [102], IEC 61508 [60], and ISO 26262 [62] depending
on the application domain. These safety standards require programs to be deterministic,
understandable, and maintainable.

(B) It must be real-time and reactive because it interacts continuously with its environment [53],
at a speed imposed by this environment. The system’s environment can be a physical process
that it monitors and controls (e.g., a nuclear power plant), the physical environment it
moves into (e.g., the 3D space for an unmanned aerial vehicle), or both. Interactions with the
environment are performed through input and output signals, and the system must react to
new inputs as soon as possible. The key point is that the correctness of an embedded system
depends both on the output of its computations and on the timeliness of completing these
computations [74, 127].

(C) It must be concurrent because the physical process that it interacts with is almost always a
collection of several independant parts (e.g., a flight control system monitors and controls the
plane’s rudders, ailerons, engines, and so on). Concurrency is sometimes called “expression
parallelism” and it concerns the source program.

(D) When the platform it is deployed on is parallel (e.g., a multi-core processor), the system must
also be parallel. Parallelism is sometimes called “execution parallelism” and it concerns the
generated code.

(E) It must involve complex data processing, which requires complex data structures (arrays, ma-
trices, structs, pointers, ...) and control instructions (conditionals, switches, loops, ...). In other
words, it must allow both data-centric and control-centric applications to be programmed.

These challenges are difficult to address jointly in a programming language. We present in the
following sub-sections how ForeC achieves this.

1.1 Safety-Critical Data Processing
This part addresses challenges (A) and (E). ForeC extends C with specific language features to
address the challenges (B) and (C), as will be explained in the next sub-sections. The advantages of
choosing C are that it provides the essential data and control structures to program both low-level
and high-level systems, that many compilers exist for basically all possible instruction sets, and that
many libraries exist for basically all peripherals. For these reasons, C is a popular programming
language used in the safety-critical embedded domain. This is how ForeC addresses challenge (E).

Still, C’s semantics [61] include unspecified and undefined behaviors [70]. Thus, to address
challenge (A), strict coding guidelines [56, 63, 85] are used by safety-critical programmers to help
write well defined programs that are deterministic, understandable, maintainable, and easier to
debug [43, 54]. The coding guidelines can be grouped into three main concerns:
code clarity to avoid as much as possible the occurrence of ambiguous code statements;
defensive programming to eliminate nondeterminism due to unspecified and undefined behav-

iors;
runtime reliability to prevent the occurrence of runtime errors even when the program has been

written correctly.
1ForeC is pronounced “foresee”, because the goal of the language is to help programmers foresee the execution and timing
behavior of their programs.
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1.2 Concurrent and Parallel Programming
This part addresses challenges (C) and (D). On the one hand, parallel programs have been developed
with the goal of executing several threads simultaneous over multiple compute resources. C is
a popular language for programming embedded systems with support for multi-threading and
parallelism provided by third-party libraries, compilers, and runtime support [34]. Notable examples
include Pthreads [115], OpenMP [91], and MPI [84]. Unfortunately, these multi-threading solutions
are inherently nondeterministic [73] because they permit nondeterministic behaviors, e.g., race
conditions over shared variables. More generally, the lack of formal semantics for the programming
model can lead to ambiguous behaviors.

Besides the non-determinism issue, parallel programming is challenging because of performance
issues. Indeed, several studies [75] have shown that, without careful tuning, parallel programs
executed on multi-cores can perform worse than their sequential counterparts!

On the other hand, concurrent programs use the idea of simultaneous thread execution to simplify
the modeling of concurrent behaviors at design time. When the system being programmed is
intrinsically concurrent, as it is the case of many embedded real-time systems, using a concurrent
programming language is essential. The concurrent threads are then typically compiled away to
produce sequential code. Otherwise, the programmer has to manually interleave all the concurrent
behaviors, which is error prone and time consuming.

ForeC addresses challenges (C) and (D) by being a multi-threaded extension of C, equipped with
a compiler that generates parallel code for execution on multi-core processors.

1.3 Synchronous Programming Languages
This part addresses challenges (A), (B), and (C). ForeC is a synchronous programming language. In
the same spirit that procedural imperative programming languages (e.g., C, Pascal, Ada, ...) ease
the design and implementation of sequential programs by providing advanced sequential control
structures (procedures, functions, loops, conditionals), synchronous programming languages ease
the design and implementation of concurrent reactive programs by providing ideal temporal control
structures (temporal loops, preemption, concurrency, synchronization barrier).

Synchronous languages [10] are based on a rigorous mathematical model; this facilitates pro-
gram comprehension, system verification by formal methods [10], and generation of correct-by-
construction implementations [40, 87]. Figure 1 depicts a synchronous program, defined as a set of
concurrent communicating threads, within its physical environment. A synchronous program reacts
to its environment by sampling its inputs, allowing its threads to execute computations, and emit-
ting corresponding outputs back to the environment. Inputs are sampled to avoid the need to use
interrupts which are sources of unpredictable delays that degrade a system’s timing-predictability.
Conceptually, each reaction is triggered by the ticking of a logical global clock.

Threads contain synchronization barriers: when a thread executes and reaches its next synchro-
nization barrier, it pauses and we say that the thread has completed its local tick. When all threads
in the program have completed their respective local ticks, we say that the program has completed
its global tick. This constitutes a reaction.

Central to synchronous languages is the synchrony hypothesis [10], which states that the execution
of each reaction is considered to be atomic and instantaneous. If a program’s global clock is fast
enough (faster than the occurence of events from the environment), it gives the illusion to the user
that the program reacts continuously to its environment. Of course this requires the program’s
reaction time to be shorter than its clock period. In classical synchronous languages, e.g., Esterel [15],
concurrent threads communicate instantaneously with each other (dashed arrows in Figure 1)
thanks to the synchrony hypothesis. This is the key element that makes temporal and concurrent
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Fig. 1. Synchronous model of computation.

1 input i n t A , B , R ;
2 output i n t O ;
3
4 void main ( void ) {
5 while ( 1 ) { // Loop each R
6 O= 0 ;
7 abort {
8 par ( tA ( ) , tB ( ) ) ; // Await A and await B
9 O= 1 ; // Emit O

10 while ( 1 ) { pause ; O= 0 ; }
11 } when ( R==1) ;
12 }
13 }
14 void tA ( void ) {
15 do { pause ; } while (A! = 1 ) ;
16 }
17 void tB ( void ) {
18 do { pause ; } while ( B ! = 1 ) ;
19 }

Fig. 2. ABRO synchronous program in ForeC.

behaviors easier to to reason with. Once the embedded system has been implemented, the synchrony
hypothesis has to be validated by ensuring that the worst-case execution time [126] of any global
tick must not exceed the minimal inter-arrival time of the inputs.

We use the ForeC language to illustrate key features of the synchronous paradigm in Figure 2.
The ForeC program implements the well-known ABRO example [14]2, which has the following
specification: “Emit an output O as soon as two inputs A and B have occurred. Reset this behavior

2ABRO is the “hello world” counterpart of synchronous programs.
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each time input R occurs.” Note that the “emit ... as soon as ...” and the “reset ... each time ... occurs”
parts of this specification are tricky to program correctly. Synchronous programming languages
precisely offer dedicated control structures and a deterministic semantics to do it.

Lines 1 and 2 define the reactive interface of the program, which consists of the input and output
variables, respectively with the input and output keywords. In this example, 0 and 1 encode
respectively the absence or presence of these variables. To wait for inputs A and B to occur, the
parallel threads tA and tB are forked using a par statement (line 8). Thread tA pauses at each tick
until input A becomes present (line 14). This is achieved with a pause statement, which demarcates
the end of a thread’s local tick and acts as a synchronization barrier across all threads to complete
a global tick. Once threads tA and tB have both terminated due to the respective occurrence of
inputs A and B, the par statement also terminates. Execution continues on line 9 and output O
is made present. The program then waits at each tick and sets output O back to absent (line 10).
The above behavior is enclosed by an abort statement (lines 7–11) that terminates its body when
input R is present. Together with an outer loop (line 5), the reset behavior is achieved on every
occurrence of R.

In classical synchronous languages, threads communicate instantaneously by emitting signals
and testing for either their presence or absence. Synchronous programs are considerably difficult to
parallelize [44, 66, 134] due to the need to resolve instantaneous thread communication and the
associated causality issues. At runtime, all potential signal emitters must be executed before all
testers of a signal. A causality issue arises if this is not possible. E.g., this occurs in the statement
“present X else emit X end” which has no behavior in Esterel because the signal X cannot be
absent and present during the same global tick. Interestingly, the Synchronous Constructive (SC)
model of computation [109] offers a more permissive but still consistent notion of causality, called
Sequentially Constructive Causality [121, 122], and can for instance give a behavior to the statement
“present X else emit X end” thanks to the init-update-read principle. Thus, causality is commonly
resolved by compiling away the concurrency into a sequential intermediate representation [40].
From the resulting sequential program, low-level parallelism may be extracted and distributed code
can be produced [8, 44, 66, 134].

Classical synchronous languages only support basic data computations and delegate complex
data computations to a host language, for instance C, but this makes challenge (E) impossible
to address. Consequently, C-based synchronous languages have been developed to provide data
handling at the language level with support for synchronous concurrency, preemption, and thread
communication; we can cite Reactive C [18], Esterel C Language (ECL) [72], and PRET-C [3]. Such
languages appeal to C programmers because the barrier to learn a synchronous language is reduced.
However, they are not parallel, meaning that their compiler only generates sequential code.

To summarize this part: Challenge (A): ForeC is equipped with a formal semantics that is
deterministic, which lends itself to formal verification; Challenge (B): The synchrony hypothesis
can be validated thanks to static timing analysis; Challenge (C): ForeC is also a synchronous
concurrent programming language.

1.4 Contributions
We propose the ForeC parallel programming language for simplifying the deterministic parallel
programming of embedded multi-core systems. All the synchronous languages designed for the
single-core era must be reinvented to address the programming of multi-cores. To this end, ForeC
is a C-based synchronous language designed specifically for the programming of multi-cores.

ForeC brings together the formal deterministic semantics of synchronous languages and the
benefits of C’s control and data structures. For instance, one can fork threads statically with the
par statement. Complex temporal control statements can be used (e.g., preemption with the abort
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statement) and temporal loops can be programmed by relying on the C loop constructs. A key
innovation is ForeC’s shared variable semantics that provides thread isolation and deterministic
thread communication. This is made possible with the pause statement (synchronization barrier):
schematically, when each thread has reached its pause, a global tick occurs and shared variables
are resynchronized with a so-called combine function à la Esterel. Besides, each thread works with
its own local copy of each shared variable (thread isolation). Several combine policies are provided
and users can program their own combine functions, allowing a great variety of behaviors for
shared variables.

ForeC belongs to the family of time-predictable programming languages, so for instance threads
are statically allocated by the compiler to the available cores (as described in an architecture
specification file provided by the user). This allows static timing analysis thanks to the ForeCast
tool. Through benchmarking, we demonstrate that ForeC can achieve better parallel performance
than Esterel and be competitive with OpenMP. Finally, although the formal semantics of ForeC
presented here is for threads that synchronize at the same clock rate, we have developed an
extension [45] that supports multi-rate threads.

1.5 Paper Organization
The ForeC language is introduced in Section 2 and its formal semantics is presented in Section 3. The
compiling approach is described in Section 4 and the benchmarking results in Section 5. Section 6
reviews the literature on parallel and synchronous programming languages. Section 7 concludes this
paper. Finally, several appendices provide additional material, including the proofs for reactivity and
determinism (Appendix A), illustrations of how the semantics works (Appendix B), and illustrations
of the combine policies and the behavior of shared variables (Appendix C).

2 THE FOREC LANGUAGE
Execution platforms have evolved from single-cores to multi-cores. Hence, all the synchronous
languages designed earlier (e.g., Esterel [15], Lustre [50], Signal [49], Esterel C Language [72],
Reactive Shared Variables [19], and PRET-C [3]) must be remodeled to address the challenges raised
by multi-cores. Over 30 years of R&D has demonstrated that synchronous programming languages
are very well suited to the design of safety-critical real-time systems [21, 111]. Moreover, the ideal
modeling of time brought by the synchrony hypothesis makes them good candidates for PRET
programming. This motivates our proposed ForeC language that is dedicated to the programming
of multi-cores. ForeC inherits the benefits of synchrony, such as determinism and reactivity, along
with the benefits and expressive power of the C language, such as control and data structures. This
is unlike conventional synchronous languages, which treat C as an external host language. A key
goal of ForeC is to provide deterministic shared variable semantics that is agnostic to scheduling.
This goal is essential for the reasoning and debugging of parallel programs. This section presents
ForeC with a UAV running example. Parallel programming patterns, such as point-to-point and
broadcast communication, fork-join, map-reduce, software pipelining, and early-termination, can
be readily applied in ForeC programs, but this topic is outside the scope of this paper.

2.1 Overview and Syntax
ForeC is a synchronous language that extends a safety-critical subset of C [16, 64] (see Section 1.1)
with a minimal set of synchronous constructs. Figure 3 gives the extended syntax of ForeC and
Table 1 summarizes the informal semantics. We briefly describe the statements, type specifiers, and
type qualifiers allowed in the C subset:
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Statement st ::= c_st | pause | par(st, st)
| weak? abort st when immediate? (𝑐𝑜𝑛𝑑)
| st; st

Variable Declaration var_decl ::= c_storage? tq? c_type var_id init? comb

Type Qualifier tq ::= c_tq | input | output | shared

Combine Clause comb ::= combine policy with func_id

Combine Policy policy ::= all | mod | new

Fig. 3. Syntactic extensions to C.

Table 1. ForeC constructs and their semantics

input: Type qualifier to declare an input, the value of which is updated by the environment at
the start of every global tick.
output: Type qualifier to declare an output, the value of which is emitted to the environment at
the end of every global tick.
shared: Type qualifier to declare a shared variable, which can be accessed by multiple threads.
combine policy with func_id: Combine clause of a shared variable declaration to specify the
policy and function for reconciling parallel accesses.
pause: Pauses the executing thread until the next global tick.
par(st, st): Forks two statements st as parallel threads. The par terminates when both threads
terminate (join back).
weak? abort st when immediate? (𝑐𝑜𝑛𝑑): Preempts its body st when the condition 𝑐𝑜𝑛𝑑 evaluates
to true. The optional weak and immediate keywords modify its temporal behavior.

C statements (c_st): Expressions in a statement can only be constants, variables, functions, point-
ers, and arrays that are composed with the logical, bitwise, relational, and arithmetic operators
of C. Although the use of pointers and arrays is allowed, they can make static dataflow analysis
difficult [24] because of pointer aliasing. Thus, we assume that pointers are never reassigned
to point to other variables. Direct management of the memory is not allowed, i.e., neither
malloc nor free. All C control statements, except goto, can be used. These are the selection
statements (if–else and switch), loop statements (while, do–while, and for), and jump
statements (break, continue, and return).

C storage class specifiers (c_storage): The C typedef, extern, static, auto, and register
specifiers can be used.

C type specifiers (c_type): All the C primitives can be used, e.g., char, int, and double. Custom
data types can be defined using struct, union, and enum.

C type qualifiers (c_tq): All the C const, volatile, and restrict qualifiers can be used.
The additional ForeC statements include a barrier (pause), fork/join (par), and preemption

(abort) statement. Like C, extra properties can be specified for a variable using type qualifiers:
the ForeC type qualifiers are for an environment interface (input and output), or for sharing
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Fig. 4. Tasks of the UAV.

among threads (shared). When declaring a shared variable (see var_decl in Figure 3), the combine
clause is needed to specify the policy and function for reconciling parallel accesses by threads (see
Section 2.6). In addition to the strict C-coding guidelines described in Section 1.1, ForeC forbids the
use of recursive function calls and recursive thread forking to ensure static WCRT analyzability.

As a running example to illustrate the ForeC language, we describe the design of an unmanned
aerial vehicle (UAV) inspired by the Paparazzi project [88]. A UAV is a remotely controlled aerial
vehicle commonly used in surveillance operations. Figure 4 presents the functionality of the UAV as
a block diagram of tasks. The UAV consists of two parallel tasks called Flight and Avoidance. The
Flight task consists of two parallel tasks called Navigation and Stability. The Navigation task
localizes the UAV with on-board sensors, updates the flight path, and sends the desired position to
the Stability task. The Stability task controls the flight surfaces to ensure stable flight to the
desired position. The Avoidance task consists of two parallel tasks called FindL and FindR. These
tasks use on-board sensors to detect obstacles around the UAV and sends collision avoidance data
to the Navigation task.

Figure 5 is a ForeC implementation of the UAV system represented abstractly in Figure 4. Figure 6
is a possible execution trace of Figure 5 to help illustrate the execution of ForeC programs. Section 1.3
described the execution behavior of synchronous programs. To recap, the threads of a synchronous
program execute in lock-step to the ticking of a global clock. In each global tick, the threads sample
the environment, perform their computations, and emit their results to the environment. When a
thread completes its computation, we say that it has completed its local tick. When all the threads
complete their local ticks, we say that the program has completed its global tick. In Figure 6, the
first three global ticks are demarcated along the left-hand side.

ACM Trans. Program. Lang. Syst., Vol. 45, No. 2, Article 11. Publication date: June 2023.
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1 # include <uav . h>
2 input i n t pos1 , pos2 , proxL , proxR ;
3 output i n t motors =0 , f l a p s = 0 ;
4
5 void main ( void ) {
6 shared i n t o b s t =0 combine new with min ;
7 par ( F l i g h t (& o b s t ) , Avoidance (& o b s t ) ) ;
8 }
9

10 void F l i g h t ( shared i n t ∗ o b s t ) {
11 shared i n t newPos=0 combine new with p l u s ;
12 par ( N a v i g a t i o n (&newPos , o b s t ) , S t a b i l i t y (& newPos ) ) ;
13 }
14
15 void N a v i g a t i o n ( shared i n t ∗ newPos , shared i n t ∗ o b s t ) {
16 while ( 1 ) {
17 ∗ newPos= p lan ( pos1 , o b s t ) ;
18 pause ;
19 }
20 }
21
22 void S t a b i l i t y ( shared i n t ∗ newPos ) {
23 while ( 1 ) {
24 motors = t h r u s t ( pos2 , newPos ) ;
25 f l a p s = a n g l e ( pos2 , newPos ) ;
26 pause ;
27 }
28 }
29
30 void Avoidance ( shared i n t ∗ o b s t ) {
31 while ( 1 ) {
32 par ( F indL ( o b s t ) , F indR ( o b s t ) ) ;
33 pause ;
34 }
35 }
36
37 void FindL ( shared i n t ∗ o b s t ) { ∗ o b s t = f i n d ( proxL ) ; }
38 void FindR ( shared i n t ∗ o b s t ) { ∗ o b s t = f i n d ( proxR ) ; }
39
40 i n t min ( i n t th1 , i n t th2 ) {
41 i f ( th1 < th2 ) {
42 return th1 ;
43 } e l s e {
44 return th2 ;
45 }
46 }
47
48 i n t p l u s ( i n t th1 , i n t th2 ) {
49 return ( th1 + th2 ) ;
50 }

Fig. 5. A ForeC program for the UAV running example.
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Fig. 6. Possible execution trace for Figure 5.

In Figure 5, the UAV program starts with the inclusion of a C header file (line 1) for the functions
used in the program and the global variable declarations (lines 2–3) to interface with the environ-
ment. Line 2 declares inputs to capture sensor readings. Inputs are read-only and their values are
updated by the environment at the start of every global tick. Line 3 declares outputs for the actuation
commands for the flight motors and surfaces. Outputs emit their values to the environment at the
end of every global tick. Inputs and outputs can only be declared in the program’s global scope.
The left-hand side of Figure 6 shows the sampling of inputs and emission of outputs at the start
and end of each global tick, respectively.

Like traditional C programs, the function main (line 5) is the program’s main entry point and
serves as the initial thread of execution. Line 6 declares a variable that can be shared amongst
threads (see Section 2.4). In Figure 6, the states of shared variables are given inside solid round
boxes at specific points along the execution trace. Line 6 declares a shared variable obst to store
information about the closest obstacle.

At line 7, the par statement forks the Flight (line 10) and Avoidance (line 30) functions into
two parallel child threads. We refer to the threads by their function names, e.g., the Flight and
Avoidance threads. The forking of threads is represented in Figure 6 as triangles. At line 12, the
Flight thread forks two more parallel child threads, Navigation (line 15) and Stability (line 22),
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creating a hierarchy of threads. The par is a blocking statement that terminates only when both its
child threads have terminated and joined together. The joining of threads is represented in Figure 6
as inverted triangles.

After the Navigation, Stability, FindL, and FindR threads have forked, they start executing
their respective bodies. For example, the Navigation thread enters the while-loop (line 16) and
computes a new desired position for the UAV and stores it in the shared variable newPos (declared
at Line 11). Next, the pause statement pauses the thread’s execution (line 18), acting as a synchro-
nization barrier. In Figure 6, the pause statements are shown as black rectangles and the program
completes a global tick when all the threads pause, indicated by a dotted horizontal line across the
pause statements.

Every time a thread starts its local tick, it creates local copies of all the shared variables that
its body accesses (reads or writes). The local copies are initialized at the start of the global tick
with the values that have been resynchronized at the end of the previous global tick. We use
combine functions to compute these resynchronized values (details below). The shared variables
declared in the program remain distinct from the threads’ local copies. When a thread needs to
access a shared variable, it accesses its local copies instead. Thus, the changes made by a thread
cannot be observed by other threads, yielding mutual exclusion and thread isolation. Moreover,
only sequential reasoning is needed within a thread’s local tick. In Figure 6, the states of a thread’s
copies are shown inside dotted round boxes throughout the execution trace. For example, when the
Navigation thread starts its first local tick, it has a copy of obst and newPos (values equal to 0).
When its local tick ends, its copy of newPos has been set to 56.

To enable thread communication, the copies of each shared variable are automatically combined
into a single value when the threads join and when the global tick ends. This is achieved by a
programmer-specified combine function. In Figure 5, the combine function for obst (line 6) is min
(line 40), specified by the combine clause. The combine clause also specifies that only the copies
with new values are combined (new since the last global tick). In global tick one of Figure 6, the
FindL and FindR threads set new values (2 and 3) to their copies of obst. When these threads join,
these new values are combined to 2 and assigned to their parent (Avoidance) thread’s copy of
variable obst. Meanwhile, the Navigation thread only reads its copy of obst. Thus, when global
tick one ends, the value of the shared variable obst is set to 2 by the min function. Had there
been more copies with new values, then these copies would have been combined and assigned to
obst before the next global tick started. We say that the shared variables are resynchronized at the
end of each global tick. In Figure 6, the resynchronized values are shown on the right inside solid
round boxes, e.g., obst = 2 and newPos = 56. The shared variables start each global tick with their
resynchronized values. For the first global tick only, the resynchronized value of a shared variable
is its initialization value.

Appendix C describes more examples of combine functions and how more than two copies
are combined. The following sections elaborate on the details of local and global ticks, fork/join
parallelism, shared variables, and preemption.

2.2 Local and Global Ticks
We say that a thread completes its local tick when it pauses or terminates. When a (parent) thread
forks some child threads, the parent completes its local tick when all of its children complete theirs.
For example, in Figure 5, the Avoidance thread starts its first local tick by forking the child threads
FindL and FindR (line 32). Assuming that the find function does not pause (i.e., its body does not
contain a pause statement), both child threads complete their local tick by terminating. After the
child threads join, the Avoidance thread reaches a pause (line 33) and completes its first local tick.
A program completes its global tick when all its threads have completed their respective local ticks.
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Flight Avoidance

FindL FindR

main

Navigation Stability

(a) Thread genealogy.

Flight: Child of main.
Flight: Parent of Navigation and Stability.
Flight: Sibbling of Avoidance.
Flight: Independent of Avoidance, FindL,
and FindR.

(b) Genealogy relations for thread Flight.

Fig. 7. Thread genealogy for Figure 5.

At the next global tick, the paused threads start their next local tick from their respective pauses.
For brevity, we shorten “global tick” into “tick” and use “local tick” as before.

2.3 Fork/Join Parallelism
The par statement enables the forking of parallel threads. We use the well known terminology
related to parallel programming. The parent thread is the thread that executes the par statement to
fork its child threads. The parent thread is also the ancestor of its child threads and of their nested
child threads. Child threads forked by the same par statement are siblings. Since par is a blocking
statement, threads can never execute in parallel with their ancestors. We define threads that do not
satisfy any ancestor relationship as being independent: these threads can execute in parallel.

The thread genealogy of a program summarizes all the parent-child thread relationships that
can potentially arise at runtime, which is used to compute a total order for thread scheduling (see
Section 4.2). Such a thread genealogy can be determined statically by inspecting the program’s
control-flow. When a function is forked more than once by different parent threads, the thread
instances in the genealogy need to be distinguished by unique names. Figure 7a shows the thread
genealogy of the UAV program. Each node is a thread and arrows are drawn from the children to
their parent thread. Figure 7b exemplifies the thread genealogy.

2.4 Shared Variables
All variables in ForeC follow the scoping rules of C. By default, all variables are private and can only
be accessed (read or write) by one thread throughout its scope. To allow a variable to be accessed
by multiple threads, it must be declared as a shared variable by using the shared type qualifier.
Thanks to a control flow analysis, we compute for each variable the list of threads that access it. To
avoid naming ambiguities, each thread is assigned a unique label. Conditional statements (if-else,
loops, and aborts) are assumed to be executed unconditionally by control flow analysis. Loops are
analyzed only for one iteration to determine their variable accesses (recall that ForeC forbids the
recursive use of function calls and thread forking). Thus, any misuse of private variables is easy to
detect at compile time.

Appendix C.1 describes how shared variables are passed by value and by reference. The ForeC
semantics ensures that shared variables can be safely accessed by the parallel threads without
the need for mutual exclusion constructs. The goal is to provide a deterministic shared variable
semantics that is agnostic to scheduling, which is essential for designing and debugging parallel
programs. Within each tick, the accesses to a shared variable from two threads may occur in
sequence or in parallel:

Definition 1. Accesses from two threads are in sequence if both threads are not independent or if
the accesses occur in different ticks.
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Definition 2. Accesses from two threads are in parallel if both threads are independent and the
accesses occur in the same tick.

Improperly managed parallel accesses to a shared variable can cause race conditions, leading
to nondeterministic behavior. For example, two parallel writes to a shared variable can partially
overwrite each other’s value, leading to functional nondeterminism. A parallel read and write to a
shared variable can result in the read returning the variable’s value before, during, or after the write
has completed. Table 9 in Section 6 details the solutions that exist for enforcing mutual exclusion
on shared variables, usually by serialising the parallel accesses. Parallel accesses can be interleaved
in many ways (influenced by the programmer, compiler, and runtime system), and relying on a
particular interleaving for correct program behavior is brittle and error prone.

We propose a shared memory model that permits shared variables to be accessed deterministically
in parallel, without needing the programmer to explicitly use mutual exclusion. The goals are:
Isolation: To provide isolation between threads to enable the local reasoning of each thread. That

is, the execution of a thread’s local tick can be understood by only knowing the values of the
variables at the start of the thread’s local tick.

Determinism [81]: To ensure deterministic execution regardless of scheduling decisions. This
guarantees that deterministic outputs are always generated at the end of each tick.

Parallelism: To minimize the need to serialize parallel accesses to shared variables. This maximizes
the amount of parallel execution that can occur at runtime, which is important for improving
the program’s performance.

The key mechanism is that all threads access their own local copies of the shared variables, and
these copies are resynchronized every time threads join and when the tick ends.

2.5 Copying of Shared Variables
Every time a thread starts its local tick, it creates local copies of all the shared variables that its
body accesses (reads or writes). When a thread is forked, its initial copy of a shared variable is
created from its parent’s copy if it exists, otherwise, from the shared variable’s resynchronized
value. A parent thread that is blocked on a par statement does not create any copies of the shared
variables until the par statement terminates. For example, in tick two of Figure 6, the threads main,
Flight, and Avoidance make no local copies. The child threads Navigation, Stability, FindL,
and FindR must create their local copies from the shared variables’ resynchronized values, e.g.,
obst = 2 and newPos = 56. A shared variable declared inside a thread can be shared among its child
threads by passing a reference (using a pointer) to the child threads (e.g., obst on line 7 of Figure 5).
When a shared variable is passed by reference to an ordinary function (e.g., obst on line 17), the
function uses the calling thread’s copy of the shared variable.

2.6 Resynchronization of Shared Variables
For any shared variable, its copies created by parallel threads are resynchronized every time the
program completes its tick (before outputs are emitted) and when child threads join. Resynchro-
nizing at specific program points ensures that the semantics of shared variables is agnostic to
scheduling. We use combine functions to compute the value of resynchronized shared variables.
Combine functions must be deterministic, associative, and commutative. The signature of any combine
function, C, is C : Val × Val → Val. The two input parameters are the two copies to be combined.
When a par statement terminates, the copies from the terminating child threads are combined and
assigned to their parent thread’s copies of shared variables. A combine function being deterministic,
associative, and commutative, it suffices to have a binary function from 𝑉𝑎𝑙 ×𝑉𝑎𝑙 to combine the
copies of a shared variable from an arbitrary number of threads and still obtain a deterministic
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Preemption Condition
Cond ::= U_bool_op Cond // Unary Boolean condition.

| Cond B_bool_op Cond // Binary Boolean condition.
| Cond ? Cond : Cond // Ternary condition.
| (Cond) // Grouping.
| Exp B_comp_op Exp // Binary comparison.
| val | var | ... // Expressions can also be immediate values, variables,

array accesses, struct accesses, or pointers.

Unary Boolean Operator U_bool_op ::= ! // Negation.
Binary Boolean Operator B_bool_op ::= || | && // Logical operators.
Binary Comparison Operator B_comp_op ::= > | >= | < | <= | == | !=

Fig. 8. Syntax of preemption conditions.

1 typedef enum { OK , ERROR ,WARN, TERM} S t a t e ;
2 input S t a t e comms ; // Additional input .
3 . . .
4 void main ( void ) {
5 shared i n t o b s t =0 combine new with min ;
6 abort {
7 par ( F l i g h t (& o b s t ) , Avoidance (& o b s t ) ) ;
8 } when ( comms==TERM) ;
9 s a f e D e s c e n t ( ) ;

10 }

Fig. 9. Figure 5 extended with preemption.

value. Appendix C describes more examples of combine functions and how more than two copies
are combined.

It can be useful to ignore some of the copies when resynchronizing a shared variable. This is
achieved by specifying a combine policy that determines what copies will be ignored. The combine
policies are new, mod, and all, specified when declaring the variable in the combine clause, e.g.,
“combine new with”. The new policy ignores copies that have the same value as their shared variable,
i.e., have not changed during the tick. The mod policy ignores copies that were not assigned a value
during the tick, i.e., have not appeared on the lefthand side of an assignment. This differs from the
new policy because an assignment semantically equivalent to “x=x” will be taken into account by
the mod policy, but not by the new policy. The default policy is all where all copies are taken into
account. Note that the combine function is not invoked when only one copy remains. Instead, that
copy becomes the resynchronized value. Appendix C provides extensive illustrations comparing
the behavior of the combine policies.

2.7 Hierarchical Preemption
Inspired by Esterel [15], the abort st when (𝑐𝑜𝑛𝑑) statement provides preemption [13], which
comprises the termination of st when 𝑐𝑜𝑛𝑑 evaluates to true. Preemption provides a convenient
means to model hierarchical state machines [15, 52] succinctly. The condition 𝑐𝑜𝑛𝑑 must be side-
effect free, produced from the syntax shown in Figure 8.
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Fig. 10. Possible execution trace for Figure 9.

We illustrate this in Figure 9, where the main function of the UAV has been extended to respond
to external commands through the input comms (line 2). The value of comms can be OK, ERROR, WARN,
or TERM (line 1). The abort statement on line 6 preempts the execution of all the UAV tasks when
TERM is received. A possible execution trace of the program of Figure 9 is given in Figure 10. The
italicized line numbers in Figure 10 refer to the line numbers in Figure 5, while the non-italicized
line numbers refer to the line numbers in Figure 9.

The preemption of the abort must be triggered before the abort body can be terminated.
Preemption is never taken when the abort body executes for the first time (e.g., tick one in
Figure 10). At the start of each subsequent tick, 𝑐𝑜𝑛𝑑 is evaluated before the abort body can
execute. This allows shared variables in the condition to be evaluated with their resynchronized
value. If 𝑐𝑜𝑛𝑑 evaluates to true (any non-zero value following the C convention), then the preemption
is triggered and the abort statement is terminated. At the start of tick two in Figure 10, preemption
is triggered because the input comms is equal to TERM. The abort statement also terminates if its
body terminates normally.

Preemptions in ForeC differ from those in Esterel because Esterel uses signals for thread commu-
nication instead of shared variables. Signals in Esterel are either present or absent in each tick and
this information is propagated instantaneously among the threads. Thus, preemptions in Esterel
are triggered instantaneously, whereas preemptions in ForeC are triggered with a delay of one tick
because the condition 𝑐𝑜𝑛𝑑 is evaluated using values computed in the previous tick.

Like in Esterel [13], the optional weak and immediate keywords change the temporal behavior
of preemptions: weak delays the termination of the abort body until the body cannot execute
any further, e.g., reaches a pause statement; and immediate allows preemption to be triggered
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immediately when execution reaches the abort for the first time. This results in four variants of
abort, detailed below. These variants are not syntactic sugar; they cannot be expressed in terms of
one another [13]. To illustrate these four different behaviors, Figure 11a presents an abort with
the optional keywords commented out:
Non-immediate and strong abort This is the default preemption behavior, summarized in Fig-

ure 11b. In tick one, the main thread sets its copy of s to 1 and prints “1”. Next, the threads t0
and t1 set their copies of s to 2 and 5, respectively. When the tick ends, using the combine
policy all, the resynchronized value of s is 7. In tick two, the abort’s preemption is triggered
and the abort body is terminated, resulting in “7” being printed.

Non-immediate and weak abort This behaviour is summarized in Figure 11c. The execution of
tick one proceeds identically to the non-immediate and strong abort variant. In tick two,
the abort’s preemption is triggered. However, the termination of the abort body is delayed
until threads t0 and t1 complete their local ticks. This allows t0 and t1 to set their copies of
s to 3 and 6, respectively. Thus, “9” is printed.

Immediate and strong abort This behaviour is summarized in Figure 11d. In tick one, the main
thread sets its copy of s to 1 and prints “1”. Next, the abort’s preemption condition is evaluated
immediately. Intuitively, because “1” was printed for the value of s, the condition s>0 should
evaluate to true. The counter-intuitive result of false would occur if the resynchronized value
of s was used. Thus, when execution reaches an immediate abort, the condition 𝑐𝑜𝑛𝑑 is
evaluated immediately with the thread’s copies of the shared variables. In subsequent ticks,
the resynchronized values of the shared variables are used. In tick one of Figure 11d, because
the preemption has been triggered, the abort body is terminated without executing.

Immediate and weak abort This behaviour is summarized in Figure 11e. In tick one, the main
thread sets its copy of s to 1 and prints “1”. Next, the abort’s preemption is triggered
immediately. However, the termination of the abort body is delayed until threads t0 and t1
complete their local ticks. This allows t0 and t1 to set their copies of s to 2 and 5, respectively.
Hence, “7” is printed.

The abort statements can be nested to create a hierarchy of preemptions. In such a case, the
outer abort has precedence over the inner aborts. Figure 12 is an example of an immediate and
weak abort (line 3) with a nested immediate and strong abort (line 5). In tick one, preemption is
triggered for the outer weak abort. The variable x is set to 2 and the inner strong abort preempts
immediately without executing its body. Next, x is set to 5 and the outer weak abort takes its
preemption when it reaches the pause on line 6. Finally, “5” is printed.

2.8 Bounded Loops
The synchrony hypothesis requires each tick to execute in bounded time, which in turn means
that all statements need to have bounded execution times. Loop constructs (for and while) are
problematic because they can have unbounded iterations, leading to unbounded execution times.
Thus, if a loop construct is used, then the programmer must guarantee that it always terminates
or executes a pause in each iteration. Guaranteeing that a loop always executes a pause may not
be decidable when pause statements are enclosed by if-statements. For this reason, the compiler
makes conservative assumptions to prove whether a loop always executes a pause in each iteration.
For example, a loop is assumed to always execute a pause in each iteration if its body has at least
one statement that always executes a pause. An if-statement is assumed to always execute a pause
if both its branches always execute a pause. An abort statement is assumed to never execute a
pause. A par statement is assumed to always execute a pause if at least one of its child threads
always executes a pause. Based on these principles, the compiler performs a structural induction
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1 shared i n t s =0 combine a l l with p l u s ;
2 i n t p l u s ( i n t th1 , i n t th2 ) { return ( th1 + th2 ) ; }
3 void main ( void ) {
4 s = 1 ; p r i n t f ( "%d " , s ) ;
5 /∗ weak ∗/ abort {
6 par ( { s = 2 ; pause ; s = 3 ; pause ; s = 4 ; } ,
7 { s = 5 ; pause ; s = 6 ; pause ; s = 7 ; } ) ;
8 } when /∗ immediate ∗/ ( s >0 ) ;
9 p r i n t f ( "%d " , s ) ;

10 }

(a) Example code.

Tick 1: “1” is printed. s = plus(2,5) = 7.
Tick 2: Preemption is triggered and the
abort body is terminated. “7” is printed.

(b) Non-immediate and strong abort.

Tick 1: “1” is printed. s = plus(2,5) = 7.
Tick 2: Preemption is triggered.
s = plus(3,6) = 9. The abort body is
terminated. “9” is printed.

(c) Non-immediate and weak abort.

Tick 1: “1” is printed. Preemption is trig-
gered and the abort body is terminated.
“1” is printed again.

(d) Immediate and strong abort.

Tick 1: “1” is printed. Preemption is trig-
gered. s = plus(2,5) = 7. The abort body
is terminated. “7” is printed.

(e) Immediate and weak abort.

Fig. 11. Abort variants.

1 void main ( void ) {
2 i n t x = 1 ;
3 weak abort {
4 x = 2 ;
5 abort { x = 3 ; pause ; x = 4 ; } when immediate ( x ==2) ;
6 x = 5 ; pause ;
7 x = 6 ;
8 } when immediate ( x ==1) ;
9 p r i n t f ( "%d " , x ) ;

10 }

Fig. 12. Nesting of preemptions.

on the program’s control-flow to conservatively prove whether every loop in the program will
always execute a pause in each iteration.

Regarding loops that do not contain a pause, inspired by PRET-C [3], we have extended the
syntax of loops to also allow the programmer to write bounded loops, shown in the first column of
Table 2. The “#n” after the loop header specifies that only up to n iterations can be executed. The
second column of Table 2 gives the structural translation of bounded loops.
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Table 2. Structural translations of bounded loops

Bounded Loop Translation
for (init; cond; update) #n {st} int cnt=0;

for (init; cond && (cnt<n); (update, cnt++)) {st}

while (cond) #n {st} for ( ; cond;) #n {st}

do {st} while (cond) #n int first=1;

for ( ; cond && (first==0); first=0) #n {st}

2.9 Multi-Rate Extension
All threads of a ForeC program run in lockstep, hence all the inputs are always handled at the same
rate, and all the outputs are always produced at the same rate. This unique rate is the sequence of
global ticks of the ForeC program, and we call it the (main) rate of the ForeC program. However,
when inputs are produced by the environment are different rates, this monolithic behavior is
inefficient. For this reason, we have proposed in [45] a multi-rate conservative extension of ForeC.
In short, with this extension, each input and output can be sampled and emitted at its own rate,
relative to the program’s main rate. By conservative, we mean that it is backward compatible with
the (single-rate) ForeC language presented in this paper.

To keep this paper’s focus on the formal semantics of ForeC and its compilation, we only provide
here a summary of the multi-rate extension. Concretely, Multi-rate ForeC extends ForeC with logical
rates, which are multipliers or dividers of a parent rate. This results in a tree of rates, the root of
which is the main rate of the ForeC program. Moreover, the user defines a concrete period for the
main program rate, in microseconds. This concrete rate is specified in an architecture description
file that is taken into account by the ForeC compiler. It follows that concrete rates can be derived
for all logical rates. All threads in par statements can be annotated with their desired logical rate.
When no rate is provided, a child thread has the same rate as its parent thread. Implicitly, the inputs
read (resp. outputs written) by a thread are sampled from (resp. emitted to) the environment at the
rate of this thread, therefore not necessarily at the main rate of the program.

Threads synchronize for a global tick whenever their local ticks end at the same absolute (concrete)
time, at which point their shared variables are resynchronized, their outputs are emitted, and their
inputs are sampled. The global tick is total if all executing threads participate, otherwise it is partial.
Multi-rate support for preemption is not addressed in [45] and it will be the topic of future work.

2.10 Assessment of ForeC
In summary, the main strengths of ForeC are:
• By bridging the differences between synchronous-reactive programming and general-purpose

parallel programming, ForeC enables the deterministic parallel programming of multi-cores
(and avoids complex program parallelization techniques required by classical synchronous
programming languages).
• Thread isolation is guaranteed by stipulating that threads work on local copies of the shared

variables, which maximizes the opportunities for parallel execution.
• The shared variable semantics removes the burden of ensuring mutual exclusion from the

programmer and ensures deadlock freedom.
• Resynchronizing shared variables after the threads have finished their respective local ticks

ensures that the program behavior is agnostic to scheduling decisions.
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• Determinism is guaranteed by the semantics of ForeC, instead of relying on ad-hoc determin-
ism imposed by an implementation.
• All these features allow for local reasoning on each thread and simplifies the understanding

and debugging of ForeC programs.

And the main limitations of ForeC are:

• Communication via shared variables between threads is delayed by one tick due to the
resynchronization of shared variables. If the programmer wants to sequentially assign two
values to a shared variable x, such that these two values are visible to another parallel
thread, then the tick must be “broken” into two smaller ticks by adding an intermediary
pause statement between the two assignments to x. This guarantees a deterministic parallel
execution of the two threads. This design choice also avoids a (costly) causality analysis.
• The programmer needs to make explicit the resolution of parallel writes to shared variables.

This is done within our disciplined framework of combine functions and policies. Hence, for
a given desired behavior, the programmer must define an appropriate combine function.
• Copying and resynchronisation of shared variables at each global tick introduces some timing

overhead. This is even more the case for shared variables of type array or large data structures.
• The threads that can be forked by a par statement are statically defined, e.g., one cannot

fork 𝑛 threads where 𝑛 is determined at runtime (although this can be emulated with if-else
or switch-case statements).

3 SEMANTICS OF FOREC
This section presents the semantics of ForeC as rewrite rules in the style of Structural Operational
Semantics (SOS) [97]. The semantics is inspired by that of other imperative synchronous program-
ming languages (Esterel [100] and PRET-C [3] in particular). The semantics is defined on a set
of primitive ForeC constructs (the kernel of Table 3) from which the full ForeC constructs are
derived. These kernel constructs are not used for compiling. They only consider a subset of the
C language: the assignment operator (=), the statement terminator (;) for sequencing, and the if
and while statements. Table 4 shows how the other ForeC constructs (Table 1) are translated into
the kernel constructs (Table 3). This is exemplified by the translation of the ForeC constructs in
Figure 13b into the kernel constructs in Figure 13c. The translations for input, output, and pause
are straightforward. A shared variable is translated into a unique global variable and a copy kernel
statement that is placed at the start of every thread body in the scope of the shared variable. The
copy kernel statement initiates the copying of the shared variables when the threads are forked
and when the threads start their local ticks. The par statement is translated by prefixing each
thread body f with a unique identifier t to allow the body of one thread to be distinguished from
another. The par kernel statement handles the resynchronization of the shared variables. In Esterel,
traps [100] are used to translate aborts and other complex preemption statements. By contrast,
a simpler abort translation is possible in ForeC because abort is the only type of preemption
statement. Each abort is assigned a unique identifier 𝑎 and translated into the status and abort
kernel statements. The status kernel statement is needed to define the immediate behavior of an
abort; it takes the unique identifier 𝑎 and an expression, which is 0 (zero) for a non-immediate
abort but is 𝑐𝑜𝑛𝑑 (the preemption condition) for an immediate abort. The abort kernel statement
takes the unique identifier 𝑎 and the abort body f. The following section describes the assumptions
on ForeC kernel programs to simplify the presentation of the formal semantics. The notations,
semantic functions, and rewrite rules are then presented. Important proofs concerning program
reactivity and determinism [81, 113] are provided in Appendix A.
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Table 3. ForeC kernel constructs. f is an arbitrary composition of kernel constructs, var is a variable, 𝑒𝑥𝑝 is
an expression, 𝑡 is a thread identifier, and 𝑎 is an abort identifier. A question mark means that the preceding
symbol is optional

Kernel Construct Short Description
nop Empty statement
f; f Sequence operator
var = 𝑒𝑥𝑝 Assignment operator
while (𝑒𝑥𝑝) f Loop
if (𝑒𝑥𝑝) f else f Conditional
copy Creates a local copy for each shared variable of its enclosing thread
pause Barrier synchronization
par(t:f, t:f) Fork/join parallelism
status(𝑎, 𝑒𝑥𝑝) Initial preemption status
weak? abort(𝑎, f) Abort

Table 4. Structural translations of the ForeC constructs (Table 1) to kernel constructs (Table 3)

ForeC Construct ForeC Kernel Constructs
input and output Translated into unique global variables.
shared Translated into unique global variables and copy

kernel statements are placed at the start of every
thread body.

pause pause

par(f1, f2) par(t1:f1, t2:f2)
Note that thread bodies f1 and f2 can be the same.

weak? abort f when (𝑐𝑜𝑛𝑑) status(𝑎, 0); weak? abort(𝑎, f)
weak? abort f when immediate (𝑐𝑜𝑛𝑑) status(𝑎, 𝑐𝑜𝑛𝑑); weak? abort(𝑎, f)

3.1 Assumptions
We make the following assumptions about ForeC programs. (1) All programs follow safety-critical
coding practices, as discussed in Section 2.1. Dynamic memory allocation (e.g., malloc) and unstruc-
tured jumps (e.g., goto) cannot be used, and loops must be bounded (i.e., with a “#n” annotation)
or contain a pause. Moreover, C expressions may only be constants, variables, pointers, and arrays
composed with the logical, bitwise, relational, and arithmetic operators of C. Arguments of functions
and the right-hand side of assignment statements cannot contain any assignment operators. The
sequencing operator “,” of C cannot be used. These assumptions limit us to a deterministic subset
of the C language. (2) Functions and threads cannot be called or forked recursively, respectively.
This assumption prevents the unbounded execution of functions and threads, leading to unbounded
memory use and execution time.

To simplify the presentation of the semantics, we assume that the following transformations have
been performed on ForeC programs. (1) Inlining of functions at their call sites, so that the semantics
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1 input i n t i ; output i n t o = 0 ;
2 i n t p l u s ( . . . ) { . . . }
3 void main ( void ) {
4 shared i n t s =1 combine a l l with p l u s ;
5 par ( { s ++ ; pause ; } , { s = 1 ; } ) ;
6 abort { f (& s ) ; } when ( s >3 ) ;
7 }
8 void f ( shared i n t ∗ x ) { ∗ x = 2 ; }

(a) Original program.

1 input i n t i ; output i n t o = 0 ;
2 i n t p l u s ( . . . ) { . . . }
3 shared i n t s combine a l l with p l u s ;
4 void main ( void ) {
5 s = 1 ;
6 par ( { s ++ ; pause ; } , { s = 1 ; } ) ;
7 abort { s = 2 ; } when ( s >3 ) ;
8 }

(b) Transformed program.

1 i n t i ; i n t o = 0 ;
2 i n t p l u s ( . . . ) { . . . }
3 i n t s ;
4 void main ( void ) {
5 copy ; s = 1 ;
6 par ( t 1 : { copy ; s ++ ; pause ; } , t 2 : { copy ; s = 1 ; } ) ;
7 s t a t u s ( a1 , 0 ) ; abort ( a1 , { s = 2 ; } ) ;
8 }

(c) Translated kernel program.

Fig. 13. Example of transforming and translating a ForeC program into the kernel constructs.

can ignore function calls. (2) Renaming variables uniquely and hoisting their declarations up to the
program’s global scope, so that the semantics can ignore (static) memory allocation and focus on
the semantics of private variables (accessible to only one thread) and shared variables. (3) Replacing
pointers with the variables they reference, so that the semantics can ignore pointer analysis [24, 51].
Consider the program of Figure 13a that is transformed into the equivalent program of Figure 13b.
The shared variable declaration for s (line 4 in Figure 13a) is hoisted to the global scope (line 3 in
Figure 13b). The function f (line 8 in Figure 13a) is inlined into the abort body (line 7 in Figure 13b)
and the pointer inside f is replaced by the variable s that it references.

3.2 Notation
The rewrite rules have the following form in the style of structural operational semantics (SOS) [97]:

⟨𝑆⟩ t : f
𝑘−−→
𝐼
⟨𝑆 ′⟩ t : f ′

This notation describes a program fragment f belonging to thread t, in the program state ⟨𝑆⟩
and with inputs 𝐼 , which reacts and modifies the program state to ⟨𝑆⟩′, generates the completion
code 𝑘 , and becomes the new program fragment f ′. All the (globally declared) inputs are stored
in 𝐼 . Let 𝑇 be the set of all threads in the program. The state ⟨𝑆⟩ is a pair ⟨𝐸,𝐴⟩ where:
• 𝐸 is an environment that maps the program’s global scope to the program’s global variables

and maps the threads’ scopes to their local copies of shared variables. Specifically, 𝐸 is a
partial function that maps the global scope G and the set of threads 𝑇 to a store (𝑆𝑡𝑜𝑟𝑒) of
variables. Let Id = 𝑇 ∪ {G} be the set of all scopes; we then have 𝐸 : Id ↩→ 𝑆𝑡𝑜𝑟𝑒 . On the one
hand, 𝐸 [G] stores all the output, shared, and private variables in the program, which are all
globally declared thanks to the program transformations of Section 3.1. On the other hand,
for each t in 𝑇 , 𝐸 [t] stores thread t’s copies of the shared variables. The function 𝐸 is partial
because a store is only created for a thread if it accesses any shared variable.
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GetParent(main) = main GetParent(t1) = main GetParent(t2) = main

GetShared(G) = {s} GetShared(t1) = {s} GetShared(t2) = {s}
GetCombine(s) = plus GetPolicy(s) = all GetExp(a1) = s>3

Fig. 14. Retrieving statically known information about Figure 13c.

The store itself (𝑆𝑡𝑜𝑟𝑒) is a partial function that maps variable (var ∈ Var) to a pair of
value (v ∈ Val) and status (𝑠𝑡𝑠 ∈ 𝑆𝑡𝑠): 𝑆𝑡𝑜𝑟𝑒 : Var ↩→ (Val, 𝑆𝑡𝑠). Statuses are used to define
the behavior of the combine policies and can be pre (previous resynchronized value), mod
(modified value), cmb (combined value), or pvt (for a private variable). In 𝐸 [G], the status of
a private variable is always pvt and the status of a shared variable is always pre. In 𝐸 [t], a
thread’s copy of a shared variable always starts each local tick with the status pre.
For example, 𝐸 = {G → {𝑠 → (1, pre)}, 𝑡1→ {𝑠 → (3, mod)}} for a program that has a
shared variable s with value 1 in the global scope and modified value 3 in the scope of
thread 𝑡1. We use the notation 𝐸 [𝑡1] [𝑠] to look up the value and status (3, mod) of s in
𝑡1’s store. We use the notations 𝐸 [𝑡1] [𝑠] .v and 𝐸 [𝑡1] [𝑠] .𝑠𝑡𝑠 to look up its value and status,
respectively. We use the notation 𝑆.𝐸 to retrieve 𝐸 from the program state 𝑆 .
• 𝐴 is a partial function that maps abort identifiers (𝑎 ∈ A) to values (v ∈ Val) representing

their preemption status, 𝐴 : A → 𝑉𝑎𝑙 . An abort with a non-zero value means that its
preemption condition is true and that it has been triggered, otherwise its condition is false
and the abort has not been triggered.
For example, 𝐴 = {𝑎1 → 1, 𝑎2 → 0} for a program that has aborts 𝑎1 and 𝑎2 with the
statuses 1 and 0, respectively. We use the notation 𝐴[𝑎1] to look up the status of abort 𝑎1.
We use the notation 𝑆.𝐴 to retrieve 𝐴 from the program state 𝑆 .

The transition of a program fragment from f to f ′ is encoded by the completion code 𝑘 , where:

𝑘 =


0 If the transition terminates.
1 If the transition pauses.
⊥ Otherwise (the transition continues).

3.3 Semantic Functions
The following sections describe the semantic functions that are used by the rewrite rules to ensure
semantic conciseness.

3.3.1 Statically Known Information. The following semantic functions return statically known
information about the program:
• GetParent(t): Returns the parent of thread t from the program’s thread genealogy, e.g.,

Figure 7a. If t = main, then “main” is returned.
• GetShared(G): Returns the set of all shared variables declared in the program.
• GetShared(t): Returns the set of all shared variables that the body of thread t accesses

(reads or writes).
• GetCombine(var): Returns the combine function of shared variable var .
• GetPolicy(var): Returns the combine policy of shared variable var .
• GetExp(𝑎): Returns the preemption condition 𝑒𝑥𝑝 of abort 𝑎.

Figure 14 exemplifies the use of these functions on the program in Figure 13c.
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3.3.2 Eval. The semantic function Eval(𝐸, 𝐼, id, 𝑒𝑥𝑝) follows the evaluation rules of C to evaluate
the expression 𝑒𝑥𝑝 and return its value. The expression 𝑒𝑥𝑝 has a classical tree structure: it can
be an atom (a constant, a variable, a string, ...), a unary arithmetic or Boolean operation (-, *, &,
!, ̃), a binary arithmetic or Boolean operation (+, -, *, /, %, ||, &&, ̂, |, &, <<, >>, ==, !=, <, >, <=,
>=), a function call with its arguments passed by value or by reference, an array, and so on. For
the sake of simplicity, we do not give the details here [16, 89] and will only write the string of the
expression when calling the Eval function. Finally, the Eval function returns the value of 𝑒𝑥𝑝 .
Unlike in C, where expressions can have side-effects (which would be captured by the function Eval
returning a pair (𝐸 ′, v) instead of only v), we have restricted ForeC expressions and functions to be
side-effect free. During the evaluation, a variable’s value is retrieved with the semantic function
GetVal(𝐸, 𝐼, id, var) described by Algorithm 1. The inputs to this algorithm are: the program’s
environment 𝐸, the inputs 𝐼 , the identifier id of the store to try and retrieve the value from, and
the variable var of interest. The output is a value v. If var is an input, then line 2 returns its value.
Otherwise, if var is in id’s store, then line 4 returns its value. Otherwise, line 6 returns the global
value of var .

ALGORITHM 1: GetVal(𝐸, 𝐼, id, var): Gets the value of a given variable.
Input: Program’s environment 𝐸, inputs 𝐼 , identifier id of the store to search, and variable var of interest.
Output: Value of var .

1 if var ∈ 𝐼 then // If var is an input.
2 return 𝐼 [var] // Return the input value of var.
3 else if var ∈ 𝐸 [id] then // Otherwise, if a local copy of var exists.
4 return 𝐸 [id] [var] .v // Return the value of var from id’s store.

5 else
6 return 𝐸 [G] [var] .v // Otherwise, return the global value of var.
7 end

3.3.3 Copy. The semantic function Copy(𝐸, t) creates in thread t the local copies of each shared
variable var ∈ GetShared(t) that it does not have. That is, if thread t already has a copy of
the shared variable var , then Copy skips the copying of var . This conditional behavior is needed
because the semantic function Copy may be invoked for a thread t that already has a subset of
its required local copies. For example, when local copies are created for a parent thread that is
resuming from the termination of a par, the combined values from its child threads must not be
overwritten. The Copy function is described by Algorithm 2. The inputs to this algorithm are: the
program’s environment 𝐸 and a thread t. The output is an updated environment 𝐸. Line 1 considers
each shared variables that is accessed in the thread’s body. For each shared variable, line 2 checks
if a copy already exists. If it does not exist, then lines 4–5 copy the parent thread’s copy if available,
otherwise from the shared variable (line 7). Line 11 returns the updated environment 𝐸.

3.3.4 Combine. The semantic function Combine(𝐸, t1, t2, t0) combines all the copies of shared
variables from two threads and is described by Algorithm 3. The inputs to this algorithm are: the pro-
gram’s environment 𝐸, two threads t1 and t2 to combine, and thread t0 to store the combined values.
The output is an updated environment 𝐸. Line 1 considers each shared variable var . Line 2 retrieves
the shared variable’s pre value (preVal). For the combine policy all, the copies of var from both
threads are combined if they exist. Thus, line 3 gets the set of threads𝑇 that have a copy of var. If the
combine policy is new, then line 5 keeps only the copies with values that differ from var’s pre value
(𝐸 [t] [var] .v ≠ preVal) or copies that have been combined (𝐸 [t] [var] .𝑠𝑡𝑠 = cmb). If the combine
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ALGORITHM 2: Copy(𝐸, t): Copies all the shared variables needed by a thread.
Input: Program’s environment 𝐸, and thread t.
Input: Updated environment 𝐸.

1 forall var ∈ GetShared(t) do // For all shared variables needed by thread t.
2 if var ∉ 𝐸 [t] then // If thread t does not have a copy.
3 if var ∈ 𝐸 [GetParent(t)] then // If its parent has a copy.
4 v := 𝐸 [GetParent(t)] [var] .v // Value of its parent’s copy.

5 𝐸 [t] [var ← (v, pre)] // Copy its parent’s copy.

6 else // Otherwise, its parent does not have a copy.
7 𝐸 [t] [var ← 𝐸 [G] [var]] // Copy the shared variable from the global scope.

8 end
9 end

10 end
11 return 𝐸

ALGORITHM 3: Combine(𝐸, t1, t2, t0): Combines the copies of shared variables from two threads.
Input: Program’s environment 𝐸, threads t1 and t2 to combine, and thread t0 to store the combined values.
Output: Updated environment 𝐸.

1 forall var ∈ GetShared(G) do // For all shared variables.
2 preVal := 𝐸 [G] [var] .v // Get the pre of var.
3 𝑇 := {t | t ∈ {t1, t2}, var ∈ 𝐸 [t]} // Policy all: Subset of {t1, t2} with copies of var.
4 if GetPolicy(var) = new then

// Keep only the copies that differ from preVal or have been combined.

5 𝑇 := {t | t ∈ 𝑇, 𝐸 [t] [var] .v ≠ preVal ∨ 𝐸 [t] [var] .𝑠𝑡𝑠 = cmb}
6 else if GetPolicy(var) = mod then

// Keep only the modified or combined copies.

7 𝑇 := {t | t ∈ 𝑇, 𝐸 [t] [var] .𝑠𝑡𝑠 ∈ {mod, cmb}}
8 end

9 if |𝑇 | = 2 then // If there are two copies to combine.
10 𝑐𝑓 := GetCombine(var) // Get the combine function of var.
11 v := 𝑐𝑓 (𝐸 [t1] [var] .v, 𝐸 [t2] [var] .v) // Combine the copies.

12 𝐸 [t0] [var ← (v, cmb)] // Assign the combined value to t0.
13 else if |𝑇 | = 1 then // Otherwise, there is only one copy.
14 𝐸 [t0] [var ← (𝐸 [t ∈ 𝑇 ] [var] .v, cmb)] // Assign the only copy to t0.
15 end
16 end
17 𝐸 ′ = {(𝑖𝑑, 𝑠𝑡𝑜𝑟𝑒) | (𝑖𝑑, 𝑠𝑡𝑜𝑟𝑒) ∈ 𝐸 ∧ 𝑖𝑑 ≠ t1 ∧ 𝑖𝑑 ≠ t2}
18 return 𝐸 ′

policy is mod, then line 7 keeps only the modified or combined copies (𝐸 [t] [var] .𝑠𝑡𝑠 ∈ {mod, cmb}).
If two copies are found, then line 10 retrieves var’s combine function (𝑐𝑓 ) and line 11 computes
the combined value. Line 12 assigns the combined value to thread t0 with the status cmb because it
is now a combined value. If only one copy is found, then line 14 assigns the value of that copy to
thread t0. Moreover, it is assigned the status cmb to ensure that it continues to be combined under
the new and mod combine policies. Line 18 returns the updated environment 𝐸 restricted to t0 (i.e.,
without thread t1 and t2’s stores).
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3.4 The Structural Operational Semantics
The operational semantics of the kernel constructs presented in Table 3 are now defined. Appendix B
illustrates how ForeC programs execute under this semantics.

3.4.1 The nop Statement. The nop statement does nothing and terminates instantly:

⟨𝐸,𝐴⟩ t : nop 0−−→
𝐼
⟨𝐸,𝐴⟩ t : (nop)

3.4.2 The copy Statement. The copy statement copies the shared variables needed by thread t and
terminates instantly. The combining of the copies is handled by the par statement:

⟨𝐸,𝐴⟩ t : copy 0−−→
𝐼
⟨Copy(𝐸, t), 𝐴⟩ t : (copy)

3.4.3 The pause Statement. The pause statement rewrites into the copy statement and pauses.
The copy statement ensures that thread t starts its next local tick by copying the shared variables
it needs (the pre values are copied):

⟨𝐸,𝐴⟩ t : pause 1−−→
𝐼
⟨𝐸,𝐴⟩ t : copy (pause)

3.4.4 The status Statement. Recall that the abort statement is translated into a status kernel
statement that evaluates the preemption status, followed by an invocation of the abort kernel
statement that accesses the result of the evaluated preemption status. The status statement sets
abort 𝑎’s preemption status to the value of the expression 𝑒𝑥𝑝 , and then it terminates instantly:

⟨𝐸,𝐴⟩ t : status(𝑎, 𝑒𝑥𝑝) 0−−→
𝐼
⟨𝐸,𝐴[𝑎 ← Eval(𝐸, 𝐼, t, 𝑒𝑥𝑝)]⟩ t : (status)

3.4.5 The abort Statement. The abort of 𝑎 executes its body f if its preemption has not been
triggered. The body may have paused (𝑘 = 1) or may have executed some instantaneous statements
(𝑘 = ⊥):

⟨𝐸,𝐴⟩ t : f
𝑘∈{1,⊥}−−−−−−→

𝐼
⟨𝐸 ′, 𝐴′⟩ t : f ′

⟨𝐸,𝐴⟩ t : weak? abort(𝑎, f) 𝑘−−→
𝐼
⟨𝐸 ′, 𝐴′⟩ t : weak? abort(𝑎, f ′)

(𝐴[𝑎] = 0) (abort-1)

The abort terminates normally if its body terminates and its preemption has not been triggered:

⟨𝐸,𝐴⟩ t : f
0−−→
𝐼
⟨𝐸 ′, 𝐴′⟩ t :

⟨𝐸,𝐴⟩ t : weak? abort(𝑎, f) 0−−→
𝐼
⟨𝐸 ′, 𝐴′⟩ t :

(𝐴[𝑎] = 0) (abort-2)

The weak abort terminates normally if its body terminates, even if its preemption has been
triggered:

⟨𝐸,𝐴⟩ t : f
0−−→
𝐼
⟨𝐸 ′, 𝐴′⟩ t :

⟨𝐸,𝐴⟩ t : weak abort(𝑎, f) 0−−→
𝐼
⟨𝐸 ′, 𝐴′⟩ t :

(𝐴[𝑎] ≠ 0) (abort-3)

The weak abort allows its body to execute instantaneous statements (𝑘 = ⊥), even if its preemption
has been triggered:

⟨𝐸,𝐴⟩ t : f
⊥−−→
𝐼
⟨𝐸 ′, 𝐴′⟩ t : f ′

⟨𝐸,𝐴⟩ t : weak abort(𝑎, f) ⊥−−→
𝐼
⟨𝐸 ′, 𝐴′⟩ t : weak abort(𝑎, f ′)

(𝐴[𝑎] ≠ 0) (abort-4)
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The weak abort terminates if its body pauses and its preemption has been triggered, and then it
rewrites into the copy statement because it may be the start of thread t’s local tick3

⟨𝐸,𝐴⟩ t : f
1−−→
𝐼
⟨𝐸 ′, 𝐴′⟩ t : f ′

⟨𝐸,𝐴⟩ t : weak abort(𝑎, f) ⊥−−→
𝐼
⟨𝐸 ′, 𝐴′⟩ t : copy

(𝐴[𝑎] ≠ 0) (abort-5)

The strong abort terminates without executing its body if its preemption has been triggered, and
then it rewrites into the copy statement because it may be the start of thread t’s local tick4:

𝐴[𝑎] ≠ 0

⟨𝐸,𝐴⟩ t : abort(𝑎, f) ⊥−−→
𝐼
⟨𝐸,𝐴⟩ t : copy

(abort-6)

3.4.6 The Assignment Operator (=). The assignment operator evaluates the expression 𝑒𝑥𝑝 into
a value v = Eval(𝐸, 𝐼, t, 𝑒𝑥𝑝). If var is a shared variable5 (rule assign-shared), then the value v
and status mod is assigned to the thread’s copy in 𝐸 [t]. Otherwise, if var is a private variable (rule
assign-private), then the value v and status pvt is assigned to the global variable in 𝐸 [G]:

var ∈ GetShared(t)
⟨𝐸,𝐴⟩ t : var=𝑒𝑥𝑝

0−−→
𝐼
⟨𝐸 [t] [var ← (v, mod)], 𝐴⟩ t :

(assign-shared)

var ∉ GetShared(t)
⟨𝐸,𝐴⟩ t : var=𝑒𝑥𝑝

0−−→
𝐼
⟨𝐸 [G] [var ← (v, pvt)], 𝐴⟩ t :

(assign-private)

3.4.7 The if–else Statement. A conditional construct is rewritten into one of its branches, de-
pending on the value of its condition 𝑒𝑥𝑝:

Eval(𝐸, 𝐼, t, 𝑒𝑥𝑝) ≠ 0

⟨𝐸,𝐴⟩ t : if (𝑒𝑥𝑝) f1 else f2
⊥−−→
𝐼
⟨𝐸,𝐴⟩ t : f1

(if-then)

Eval(𝐸, 𝐼, t, 𝑒𝑥𝑝) = 0

⟨𝐸,𝐴⟩ t : if (𝑒𝑥𝑝) f1 else f2
⊥−−→
𝐼
⟨𝐸,𝐴⟩ t : f2

(if-else)

3.4.8 The while Statement. The body of a loop statement is either unrolled once or it terminates,
depending on the value of its condition 𝑒𝑥𝑝:

Eval(𝐸, 𝐼, t, 𝑒𝑥𝑝) ≠ 0

⟨𝐸,𝐴⟩ t : while (𝑒𝑥𝑝) f
⊥−−→
𝐼
⟨𝐸,𝐴⟩ t : f; while (𝑒𝑥𝑝) f

(loop-then)

Eval(𝐸, 𝐼, t, 𝑒𝑥𝑝) = 0

⟨𝐸,𝐴⟩ t : while (𝑒𝑥𝑝) f
0−−→
𝐼
⟨𝐸,𝐴⟩ t :

(loop-else)

3The abort may have had a par statement that paused. In this case, when the abort kernel statement preempts, thread t
will start its local tick.
4In addition to footnote 3, the strong preemption prevents the execution of a copy statement inside the abort body.
5Recall from Section 3.2 that 𝐸 maps the global and thread scopes to their own store of variables, 𝐸 : Id ↩→ 𝑆𝑡𝑜𝑟𝑒 . Variables
are mapped to a value and status, 𝑆𝑡𝑜𝑟𝑒 : Var ↩→ (Val, 𝑆𝑡𝑠) where 𝑆𝑡𝑠 = {pre, mod, cmb, pvt}. A private variable has the
status pvt, a shared variable has the status pre, and a thread’s copy of a shared variable starts each local tick with the status
pre. The notation 𝐸 [t ] [var ] returns the value and status (v, 𝑠𝑡𝑠) of thread t’s copy of var .
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3.4.9 The Sequence Operator (;) For a sequence of program fragments, the first fragment f1 must
terminate before the second fragment f2 can be rewritten. In other words, the (seq-left) rule applies
up to the micro-step during which f1 emits the completion code 0. At this point, the (seq-right) rule
applies. The (seq-left) rule emits the completion code of the first fragment:

⟨𝐸,𝐴⟩ t : f1
𝑘∈{1,⊥}−−−−−−→

𝐼
⟨𝐸 ′, 𝐴′⟩ t : f ′1

⟨𝐸,𝐴⟩ t : f1; f2
𝑘−−→
𝐼
⟨𝐸 ′, 𝐴′⟩ t : f ′1 ; f2

(seq-left)

⟨𝐸,𝐴⟩ t : f1
0−−→
𝐼
⟨𝐸 ′, 𝐴′⟩ t :

⟨𝐸,𝐴⟩ t : f1; f2
⊥−−→
𝐼
⟨𝐸 ′, 𝐴′⟩ t : f2

(seq-right)

3.4.10 The par Statement. The par statement allows both of its child threads, t1 and t2, to execute
instantaneous statements in parallel. The parent thread is t0:

⟨𝐸,𝐴⟩ t1 : f1
⊥−−→
𝐼
⟨𝐸 ′, 𝐴′⟩ t1 : f ′1 ⟨𝐸,𝐴⟩ t2 : f2

⊥−−→
𝐼
⟨𝐸 ′′, 𝐴′′⟩ t2 : f ′2

⟨𝐸,𝐴⟩ t0 : par(t1 : f1, t2 : f2) ⊥−−→
𝐼
⟨𝐸𝐴, 𝐴𝐴⟩ t0 : par(t1 : f ′1 , t2 : f ′2 )

(par-1)

𝐸𝐴 and 𝐴𝐴 are the aggregated environment and preemption statuses, respectively, and are required
for the following reason. Threads t1 and t2 always modify the starting environment 𝐸 in a mutually
exclusive manner. Indeed, the (assign-shared) rule only allows a thread to access its own copies
of shared variables and the (assign-private) rule only allows a thread to access its own private
variables. This means that thread t1’s new program environment 𝐸 ′ contains the old variables
of thread t2 and t2’s nested child threads, and vice versa for 𝐸 ′′. Thus, variables that changed in
𝐸 ′ or 𝐸 ′′ are aggregated to form 𝐸𝐴 by taking the union of the changes in 𝐸 ′ (i.e., 𝐸 ′ \ (𝐸 ′ ∩ 𝐸))
and in 𝐸 ′′ (i.e., 𝐸 ′′ \ (𝐸 ′′ ∩ 𝐸)) with the remaining unchanged variables (i.e., 𝐸 ′ ∩ 𝐸 ′′). Note that
intersecting two environments, e.g., 𝐸 ′ ∩ 𝐸 ′′, produces a new environment containing the variables
that have the same values and statuses in 𝐸 ′ and 𝐸 ′′. Thus, 𝐸𝐴 = (𝐸 ′ \ (𝐸 ′ ∩ 𝐸)) ∪ (𝐸 ′′ \ (𝐸 ′′ ∩ 𝐸)) ∪
(𝐸 ′ ∩ 𝐸 ′′). Similarly, the preemption statuses that changed in 𝐴′ and 𝐴′′ are aggregated to form
𝐴𝐴 = (𝐴′ \ (𝐴′ ∩𝐴)) ∪ (𝐴′′ \ (𝐴′′ ∩𝐴)) ∪ (𝐴′ ∩𝐴′′). In Esterel, such aggregation is not required
because signals are broadcasted instantaneously among all threads.

If a child thread can complete its local tick, by pausing or terminating, then it will wait for its
sibling to complete its local tick. The waiting is captured by stopping the child thread from taking
its transition:

⟨𝐸,𝐴⟩ t1 : f1
𝑘∈{0,1}−−−−−−→

𝐼
⟨𝐸 ′, 𝐴′⟩ t1 : f ′1 ⟨𝐸,𝐴⟩ t2 : f2

⊥−−→
𝐼
⟨𝐸 ′′, 𝐴′′⟩ t2 : f ′2

⟨𝐸,𝐴⟩ t0 : par(t1 : f1, t2 : f2) ⊥−−→
𝐼
⟨𝐸 ′′, 𝐴′′⟩ t0 : par(t1 : f1, t2 : f ′2 )

(par-2)

⟨𝐸,𝐴⟩ t1 : f1
⊥−−→
𝐼
⟨𝐸 ′, 𝐴′⟩ t1 : f ′1 ⟨𝐸,𝐴⟩ t2 : f2

𝑘∈{0,1}−−−−−−→
𝐼

⟨𝐸 ′′, 𝐴′′⟩ t2 : f ′2

⟨𝐸,𝐴⟩ t0 : par(t1 : f1, t2 : f2) ⊥−−→
𝐼
⟨𝐸 ′, 𝐴′⟩ t0 : par(t1 : f ′1 , t2 : f2)

(par-3)

The par pauses if both of its child threads pause. The changes made to 𝐸 and 𝐴 are aggregated into
𝐸𝐴 and 𝐴𝐴, respectively, as defined for the (par-1) rule. The copies of shared variables from the
child threads are combined and assigned to their parent thread, thanks to the semantic function
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Combine:

⟨𝐸,𝐴⟩ t1 : f1
1−−→
𝐼
⟨𝐸 ′, 𝐴′⟩ t1 : f ′1 ⟨𝐸,𝐴⟩ t2 : f2

1−−→
𝐼
⟨𝐸 ′′, 𝐴′′⟩ t2 : f ′2

⟨𝐸,𝐴⟩ t0 : par(t1 : f1, t2 : f2) 1−−→
𝐼
⟨Combine(𝐸𝐴, t1, t2, t0), 𝐴𝐴⟩ t0 : par(t1 : f ′1 , t2 : f ′2 )

(par-4)

Otherwise, the par terminates if both of its child threads terminate. The completion code is ⊥
because the parent thread t0 resumes its execution. The par rewrites into the copy statement
because it may be the start of the parent thread’s local tick6

⟨𝐸,𝐴⟩ t1 : f1
0−−→
𝐼
⟨𝐸 ′, 𝐴′⟩ t1 : ⟨𝐸,𝐴⟩ t2 : f2

0−−→
𝐼
⟨𝐸 ′′, 𝐴′′⟩ t2 :

⟨𝐸,𝐴⟩ t0 : par(t1 : f1, t2 : f2) ⊥−−→
𝐼
⟨Combine(𝐸𝐴, t1, t2, t0), 𝐴𝐴⟩ t0 : copy

(par-5)

If only one child thread terminates while the other pauses, then the terminated child thread rewrites
into the nop statement and the par pauses:

⟨𝐸,𝐴⟩ t1 : f1
0−−→
𝐼
⟨𝐸 ′, 𝐴′⟩ t1 : ⟨𝐸,𝐴⟩ t2 : f2

1−−→
𝐼
⟨𝐸 ′′, 𝐴′′⟩ t2 : f ′2

⟨𝐸,𝐴⟩ t0 : par(t1 : f1, t2 : f2) 1−−→
𝐼
⟨Combine(𝐸𝐴, t1, t2, t0), 𝐴𝐴⟩ t0 : par(t1 : nop, t2 : f ′2 )

(par-6)

⟨𝐸,𝐴⟩ t1 : f1
1−−→
𝐼
⟨𝐸 ′, 𝐴′⟩ t1 : f ′1 ⟨𝐸,𝐴⟩ t2 : f2

0−−→
𝐼
⟨𝐸 ′′, 𝐴′′⟩ t2 :

⟨𝐸,𝐴⟩ t0 : par(t1 : f1, t2 : f2) 1−−→
𝐼
⟨Combine(𝐸𝐴, t1, t2, t0), 𝐴𝐴⟩ t0 : par(t1 : f ′1 , t2 : nop)

(par-7)

3.4.11 Tick Completion. A tick completes if the main thread pauses or terminates. If the main
thread is executing a par statement, then a tick completes when all its child threads and nested
child threads have paused or terminated. The shared variables are resynchronized (from 𝐸 ′ to 𝐸 ′′),
the preemption statuses are reevaluated (from 𝐴′ to 𝐴′′), the outputs are emitted, and the inputs
are resampled:

⟨𝐸,𝐴⟩𝑚𝑎𝑖𝑛 : f
𝑘∈{0,1}−−−−−−→

𝐼
⟨𝐸 ′, 𝐴′⟩𝑚𝑎𝑖𝑛 : f ′

⟨𝐸,𝐴⟩𝑚𝑎𝑖𝑛 : f
𝑘−−→
𝐼
⟨𝐸 ′′, 𝐴′′⟩𝑚𝑎𝑖𝑛 : f ′

(tick)

The rules for the par statement ensures that, when the tick completes, the store of main in 𝐸 ′

has the combined values from all its child threads. The shared variables7 are resynchronized by
assigning the combined values from 𝐸 ′[𝑚𝑎𝑖𝑛] to their corresponding shared variables in the global
store 𝐸 ′[G]. The main’s store is then removed from 𝐸 ′. Thus, for all var in 𝐸 ′[𝑚𝑎𝑖𝑛], we have
𝐸 ′′ = 𝐸 ′[G] [var ← (𝐸 ′[𝑚𝑎𝑖𝑛] [var] .v, pre)] \ {𝑚𝑎𝑖𝑛}. All the preemption statuses are updated by
evaluating their preemption conditions with the resynchronized shared variables in 𝐸 ′′[G]. Thus,
for all 𝑎 in 𝐴′, we have 𝐴′′ = 𝐴′[𝑎 ← Eval(𝐸 ′′, 𝐼 ,G,GetExp(𝑎))].

6The par statement may have paused. In this case, when the par terminates, the parent thread t0 will start its local tick.
7Recall from Section 3.2 that 𝐸 maps the global and thread scopes to their own store of variables, 𝐸 : Id ↩→ 𝑆𝑡𝑜𝑟𝑒 . Variables
are mapped to a value and status, 𝑆𝑡𝑜𝑟𝑒 : Var ↩→ (Val, 𝑆𝑡𝑠) . In 𝐸 [G], shared variables have the status pre. The notation
𝐸 [t ] [var ] returns the value and status (v, 𝑠𝑡𝑠) of thread t’s copy of var .
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Fig. 15. Overview of compiling ForeC programs.

3.5 Reactivity and Determinism
The semantics of the ForeC kernel constructs (Section 3.4) can be used to formally prove two
essential properties of safety-critical programs, reactivity and determinism [81, 113]. A program
is reactive if it always responds to changes in the environment, i.e., it produces outputs and does
not deadlock (see Definition 3 and Theorem 4). A program is deterministic if, for a given set of
inputs from the environment, there is at most one set of outputs produced by the program. In terms
of semantic derivation rules, a program is deterministic if there is at most one derivation tree in
response to the environment (see Definition 16 and Theorem 17).

For synchronous programs, the definitions of reactivity and determinism are normally based on
a program’s tick, which is a sequence of transitions. However, the state of a ForeC program also
depends on the initial valuations of its variables. Thus, we define a stronger notion of reactivity
and determinism based on program transitions and prove them using structural induction. The
proofs themselves are quite standard for synchronous programs and can be found in Appendix A.

4 COMPILING FOREC FOR PARALLEL EXECUTION
This section first describes a predictable parallel architecture (section 4.1). It then presents how the
ForeC compiler generates code for direct (bare metal) execution on this architecture (Section 4.2).
The chosen compilation strategy generates code that is amenable to static timing analysis and
achieves good execution performance, as will be illustrated by the benchmarking results in Section 5.
In Section 4.9, we will extend the compiler to generate code for execution on an operating system.
Figure 15 is an overview of the compilation process. The first step checks the syntax of the
ForeC source code. This includes checking whether all threads have been defined and whether all
variables accessed by multiple threads have been declared with the shared qualifier. The second
step translates the ForeC statements into equivalent C code. Bootup and thread scheduling routines
are generated for each core. ForeC threads are statically allocated and statically scheduled on
each core. The final step is to compile the generated C program with the GNU C compiler; GNU’s
computed goto extension is used to implement fast context-switching. This section describes
the generation of C code. For brevity, we omit inputs and outputs because we follow existing
approaches [100] for creating the reactive interface.

4.1 A Time-Predictable Embedded Multi-Core Architecture
To estimate a program’s worst-case execution time (WCET) reasonably tightly, a detailed timing
model of the underlying processor architecture is needed. However, general-purpose processors sac-
rifice worst-case performance to focus on improving the average-case via speculative features [95]
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Fig. 16. Example of a predictable multi-core embedded architecture.

such as out-of-order execution, branch prediction, data forwarding, superscalar execution, and
caches. However, such optimizations are difficult to model precisely and may cause timing anom-
alies [80] where a local WCET does not lead to the program’s WCET, leading to a degradation in
time-predictability that is undesirable for real-time embedded systems. These issues are exacerbated
by the use of multi-cores because the cores can interfere with each other’s timing behaviour.

The PREcision Timed (PRET) machine [38, 39] and the PRedictability Of Multi-Processor Timing
(PROMPT) [32, 68] design philosophies advocate for the design of predictable hardware architectures,
while not impairing performance. In particular, the architecture shall provide timing isolation
between cores, i.e., the actions of a core must not influence the timing behavior of another. The
architecture shall be timing compositional, i.e., the timing behavior must be repeatable and be
free of timing anomalies. Examples of unpredictable hardware features with possible predictable
alternatives include:
• replacing caches with fast software managed memories, called scratchpads [125],
• replacing out-of-order execution with better code generation from the compiler [35, 36, 96,

106, 117], and
• deactivating high-performance bus features, e.g., burst transfers or pipelining, and using

fair time-sharing arbitration policies, e.g., round-robin or time division multiple access
(TDMA) [108].

PRET or PROMPT-based processors are simpler to understand, model, and analyze. Multi-
PRET [55] implements a multi-core PRET architecture by connecting 𝑛 multi-threaded PRET cores,
called FlexPRET [136], over a TDMA bus. MERASA [117] is a predictable multi-core processor
that supports hard and non-real-time threads. Hard real-time threads access scratchpads for better
predictability, while non-real-time threads access caches for better performance. An analyzable
memory controller arbitrates the shared bus accesses from the cores.

In this paper, we have used a representative PRET-based multi-core processor [39] for bench-
marking, illustrated in Figure 16. It consists of 𝑛 identical Xilinx MicroBlaze [128] cores, each
configured with a three-stage, in-order, timing anomaly-free pipeline connected to private data
and instruction scratchpads. The scratchpads are statically allocated and loaded at compile time. A
shared bus with TDMA arbitration connects the cores to shared resources, such as global memory
and peripherals. For benchmarking purposes, we have developed a multi-core MicroBlaze simula-
tor that significantly extends an existing one [124] by supporting cycle-accurate simulation, an
arbitrary number of cores, and a shared bus with TDMA arbitration.
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4.2 Static Thread Scheduling
This section deals exclusively with ForeC threads. We illustrate the static thread scheduling with
the example of Figure 17a. The programmer statically allocates the threads to the cores and passes
the allocations into the compiler. The scheduling is static and non-preemptive. Thus, threads execute
without interruption until they reach a context-switching point: a par or pause statement, or
the end of their body. The semantics of shared variables (see Section 2.4) ensures that threads
execute their local ticks in isolation, e.g., independently of their siblings or their parent’s siblings.
The compiler defines a total order for all the threads. The total order is based on the depth-first
traversal of the thread hierarchy. Figure 17b depicts the thread hierarchy of the ForeC program
from Figure 17a, where numbers indicate the total order. A lower number means higher execution
priority. Figure 17c shows a possible thread allocation chosen by the programmer for two cores,
in their thread scheduling order. When a thread reaches a par, its child threads are forked for
execution on their allocated cores. The core that executes the parent thread is called the master
core, while the cores that execute the child threads are slave cores.

Based on the the thread allocation and scheduling order shown in Figure 17c, Figure 17d is a
possible execution trace. The trace for both cores (“Core 1” and “Core 2”) progresses downwards
from the top of Figure 17d. Thread executions are shown as white segments in the trace and each
one has the thread’s name and the executed lines of code from Figure 17a. The compiler generates
synchronization routines to manage the thread executions on the master and slave cores. These
routines are shown as shaded segments in the trace and each has the routine’s name, which is
prefixed with “m” or “s” to identify whether the routine is for a master or slave core, respectively.
The names are suffixed with an integer to identify the unique id assigned to each par (with a
depth-first traversal of the thread hierarchy starting from the root). For example, the mFork1,
sFork1, mJoin1, and sJoin1 routines in Figure 17d all manage the threads forked by the par with
id = 1 (line 6 of Figure 17a). Table 5 summarizes the behavior of the routines. The mFork and
sFork routines manage the forking of child threads (Section 4.4). The mJoin and sJoin routines
manage the joining of child threads (Section 4.4). The mSync and sSync routines manage the global
tick synchronization of all the cores (Section 4.8). In Figure 17d, the synchronization between the
routines are shown as arrows, which are also marked with information that the fork and join
routines send between themselves. When execution reaches a par, the corresponding mFork routine
sends the par’s unique id to its sFork routines, otherwise the integer -1 (OTHER) is sent. On a slave
core, when all child threads of a par have terminated, the corresponding sJoin routine sends the
integer 0 (TERM) to its mJoin routine, otherwise the integer -1 (OTHER) is sent.

The threads and synchronization routines are statically scheduled on each core with doubly
linked lists. Each node (defined in Figure 18) of a linked list represents a thread or a synchronization
routine and stores its continuation point (pc) and the links to its adjacent nodes (prev and next). A
node’s pc is initially set to the start of the thread or routine’s body. Each core starts its scheduling by
jumping to the pc of its first node. When a context-switching point is reached during the execution
of a thread or routine, a jump is made to the pc of the next node. A core will only execute the
threads and routines in its linked list. Thus, inserting or removing a thread or routine from the list
controls whether it is included or excluded, respectively, from execution. The remainder of this
section describes how a ForeC program is compiled into a C program and how the linked lists are
created and used to implement the ForeC semantics.

4.3 Structure of the Generated Program
Figure 19 shows a simplified version of the C program generated for the ForeC program in Figure 17a.
All line numbers refer to Figure 19. The generated C program contains:
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1 shared i n t x=0 combine a l l with p l u s ;
2 void main ( void ) {
3 abort {
4 x = 1 ;
5 pause ;
6 par ( tA ( ) , tB ( ) ) ; // id = 1
7 } when ( x > 1 ) ;
8 }
9

10 void tA ( void ) {
11 x=x + 1 ;
12 pause ;
13 x=x + 1 ;
14 }
15 void tB ( void ) {
16 par ( tC ( ) , tD ( ) ) ; // id = 2
17 }
18 void tC ( void ) { i n t a = 1 ; . . . }
19 void tD ( void ) { . . . }
20
21 i n t p l u s ( i n t th1 , i n t th2 ) {
22 return ( th1 + th2 ) ;
23 }

(a) Example ForeC program.

main

tA tB

tC tD

0

1

3 4

2

(b) Total order.

Core 1 Core 2
main tB

tA tD
tC

(c) Thread allocation.

Core 1 Core 2
main:

Line 3
Line 4
Line 5

mFork1 sFork1
mSync sSync

OTHER

G
lo

ba
l T

ic
k 

1

main:
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pause  

mFork1 sFork11

Check preemption  
par with id = 1  
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G
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2

pause  

tB:
Line 16   par with id = 2

tC:
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tD:
Line 19

tC terminates  
  tD terminates

mJoin2sJoin2 TERM

tB:
Line 17   tB terminates

mJoin1 sJoin1TERM
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G
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l T

ic
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3

mJoin1 sJoin1TERM

tA:
Line 13
Line 14tA terminates  

main:
Line 8

mSync sSync

(d) Possible execution trace of the compiled program.

Fig. 17. Example ForeC program to be compiled.
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Table 5. Summary of the synchronization routines

mFork: Uses a non-blocking send to notify the slave cores whether or not the parent thread has
forked.
sFork: Blocks until it receives whether or not the parent thread has forked.
mJoin: Blocks until it receives whether the child threads on other cores have terminated. Then,
it notifies the slave cores whether the parent thread has resumed.
sJoin: Uses a non-blocking send to notify the master core whether or not its child threads have
terminated. Then, it blocks until it receives whether the parent thread has resumed.
mSync: Synchronizes with all the cores, performs the housekeeping tasks, and then synchronizes
with all the cores again to start the next global tick.
sSync: Synchronizes with all the cores and waits for the next synchronization to start the next
global tick.
mAbort and sAbort: Evaluates the preemption condition of an abort.

1 // Node definition
2 typedef s t r u c t _Node {
3 void ∗ pc ;
4 s t r u c t _Node ∗ prev , ∗ next ;
5 } Node ;
6 // Insert node n2 after n1
7 # define i n s e r t ( n1 , n2 ) \
8 n2 . prev = &n1 ; \
9 n2 . nex t = n1 . nex t ; \

10 n1 . next −> prev = &n2 ; \
11 n1 . nex t = &n2
12 // Remove node n2 from the list
13 # define remove ( n2 ) \
14 n2 . prev −> next = n2 . nex t ; \
15 n2 . next −> prev = n2 . prev

Fig. 18. Definition of a linked list node and its operations in node.h.

• Global declarations and functions from the ForeC program (lines 4–6).
• Global declarations for storing the execution states of the threads and implementing the

shared variables (lines 9–13).
• main function (line 16) with the bootup routine (lines 34–41), the synchronization routines

(lines 44–138), and the threads (lines 141–186).
When the cores enter the main function, they execute the bootup routine to initialize their

linked lists. First, a node is created for each thread and each synchronization routine (lines 18–32).
Second, the nodes are linked together to create the initial linked list for each core (lines 34–41).
These initial lists are illustrated in the second row of Table 6. To avoid the need to create stacks
for each thread to maintain their local variables, the local variables are given unique names and
hoisted up to the global scope (e.g., tC’s local variable a on line 5). However, functions executed
on the same core will share the same stack space. To avoid stack corruption, all the functions
must execute atomically, i.e., without interruption. Although the scheduling routines dominate
the generated code in Figure 19, their code remains constant whatever the size of the user-defined
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Table 6. Core 1 and 2’s initial lists and subsequent lists when threads fork

Execution Point Linked Lists

When the program starts Core 1: main mFork1 mSync
 

Core 2: sFork1 sSync
 

When main forks (id = 1) Core 1: mAbort1 sFork2 mSynctA mJoin1

Core 2: mFork2 sSyncsAbort1 tB sJoin1

When tB forks (id = 2) Core 1: mAbort1 sJoin2 mSynctC mJoin1tA

Core 2: tD sSyncsAbort1 sJoin1mJoin2

threads (which could be arbitrarily large). Benchmarking in Section 5 reveals that ForeC programs
can achieve much higher multi-core speed ups than Esterel and be competitive to OpenMP on the
same benchmark programs, while having high time-predictability with at most 3.2% overestimation
in worst-case reaction times via static timing analysis.

4.4 The par Statement
The execution of a ForeC program starts with its main thread. The slave cores must wait for their
allocated threads to be forked. The global tick in which threads fork and join can only be determined
at runtime. Hence, before a core executes a thread, it must check that no other higher priority
thread allocated to it will be forked. Otherwise, the higher priority thread must be executed first.
This is achieved by executing an mFork routine after a parent thread completes its local tick. It uses
a non-blocking send to notify the slave cores whether or not the parent thread has forked. Thus,
the sFork routine of each slave core blocks until it receives whether or not the parent thread has
forked. To ensure correct scheduling order, the sFork routine has the same execution priority as
the parent thread. When a fork does occur, the mFork and sFork routines instruct their cores to
suspend the parent thread and to schedule the child thread. In the first global tick of Figure 17d,
mFork1 notifies sFork1 that thread main has not forked (OTHER is sent). In the second global tick,
mFork1 notifies sFork1 that thread main has forked (1 is sent).

Before a core executes a parent thread that was suspended by a fork, it must check that all of
its child threads have terminated. This is achieved by executing an mJoin routine after the child
threads on the master core have completed their respective local ticks. It blocks until it receives
whether or not the child threads on the slave cores have terminated. When all child threads have
terminated, the mJoin routine instructs the master core to resume the parent thread. Thus, each
slave core executes an sJoin routine after its child threads complete their respective local ticks. It
uses a non-blocking send to notify the master core whether or not the child threads on the slave
core have terminated. In the second and third global ticks of Figure 17d, sJoin1 notifies mJoin1
that thread tB has terminated (TERM is sent). The mJoin routine is also responsible for combining
the shared variables, but we defer this discussion to Section 4.6.

We now describe the C code that is generated for each par statement and how the synchronization
routines are incorporated into the linked lists. The last two rows of Table 6 visualizes core 1 and 2’s
linked lists when threads main and tB fork (Figure 19, lines 153 and 177 respectively). Each par
statement is assigned a unique positive integer id by the compiler. In Figure 19, lines 153–156 is
an example of the C code that is generated for a par statement. Line 154 sets the parent thread’s
execution state to id and sets the parent thread’s pc to be immediately after the par statement.
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1 #include "node.h" // Figure 18
2
3 // Programmer−defined
4 int x=0; // Shared variable
5 int a_tC; // tC's local variable
6 int plus(int th1,int th2) {return th1+th2;}
7
8 // Compiler−defined
9 enum State {OTHER=−1,TERM=0};

10 int mainState=OTHER, tAState=OTHER,
11 tBState=OTHER, tCState=OTHER,
12 tDState=OTHER;
13 int x_main, x_tA, x_tB, x_tC, x_tD;
14
15 // Entry point
16 void main(void) {
17 // Nodes for the linked lists
18 Node main={.pc=&&main},
19 tA={.pc=&&tA}, tB={.pc=&&tB},
20 tC={.pc=&&tC}, tD={.pc=&&tD};
21 Node mFork1={.pc=&&mFork1},
22 sFork1={.pc=&&sFork1},
23 mJoin1={.pc=&&mJoin1},
24 sJoin1={.pc=&&sJoin1};
25 Node mFork2={.pc=&&mFork2},
26 sFork2={.pc=&&sFork2},
27 mJoin2={.pc=&&mJoin2},
28 sJoin2={.pc=&&sJoin2};
29 Node mAbort1={.pc=&&mAbort1},
30 sAbort1={.pc=&&sAbort1};
31 Node mSync={.pc=&&mSync},
32 sSync={.pc=&&sSync};
33 // Create initial linked lists
34 if (core == 1) {
35 main.prev=main.next=&main;
36 insert(main,mFork1); insert(mFork1,mSync);
37 goto ∗main.pc;
38 } else if (core == 2) {
39 sFork1.prev=sFork1.next=&sFork1;
40 insert(sFork1,sSync); goto ∗sFork1.pc;
41 } else { while(1); }
42
43 // Forking
44 mFork1: {
45 send(mainState);
46 if (mainState == 1) {
47 Insert the nodes mAbort1,tA,sFork2, and mJoin1
48 after mFork1.
49 remove(main); remove(mFork1); goto ∗tA.pc;
50 } else { goto ∗mFork1.next−>pc; }
51 }
52 sFork1: {
53 receive(mainState);
54 if (mainState == 1) {
55 Insert the nodes sAbort1,tB,mFork2, and sJoin1
56 after sFork1.
57 remove(sFork1); goto ∗sFork2.pc;
58 } else { goto ∗sFork1.next−>pc; }
59 }
60

61 mFork2: {
62 send(tBState);
63 if (tBState == 2) {
64 Insert the nodes tD and mJoin2 after mFork2.
65 remove(tB); remove(mFork2); goto ∗tD.pc;
66 } else { goto ∗mFork2.next−>pc; }
67 }
68 sFork2: {
69 receive(tBState);
70 if (tBState == 2) {
71 Insert the nodes tC and sJoin2 after sFork2.
72 remove(sFork2); goto ∗tC.pc;
73 } else { goto ∗sFork2.next−>pc; }
74 }
75
76 // Joining
77 mJoin2: {
78 receive(tCState);
79 x_tB=plus(x_tC,x_tD,x); // Combine
80 if (tCState == TERM
81 && tDState == TERM) {
82 tBState=OTHER; send(tBState);
83 insert(mJoin2,tB); remove(mJoin2);
84 goto ∗tB.pc;
85 } else {
86 send(tBState); goto ∗mJoin2.next−>pc;
87 }
88 }
89 sJoin2: {
90 send(tCState); receive(tBState);
91 if (tBState == OTHER) { remove(sJoin2); }
92 goto ∗sJoin2.next−>pc;
93 }
94 mJoin1: {
95 receive(tBState);
96 x_main=plus(x_tA,x_tB,x); // Combine
97 if (tAState == TERM
98 && tBState == TERM) {
99 mainState=OTHER; send(mainState);

100 insert(mJoin1,main); remove(mAbort1);
101 remove(mJoin1); goto ∗main.pc;
102 } else {
103 send(mainState); goto ∗mJoin1.next−>pc;
104 }
105 }
106 sJoin1: {
107 send(tBState);
108 receive(mainState);
109 if (mainState == OTHER) { remove(sJoin1); }
110 goto ∗sJoin1.next−>pc;
111 }
112
113 // Preempting
114 mAbort1: {
115 if (x > 1) {
116 Remove the linked nodes between mAbort1
117 and mJoin1 inclusive.
118 main.pc = &&abort1; goto ∗main.pc;
119 } else { goto ∗mAbort1.next−>pc; }
120 }

Fig. 19. Example of the C program generated for the ForeC source code of Figure 17a with the thread
allocation of Figure 17c.
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121 sAbort1: {
122 if (x > 1) {
123 Remove the linked nodes between sAbort1
124 and sJoin1 inclusive.
125 goto ∗sAbort1.next−>pc;
126 } else { goto ∗sAbort1.next−>pc; }
127 }
128
129 // Synchronizing
130 mSync: {
131 barrier();
132 x=x_main; emitOutputs(); sampleInputs();
133 barrier();
134 goto ∗mSync.next−>pc;
135 }
136 sSync: {
137 barrier(); barrier(); goto ∗sSync.next−>pc;
138 }
139
140 // Threads
141 main: {
142 copy(x_main,x);
143 /∗ abort ∗/ {
144 x_main=1;
145
146 // pause;
147 main.pc=&&pause1;
148 goto ∗main.next−>pc;
149 pause1:;
150 if (x > 1) { goto abort1; }
151 copy(x_main,x);
152
153 // par(tA(),tB()); with id=1
154 mainState=1; main.pc=&&join1;

155 goto ∗main.next−>pc;
156 join1:;
157 copy(x_main,x);
158 } // when (x_main > 1);
159 abort1: exit(0);
160 }
161 tA: {
162 copy(x_tA,x_main);
163
164 x_tA=x_tA+1;
165
166 // pause;
167 tA.pc=&&pause2; goto ∗tA.next−>pc;
168 pause2: copy(x_tA,x);
169
170 x_tA=x_tA+1;
171
172 // Termination
173 tAState=TERM; remove(tA);
174 goto ∗tA.next−>pc;
175 }
176 tB: {
177 // par(tC(),tD()); with id=2
178 tBState=2; tB.pc=&&join2; goto mFork2;
179 join2:;
180 // Termination
181 tBState=TERM;
182 remove(tB);
183 goto ∗tB.next−>pc;
184 }
185 tC: { a_tC=1; ... }
186 tD: { ... }
187
188 } // End of "void main(void)"

Fig. 19. (Continued.) Example of the C program generated for Figure 17a.

Line 155 is a context-switch to the parent thread’s mFork routine. Lines 44–51 is an example of the
C code that is generated for an mFork routine. Line 45 sends the parent thread’s execute state to the
slave cores. If the parent thread has forked, then lines 47–49 insert the allocated child threads and
then an mJoin routine into the linked list. The parent thread and mFork routine are removed from
the linked list. The end of line 49 is a context-switch to the first node that was inserted. Otherwise,
if the parent thread has not forked, then line 50 is a context-switch to the next node in sequence.

If a child thread can fork its own threads, then further mFork and sFork routines need to be
inserted into the linked lists to ensure that such nested threads are forked. Recall from the example
in Figure 17a that thread main has a par statement that forks the child thread tB, which itself forks
threads tC and tD. Thus, when thread main executes its par statement, thread tB is inserted into
the linked list along with its fork routine (named mFork2) on line 55 in Figure 19. Similarly, a fork
routine (named sFork2) is inserted into the other core’s linked list on line 47. Both routines are
defined on lines 61–74.

Recall that the slave cores have an sFork routine in their initial linked list. Lines 52–59 show
an example of the C code that is generated for an sFork routine. Line 53 blocks until it receives
whether the parent thread has forked. If the parent thread has forked, then line 55 inserts the
allocated child threads and then an sJoin routine into the linked list. The sFork routine is removed
from the linked list. The end of line 57 is a context-switch to the first node that was inserted.
Otherwise, if the parent thread has not forked, then line 58 is a context-switch to the next node in
sequence.
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Lines 180–183 in Figure 19 is an example of the C code that is generated for the end of a child
thread to handle thread termination. Line 181 sets the thread’s execution state to TERM. Line 182
removes the thread from the linked list. Line 183 is a context-switch to the next node in sequence.
Lines 94–105 is an example of the C code that is generated for an mJoin routine. Line 95 blocks until
it receives the execution state of each child thread. If all the child threads have terminated, then
line 99 sets the execution state of the parent thread to OTHER and sends this state to its slave cores.
Lines 100–101 insert the parent thread back into the linked list and removes the nodes associated
with the par statement. This is followed by a context-switch to the parent thread. Otherwise, if
some child threads have not terminated, then line 103 is is a context-switch to the next node in
sequence. Lines 106–111 is an example of the C code that is generated for an sJoin routine. Line 107
sends the execution state of each child thread to the master core. Line 108 blocks until it receives
whether the parent thread has been resumed. If the parent thread has been resumed, then line 109
removes the sJoin routine from the linked list. Finally, line 110 is a context-switch to the next
node in sequence.

4.5 The pause Statement
The pause statement is a context-switching point and lines 146–149 in Figure 19 is an example
of the C code that is generated. Line 147 sets the current thread’s pc to be immediately after the
pause statement. Line 148 is a context-switch to the next node in sequence. In the next global tick,
execution will resume from the statement immediately after the pause statement.

4.6 Shared Variables
Shared variables are hoisted up to the program’s global scope to allow all cores to access them (e.g.,
line 4 in Figure 19). The copies of shared variables are implemented as unique global variables (e.g.,
line 13) to allow them to be combined on different cores. In each thread, all shared variable accesses
are replaced by accesses to their copies (e.g., lines 144 and 164). The shared variables are copied
at the start of each local tick, i.e., at the start of each thread body, and after each pause and par
statement. For example, the shared variable x on line 4 is copied by thread main on lines 142, 151,
and 157. As defined by the (par-4), (par-5), (par-6), and (par-7) semantic rules given in Section 3.4,
the par statement is responsible for combining the copies of shared variables. More precisely, when
the child threads of a par statement complete their respective local ticks, their copies of shared
variables are combined. The combined result is assigned to their parent thread. This combine
process is implemented by the mJoin routine (e.g., line 96) because it waits for the child threads to
complete their respective local ticks. The final values of the shared variables are computed by the
mJoin routine of thread main.

4.7 The abort Statement
We begin by describing the C code that is generated for an abort that does not have the optional
immediate or weak keywords. Conditional jumps, using the preemption condition, are inserted
after each pause statement in the abort body. For example, lines 143–158 in Figure 19 is the code
generated for the abort; a conditional jump is inserted on line 150 after the pause statement. The
preemption condition x>1 is used in the conditional jump. If the preemption condition evaluates to
true, a jump is made to the statement immediately after the abort (e.g., line 159). If a par statement
is inside the abort body, then the preemption condition must be evaluated before the threads can
execute. For example, in the third global tick of Figure 17d, the cores use the mAbort and sAbort
routines to evaluate the preemption condition on line 7 of Figure 17a. It is safe to evaluate the
preemption conditions in parallel because they are side-effect free (Section 2.7). Thus, when a fork
occurs, an Abort routine is inserted before the child threads in the linked lists. For a master core,
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/∗ abort ∗/ {
if (x > 1) { goto abort1; }
x_main=1;

// pause;
main.pc=&&pause1;
goto ∗main.next−>pc;
pause1:;
if (x > 1) { goto abort1; }
copy(x_main,x);

// par(tA,tB) with id=1
mainState=1;
goto ∗main.next−>pc;
join1:;
copy(x_main,x);

} // when (x_main > 1);

(a) Immediate and
strong abort.

int triggered = 0;
/∗ abort ∗/ {

x_main=1;

// pause;
main.pc=&&pause1;
goto ∗main.next−>pc;
pause1:;
triggered = (x > 1);
copy(x_main,x);

// par(tA,tB) with id=1
mainState=1;
goto ∗main.next−>pc;
join1:;
copy(x_main,x);

} // when (x_main > 1);

(b) Non-immediate and
weak abort.

int triggered = 0;
/∗ abort ∗/ {

triggered = (x > 1);
x_main=1;

if (triggered) { goto abort1; }
// pause;
main.pc=&&pause1;
goto ∗main.next−>pc;
pause1:;
triggered = (x > 1);
copy(x_main,x);

// par(tA,tB) with id=1
mainState=1;
goto ∗main.next−>pc;
join1:;
copy(x_main,x);

} // when (x_main > 1);

(c) Immediate and
weak abort.

Fig. 20. C code for the immediate and weak variants of the abort on lines 143–158 of Figure 19.

lines 114–120 in Figure 19 is an example of the C code that is generated for an mAbort routine.
Line 115 evaluates the preemption condition. If it evaluates to true, then line 116 removes the nodes
associated with the par statement. Line 118 sets the parent thread’s pc to be immediately after the
abort statement and context-switches to the parent thread. Otherwise, if the preemption condition
evaluates to false, then line 119 is a context-switch to the next node in sequence. For a slave core,
lines 121–127 is an example of the C code that is generated for an sAbort routine and is similar
to that of an mAbort. Line 122 evaluates the preemption condition. If it evaluates to true, then
line 123 removes the nodes associated with the par statement. Line 125 is a context-switch to the
next node in sequence. Otherwise, if the preemption condition evaluates to false, then line 126 is a
context-switch to the next node in sequence.

The optional immediate keyword allows the preemption condition to be evaluated before the
abort body is executed for the first time. Thus, an additional conditional jump, using the preemption
condition, is inserted at the start of the abort body. Figure 20a is an example of the C code that
would be generated if the abort on lines 143–158 in Figure 19 was an immediate abort. The
optional weak keyword delays the jumping to the end of the abort body when the preemption
condition evaluates to true. Thus, the conditional jump is divided into two parts: (1) the evaluation
of the preemption condition and (2) the resulting jump. The evaluation is inserted directly after each
pause statement and the jump is inserted directly before each pause statement. If a par statement
is inside a weak abort, then the mAbort and sAbort routines are inserted after the child threads
in the linked lists. Figure 20b is an example of the C code that would be generated if the abort
on lines 143–158 in Figure 19 was a weak abort. Finally, Figure 20c is an example of the C code
generated if it was an immediate and weak abort.

4.8 Global Tick Synchronization
The global tick is implemented by inserting a Sync routine that implements barrier synchronization
at the end of each linked list. This synchronization is shown at the end of each global tick in
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Fig. 21. Using Pthreads to adapt the generated code for multi-cores.

1 // Compiler−defined
2 #include <pthread.h>
3 pthread_t cores[2];
4 ...
5 // Entry point
6 void main(int argc,char ∗∗ argv) {
7 pthread_create(&cores[0], ... ,forecMain, ...); pthread_create(&cores[1], ... ,forecMain, ...);
8 pthread_join(cores[0],NULL); pthread_join(cores[1],NULL);
9 }

10 // Original main function from Figure 19
11 void ∗forecMain(void ∗args) { ... }

Fig. 22. Example Pthreads program.

Figure 17d. Lines 130–135 is the mSync routine C code generated for the master core. Line 131 is
a barrier synchronization for the end of the tick. Line 132 performs the following housekeeping
tasks: finalizing the values of the shared variables, emitting outputs, and sampling inputs. Line 133
is a barrier synchronization to signal the start of the next global tick. Line 134 is a context-switch
to the first node in the linked list. For the remaining slave cores, lines 136–138 is the sSync routine
C code. Line 137 are barrier synchronizations for the end of the tick and the start of the next tick.
This is followed by a context-switch to the first node in the linked list.

4.9 Generating Programs for Execution on Operating Systems
By default, the ForeC compiler generates bare metal embedded C code. This section describes
how the ForeC compiler is extended to generate executable code for operating systems. To utilize
multiple cores in a system, a program must create multiple threads that the operating system can
schedule. To this aim, we modify the ForeC compiler to generate a Pthread [115] for each core in
the system. Each Pthread is responsible for executing the ForeC threads statically allocated to the
same core, as shown in Figure 21. In effect, a fixed pool of Pthreads executes the ForeC threads and
the cost of creating each Pthread is only incurred once. Although the Pthreads will be dynamically
scheduled by the operating system, the original ForeC threads will still follow their static schedule.
Finally, the generated Pthreads program is compiled with any GNU C compiler.
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For the ForeC program of Figure 17a, Figure 22 is a simplified extract of the generated Pthreads
program. In addition to the global declarations shown in Figure 19, there are now Pthreads-related
declarations (lines 2–3) and a new main function for creating the Pthreads (line 6). The original
main function from Figure 19 (line 16) is renamed as forecMain (line 11). When the operating
system executes the main function, the Pthreads start executing the forecMain function and, hence,
the statically allocated ForeC threads.

4.10 Discussion
This section has presented the compilation of ForeC programs for direct execution on parallel
hardware architectures. The compilation is syntax-driven and templates are used to generate code
for each ForeC construct. Light-weight synchronization routines are generated to manage the
forking and joining of threads across the cores. The use of linked lists to manage the scheduling of
threads and routines is inspired by that of the Columbia Esterel Compiler [40].

The code generation is structural, meaning that a nesting of ForeC constructs is compiled into
a nesting of each construct’s generated code. The advantages of our static scheduling approach
include: (1) a light-weight scheduling of ForeC threads, and (2) an easier analysis (e.g., WCET
computation) because all scheduling decisions are known beforehand. However, the disadvantages
include: (1) the inability to dynamically load balance the ForeC threads to utilize the idle cores, and
(2) the need to recompile the program to target a different number of cores.

Memory fences in C (e.g., atomic_thread_fence [61]) are not used to implement the semantics
of shared variables because (1) the reading of inputs and the writing of outputs for global tick
synchronisation already requires barrier synchronization among the cores, making memory fences
redundant for finalizing shared variables, and (2) memory fences on shared variables are unable to
isolate the accesses of one thread from the accesses of another thread, which is needed during each
local tick.

Finally, the ForeC compiler does not check the associativity and commutativity of combine
functions (the general problem is undecidable [28]). Therefore it falls on the programmer’s respon-
sibility to guarantee these two properties. The SOS semantics of Section 3 does not guarantee that
the copies of a given shared variable are always resynchronized in the same order. If that was the
case, then the requirement for associativity and commutativity could be relaxed.

5 FOREC BENCHMARKING
This section quantitatively evaluates ForeC’s parallel execution performance on a mixture of
data and control dominated benchmark programs. The comparison is with Esterel, a widely used
synchronous language for real-time safety-critical systems, and with OpenMP, a popular framework
for parallel programming. The static timing analysis of ForeC programs using the reachability
technique is described in a previous paper [130], which showed that the worst-case reaction time
(WCRT) [17] of ForeC programs could be estimated to a high degree of precision. Such time-
predictability is very useful for the implementation of real-time, safety-critical, embedded systems.
We highlight the key timing analysis results in this section. Our compilation approach offers
good parallel execution that is amenable to static timing analysis. To our knowledge, no other
synchronous language achieves parallel execution and timing predictable as good as ForeC.

5.1 Benchmark Programs
The following benchmark programs are used in the evaluation:
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• FlyByWire is based on the real-time UAV benchmark called PapaBench [88]. FlyByWire is
a control dominated program with several tasks managing the UAV’s motors, navigation,
timer, and operation mode.
• FmRadio [98] is based on the GNU Radio Package [47], which transforms a fixed stream

of radio signals into audio. The history of the radio signals is used to determine how the
remaining stream should be transformed. FmRadio is data orientated.
• Life simulates Conway’s Game of Life [42] for a fixed number of iterations and a given grid

of cells. In each iteration, the outcome of each cell can be computed independently. Life
presents a good mixture of data and control dominated computations.
• Lzss uses the Lempel-Ziv-Storer-Szymanski (LZSS) [112] algorithm to compress a fixed

amount of text. Multiple sliding windows are used to search different parts of the text for
repeated segments that can compressed. Lzss presents a good mixture of data and control
dominated computations.
• Mandelbrot computes the Mandelbrot set for a square region of the complex number plane.

The Mandelbrot set for each point in the region can be computed independently, making
Mandelbrot data dominated.
• MatrixMultiply computes the matrix multiplication of two equally sized square matrices.

Each element in the result can be computed independently, making MatrixMultiply data
dominated.

• Pi computes the value of pi to 20 decimal places using the infinite series 𝜋 = 4
∞∑
𝑛=0

(−1)𝑛
2𝑛 + 1 .

5.2 Performance Evaluation
We create C (non-multi-threaded), ForeC, Esterel, and OpenMP versions of each benchmark program
and handcrafted each for best performance. We use Speedup as the performance metric to compare
ForeC, Esterel, and OpenMP with respect to the execution time of the C version:

𝑆𝑝𝑒𝑒𝑑𝑢𝑝 (𝑃) = Execution time of the sequential C version
Execution time of 𝑃

where 𝑃 is either the ForeC, Esterel, or OpenMP version of the benchmark program being tested.
The higher the speedup the better.

5.2.1 Comparison with Esterel. The static and dynamic thread scheduling approaches of Yuan et
al. [132, 134] for the parallel execution of Esterel programs has proved to perform well on an Intel
multi-core and on a (simulated) Xilinx MicroBlaze multi-core. However, compiler support is only
available for the dynamic approach on MicroBlaze. Thus, we evaluate Esterel on a MicroBlaze
multi-core with dynamic scheduling. Yuan et al.’s dynamic approach relies a special hardware FIFO
queue to allocate the threads to the cores. Threads are added to the queue when they are forked by
other threads. Each core retrieves a thread from the queue and executes it until it terminates or
reaches a context-switching point for resolving signal statuses. A core makes a context-switch by
adding the executing thread back to the queue and retrieving a different thread from the queue.
Threads are removed from the queue when they terminate. All the cores can access the FIFO queue
in parallel and each access takes two clock cycles to complete. For benchmarking, the MicroBlaze
multi-core simulator described in Section 4.1 is extended with the necessary hardware queue. The
configuration of the simulator is detailed in the caption of Table 7. The static scheduling approach
presented in Section 4 is used to parallelize the ForeC programs.

Table 7 shows the implementation details of the ForeC and Esterel versions of the benchmark
programs. In Esterel, it is usual to define data computations in a more capable host language such as
C. Hence, for the “Lines of Code” column of Table 7, the first number is the lines of Esterel code and

ACM Trans. Program. Lang. Syst., Vol. 45, No. 2, Article 11. Publication date: June 2023.



11:42 Eugene Yip, Alain Girault, Partha S. Roop, and Morteza Biglari-Abhari

Table 7. ForeC versus Esterel benchmarks: Average speedup on four cores, normalized to sequential runtime.
Xilinx MicroBlaze details: 4 single-threaded cores, three-stage pipeline, no speculative features (no branch
prediction, caches, or out-of-order execution), 16 KB private data and instruction scratchpads on each core (1
cycle access time), 64 KB global memory (5 cycle access time), TDMA shared bus (5 cycle time slots per core),
Benchmarks compiled with GCC-4.1.2 -O0.

Lines of Code No. of Threads Average Speedup
Benchmark ForeC Esterel ForeC Esterel ForeC Esterel
Life 212 139+111 4 (4) 7 (4) 3.23 2.28
Lzss 485 42+421 4 (4) 4 (4) 3.20 2.42
Mandelbrot 381 220+337 8 (8) 18 (9) 3.68 1.20
MatrixMultiply 162 51+53 16 (8) 16 (8) 3.87 3.87

the second number is the lines of host C-code (excluding header files). The “No. of Threads” column
specifies the total number of threads forked by the programs and, in brackets, the total number of
threads that can execute together in parallel. The benchmark programs are compiled for bare-metal
execution and do not need operating system support. Yuan et al.’s compilation approach [132] uses
an intermediate format called GRaph Code (GRC) [100], which transforms the program into an
acyclic execution graph to help schedule the resolution of signals. Executing the GRC from the
root to its leaves corresponds to one tick of the program. To decide which GRC states need to
be executed during each tick, a set of internal variables are updated as the GRC is executed. The
GRC can obfuscate the parallelism and, for most programs, the ForeC compiler (see Section 4) can
generate more efficient code requiring less context-switching. The same input vector is given to
the ForeC and Esterel versions of a benchmark program to ensure the same final output. When a
program terminates, the simulator returns the execution time in clock cycles.

Table 7 shows the speedups achieved by ForeC and Esterel on four cores. ForeC shows superior
performance compared to Esterel, apart from MatrixMultiply, even though Esterel uses dynamic
scheduling with hardware acceleration. The need to resolve instantaneous signal communication
in Esterel can lead to significant runtime overheads. All possible signal emitters must be executed
before any signal consumers can execute and this invariant is achieved using a signal locking
protocol [132] that is costly. In comparison, shared variables in ForeC only need to be resolved
at the end of each tick. The significance of the overhead is evident in the Mandelbrot results,
where the Esterel version has 24 unique signals and only achieves a speedup of 1.2×. In fact, when
Mandelbrot is executed on a single core, Esterel’s execution time is already 58% longer than the C
version. ForeC’s execution time is only 0.2% longer than the C version. Because of minimal data
dependencies in MatrixMultiply, combine functions are not needed in the ForeC version and
signals are not needed in the Esterel version. Thus, the scheduling overheads for the ForeC and
Esterel versions are minimal, resulting in near identical speedups.

Ju et al. [66] provide a multi-core static scheduling approach for Esterel. However, we cannot
compare with that work because speedup results for multi-core execution were not reported.

5.2.2 Comparison with OpenMP. The purpose is to evaluate ForeC’s competitiveness compared to
OpenMP, which has been tailored for general-purpose and high-performance computing. Table 8
shows the implementation details of the ForeC and OpenMP versions of the benchmark programs.
Intel VTune Profiler [59] was used to profile and guide the parallelization of the OpenMP versions
of the benchmarks. It provided insight into the regions of code that are most time consuming and,
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Table 8. ForeC versus OpenMP benchmarks: Average speedup on four cores, normalized to sequential runtime.
(L)aptop details: Intel Core i7-1060NG7 at 1.2 GHz, 4 cores, Hyper-Threading disabled, Turbo Boost disabled,
Speed Shift disabled, Speed Step disabled, 8 MB L3 cache, 16 GB RAM, Windows 10, Clang 10.0.0, OpenMP
4.5, Benchmarks compiled with optimizations disabled.
(S)erver details: Intel Xeon Gold 6240 CPU at 2.60GHz, 18 cores, Hyper-Threading disabled, Turbo Boost
disabled, Speed Shift disabled, Speed Step disabled, 24 MB L3 cache, 64 GB RAM, Ubuntu 20.04, Clang 10.0.0,
OpenMP 4.5, Benchmarks compiled with optimizations disabled.

Lines of Code No. of Threads Average Speedup
Benchmark ForeC OpenMP ForeC ForeC OpenMP

FlyByWire 241 227 8 (7)
L 2.16 3.29
S 1.48 3.11

FmRadio 481 382 12 (6)
L 1.88 2.16
S 1.90 1.84

Life 325 268 10 (8)
L 2.53 3.69
S 2.16 3.68

Lzss 593 552 4 (4)
L 3.11 3.53
S 3.43 3.55

Mandelbrot 111 89 4 (4)
L 3.85 3.93
S 3.88 3.99

MatrixMultiply 156 121 7 (4)
L 3.22 3.05
S 3.73 3.43

Pi 80 55 4 (4)
L 4.18 4.04
S 3.93 3.95

therefore, top candidates for parallelization. Testing was carried out on a laptop and on a server
and their configurations are detailed in the caption of Table 8.

The OpenMP versions use the OpenMP dynamic and static thread scheduling pragmas. Static
scheduling was used in benchmarks (e.g., FlyByWire and Pi) when we could determine at compile
time the so called chunk size (the workload and number of loop iterations that each thread needs to
perform). Dynamic scheduling was used in benchmarks (e.g., MatrixMultiply and Mandelbrot)
when the chunk size of each thread could not be made equal or could not be determined at compile
time. For dynamic scheduling, the chunk size of each thread is determined by the OpenMP runtime.
Using dynamic scheduling does introduce slight overheads, especially thread locking, but these
overheads should be amortized across the overall run of the benchmarks. This OpenMP scheduling
approach is in contrast to the ForeC approach, where all scheduling is static and determined by the
ForeC compiler.

Table 8 shows the speedups achieved by ForeC and OpenMP when the benchmark programs are
executed over four cores on a laptop (L) and server (S). The speedups are averaged over 3 of the
shortest executions times observed for each program to take into account the potential effects of
long term use, e.g., filling and flushing of the cache, and background processes of the platforms.
The speedups achieved by ForeC and OpenMP vary widely across different benchmarks, between
the same benchmarks, and across the laptop and server platforms.
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On the server platform, the speedups achieved by ForeC are quite close to those of OpenMP for
Lzss, Mandelbrot, and Pi, while ForeC is better than OpenMP for FmRadio and MatrixMultiply.
However, the speedups achieved by ForeC for FlyByWire and Life are noticeably worse. The poor
ForeC result for FlyByWire is due to a computationally heavy function being called by multiple
threads, creating unbalanced workloads on the cores. The ForeC version would achieve better
speedup if the function was duplicated for each of its invocations and parallelized individually
for a balanced workload. The OpenMP version benefits by having its (statically computed) chunk
sizes scheduled at run-time for better load balancing. Workload imbalance is also an issue for the
ForeC version of Life, since not all threads compute the same number of cells in each iteration
and threads are forked frequently for fine-grained parallelism.

The poor parallel performance of OpenMP for MatrixMultiply, which is a data-dominant
program, is likely due to the OpenMP runtime accessing its own data and causing matrix elements
to be evicted from fast L1 and L2 caches. For example, when executed on a single core, OpenMP’s
execution time is already 15% longer than the sequential C version, while ForeC is only 1% longer.
Intel VTune reports that the OpenMP version allocates a total of 5.6MB, of which 4.3MB is for the
matrices. This is significant because the server platform only has 32KB of L1 and 1MB of L2 caches
per core. In contrast, the ForeC version only allocates a total of 4.4MB. When the execution time of
OpenMP on four cores is compared to itself on a single core, a speedup of 3.9× is obtained. For the
other benchmarks, the overhead for OpenMP is much less significant.

On the laptop platform, the speedups achieved follow a similar trend to those of the server
platform. However, the performance gap between ForeC and OpenMP is narrower for FlyByWire,
Mandelbrot, and Life, and wider for FmRadio and Lzss. These differences are likely due to the
processor architectures and underlying operating systems. A surprising result can be seen for Pi
where ForeC and OpenMP achieve super-linear speedup.

As the purpose of the benchmarking is to demonstrate the competitiveness of ForeC programs
in a more general setting, without optimizing benchmarks to specific systems, the results are
encouraging for the use of ForeC to develop high performing parallel programs. Moreover, recall
that determinism is enforced by ForeC’s formal semantics, while it is not the case for OpenMP (and
other runtime environments).

5.3 Time-Predictability
We developed a C++ static timing analysis tool [130], called ForeCast, that statically analyzes the
WCRT of ForeC programs on the embedded PRET multi-core architecture described in Section 4.1.
We highlight the key findings of our previous paper [130] on the static WCRT analysis of ForeC
programs. Benchmarking was performed on our MicroBlaze multi-core simulator with the configu-
ration detailed in the caption of Figure 23. ForeCast itself was executed on an Intel Core 2 Duo
2.20 GHz desktop computer with 3 GB RAM running Linux 2.6.38. We highlight the results of the
benchmark program called 802.11a [98], which is production code from Nokia that tests various
signal processing algorithms needed to decode 802.11a data transmissions. 802.11a has complex
data and control dominated computations. 802.11a is implemented in 2, 274 lines of ForeC code
and forks up to 26 threads, of which 10 can execute in parallel. 802.11a was distributed on up to
10 cores and ForeCast was used to compute the WCRT of each possible distribution.

In hard real-time systems, computing the WCRT is extremely difficult [126] and uses many
over-approximations, which result in a computed WCRT that is often quite far from the observed
WCRT. It is therefore useful to assess the tightness of the computed WCRT. To do this, 802.11a was
executed on the MicroBlaze simulator for one million global ticks or until the program terminated.
Test vectors were generated to elicit the worst-case program state by studying the program’s
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1 2 3 4 5 6 7 8 9 10
0

0.5
1

1.5
2

2.5
3

3.5

Cores

O
ve

r-
es

tim
at

io
n

(%
)

(b) WCRT over-estimations for 802.11a.

Fig. 23. Time-predictability results for 802.11a. Xilinx MicroBlaze details: single-threaded cores, three-stage
pipeline, no speculative features (no branch prediction, caches, or out-of-order execution), 8 KB private data
and instruction scratchpads on each core (1 cycle access time), 32 KB global memory (5 cycle access time),
TDMA shared bus (5 cycle time slots per core and, thus, a 5×(number of cores) cycle long bus schedule),
Benchmarks compiled with MB-GCC-4.1.2 -O0 and decompiled with MB-OBJDUMP-4.1.2.

control-flow. The simulator returned the execution time of each global tick and the longest was
taken as the observed WCRT.

The observed and computed WCRTs of 802.11a (in clock cycles) are plotted as a line graph
in Figure 23a. It shows that ForeCast is very precise, even as the number of cores increases. The
over-estimation of the computed WCRT is calculated as follows:

WCRT Over-estimation =
Computed WCRT − Observed WCRT

Observed WCRT × 100%

Figure 23b depicts the WCRT over-estimations for 802.11a as a line graph. We can see that
ForeCast computes WCRTs that are at most 3.2% longer than the observed WCRTs. This is an
excellent result because classical real-time systems show an over-estimation of, e.g., 2.3–13.3% [101]
and 10–105% [77] for concurrent programs on up to 4 cores.

Figure 23a shows the impact of multi-core execution. The WCRT decreases when the number of
cores is increased from 1 to 5 cores. However, the workload of the threads become can no longer be
balanced 6 or more cores. In fact, the WCRT for 5 cores corresponds to the WCET of a reaction of a
particular thread that has been allocated to its own core. Thus, no further WCRT improvements can
be achieved with more than 5 cores and the WCRT worsens due to increasing scheduling overheads
and global memory access costs.

We performed additional experiments to compare the observed worst-case execution times
(WCETs) of ForeC and Esterel versions of Life, Lzss, Mandelbrot, and MatrixMultiply on em-
bedded multi-cores. Since these programs are not reactive (they terminate), the WCRT is irrelevant
so we observe the WCET instead, i.e., the total time that the programs take to execute from start to
finish.8 We limited the Life program to 10,000 iterations of its main loop. The same input vector
was given to the ForeC and Esterel versions of a benchmark program to ensure the same final
output. The Esterel programs were compiled using Yuan et al.’s approach [132]. For each benchmark
program in Figure 24, the WCETs for ForeC and Esterel are plotted. Apart from MatrixMultiply,
the observed WCETs for ForeC were much shorter than those for Esterel. Unfortunately, the static
timing analysis of multi-core Esterel programs has not been developed, preventing an objective
8The entire execution of a benchmark program occurs over multiple ticks.
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Fig. 24. Observed WCETs for ForeC and Esterel. Platform details in caption of Figure 7.

timing analysis of multi-core Esterel programs has not been developed, preventing an objective
comparison of time-predictability. To compute WCETs or WCRTs for Esterel that are as tight as
ForeCast, the dynamic resolution of signal statuses would need to be analyzed extremely carefully
to rule out infeasible execution paths.

6 RELATED WORK
Designing embedded systems that are time predictable remains an open challenge [6]. Moreover,
the increased adoption of embedded multi-cores requires more programmers to become parallel
programming experts. Table 9 highlights di�erent approaches to enforcing mutual exclusion on
shared variables, usually by interleaving parallel accesses into a strict sequence. As argued by
Lee [73], the adoption of parallelism in sequential languages, like C [61], discards important
properties, such as determinism, predictability, and understandability. Thus, inconsistent values may
be observed for shared variables and signi�cant e�ort has to be devoted to tame nondeterminism
in parallel programs [79].

6.1 Concurrency and Parallelism Issues
Deterministic runtime support. Runtime environments that enforce deterministic thread sched-

uling and memory accesses have been developed for Pthreads (Kendo [91] and CoreDet [11]),
OpenMP (DOMP [5]), and MPI (DetMP [136]). In Kendo and CoreDet, all thread interactions are
mapped deterministically onto a logical timeline, which progresses independently of physical
time. Program execution is divided into alternating parallel and serial phases, similar to the Bulk
Synchronous Parallel (BSP) [119] programming model. In the parallel phase, threads execute until
they all reach a synchronization point, e.g., a lock acquisition, memory access, or prede�ned number
of executed instructions. In the serial phase, threads take turns to resolve their memory accesses or
lock acquisitions. Threads in CoreDet also maintain their own version of the shared memory state,
which are resynchronized in every serial phase. This concept has been formalised by concurrent
revisions [23]. However, understanding a program’s behavior at compile time remains di�cult
because determinism is only enforced at runtime. Thus, if the program is modi�ed, e.g., to �x a bug,
then a vastly di�erent runtime behavior is possible. Moreover, program execution is not portable
across the runtimes because each may enforce its own notion of determinism.

Parallel C languages. An alternative is to directly extend and modify the C language with
deterministic parallelism, such as SharC [104], CAT [41], SHIM [115], ⌃C [48], and ForkLight [69].
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Fig. 24. Observed WCETs for ForeC and Esterel. Platform details in caption of Figure 7.

comparison of time-predictability. To compute WCETs or WCRTs for Esterel that are as tight as
ForeCast, the dynamic resolution of signal statuses would need to be analyzed extremely carefully
to rule out infeasible execution paths.

6 RELATED WORK
Designing embedded systems that are time predictable remains an open challenge [6]. Moreover,
the increased adoption of embedded multi-cores requires more programmers to become parallel
programming experts. Table 9 highlights different approaches to enforcing mutual exclusion on
shared variables, usually by interleaving parallel accesses into a strict sequence. Some of the
examples we report in Table 9 may rely on multiple approaches, but we have only placed them
under their main approach. As argued by Lee [73], the adoption of parallelism in sequential
languages, like C [61], discards important properties, such as determinism, predictability, and
understandability. Thus, inconsistent values may be observed for shared variables and significant
effort has to be devoted to tame nondeterminism in parallel programs [79].

6.1 Concurrency and Parallelism Issues
Deterministic runtime support. Runtime environments that enforce deterministic thread sched-

uling and memory accesses have been developed for Pthreads (Kendo [90] and CoreDet [11]),
OpenMP (DOMP [5]), and MPI (DetMP [135]). In Kendo and CoreDet, all thread interactions are
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Table 9. Existing solutions for avoiding race conditions in parallel programs

Programming Constructs: These are written in the host language to provide programmers
with mechanisms to achieve mutual exclusion. Examples include locks, monitors, memory fences,
transactional memory, message passing, and parallel data structures. Using such constructs
correctly can be tedious and error prone for large programs and may lead to other errors [73, 79,
82], e.g., deadlocks, starvation, or priority inversion.
Language Semantics: A memory model defines how threads communicate over shared memory
without race conditions, e.g., by defining admissible write-read orderings that are sequentially
constructive [122]. The resulting memory model may restrict itself to certain applications. Exam-
ples include SharC [4], SHIM [119], ΣC [48], unfederated Lingua Franca [78], and Concurrent
Revisions [23].
Static Analysis: A compiler or static analyzer can identify and alert the programmer about race
conditions in their program (e.g., Parallel Lint [67]) and may try to automatically resolve them
by serializing the parallel accesses (e.g., Sequentially Constructive Concurrency [122]). However,
programmer guidance is needed when race conditions cannot be automatically resolved.
Runtime Support: Programs are executed by a runtime that dynamically enforces deterministic
execution and memory accesses. Examples include dOS [12], Kendo [90], CoreDet [11], DOMP [5],
DetMP [135], and federated Lingua Franca [78]. However, understanding the program’s behavior
at compile time remains difficult because the determinism is only enforced at runtime, which
also makes the static computation of tight WCRTs difficult.
Hardware Support: Parallel accesses can be detected and resolved by hardware, preventing
race conditions from happening. Examples include Ultracomputer’s combine hardware [107]
and some shared bus arbitration policies (e.g., round-robin, TDMA, and priority). However, the
timestamps of the accesses affect how they are interleaved, i.e., race conditions are prevented
but nondeterminism is not.

mapped deterministically onto a logical timeline, which progresses independently of physical
time. Program execution is divided into alternating parallel and serial phases, similar to the Bulk
Synchronous Parallel (BSP) [118] programming model. In the parallel phase, threads execute until
they all reach a synchronization point, e.g., a lock acquisition, memory access, or predefined number
of executed instructions. In the serial phase, threads take turns to resolve their memory accesses or
lock acquisitions. Threads in CoreDet also maintain their own version of the shared memory state,
which are resynchronized in every serial phase. This concept has been formalised by concurrent
revisions [23]. However, understanding a program’s behavior at compile time remains difficult
because determinism is only enforced at runtime. Thus, if the program is modified, e.g., to fix a bug,
then a vastly different runtime behavior is possible. Moreover, program execution is not portable
across the runtimes because each may enforce its own notion of determinism.

Parallel C languages. An alternative is to directly extend and modify the C language with
deterministic parallelism, such as SharC [103], CAT [41], SHIM [114], ΣC [48], and ForkLight [69].
These solutions allow the asynchronous forking and synchronized joining of threads, but lack a
convenient mechanism for preempting groups of threads. Unlike ForeC, their time-predictability
has not been demonstrated and this complicates their use in real-time safety-critical embedded
systems.
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Distribution of synchronous programs. The classic synchronous languages [10] are Esterel [15]
(imperative), Lustre [50] (dataflow), Signal [49] (multi-clock), and Lucid Synchrone [31] (functional),
and are well suited to control-dominated and safety-critical systems [10, 26]. A key advantage is
that the burden of ensuring race-free communication is with the language semantics, and not left to
the programmer. Concurrency in synchronous languages is a logical concept to help programmers
manage concurrent inputs, rather than to specify parallel execution. Thus, concurrency is typically
compiled away to resolve causality and to generate sequential code [40, 100], although some do
generate concurrent tasks [27, 86, 87, 92] for execution on single-cores.

Techniques exist to distribute the code of a synchronous program over multiple processors,
but it is motivated by the desire to execute computations closer to sensors or actuators, which
may be separated geographically. The distribution [44] of synchronous programs is notoriously
difficult due to the signal communication model and the need to maintain monotonic signal
values [8, 134]. First, causality analysis [100] is needed to ensure that the presence or absence
of all signals can be determined exactly in each global tick (a corollary is that programs can
react to the absence of signals). Second, the compiler must generate code for resolving signal
statuses at runtime. A common approach is to compile away the concurrency and to generate a
sequential program [40, 100]. Third, the sequential program is partitioned into subprograms and
distributed to execute on their allocated processors. When distributing a synchronous program,
some desynchronization [9, 20, 46] is needed among the concurrent threads. That is, the concurrent
threads execute at their own pace, but sufficient inter-thread communication is used to preserve
the original synchronous semantics. Synchronized Distributed Executive (SynDEx) [99] is a tool
that automatically distributes synchronous programs and considers the cost of communication
between the processors. The use of futures has been proposed as a method for desynchronizing
long computations in Lustre [30]. A future is a proxy for a result that becomes known at a later
time and may be computed in parallel with other computations.

Code distribution can also be achieved by extracting parallelism from an intermediate representa-
tion of the sequentialized code [7, 8, 25, 44, 66, 94, 131, 134]. The techniques differ in the heuristics
used to partition and distribute the sequentialized code to achieve sufficient parallelism, and some
apply to general-purpose multi-cores [8, 66, 134]. Due to control and signal dependencies, the
opportunities for extracting parallelism from a sequential program is limited. Yuan et al. [132, 134]
offer static and dynamic thread scheduling approaches for Esterel on multi-cores. For the static
approach, threads are statically load-balanced across the cores and signal statuses are resolved at
runtime. The load balancing is based on the threads’ estimated worst-case execution times, rather
than on their actual times which could be much shorter. The dynamic approach instead relies on a
custom hardware queue to store the threads that cores can execute.

The distribution of synchronous programs over multi-threaded and multi-core reactive processors
has been studied extensively [33, 76, 105, 131, 133]. Reactive processors handle the scheduling of
threads in hardware, thereby simplifying code generation. However, causality analysis and runtime
signal resolution are still required. Signal resolution may impede parallel performance, for instance
because a thread must wait for a signal’s status to be resolved before it can be read.

In contrast, ForeC is much easier to compile because causality analysis is not needed for delayed
communication over shared variables (Section 2.4) and the threads specified by the programmer can
be distributed directly over the available cores. ForeC threads have more opportunities to execute
in parallel because execution dependencies only exist at tick boundaries.

C-based synchronous languages. To increase their uptake with embedded programmers, C-based
synchronous programming languages have been developed, starting with Reactive C [18]. The key
characteristic of Reactive C is that communication between concurrent threads is delayed by one tick,
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which simplifies the causality analysis, but forbids programs that react to the absence of an input to
be written. Following this idea, other extensions of C have been proposed, such as Reactive Shared
Variables [19], Esterel C Language (ECL) [72], and PRET-C [3]. A more recent proposal has been
the sequential constructive semantics, adopted by Synchronous C (SCL) [120, 122], SCCharts [121],
and SCEst [109], which allows concurrent writes to shared variables if a sequentially consistent
interpretation can be guaranteed for their final values. This is known as the init-update-read
protocol. This has later been generalized in two directions: Firstly by scheduling policies [1] where
each shared variable type comes with a policy interface that formally defines the admissibility and
precedence of its access methods (e.g., presence, emit, ...); And secondly by scheduling directives [110]
where causality issues can be avoided (or fixed) by adding total order relationships between blocks
of instructions, which can override the initial sequentially constructive schedule. In both cases,
unlike ForeC, their inherent sequential execution semantics hinders their suitability for multi-core
execution.

ForeC enables the deterministic parallel programming of multi-cores, and it merges deterministic
concurrency offered by synchronous languages with deterministic shared states offered by runtime
solutions such, as concurrent revisions. ForeC helps to bridge the differences between synchronous-
reactive programming and general-purpose parallel programming, making deterministic parallelism
accessible to traditional embedded C programmers. Its shared variable semantics guarantees dead-
lock freedom and alleviates the burden of ensuring mutual exclusion from the programmer. Thread
isolation is guaranteed by stipulating that threads work on local copies of shared variables. The
resynchronization of shared variables after threads reach their local tick makes program behavior
agnostic to scheduling decisions. All these features simplify the understanding and debugging of
ForeC programs.

WCET analysis. After a synchronous program has been implemented, it is necessary to validate
the synchrony hypothesis. That is, the worst-case execution time [126, 127] (WCET) of any global
tick must not exceed the minimal inter-arrival time of the inputs. This is known as worst-case
reaction time (WCRT) analysis [17, 83] and various techniques have been developed for single-
cores [2, 17, 29, 65, 71, 83, 104, 123] and multi-cores [66, 129, 130].

Combine functions. ForeC’s combine functions are inspired by Esterel [100] but similar solu-
tions can be found in other parallel programming frameworks, e.g., OpenMP’s reduction op-
erators [91], MPI’s MPI_Reduce and MPI_Gather functions [84], Intel Thread Building Blocks’
tbb::parallel_reduce function and tbb::combinable data type [58], Intel Cilk Plus’ reducer
data types [57], and Unified Parallel C’s collective functions [116]. These solutions could be made
available in ForeC as combine functions with particular combine policies. Appendix C provides
more extensive examples of ForeC’s combine functions and describes how they work together with
the combine policies.

6.2 Detailed Comparison with Esterel, SCEst, PRET-C, and Concurrent Revisions
This section compares ForeC with Esterel [15], Sequentially Constructive Esterel (SCEst) [109],
PRET-C [3], and concurrent revisions [23], summarized in Table 10. Concurrent revisions is a
programming model that supports the forking and joining of asynchronous threads. When a thread
is forked, a snapshot of the shared variables is created and any changes performed by the thread are
only applied to this snapshot. Like ForeC, this ensures thread isolation during parallel execution.
When two threads join, their snapshots are merged together using a deterministic merge function.

ForeC and PRET-C are intended for applications with control and data parallelism. Control
parallelism is not a strength of concurrent revisions because its semantics does not consider
(reactive) inputs or outputs. In concurrent revisions, threads are forked asynchronously, allowing a
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Table 10. Comparing ForeC with Esterel, PRET-C, and concurrent revisions

Property Esterel [15] SCEst [109] PRET-C [3] ForeC Concurrent
revisions [23]

Causal Programs Not always Yes, by construction
Use for Parallelism Control Control and data Data
Model of Computation Synchronous Asynchronous
Reactive Interface Yes No
Preemption Yes No
Dynamic Parallelism No Yes
Thread Communication
Method

Pure or valued
signals

Pure or valued
signals, or

shared
variables

Shared Variables

Thread Communication
Speed

Instantaneous Instantaneous
(sequentially
constructive)

Instantaneous
(sequential)

Delayed to
the end of
every tick

Delayed to
thread join

Resynchronization of
Shared Variables or
Valued Signals

Combine functions (mod values) Not required Combine
functions

with policies

Merge functions
(all values)

Commutative and Asso-
ciative Parallelism

Yes No
(Sequential)

Yes if
combine

functions are
commuta-
tive and

associative

Yes if merge
functions are
commutative

and associative

parent thread to execute alongside its children. Hence, the parent thread can fork as many parallel
threads as needed at runtime. The rjoin construct can be used to force the parent thread to wait
for its children to join. In contrast, threads are forked synchronously in ForeC, Esterel, SCEst, and
PRET-C, meaning that the parent thread can only fork a fixed number of child threads and must
wait for them to join.

Threads in PRET-C are executed in a strict sequential order, which is unsuitable for multi-core
execution. However, this strict order ensures that only one thread is executing at any time and
that shared variables are accessed in a thread safe manner. Consequently, thread communication
is instantaneous (i.e., within the same tick) in the sequential order, but delayed by one tick in the
reverse order. Threads in concurrent revisions modify their own snapshot of the shared variables,
which are only merged when threads join. The merge function always considers both copies, i.e.,
equivalent to ForeC’s combine policy all. Thus, thread communication only occurs when child
threads join. In contrast, ForeC threads may execute over several ticks and thread communication
is only delayed to the end of every tick.

Esterel and SCEst threads communicate instantaneously by emitting and receiving pure signals
(either present or absent) or valued signals (pure signals with associated values) during each tick. All
potential emissions of a signal must be performed by the concurrent threads before the signal can
be read. For each valued signal, all its emitted values are combined using a programmer-specified
commutative and associative combine function, i.e., equivalent to ForeC’s combine policy mod.
Signal statuses are reset to absent at the start of every tick. Note that only Esterel and SCEst
are able to react to the absence of a signal. This allows behavior to be executed when a signal
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is guaranteed to never be emitted during a tick, such as “present X else emit Y”. However,
non-causal statements can be written, such as “present X else emit X”, which the Esterel
compiler rejects because it has no behavior. SCEst can accept programs rejected by Esterel when
causality issues due to non-concurrent signal accesses can be resolved by a sequential interpretation
(the “init-update-read” policy).

Esterel and SCEst’s parallel construct for forking threads is commutative and associative, thanks
to the requirement that all combine functions must be commutative and associative. PRET-C’s
parallel construct is neither commutative nor associative because of its sequential semantics. In
concurrent revisions and ForeC, the commutativity and associativity of their parallel construct is
guaranteed if their respective combine and merge functions are also commutative and associative.

Preemptions in ForeC and PRET-C are inspired by Esterel, but behave slightly differently. Pre-
emptions in Esterel and SCEst are triggered instantaneously, whereas preemptions in ForeC and
PRET-C are triggered with a maximum delay of one tick. PRET-C, however, only supports immedi-
ate preemptions. Concurrent revisions does not support preemptions. Esterel programs may be
non-causal [10] because of instantaneous feedback cycles, but ForeC, PRET-C, and concurrent
revisions programs are always causal by construction thanks to delayed communication.

7 CONCLUSIONS AND FUTURE DIRECTIONS
A common approach to developing cyber-physical systems is to program an embedded ARM multi-
core with C and Pthreads and to use an RTOS to manage the execution. Although high performance
can be achieved with this approach, time-predictability is sacrificed. This paper proposed the ForeC
language for the deterministic, parallel, and reactive programming of parallel architectures. Section 2
provided an in-depth description of ForeC. Unlike existing C-based synchronous languages, ForeC
is designed specifically for parallel programming. The semantics of ForeC is designed to give
programmers the ability to express explicit parallelism while ensuring that ForeC programs can
be compiled efficiently for parallel execution and be amenable to static timing analysis. ForeC’s
main innovation revolves around its shared variable semantics that provides thread isolation and
deterministic communication. The behavior of a shared variable can be tailored to the application
at hand by specifying a suitable combine function and policy. All ForeC programs are correct by
construction (no race conditions, no deadlocks) because mutual exclusion constructs are not needed.
The formal semantics greatly simplifies the understanding and debugging of parallel programs.
Section 4 presented a compilation approach that used non-preemptive static thread scheduling.
The key strategy was to preserve the ForeC threads and to use light-weight context-switching and
simple scheduling routines to preserve the language semantics.

Planning communication between threads is as difficult in ForeC as in any parallel programming
language with shared variables (e.g., OpenMP), but, compared to such languages, there is no risk
of race conditions thanks to ForeC’s combine functions, thread isolation, and the deterministic
semantics. We claim that this makes program writing and debugging easier. Assigning threads
to cores and scheduling threads are not critical points because the ForeC semantics is preserved
whatever the core assignment chosen by the users in their architecture specification. From this
specification, the ForeC compiler statically allocates the threads, so no manual effort is required from
the users. Allocating optimally the threads to the cores is very complex, and in fact NP-complete as
in other similar parallelization problems. To achieve a good sub-optimal allocation, the ForeCast
timing analyzer generates a timed sequence diagram for the program’s WCRT: it combines the
WCET of each thread with the global thread scheduling and inter-core synchronizations. This
snapshot allows the programmer to see how balanced the workloads were across the cores and
to devise, possibly, a better core allocation. In addition, the ForeC compiler detects loops that
are potentially instantaneous (this is an over-approximation because the problem is undecidable),
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variables that are accessed by multiple threads but have not been annotated as shared variables,
and shared variables whose combine functions would never be invoked because at most only one
copy would need to be combined. All the above-mentioned points demonstrate that, thanks to its
semantics, compiler, and associated ForeCast tool, ForeC alleviates as much as possible the difficult
task of writing safe and efficient parallel code for reactive systems.

For future work, the ForeC compiler could be improved to generate more efficient code that
remains amenable to static timing analysis. In particular, different static scheduling strategies
could be explored for different parallel programming patterns. Currently, scheduling priorities are
assigned to ForeC threads by traversing the thread hierarchy in a depth-first manner. However,
assigning scheduling priorities in a breadth-first manner could produce more efficient schedules in
some cases. The allocation of ForeC threads could be refined automatically by feeding the WCRT
results of the ForeCast analyzer into the ForeC compiler.
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A PROOFS
A.1 Reactivity of ForeC Kernel Programs

Definition 3. A program t : f is reactive if, in any state 𝑆 , for any input configuration 𝐼 , there
exists at least one transition (i.e., the program never deadlocks):

∀𝑆, 𝐼 : ∃𝑆 ′, f ′, 𝑘 such that ⟨𝑆⟩ t : f
𝑘−−→
𝐼
⟨𝑆 ′⟩ t : f ′

Theorem 4. Let t : f be a ForeC kernel program that is correct with respect to syntax and type
checking. Then, any such t : f is reactive.

Proof. The proof can be shown by structural induction on t : f.
Base cases: The (nop), (copy), (pause), (status), (assign-shared), (assign-private), (if-then), (if-

else), (loop-then), and (loop-else) rules imply that the following kernel constructs have at least one
transition:

⟨𝑆⟩ t : nop 0−−→
𝐼
⟨𝑆⟩ t :

⟨𝑆⟩ t : copy 0−−→
𝐼
⟨𝑆 ′⟩ t :

⟨𝑆⟩ t : pause 1−−→
𝐼
⟨𝑆⟩ t : copy

⟨𝑆⟩ t : status(𝑎, 𝑒𝑥𝑝) 0−−→
𝐼
⟨𝑆 ′⟩ t :

⟨𝑆⟩ t : var = 𝑒𝑥𝑝
0−−→
𝐼
⟨𝑆 ′⟩ t :

⟨𝑆⟩ t : if (𝑒𝑥𝑝) f1 else f2
⊥−−→
𝐼
⟨𝑆⟩ t : f1 or ⟨𝑆⟩ t : if (𝑒𝑥𝑝) f1 else f2

⊥−−→
𝐼
⟨𝑆⟩ t : f2

⟨𝑆⟩ t : while (𝑒𝑥𝑝) f
⊥−−→
𝐼
⟨𝑆⟩ t : f; while (𝑒𝑥𝑝) f or ⟨𝑆⟩ t : while (𝑒𝑥𝑝) f

0−−→
𝐼
⟨𝑆⟩ t :

Induction step: The sequence operator (;), abort, and par kernel statements allow the compo-
sition of kernel constructs. Let t1 : f1 and t2 : f2 be arbitrary compositions of kernel constructs. We
assume the induction hypotheses that they each have at least one transition:

∃𝑆 ′1, 𝑆 ′2, f ′1 , f ′2 , 𝑘1, 𝑘2 such that ⟨𝑆1⟩ t1 : f1
𝑘1−−→
𝐼
⟨𝑆 ′1⟩ t1 : f ′1 (H1)

and ⟨𝑆2⟩ t2 : f2
𝑘2−−→
𝐼
⟨𝑆 ′2⟩ t2 : f ′2 (H2)

Next, we show that the remaining sequence operator (;), abort, and par kernel statements have at
least one transition.

(1) Consider t1 : f1; f2. Thanks to (H1) and (H2), the table below shows that at least one sequence
rule can be applied to all possible completion codes 𝑘1 of the first program fragment f1.
Note that the sequence rules do not consider the completion code 𝑘2 of the second program
fragment f2:

𝒌1

0 1 ⊥

(seq-right) (seq-left)
If 𝑘1 = 0 and the premise is true by (H1), then from the (seq-right) rule we have:
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⟨𝑆1⟩ t1 : f1
𝑘1=0−−−→
𝐼
⟨𝑆 ′1⟩ t1 :

(seq-right)
⟨𝑆1⟩ t1 : f1; f2

⊥−−→
𝐼
⟨𝑆 ′1⟩ t1 : f2

If 𝑘1 ∈ {1,⊥} and the premise is true by (H1), then from the (seq-left) rule we have:

⟨𝑆1⟩ t1 : f1
𝑘1∈{1,⊥}−−−−−−−→

𝐼
⟨𝑆 ′1⟩ t1 : f ′1

(seq-left)
⟨𝑆1⟩ t1 : f1; f2

𝑘1−−→
𝐼
⟨𝑆 ′1⟩ t1 : f ′1 ; f2

Thus, any sequential composition of reactive programs has at least one transition and is,
therefore, reactive.

(2) Consider t1 : weak? abort(𝑎1, f1). Thanks to (H1) and (H2), the table below shows that at
least one abort rule can be applied to every combination of 𝑘1 and preemption status 𝐴[𝑎1]:

Strong abort, 𝒌1 Weak abort, 𝒌1
0 1 ⊥ 0 1 ⊥

𝑨[𝒂1]
= 0 (abort-2) (abort-1) (abort-2) (abort-1)
≠ 0 (abort-6) (abort-3) (abort-5) (abort-4)

For example, if 𝑘1 = 0 and 𝐴[𝑎1] = 0 and the premise is true by (H1), then from the (abort-2)
rule we have:

⟨𝑆1⟩ t1 : f1
𝑘1=0−−−→
𝐼
⟨𝑆 ′1⟩ t1 :

(abort-2) (𝐴[𝑎1] = 0)
⟨𝑆1⟩ t1 : weak? abort(𝑎1, f1) 0−−→

𝐼
⟨𝑆 ′1⟩ t1 :

The other cases are similar. Thus, any preemptive composition of reactive programs has at
least one transition and is, therefore, reactive.

(3) Consider t : par(t1 : f1, t2 : f2). Thanks to (H1) and (H2), the table below shows that at least
one par rule can be applied to every combination of 𝑘1 and 𝑘2:

𝒌2

0 1 ⊥

0 (par-5) (par-6)
(par-2)

𝒌1 1 (par-7) (par-4)
⊥ (par-3) (par-1)

For example, if 𝑘1 = 0 and 𝑘2 = 0 and the premise is true by (H1) and (H2), then from the
(par-5) rule we have:

⟨𝑆⟩ t1 : f1
𝑘1=0−−−→
𝐼
⟨𝑆 ′1⟩ t1 : ⟨𝑆⟩ t2 : f2

𝑘2=0−−−→
𝐼
⟨𝑆 ′2⟩ t2 :

(par-5)
⟨𝑆⟩ t : par(t1 : f1, t2 : f2) ⊥−−→

𝐼
⟨𝑆 ′′⟩ t : copy

The other cases are similar. Thus, any parallel composition of reactive programs has at least
one transition and is, therefore, reactive.

□
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A.2 Parallel Execution and Shared Variable Resynchronization
Before proving that all ForeC kernel programs are deterministic, we prove that threads execute
their local ticks in isolation, and that the aggregation of states and the semantic function Combine
are both deterministic. These are captured by Lemmas 8, 10, and 11 below, with the assumption
that all the combine functions are deterministic. We further prove in Lemmas 13 and 15 that the
associative and commutative property of the par statement is dependent on combine functions
having the same respective properties.

Definition 5. A combine function 𝑐𝑓 : 𝐷 × 𝐷 → 𝐷 is any C function with two input values v1
and v2 of identical type, which returns a value of the same type.

Definition 6. A combine function 𝑐𝑓 is deterministic if there exists only one value that can be
returned for a given set of input values:

∀v1, v2 ∈ 𝐷 × 𝐷, ∃!v3 ∈ 𝐷 such that 𝑐𝑓 (v1, v2) = v3

From now on, we assume that every combine function 𝑐𝑓 always terminates and is deterministic,
regardless of the program’s current state.

Assumption 7.

∀𝑆, 𝑆 ′, 𝐼 , t, v1, v2, 𝑐𝑓 : Eval(𝑆.𝐸, 𝐼 , t, 𝑐𝑓 (v1, v2)) = Eval(𝑆 ′.𝐸, 𝐼 , t, 𝑐𝑓 (v1, v2))
Lemma 8. Every thread executes their local ticks in isolation, i.e., when a thread executes its local

tick, it cannot modify the variables of any other thread and it cannot observe the modifications of any
other thread.

Proof. Recall from Section 3.2 that 𝐸 [G] stores all the output, shared, and private variables of
the program, while 𝐸 [t] stores the copies of the shared variables of thread t. The requirement for a
private variable not to appear in the body of more than one thread can be ensured via static type
checking. Recall that threads always create copies of shared variables at the start of their local tick
via the copy kernel construct and the Copy semantic function (Section 3.3.3).

Let t be a thread that writes value v to variable var during its local tick. This is only possible via
the (assign-private) and (assign-shared) rules:
Private variable: In the (assign-private) rule, v is assigned directly to the private variable, i.e.,

𝐸 [G] [var]. Static type checking ensures that no other thread can also write to variable var .
Shared variable: In the (assign-shared) rule, v is only assigned to the thread’s copy of the shared

variable, i.e., 𝐸 [t] [var]. It is not possible to write to another thread’s copy.
Let t ′ be a thread that reads value v ′ from variable var ′ during its local tick. This is only possible

via the (status), (assign-shared), (assign-private), (if-then), (if-else), (loop-then), and (loop-else)
rules, which rely on the GetVal semantic function (Section 3.3.2). The value that GetVal returns
depends on whether var ′ is a shared or private variable (see Algorithm 1):
Shared variable: In Algorithm 1, the value is returned from the thread’s copy of the shared

variable, i.e., 𝐸 [t ′] [var ′]. It is not possible to read from another thread’s copy.
Private variable: In Algorithm 1, the value is returned directly from the private variable, i.e.,

𝐸 [G] [var ′], because the Copy semantic function (Section 3.3.3) never makes copies of private
variables.

In conclusion, each thread executes its local tick in isolation because (1) no thread can access the
private variables belonging to other threads, and (2) a thread can only access (read and write) its
own copies of the shared variables. □
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Definition 9. The aggregation of states 𝑆 ′ and 𝑆 ′′ into a single state 𝑆𝐴 is deterministic if there
exists only one possible 𝑆𝐴. Let ⊙ be the binary operator denoting the aggregation of states, then

∀𝑆 ′, 𝑆 ′′, ∃!𝑆𝐴 such that 𝑆𝐴 = 𝑆 ′ ⊙ 𝑆 ′′

Lemma 10. Let t1:f1 and t2:f2 be two ForeC kernel threads that are correct with respect to syntax
and type checking. Let the initial state be 𝑆 = ⟨𝐸,𝐴⟩ and the resulting states be 𝑆 ′ = ⟨𝐸 ′, 𝐴′⟩ and
𝑆 ′′ = ⟨𝐸 ′′, 𝐴′′⟩ such that

⟨𝑆⟩ t1 : f1
𝑘′−−→
𝐼
⟨𝑆 ′ ⟩ t1 : f ′1 and ⟨𝑆⟩ t2 : f2

𝑘′′−−→
𝐼
⟨𝑆 ′′⟩ t2 : f ′′2

The aggregation of states 𝑆𝐴 = 𝑆 ′ ⊙ 𝑆 ′′ is deterministic.

Recall from Section 3.4.10 that the aggregation 𝑆𝐴 = ⟨𝐸𝐴, 𝐴𝐴⟩ is defined as:

𝐸𝐴 = (𝐸 ′ \ (𝐸 ′ ∩ 𝐸)) ∪ (𝐸 ′′ \ (𝐸 ′′ ∩ 𝐸)) ∪ (𝐸 ′ ∩ 𝐸 ′′) and
𝐴𝐴 = (𝐴′ \ (𝐴′ ∩𝐴)) ∪ (𝐴′′ \ (𝐴′′ ∩𝐴)) ∪ (𝐴′ ∩𝐴′′)

Proof. We begin by proving that the aggregation of environments 𝐸 ′ and 𝐸 ′′ is deterministic. The
intersection (𝐸 ′ ∩ 𝐸 ′′) contains all variables that have not changed from 𝐸. The two complements
are the subsets 𝐸1 = (𝐸 ′ \ (𝐸 ′ ∩ 𝐸)) and 𝐸2 = (𝐸 ′′ \ (𝐸 ′′ ∩ 𝐸)) that contain all the variables that
have changed from 𝐸. To prove that the aggregation is deterministic, it is sufficient to prove that
𝐸1 ∩ 𝐸2 = ∅:
Private variables of threads t1 and t2 that have changed are in 𝐸1 [G] and 𝐸2 [G], respectively.

Thanks to Lemma 8 we know that t1 and t2 cannot access the same private variables, thus,
𝐸1 [G] ∩ 𝐸2 [G] = ∅.

Copies of shared variables for threads t1 and t2 belong in 𝐸1 [t1] and 𝐸2 [t2], respectively. Thanks
to Lemma 8 we know that t1 and t2 can only access their own copies of shared variables and
never the copies of other threads, thus, ∀t ∈ 𝑇 : 𝐸1 [t] ∩ 𝐸2 [t] = ∅.

We now prove that the aggregation of preemption statuses 𝐴′ and 𝐴′′ is deterministic. The
intersection (𝐴′ ∩𝐴) contains all preemption statuses that have not changed from 𝐴. The two
complements are the subsets 𝐴1 = (𝐴′ \ (𝐴′ ∩𝐴)) and 𝐴2 = (𝐴′′ \ (𝐴′′ ∩𝐴)) that contain all the
preemption statuses that have changed from 𝐴. To prove that the aggregation is deterministic, it is
sufficient to prove that 𝐴1 ∩𝐴2 = ∅: A thread can only change the preemption status of an abort
identifier by executing a status statement (see the (status) rule). By construction, a unique abort
identifier is passed into every status statement, thus, 𝐴1 ∩𝐴2 = ∅.

In conclusion the aggregation of 𝑆 ′ and 𝑆 ′′ into 𝑆𝐴 is deterministic because only the unions of
disjoint sets are taken. □

Lemma 11. The semantic function Combine(𝐸, t1, t2, t0) is deterministic: there exists only one envi-
ronment that it can return for a given set of inputs.

Proof. Algorithm 3 of the semantic function Combine intializes all its local variables (preVal,𝑇 ,
𝑐𝑓 , v), is side-effect-free, and uses only deterministic instructions. In particular, line 11 in Algorithm 3
is deterministic thanks to Assumption 7 (all combine functions 𝑐𝑓 are deterministic), and because
values are passed into 𝑐𝑓 in a fixed order. Hence, the semantic function Combine is deterministic. □
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Definition 12. The par statement is associative if, in any state 𝑆 , for any thread bodies f𝑎 , f𝑏 ,
and f𝑐 , the following holds:

⟨𝑆⟩ t0 : par(t1 : f𝑎, t2 : par(t3 : f𝑏, t4 : f𝑐 )) 𝑘′−−→
𝐼
⟨𝑆 ′⟩ t0 : par(t1 : f ′𝑎 , t2 : par(t3 : f ′𝑏 , t4 : f ′𝑐 )),

⟨𝑆⟩ t0 : par(t1 : par(t2 : f𝑎, t3 : f𝑏), t4 : f𝑐 ) 𝑘′−−→
𝐼
⟨𝑆 ′⟩ t0 : par(t1 : par(t2 : f ′𝑎 , t3 : f ′𝑏 ), t4 : f ′𝑐 ).

Lemma 13. The par(t1:f1, t2:f2) statement is associative if and only if the combine functions 𝑐𝑓
involved in combining shared variables are also associative.

Proof. The (par-1) and (par-4)–(par-7) rules require the states of threads t1 and t2 to be aggregated
before the shared variables are combined. From Lemma 10, we know that the aggregation is simply
the union of disjunct changes to the states, which does not affect the associativity of the par.

By inspecting the (par-1) and (par-4)–(par-7) rules, the semantic function Combine is only applied
to threads t1 and t2’s copies of shared variables in the aggregated environment 𝐸𝐴. In Algorithm 3,
the combine policy is applied to each copy individually (lines 4–8), and the combine function 𝑐𝑓

is invoked (line 11) if the combine policy allows both copies to be combined. Because the copies
are passed to 𝑐𝑓 in the same textual order that their threads appear in the par statement, the
par statement is associative if and only if 𝑐𝑓 is associative. □

Definition 14. The par statement is commutative if, in any state 𝑆 , for any thread bodies f𝑎 and
f𝑏 , the following holds:

⟨𝑆⟩ t0 : par(t1 : f𝑎, t2 : f𝑏) 𝑘′−−→
𝐼
⟨𝑆 ′⟩ t0 : par(t1 : f ′𝑎 , t2 : f ′𝑏 ),

⟨𝑆⟩ t0 : par(t2 : f𝑏, t1 : f𝑎) 𝑘′−−→
𝐼
⟨𝑆 ′⟩ t0 : par(t2 : f ′𝑏 , t1 : f ′𝑎 ).

Lemma 15. The par(t1:f1, t2:f2) statement is commutative if and only if the combine functions 𝑐𝑓
involved in combining shared variables are also commutative.

Proof. Similar to the proof of associativity (Lemma 13), we know that the aggregation of thread
states is simply the union of disjunct changes, which does not affect the commutativity of the par.
In Algorithm 3 for the semantic function Combine, the combine function 𝑐𝑓 is invoked (line 11)
with both copies passed in the same textual order as their threads in the par statement. Hence, the
par statement is commutative if and only if 𝑐𝑓 is commutative. □

A.3 Determinism of ForeC Kernel Programs
Equipped with the proof that shared variables are always combined deterministically (Lemma 11),
we are ready to prove that ForeC kernel programs are deterministic.

Definition 16. A program t : f is deterministic if, in any state 𝑆 , for any input configuration 𝐼 ,
there exists at most one transition such that:

∀𝑆, 𝐼 : if ⟨𝑆⟩ t : f
𝑘′−−→
𝐼
⟨𝑆 ′ ⟩ t : f ′ and ⟨𝑆⟩ t : f

𝑘′′−−→
𝐼
⟨𝑆 ′′⟩ t : f ′′

then 𝑆 ′ = 𝑆 ′′, f ′ = f ′′, 𝑘 ′ = 𝑘 ′′

Theorem 17. Let Assumption 7 be satisfied and let t : f be a ForeC kernel program that is correct
with respect to syntax and type checking. Then, any such t : f is deterministic.

Proof. The proof can be shown by structural induction on t : f.
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Base cases: The (nop), (copy), (pause), and (status) rules imply that the following kernel state-
ments have at most one transition:

⟨𝑆⟩ t : nop 0−−→
𝐼
⟨𝑆⟩ t :

⟨𝑆⟩ t : copy 0−−→
𝐼
⟨𝑆 ′⟩ t : nop

⟨𝑆⟩ t : pause 1−−→
𝐼
⟨𝑆⟩ t : copy

⟨𝑆⟩ t : status(𝑎, 𝑒𝑥𝑝) 0−−→
𝐼
⟨𝑆 ′⟩ t : nop

The assignment, if–else, and while kernel constructs are each described by a pair of rewrite rules
with complementary premises that do not depend on other transitions: respectively (assign-shared)
and (assign-private), (if-then) and (if-else), and (loop-then) and (loop-else). This implies that these
kernel constructs have at most one transition:

if var ∈ GetShared(t) then ⟨𝑆⟩ t : var = 𝑒𝑥𝑝
0−−→
𝐼
⟨𝑆 ′⟩ t :

otherwise ⟨𝑆⟩ t : var = 𝑒𝑥𝑝
0−−→
𝐼
⟨𝑆 ′′⟩ t :

if Eval(𝑆.𝐸, 𝐼 , t, 𝑒𝑥𝑝) ≠ 0 then ⟨𝑆⟩ t : if (𝑒𝑥𝑝) f1 else f2
⊥−−→
𝐼
⟨𝑆⟩ t : f1

otherwise ⟨𝑆⟩ t : if (𝑒𝑥𝑝) f1 else f2
⊥−−→
𝐼
⟨𝑆⟩ t : f2

if Eval(𝑆.𝐸, 𝐼 , t, 𝑒𝑥𝑝) ≠ 0 then ⟨𝑆⟩ t : while (𝑒𝑥𝑝) f
⊥−−→
𝐼
⟨𝑆⟩ t : f; while (𝑒𝑥𝑝) f

otherwise ⟨𝑆⟩ t : while (𝑒𝑥𝑝) f
0−−→
𝐼
⟨𝑆⟩ t :

Among the rewrite rules considered in the base case, only the (copy), (status), (assign-shared), and
(assign-private) rules make direct changes to the state 𝑆 . The (copy) rule changes only the store
𝐸 [t] of the executing thread t. This can be verified by inspecting Algorithm 2 of the semantic
function Copy. By construction, each status statement has a unique abort identifier 𝑎. Thus, the
(status) rule never changes the status of an abort identifier more than once. The (assign-shared)
rule changes only the store 𝐸 [t] of the executing thread t. The (assign-private) rule changes only
the private variables in 𝐸 [G] of the executing thread.

Induction step: The sequence operator (;), abort, and par kernel statements allow the com-
position of kernel constructs. For some t1 : f1 and t2 : f2 that are arbitrary compositions of kernel
constructs, assume the induction hypotheses that they each have at most one transition:

If ∃𝑆 ′1, 𝑆 ′′1 , f ′1 , f ′′1 , 𝑘 ′1, 𝑘
′′
1 such that ⟨𝑆1⟩ t1 : f1

𝑘′1−−→
𝐼
⟨𝑆 ′1⟩ t1 : f ′1 (H3)

and ⟨𝑆1⟩ t1 : f1
𝑘′′1−−→
𝐼
⟨𝑆 ′′1 ⟩ t1 : f ′′1

then 𝑆 ′1 = 𝑆 ′′1 , f ′1 = f ′′1 , 𝑘 ′1 = 𝑘 ′′1

If ∃𝑆 ′2, 𝑆 ′′2 , f ′2 , f ′′2 , 𝑘 ′2, 𝑘
′′
2 such that ⟨𝑆2⟩ t2 : f2

𝑘′2−−→
𝐼
⟨𝑆 ′2⟩ t2 : f ′2 (H4)

and ⟨𝑆2⟩ t2 : f2
𝑘′′2−−→
𝐼
⟨𝑆 ′′2 ⟩ t2 : f ′′2

then 𝑆 ′2 = 𝑆 ′′2 , f ′2 = f ′′2 , 𝑘 ′2 = 𝑘 ′′2
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Next, we show that the sequence operator (;), and the abort and par kernel statements have at
most one transition.

(1) Consider the fragment t1 : f1; f2. By induction hypothesis (H3), there is only one possible
transition for the fragment t1 : f1, which is either:

⟨𝑆1⟩ t1 : f1
𝑘1=0−−−→
𝐼
⟨𝑆 ′1⟩ t1 :

or:

⟨𝑆1⟩ t1 : f1
𝑘1∈{1,⊥}−−−−−−−→

𝐼
⟨𝑆 ′1⟩ t1 : f ′1

The table below shows that at most one sequence rule can be applied depending on the
completion code 𝑘1:

𝒌1

0 1 ⊥

(seq-right) (seq-left)
It follows that the sequence operator “;” is deterministic.

(2) Consider the abort kernel statement in the fragment t1 : weak? abort(𝑎1, f1). By induction
hypothesis (H3), there is only one possible transition for the program fragment t1 : f1, which
is either:

⟨𝑆1⟩ t1 : f1
𝑘1=0−−−→
𝐼
⟨𝑆 ′1⟩ t1 :

or:

⟨𝑆1⟩ t1 : f1
𝑘1∈{1,⊥}−−−−−−−→

𝐼
⟨𝑆 ′1⟩ t1 : f ′1

The table below shows that at most one abort rule can be applied depending on the comple-
tion code 𝑘1 and the preemption status 𝐴[𝑎1]:

Strong abort, 𝒌1 Weak abort, 𝒌1
0 1 ⊥ 0 1 ⊥

𝑨[𝒂1]
= 0 (abort-2) (abort-1) (abort-2) (abort-1)
≠ 0 (abort-6) (abort-3) (abort-5) (abort-4)

It follows that the abort kernel statement is deterministic.
(3) Consider the par kernel statement in the fragment t : par(t1 : f1, t2 : f2). By induction

hypotheses (H3) and (H4), there is only one possible transition for the program fragment
t1 : f1, which is either:

⟨𝑆1⟩ t1 : f1
𝑘1=0−−−→
𝐼
⟨𝑆 ′1⟩ t1 :

or:

⟨𝑆1⟩ t1 : f1
𝑘1∈{1,⊥}−−−−−−−→

𝐼
⟨𝑆 ′1⟩ t1 : f ′1

and there is only one possible transition for the program fragment t2 : f2, which is either:

⟨𝑆2⟩ t2 : f2
𝑘2=0−−−→
𝐼
⟨𝑆 ′2⟩ t2 :
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or:

⟨𝑆2⟩ t2 : f2
𝑘2∈{1,⊥}−−−−−−−→

𝐼
⟨𝑆 ′2⟩ t2 : f ′2

The table below shows that at most one par rule can applied depending on the completion
codes 𝑘1 and 𝑘2:

𝒌2

0 1 ⊥

0 (par-5) (par-6)
(par-2)

𝒌1 1 (par-7) (par-4)
⊥ (par-3) (par-1)

It follows that the par kernel statement is deterministic.
In conclusion, all ForeC kernel programs that are correct with respect to syntax and type checking

are deterministic. □
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1 shared i n t s =0 combine a l l with p l u s ;
2 void main ( void ) {
3 par ( { pause ; s = 3 ; } , { s = 4 ; } ) ;
4 }

(a) ForeC program.

1 i n t s = 0 ;
2 void main ( void ) {
3 copy ;
4 par ( t 1 : { copy ; pause ; s = 3 ; } ,
5 t 2 : { copy ; s = 4 ; } ) ;
6 }

(b) Translated kernel program.

(c) Control-flow graph.

Fig. 25. Illustrative example one.

B ILLUSTRATIONS
This section illustrates how ForeC programs execute under the formal semantics presented in
Section 3.4. Two example ForeC programs are used, and their executions are given as a sequence of
rewrites.

B.1 Example One
The first program illustrates parallel execution using the par statement. Figure 25a presents the
ForeC program, and Figure 25c illustrates the program’s control-flow. Recall that an upright triangle
represents the forking of threads while an inverted triangle represents the joining of threads. The
corresponding kernel program is shown in Figure 25b.

In the program’s first tick, the parent thread main begins its local tick by forking two child
threads, t1 and t2. The child threads start their local ticks by copying the shared variable s. Thread
t1 pauses while thread t2 assigns 4 to its local copy of s and terminates. The first tick ends and
the shared variable s is resynchronized. Using the combine policy all, the new value (or the
resynchronized value) of s becomes plus(0, 4) = 4. In the second tick, only thread t1 is active and
it starts its local tick by creating a copy of s, assigning 3 to its copy of s, and then terminating.
Now that both child threads have terminated and joined, the par combines its children’s copies
of s before also terminating. Because only thread t1 was active in the second tick, its copy of s is
assigned directly to its parent thread main. Thread main starts its local tick which results in the
program terminating. The second tick ends and the shared variable s is resynchronized with the
value 3 because only thread main has a copy of s.

Before we apply the rewrite rules to the program, it is structurally translated into the kernel
program of Figure 25b (see the start of Section 3). The semantic functions GetShared(main),
GetShared(t1), GetShared(t2) and GetShared(G) all return {s}. The set of preemption sta-
tuses 𝐴 is initially ∅. The program’s environment 𝐸 and its derivatives are defined in Figure 26.

Step 1: Start the tick by applying the (seq-right) and (copy) rules.
(copy)

⟨𝐸,𝐴⟩ main:copy 0−−→
𝐼
⟨𝐸1, 𝐴⟩ main:

(seq-right) ⟨𝐸,𝐴⟩ main:copy;par(t1:{copy;
pause;s=3;},t2:{copy;s=4;})

⊥−−→
𝐼

⟨𝐸1, 𝐴⟩ main:par(t1:{copy;
pause;s=3;},t2:{copy;s=4;})
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𝐸 = {G → {𝑠 → (0, pre)}}
𝐸1 = {G → {𝑠 → (0, pre)},𝑚𝑎𝑖𝑛 → {𝑠 → (0, pre)}}
𝐸2 = {G → {𝑠 → (0, pre)},𝑚𝑎𝑖𝑛 → {𝑠 → (0, pre)}, 𝑡1→ {𝑠 → (0, pre)}}
𝐸3 = {G → {𝑠 → (0, pre)},𝑚𝑎𝑖𝑛 → {𝑠 → (0, pre)}, 𝑡2→ {𝑠 → (0, pre)}}
𝐸4 = {G → {𝑠 → (0, pre)},𝑚𝑎𝑖𝑛 → {𝑠 → (0, pre)}, 𝑡1→ {𝑠 → (0, pre)},

𝑡2→ {𝑠 → (0, pre)}}
𝐸5 = {G → {𝑠 → (0, pre)},𝑚𝑎𝑖𝑛 → {𝑠 → (0, pre)}, 𝑡1→ {𝑠 → (0, pre)},

𝑡2→ {𝑠 → (4, mod)}}
𝐸6 = {G → {𝑠 → (0, pre)},𝑚𝑎𝑖𝑛 → {𝑠 → (4, cmb)}}
𝐸7 = {G → {𝑠 → (4, pre)}}
𝐸8 = {G → {𝑠 → (4, pre)}, 𝑡1→ {𝑠 → (4, pre)}}
𝐸9 = {G → {𝑠 → (4, pre)}, 𝑡1→ {𝑠 → (3, mod)}}
𝐸10 = {G → {𝑠 → (4, pre)},𝑚𝑎𝑖𝑛 → {𝑠 → (3, cmb)}}
𝐸11 = {G → {𝑠 → (3, pre)}}

Fig. 26. Initial program environment and its derivatives.

Step 2: Both threads of the par execute sequential statements, both starting with a copy statement.
Apply the (par-1) rule. Additionally, apply the (seq-right) and (copy) rules to both threads. The
environments of both threads, 𝐸2 and 𝐸3, are aggregated into 𝐸4.

(copy)
⟨𝐸1, 𝐴⟩ t1:copy 0−−→

𝐼
⟨𝐸2, 𝐴⟩ t1:

(seq-right) ⟨𝐸1, 𝐴⟩ t1:copy;
pause;s=3

⊥−−→
𝐼

⟨𝐸2, 𝐴⟩ t1:
pause;s=3

(copy) ⟨𝐸1, 𝐴⟩ t2:
copy

0−−→
𝐼
⟨𝐸3, 𝐴⟩ t2:

(seq-right) ⟨𝐸1, 𝐴⟩ t2:
copy;s=4;

⊥−−→
𝐼

⟨𝐸3, 𝐴⟩
t2:s=4;

(par-1) ⟨𝐸1, 𝐴⟩ main:par(t1:{copy;
pause;s=3;},t2:{copy;s=4;})

⊥−−→
𝐼

⟨𝐸4, 𝐴⟩ main:par(t1:{pause;
s=3;},t2:{s=4;})

Step 3: Apply the (tick) and (par-7) rules. Additionally, apply the (seq-left) and (pause) rules
to the first thread and the (assign-shared) rule to the second thread. The program completes
the tick. Note that when the (par-7) rule is applied, the aggregation of environments 𝐸4 and 𝐸5 is
simply 𝐸5, whose stores for threads t1 and t2 are combined into thread main’s store, resulting in
𝐸6. When the (tick) rule is applied, 𝐸6 is resynchronized to be 𝐸7.

(pause) ⟨𝐸4, 𝐴⟩ t1:
pause

1−−→
𝐼

⟨𝐸4, 𝐴⟩ t1:
copy

(seq-left) ⟨𝐸4, 𝐴⟩ t1:
pause;s=3

1−−→
𝐼

⟨𝐸4, 𝐴⟩ t1:
copy;s=3

𝑠 ∈ {𝑠}(assign-shared) ⟨𝐸4, 𝐴⟩ t2:
s=4;

0−−→
𝐼
⟨𝐸5, 𝐴⟩ t2:

(par-7) ⟨𝐸4, 𝐴⟩ main:par(t1:{pause;
s=3;},t2:{s=4;})

1−−→
𝐼

⟨𝐸6, 𝐴⟩ main:par(t1:{copy;
s=3;},t2:nop)

(tick) ⟨𝐸4, 𝐴⟩ main:par(t1:{pause;
s=3;},t2:{s=4;})

1−−→
𝐼

⟨𝐸7, 𝐴⟩ main:par(t1:{copy;
s=3;},t2:nop)

Step 4: Start the next tick by applying the (par-3) rule. Additionally, apply the (seq-right) and
(copy) rules to the first thread and the (nop) rule to the second thread.
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(copy)
⟨𝐸7, 𝐴⟩ t1:copy 0−−→

𝐼
⟨𝐸8, 𝐴⟩ t1:

(seq-right) ⟨𝐸7, 𝐴⟩ t1:
copy;s=3

⊥−−→
𝐼
⟨𝐸8, 𝐴⟩ t1:s=3

(nop) ⟨𝐸7, 𝐴⟩ t2:
nop

0−−→
𝐼
⟨𝐸7, 𝐴⟩ t2:

(par-3) ⟨𝐸7, 𝐴⟩ main:par(t1:{copy;
s=3;},t2:nop)

⊥−−→
𝐼
⟨𝐸8, 𝐴⟩ main:par(t1:{s=3;},t2:nop)

Step 5: Apply the (par-5) rule. Additionally, apply the (assign-shared) rule to the first thread and
the (nop) rule to the second thread. Note that when the (par-5) rule is applied, the aggregation of
environments 𝐸8 and 𝐸9 is simply 𝐸9, whose stores for t1 and t2 are combined into main’s store,
which results in 𝐸10.

𝑠 ∈ {𝑠}(assign-shared) ⟨𝐸8, 𝐴⟩ t1:
s=3

0−−→
𝐼
⟨𝐸9, 𝐴⟩ t1:

(nop) ⟨𝐸8, 𝐴⟩ t2:
nop

0−−→
𝐼
⟨𝐸8, 𝐴⟩ t2:

(par-5)
⟨𝐸8, 𝐴⟩ main:par(t1:{s=3;},t2:nop) ⊥−−→

𝐼
⟨𝐸10, 𝐴⟩ main:copy

Step 6: Apply the (tick) and (copy) rules. The environment 𝐸10 is resynchronized to be 𝐸11. The
tick ends and the program terminates.

(copy)
⟨𝐸10, 𝐴⟩ main:copy 0−−→

𝐼
⟨𝐸10, 𝐴⟩ main:

(tick)
⟨𝐸10, 𝐴⟩ main:copy 0−−→

𝐼
⟨𝐸11, 𝐴⟩ main:
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1 i n t x = 1 ;
2 void main ( void ) {
3 weak abort {
4 x ++ ; pause ;
5 } when immediate ( x ==1) ;
6 }

(a) ForeC program.

1 i n t x = 1 ;
2 void main ( void ) {
3 s t a t u s ( a1 , x ==1) ;
4 weak abort ( a1 , { x ++ ; pause ; } ) ;
5 }

(b) Translated kernel program.

(c) Control-flow graph.

Fig. 27. Illustrative example two.

𝐸 = {G → {𝑥 → (1, pvt)}} 𝐴 = {𝑎1}
𝐸1 = {G → {𝑥 → (2, pvt)}} 𝐴1 = {𝑎1→ 1}

𝐴2 = {𝑎1→ 0}

Fig. 28. Initial program state and its derivatives.

B.2 Example Two
The second program illustrates the preemption by using an immediate weak abort statement.
Figure 27a presents the ForeC program and Figure 27c illustrates the program’s control-flow. Recall
that a pair of decorated diamonds represents the scope of an abort body. The corresponding kernel
program is shown in Figure 27b.

In the program’s first tick, thread main reaches the immediate and weak abort and immediately
evaluates the preemption condition (x==1). The condition evaluates to true so the preemption
is triggered. Because the abort is weak, the preemption is taken only when the execution of the
encapsulated thread reaches the pause, hence, after variable x has been incremented. The abort
terminates and, as a result, thread main terminates. At this point, the first tick ends.

Before we apply the rewrite rules to the program, it is structurally translated into the kernel
program of Figure 27b (see the start of Section 3). No copy kernel statement is inserted into the
program because no shared variables are used. The semantic functions GetShared(main) and
GetShared(G) all return ∅. The program’s environment 𝐸, preemption statuses 𝐴, and their
derivatives are defined in Figure 28.

Step 1: Start the tick by applying the (seq-right) and (status) rules. Note that the abort’s
preemption is triggered because the condition x==1 evaluates to 1.

(status)
⟨𝐸,𝐴⟩ main: status(a1,x==1)

0−−→
𝐼
⟨𝐸,𝐴1⟩ main:

(seq-right) ⟨𝐸,𝐴⟩ main:status(a1,x==1);
weak abort(a1,{x++;pause;})

⊥−−→
𝐼

⟨𝐸,𝐴1⟩ main:weak abort
(a1,{x++;pause;})

Step 2: Apply the (abort-4), (seq-right), and (assign-private) rules.
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𝑥 ∉ ∅(assign-private)
⟨𝐸,𝐴1⟩ main:x++ 0−−→

𝐼
⟨𝐸1, 𝐴1⟩ main:

(seq-right)
⟨𝐸,𝐴1⟩ main:x++;pause ⊥−−→

𝐼
⟨𝐸1, 𝐴1⟩ main:pause

(abort-4) (𝐴1 [𝑎1] ≠ 0)⟨𝐸,𝐴1⟩ main:weak abort
(a1,{x++;pause;})

⊥−−→
𝐼

⟨𝐸1, 𝐴1⟩ main:weak abort
(a1,{pause;})

Step 3: Apply the (abort-5) and (pause) rules. Note that the preemption is taken because the
abort’s body has reached a pause.

(pause)
⟨𝐸1, 𝐴1⟩ main:pause 1−−→

𝐼
⟨𝐸1, 𝐴1⟩ main:copy

(abort-5) (𝐴1 [𝑎1] ≠ 0)
⟨𝐸1, 𝐴1⟩ main:weak abort(a1,{pause;})

⊥−−→
𝐼
⟨𝐸1, 𝐴1⟩ main:copy

Step 4: Apply the (tick) and (copy) rules. The tick ends, the preemption statuses are reevaluated
to 𝐴2, and the program terminates.

(copy)
⟨𝐸1, 𝐴1⟩ main:copy 0−−→

𝐼
⟨𝐸1, 𝐴1⟩ main:

(tick)
⟨𝐸1, 𝐴1⟩ main:copy 0−−→

𝐼
⟨𝐸1, 𝐴2⟩ main:
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1 void main ( void ) {
2 shared i n t x=3 combine a l l with p l u s ;
3 i n t y = 5 ;
4 f ( x , y ) ;
5 g (&x ) ;
6 }
7
8 void f ( i n t d , shared i n t e ) {
9 . . .

10 }
11 void g ( shared i n t ∗ p ) {
12 // p points to the shared variable x declared on line 2.
13 . . .
14 }

Fig. 29. Example of passing a shared variable by value and by reference.

C SHARED VARIABLES
This appendix describes how shared variables are passed by value or by reference into functions,
and how the combine policies and combine functions work together to combine more than two
copies of a shared variable. We compare the behaviors of the combine policies, all, new, and
mod, using an illustrative example. We also provide additional examples of combine functions for
primitive C data types and for programmer-specified data structures.

C.1 Passing Shared Variables by Value and by Reference
Following the C convention, a function argument in ForeC can be passed by value or by reference.
An argument passed by value can either be a shared or a private variable. For example, in Figure 29,
line 4 makes a call to function f with the arguments x (a shared variable) and y (a private variable).
The definition of function f (line 8) has parameters d (a private variable) and e (a shared variable)
that are initialized with the values 3 (from x) and 5 (from y), respectively.

When passed by reference, the address of the function’s argument is copied into the function’s
parameter. Thus, changes made to the dereferenced parameter are made to the argument. The
following examples demonstrate how the shared type qualifier can be used in the declaration of
references:
int* p declares an ordinary C pointer to an int variable. This means that pointer p and the

referenced int variable can only be accessed by at most one thread.
shared int* p declares a pointer p, which can only be accessed by at most one thread, to a shared

int variable. In Figure 29, line 11, the parameter of function g declares pointer p to a shared
int variable. On line 5, the “&” unary operator is used to pass shared variable x into g by
reference.

shared int shared* p declares a shared pointer p, which can be accessed by multiple threads,
to a shared int variable.

int shared* p shorthand of “shared int shared* p” when only one thread can write to the
referenced int variable.

C.2 Combining More Than Two Copies
The ForeC program shown in Figure 30a is used to explain how multiple copies of a shared variable
are combined. The program’s control-flow graph is shown in Figure 30b. The program has a shared

ACM Trans. Program. Lang. Syst., Vol. 45, No. 2, Article 11. Publication date: June 2023.



11:72 Eugene Yip, Alain Girault, Partha S. Roop, and Morteza Biglari-Abhari

1 shared i n t s =3 combine a l l with p l u s ;
2 void main ( void ) {
3 i n t m= s ;
4 par ( tA ( ) , tB ( ) ) ;
5 }
6
7 void tA ( void ) {
8 s = 1 ;
9 par ( tC ( ) , tD ( ) ) ;

10 }
11 void tC ( void ) { i n t c= s ; pause ; }
12 void tD ( void ) { s = 2 ; pause ; }
13
14 void tB ( void ) {
15 par ( tE ( ) , t F ( ) ) ;
16 }
17 void tE ( void ) { i n t e= s ; pause ; }
18 void t F ( void ) { s = 5 ; pause ; }
19
20 i n t p l u s ( i n t th1 , i n t th2 ) {
21 return ( th1 + th2 ) ;
22 }

(a) ForeC program. (b) Control-flow graph.

Fig. 30. Example ForeC program.

variable called s that uses the combine function plus. The initial value of s is 3 for the program’s
first tick. Figure 31a shows the copies of s at the end of the first tick, organized by the thread
genealogy. Each node represents a thread and the current value of its local copy, e.g., main: 3
means that the main thread has a local copy of s with the value 3. Copies that were assigned a value
during the tick have the • symbol, e.g., tA: 1• means that thread tA’s copy has been assigned the
value 1. Arrows are drawn from the child threads to their parents to show the thread genealogy.
Threads tC and tD create their copies from tA’s copy (see Section 2.5). Hence, the value of thread
tC’s copy is 1. Threads tE and tF create their copies from tB’s copy.

The formal semantics of ForeC (Section 3) defines how more than two copies of a shared variable
are combined. The copies from sibling threads (i.e., threads forked by the same par statement) are
combined and the resulting value is assigned to their parent thread. Then, the copies of the parent
and its sibling are combined together and assigned to their parent. This continues until the main
thread is reached. Figure 31b illustrates the combine policy all, where all the copies are combined.
The final combined value is 11 and it is assigned to shared variable s to complete the global tick.

The combine policy new only takes into account the copies for which the value has changed
since the previous global tick. For the copies shown in Figure 31a, thread main, tB, and tE’s copies
of s would be ignored. Although thread tC did not assign any value to its copy, the value was taken
from thread tA who had assigned the new value 1 to its copy. Thus, thread tC’s copy does have a
new value. Figure 31c illustrates the combine policy new. Note that thread tF’s copy is assigned
directly to tB because its sibling’s copy is ignored. The final combined value is 8.

For the combine policy mod, the copies that have not been assigned a value during the tick are
ignored. For the copies shown in Figure 31a, thread main, tB, tC, and tE’s copies of s would be
ignored. Figure 31d illustrates the combine policy mod. The final combined value is 7.
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The combine class and the packages

combinet, combnat and combcite∗

Peter Wilson, Herries Press†

Maintainer: Will Robertson
will dot robertson at latex-project dot org

2010/07/10

Abstract

The combine class can be used to assemble a group of individual LATEX
documents into a single document, such as required for a conference pro-
ceedings. Typically the documents are all of the same class, but with some
limitations on ordering may be of different classes (e.g., several articles with
one letter). The class requires the keyval package.

The accompanying combinet and combnat packages respectively let the
titles of imported documents be added to the main ToC, and enable the
combine class and the natbib package to cooperate. The combcite package
enables the cite package to cooperate.
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(b) Policy all.
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(c) Policy new.
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(d) Policy mod.

Fig. 31. Effects of the combine policies.

C.3 Combine Policies Illustrated
This section illustrates the behavior of the combine policies all, new, and mod over several ticks
by using the example of Figure 32. Figure 32a is a ForeC program that outputs the number of
times that button1 and button2 were pressed in each tick. The program and its interface with
the environment is illustrated in Figure 32b. On line 6 in Figure 32a, threads t1 and t2 are forked
to check which buttons have been pressed. The results are assigned to the shared variable count.
Line 6 also forks thread t3 to read the value of count and to assign it to display output. Hence,
three copies of count will be created in each tick. The copies of count are combined with the
function plus (line 18) with the combine policy mod. Figure 33a provides possible input values for
five ticks of the program. For example, only button1 is pressed in tick 2. Figure 33b shows the
value of the shared variable count and the value of each thread’s local copy of count. The copies
that were assigned a value during the tick have the • symbol. For tick 1, count is equal to 0; its
initial value. From tick 2 onwards, the value of count corresponds to the number of button presses
in the previous tick, because only threads t1 and t2’s modified copies are combined.

Figure 33c illustrates the behavior of the combine policy new over several ticks. The values of
threads t1, t2, and t3’s local copies are ignored when they have the same value as count. Figure 33d
illustrates the behavior of the combine policy all over several ticks. In this case, threads t1, t2, and
t3’s local copies are always used to compute the value of count. The value of count corresponds
to the running total of button presses, i.e., in tick 6 a total of four button presses have occurred in
previous ticks.
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1 input i n t but ton1 , b u t t o n 2 ;
2 output i n t d i s p l a y = 0 ;
3 shared i n t count =0 combine mod with p l u s ;
4
5 void main ( void ) {
6 par ( par ( t 1 ( ) , t 2 ( ) ) , t 3 ( ) ) ;
7 }
8 void t 1 ( void ) {
9 while ( 1 ) { count = ( b u t t o n 1 ==1) ; pause ; }

10 }
11 void t 2 ( void ) {
12 while ( 1 ) { count = ( b u t t o n 2 ==1) ; pause ; }
13 }
14 void t 3 ( void ) {
15 while ( 1 ) { d i s p l a y = count ; pause ; }
16 }
17
18 i n t p l u s ( i n t th1 , i n t th2 ) { return ( th1 + th2 ) ; }

(a) ForeC program of the button counter.

Button
(button1)

Button
(button2)

Display
(display)

count

(b) Button counter.

Fig. 32. Example of counting the number of button inputs.
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(b) Bu�on counter.

Fig. 32. Example of counting the number of bu�on inputs.

Tick
1 2 3 4 5 6

button1 0 1 1 1 0 · · ·
button2 0 0 1 0 0 · · ·

(a) Possible input values.

Tick
count 1 2 3 4 5 6
t1’s copy 0• 1• 1• 1• 0• · · ·
t2’s copy 0• 0• 1• 0• 0• · · ·
t3’s copy 0 0 1 2 1 · · ·
count 0 0 1 2 1 0

(b) Combine policy mod.

Tick
count 1 2 3 4 5 6
t1’s copy 0• 1• 1• 1• 0• · · ·
t2’s copy 0• 0• 1• 0• 0• · · ·
t3’s copy 0 0 1 1 0 · · ·
count 0 0 1 1 0 0

(c) Combine policy new.

Tick
count 1 2 3 4 5 6
t1’s copy 0• 1• 1• 1• 0• · · ·
t2’s copy 0• 0• 1• 0• 0• · · ·
t3’s copy 0 0 1 3 4 · · ·
count 0 0 1 2 1 0

(d) Combine policy all.

Fig. 33. The value of count under each combine policy.

ACM Trans. Program. Lang. Syst., Vol. 0, No. 0, Article 1. Publication date: 2022.

(a) Possible input values.

1:74 Eugene Yip, Alain Girault, Partha S. Roop, and Morteza Biglari-Abhari

1 input i n t but ton1 , b u t t o n 2 ;
2 output i n t d i s p l a y = 0 ;
3 shared i n t count =0 combine mod with p l u s ;
4
5 void main ( void ) {
6 par ( par ( t 1 ( ) , t 2 ( ) ) , t 3 ( ) ) ;
7 }
8 void t 1 ( void ) {
9 while ( 1 ) { count = ( b u t t o n 1 ==1) ; pause ; }

10 }
11 void t 2 ( void ) {
12 while ( 1 ) { count = ( b u t t o n 2 ==1) ; pause ; }
13 }
14 void t 3 ( void ) {
15 while ( 1 ) { d i s p l a y = count ; pause ; }
16 }
17
18 i n t p l u s ( i n t th1 , i n t th2 ) { return ( th1 + th2 ) ; }

(a) ForeC program of the bu�on counter.

(b) Bu�on counter.

Fig. 32. Example of counting the number of bu�on inputs.

Tick
1 2 3 4 5 6

button1 0 1 1 1 0 · · ·
button2 0 0 1 0 0 · · ·

(a) Possible input values.

Tick
count 1 2 3 4 5 6
t1’s copy 0• 1• 1• 1• 0• · · ·
t2’s copy 0• 0• 1• 0• 0• · · ·
t3’s copy 0 0 1 2 1 · · ·
count 0 0 1 2 1 0

(b) Combine policy mod.

Tick
count 1 2 3 4 5 6
t1’s copy 0• 1• 1• 1• 0• · · ·
t2’s copy 0• 0• 1• 0• 0• · · ·
t3’s copy 0 0 1 1 0 · · ·
count 0 0 1 1 0 0

(c) Combine policy new.

Tick
count 1 2 3 4 5 6
t1’s copy 0• 1• 1• 1• 0• · · ·
t2’s copy 0• 0• 1• 0• 0• · · ·
t3’s copy 0 0 1 3 4 · · ·
count 0 0 1 2 1 0

(d) Combine policy all.

Fig. 33. The value of count under each combine policy.

ACM Trans. Program. Lang. Syst., Vol. 0, No. 0, Article 1. Publication date: 2022.

(b) Combine policy mod.

1:74 Eugene Yip, Alain Girault, Partha S. Roop, and Morteza Biglari-Abhari

1 input i n t but ton1 , b u t t o n 2 ;
2 output i n t d i s p l a y = 0 ;
3 shared i n t count =0 combine mod with p l u s ;
4
5 void main ( void ) {
6 par ( par ( t 1 ( ) , t 2 ( ) ) , t 3 ( ) ) ;
7 }
8 void t 1 ( void ) {
9 while ( 1 ) { count = ( b u t t o n 1 ==1) ; pause ; }

10 }
11 void t 2 ( void ) {
12 while ( 1 ) { count = ( b u t t o n 2 ==1) ; pause ; }
13 }
14 void t 3 ( void ) {
15 while ( 1 ) { d i s p l a y = count ; pause ; }
16 }
17
18 i n t p l u s ( i n t th1 , i n t th2 ) { return ( th1 + th2 ) ; }

(a) ForeC program of the bu�on counter.

(b) Bu�on counter.

Fig. 32. Example of counting the number of bu�on inputs.

Tick
1 2 3 4 5 6

button1 0 1 1 1 0 · · ·
button2 0 0 1 0 0 · · ·

(a) Possible input values.

Tick
count 1 2 3 4 5 6
t1’s copy 0• 1• 1• 1• 0• · · ·
t2’s copy 0• 0• 1• 0• 0• · · ·
t3’s copy 0 0 1 2 1 · · ·
count 0 0 1 2 1 0

(b) Combine policy mod.

Tick
count 1 2 3 4 5 6
t1’s copy 0• 1• 1• 1• 0• · · ·
t2’s copy 0• 0• 1• 0• 0• · · ·
t3’s copy 0 0 1 1 0 · · ·
count 0 0 1 1 0 0

(c) Combine policy new.

Tick
count 1 2 3 4 5 6
t1’s copy 0• 1• 1• 1• 0• · · ·
t2’s copy 0• 0• 1• 0• 0• · · ·
t3’s copy 0 0 1 3 4 · · ·
count 0 0 1 2 1 0

(d) Combine policy all.

Fig. 33. The value of count under each combine policy.

ACM Trans. Program. Lang. Syst., Vol. 0, No. 0, Article 1. Publication date: 2022.

(c) Combine policy new.

1:74 Eugene Yip, Alain Girault, Partha S. Roop, and Morteza Biglari-Abhari

1 input i n t but ton1 , b u t t o n 2 ;
2 output i n t d i s p l a y = 0 ;
3 shared i n t count =0 combine mod with p l u s ;
4
5 void main ( void ) {
6 par ( par ( t 1 ( ) , t 2 ( ) ) , t 3 ( ) ) ;
7 }
8 void t 1 ( void ) {
9 while ( 1 ) { count = ( b u t t o n 1 ==1) ; pause ; }

10 }
11 void t 2 ( void ) {
12 while ( 1 ) { count = ( b u t t o n 2 ==1) ; pause ; }
13 }
14 void t 3 ( void ) {
15 while ( 1 ) { d i s p l a y = count ; pause ; }
16 }
17
18 i n t p l u s ( i n t th1 , i n t th2 ) { return ( th1 + th2 ) ; }

(a) ForeC program of the bu�on counter.

(b) Bu�on counter.

Fig. 32. Example of counting the number of bu�on inputs.

Tick
1 2 3 4 5 6

button1 0 1 1 1 0 · · ·
button2 0 0 1 0 0 · · ·

(a) Possible input values.

Tick
count 1 2 3 4 5 6
t1’s copy 0• 1• 1• 1• 0• · · ·
t2’s copy 0• 0• 1• 0• 0• · · ·
t3’s copy 0 0 1 2 1 · · ·
count 0 0 1 2 1 0

(b) Combine policy mod.

Tick
count 1 2 3 4 5 6
t1’s copy 0• 1• 1• 1• 0• · · ·
t2’s copy 0• 0• 1• 0• 0• · · ·
t3’s copy 0 0 1 1 0 · · ·
count 0 0 1 1 0 0

(c) Combine policy new.

Tick
count 1 2 3 4 5 6
t1’s copy 0• 1• 1• 1• 0• · · ·
t2’s copy 0• 0• 1• 0• 0• · · ·
t3’s copy 0 0 1 3 4 · · ·
count 0 0 1 2 1 0

(d) Combine policy all.

Fig. 33. The value of count under each combine policy.

ACM Trans. Program. Lang. Syst., Vol. 0, No. 0, Article 1. Publication date: 2022.

(d) Combine policy all.

Fig. 33. The value of count under each combine policy.

ACM Trans. Program. Lang. Syst., Vol. 45, No. 2, Article 11. Publication date: June 2023.



Synchronous Deterministic Parallel Programming for Multi-Cores with ForeC 11:75

C.4 Examples of Combine Functions
The simplest combine functions are those based on the associative and commutative binary mathe-
matical operators:
• Arithmetic addition (+) and multiplication (*);
• Logical AND (&&) and OR (||);
• Bitwise AND (&) and OR (|);
• Minimum and maximum using if–else statement.

The combine functions should be associative and commutative so as to make the par statement
associative (Lemma 13) and commutative (Lemma 15), relying only on the nesting of binary par
statements to fork more than two child threads at the same time (e.g., par(par(t1,t2),t3) =
par(t1,par(t2,t3))). The programmer is free to write combine functions based on non-associative
or non-commutative binary operators (e.g., -, /, or %), but will negate the associative or commutative
property, respectively, of the par statement.

Combine functions can also be defined for user-defined data structures. For example, Figure 34a
defines a C-struct called ProdSum that stores the product (prod) and sum (sum) of the numbers
assigned to it. The combine function prodsum multiplies all the values in prod and sums all the
values in sum. An example of its behavior is provided after the function as comments.

For another example, Figure 34b defines a combine function that returns the minimum value
that has been assigned since the start of the program. To achieve this, line 1 of Figure 34b defines a
C-struct called Min that stores the value (val) that a thread assigns in the current tick and tracks the
minimum value (min) that has been assigned since the start of the program. The combine function
(line 3) stores in res.val the minimum value between th1.val and th2.val. Then, res.min stores
the minimum value between itself and res.val.

The behavior of combine functions can be extended with dedicated threads that perform ad-
ditional computations on the combined values of one or more shared variables. Figure 35 is an
example ForeC program that calculates the average of three input values in[i], declared on line 1
in Figure 35. Line 6 forks three threads f (line 9) to check the validity of each input. An input is valid
if its value is greater than zero (line 11). In each tick, the threads assign valid inputs to their copy
of the shared variable val. The modified copies of val are combined with the combine function
sum (line 34), which sums the input values and the number of valid inputs. The average thread
(line 22) reads the resulting combined value of val to calculate the average input value (line 29).
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1 typedef s t r u c t { i n t prod ; i n t sum ; } ProdSum ;
2
3 ProdSum prodsum ( ProdSum th1 , ProdSum th2 ) {
4 ProdSum r e s = { . prod =( th1 . prod ∗ th2 . prod ) , . sum =( th1 . sum+ th2 . sum ) } ;
5 return r e s ;
6 }
7
8 // th1={. prod=2, . sum=2} and th2={. prod=5, . sum=5}
9 // prodsum(th1, th2) ={. prod=10, . sum=7}

(a) Product and sum of two or more values.

1 typedef s t r u c t { i n t v a l ; i n t min ; } Min ;
2
3 Min min ( Min th1 , Min th2 ) {
4 Min r e s ;
5 // Calculate the min for the current tick
6 i f ( th1 . va l > th2 . v a l ) {
7 r e s . v a l = th2 . v a l ;
8 } e l s e {
9 r e s . v a l = th1 . v a l ;

10 }
11 // Calculate the min since the start of the program
12 i f ( th1 . min> r e s . v a l ) {
13 r e s . min= r e s . v a l ;
14 } e l s e {
15 r e s . min= th1 . min ;
16 }
17 return r e s ;
18 }
19
20 // Initial value : res ={. value=0, . min=0}
21 //
22 // Tick 1:
23 // th1={. value=1, . min=0} and th2={. value=2, . min=0}
24 // min(th1, th2) ={. value=1, . min=0}
25 //
26 // Tick 2:
27 // th1={. value=−1, . min=0} and th2={. value=2, . min=0}
28 // min(th1, th2) ={. value=−1, . min=−1}

(b) Minimum of two or more values.

Fig. 34. Examples of combine functions for C-structs.
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1 input double i n [ 3 ] ;
2 t y p d e f s t r u c t { double v a l u e ; i n t v a l i d ; } V a l i d V a l u e ;
3 shared V a l i d V a l u e v a l = { . v a l u e = 0 , . v a l i d = 0 } combine mod with sum ;
4
5 void main ( void ) {
6 par ( par ( par ( f ( 0 ) , f ( 1 ) ) , f ( 2 ) ) , a v e r a g e ( ) ) ;
7 }
8
9 void f ( i n t i ) {

10 while ( 1 ) {
11 i f ( i n [ i ] > 0 ) {
12 v a l . v a l u e = i n [ i ] ;
13 v a l . v a l i d = 1 ;
14 } e l s e {
15 v a l . v a l u e = 0 ;
16 v a l . v a l i d = 0 ;
17 }
18 pause ;
19 }
20 }
21
22 void a v e r a g e ( void ) {
23 double r e s u l t = 0 ;
24 while ( 1 ) {
25 pause ;
26 i f ( v a l . v a l i d == 0 ) {
27 r e s u l t = 0 ;
28 } e l s e {
29 r e s u l t = v a l . v a l u e / v a l . v a l i d ;
30 }
31 }
32 }
33
34 V a l i d V a l u e sum ( V a l i d V a l u e th1 , V a l i d V a l u e th2 ) {
35 V a l i d V a l u e r e s ;
36 r e s . v a l u e = th1 . v a l + th2 . v a l ;
37 r e s . v a l i d = th1 . v a l i d + th2 . v a l i d ;
38 return r e s ;
39 }

Fig. 35. Averaging two or more values.
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