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Abstract: Set-based state estimation procedures have the advantage of enclosing all possible
system states under the assumption of bounded measurement uncertainty, the structural
correctness of dynamic systems models, and the representation of external disturbances and
imperfectly known parameters by finitely large sets. In contrast to stochastic counterparts, often
employing one of the available variants of Kalman filters, set-based approaches are less widely
used. The reason for this observation is the fact that naive implementations often suffer from
a non-negligible degree of overestimation and that (unless certain monotonicity properties are
satisfied) set-based computations come with a notable increase of the computational complexity,
resulting among others from required interval splitting procedures. This paper tries to resolve
both issues by means of an ellipsoidal implementation of a discrete-time set-valued state
estimation procedure that is validated experimentally and compared with an Unscented Kalman

Filter (UKF) for a laboratory-scale magnetic levitation system.
Copyright © 2023 The Authors. This is an open access article under the CC BY-NC-ND license

(https://creativecommons.org/licenses/by-nc-nd/4.0/)

Keywords: Set-based state estimation, ellipsoidal state enclosures, bounded uncertainty,
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1. INTRODUCTION

Set-based state estimation procedures can be classified in
general into approaches that rely on a predictor—corrector
structure and on formulations that mimic the structure of
Luenberger-like observers (Puig et al., 2005).

The first class of estimators is characterized by the use
of set-valued calculus, propagating uncertain state do-
mains from one time instant up to that instant at which
new measured data become available (Kletting et al.,
2006). At this point, set-based intersections are performed
with domains that represent the measured states with
bounded uncertainty. In general, different set representa-
tions have been investigated in the literature, for example,
axis-aligned intervals, preconditioned interval boxes, (con-
strained) zonotopes, ellipsoids, or polygons (Kurzhanskii
and Vilyi, 1997; Rauh et al., 2021; Rego et al., 2022;
Rohou and Jaulin, 2021). Although the use of intervals
is simple to implement on the basis of existing software
libraries (Kramer, n.a.; Rump, 1999), they suffer from the
drawback of overestimation, mostly due to the so-called
wrapping effect that arises when complex-shaped domains
in the state space are enclosed by axis-aligned boxed that
are then further propagated over time (Lohner, 2001).
All of the other above-mentioned alternative set repre-
sentations allow for a reduction of overestimation and for
capturing correlations between individual state variables.

Especially the ellipsoid approach proposed by Rauh and
Jaulin (2021) has the advantage of an effort close to the
Extended Kalman Filter. This effort is commonly much
smaller than the one of other set-based options. Therefore,
the ellipsoidal technique offers the advantages of combin-
ing small overestimation and real-time implementability.

The second class of set-based estimators exploits the struc-
ture of continuous- and discrete-time Luenberger observers
and allows for implementing decoupled state observers
for lower and upper bounds of each component of the
state vector (Efimov et al., 2013). This requires that the
system model under investigation satisfies specific mono-
tonicity properties (Smith, 1995). These properties are
satisfied naturally for many thermo-fluidic systems as well
as for compartmental models in chemistry, biology, or bio-
medicine. If this is not the case, as usual for electrical and
mechanical systems, time-invariant or time-varying trans-
formations of the state equations are possible to implement
interval observers. These transformations typically lead
to a certain degree of pessimism that should be avoided
to prevent excessively conservative state enclosures (Rauh
and Kersten, 2021). Alternatively, the approach suggested
in Wang et al. (2018) can be used, which introduces an
additional gain matrix in comparison with other interval
observers to make it applicable to (quasi-)linear systems
not having the required monotonicity property.
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This paper is structured as follows. Sec. 2 summarizes the
modeling and parameter identification for a laboratory-
scale magnetic levitation system. Sec. 3 gives an overview
of a UKF and an ellipsoidal state enclosure approach
which are both used in Sec. 4 for an experimental state
estimation. Finally, conclusions and an outlook on future
work are given in Sec. 5.

2. MODELING AND PARAMETER
IDENTIFICATION FOR A MAGNETIC LEVITATION
SYSTEM

2.1 System Overview

The experimental validation of an ellipsoidal state esti-
mation algorithm and its comparison with a UKF are
performed in this paper for a laboratory-scale magnetic
levitation system manufactured by INTECO, cf. Fig. 1.

The test bench consists of an electromagnet mounted on
the top of the setup that can be actuated with its supply
voltage u. The goal is to position a ferromagnetic sphere
of mass m in a stable manner at the distance x; below the
magnet. For a dynamic modeling, the state vector

X = [1’1 T 1’3]T € R™= (1)

is introduced, which further contains the sphere’s velocity
xo (positive values correspond to a motion in downward
direction) and the electric current x3 in the magnet.

electromagnet

position sensor

ferromagnetic
sphere

=

< l"%"“ RT-DAC/PCI 1/0
2 =3 board connector

-
@ |

power on/off position sensor on/off
Fig. 1. Magnetic levitation system manufactured by IN-
TECO Sp. z o. 0. (n.a.).

As described in numerous other publications dealing with
modeling, control, and state estimation for this system,
cf. Balko and Rosinova (2017); Rosinova and Hypiusova
(2021), a nonlinear set of state equations is given in the
form

T1 = T
. Fem(xlyxii)
T 2)
1
&3 = (ki -u+c¢—as) ,
fip(1)
where "
Fem(l'hl'g) _ LemP1 mg . eiﬁllpz (3)
FemP2

is an approximation' of the actuating force provided by
the electromagnet.

L As described in Balko and Rosinova (2017), different approxima-
tions of the electromagnet’s force characteristic can be determined,
namely also rational position dependencies. We restrict ourselves to
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The force of the electromagnet is controlled indirectly by
the supply voltage u, leading to a first-order lag behavior
of the corresponding current. The time constant of this
first-order lag element is position-dependent according to

ooy = g HE !

2.2 Parameter Identification

The parameters Fempi, Femp2, fip1, fip2, ki, and ¢ in (2)-
(4) need to be identified experimentally for the desired
state estimation purposes. Because both (3) and (4) are
semi-empirical approximations of the true (inductance
dependent) force and time constant, we aim at enclosing
the corresponding parameters by intervals that can be
dealt with directly by the ellipsoidal state estimator. Note
that these intervals are a means to enhance the model
fidelity by accounting for the uncertainty of the parameter
identification stage. Due to the fact that the system’s open-
loop behavior is unstable, the parameter identification
consists of two subtasks:

(1) identification of the parameters Fenp1 and Fepnpo in
Eq. (3) for stationary closed-loop controlled operating
points of the sphere position by using the equilibrium
condition

Fom = 2mg 5 (5)

(2) identification of the parameters fi,1 and fipz in
Eq. (4) as well as the values k; and ¢; of the electric
subsystem in a controlled system operation with dif-
ferent constant and time-varying position values z7.

Identification of the Parameters of the Force Character-
istic:  During the first identification stage, we take into
account explicitly the uncertainty of the optical position
sensor which consists of random errors of +0.02 mm am-
plitude and an additional offset of 0.1 mm resulting from
variations of ambient light conditions. The parameters
Fomp1 and Feypo are obtained by a pairwise comparison of
two experiments with different desired constant positions,
where the point-valued position sensor readings (after in-
flation with the interval [—0.12; +0.12] mm) as well as
the current measurement are averaged over a time span of
100s with a sampling period of 3 ms. Denote the resulting

values by {5&%‘%} and [i§B>} for the position values and by

A)

i"é and £§B> for the current, respectively.

Then, a division of two evaluations of Eq. (3) according to

(1)

F, 2 [#:]

Fom = 2mg € ZemP1 (ff;)) o
emP2

under the static force condition (5) and resolving it for

Fompo yields the interval estimate

£§A) B E§B>
U I,

—(A)
T
2111( 3 )
(B
Be

the semi-empirical exponential function because of its simple form
and differentiability for all real-valued parameters and state variables
which is a prerequisite for the application of the suggested ellipsoidal
state estimator. This differentiability requirement is more difficult
to satisfy for rational expressions if (although nonphysical) states
z1 < 0 may be contained in the conservative enclosures provided by
a set-based estimator.

L€ {A,B} (6)

[FemPQ] =
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A backward substitution of this estimate into (6) then
produces the second parameter estimate

2m,
[chpl] - g

ER

(#4)" ¢ [Fewra

A summary of these interval estimates, determined for
five different positions of the sphere is given in Tabs. 1-3.
Finally, a convex interval hull over all obtained results is
formed for both parameters to obtain a robust interval
parameterization of the system model. Fig. 2 gives a
comparison of the resulting interval bounds for the force
characteristic with a fixed current for either neglecting
the uncertainty in the position measurement or for the
interval-valued uncertainty model described above.

Table 1. Controlled operating points for five
different test settings.

Test n°1  Test n°2  Test n°3  Test n°4  Test n°5
mid (Lx@}) inm | 0.008 0.009 0.010 0.011 0.012
# in A 0.6045  0.6987  0.7476  0.8306  0.8820

Table 2. Estimates of F,py in N-m-A~2 at
the interval midpoints mid ([sﬁiw} )

A B Test n°1  Test n°2  Test n°3  Test n°4  Test n°5
Test n°1 / 0.1074 0.0789 0.0787 0.0735
Test n°2 - / 0.0573 0.0629 0.0597
Test n°3 - - / 0.0781 0.0633
Test n°4 - - - / 0.0506

Table 3. Estimates of Fympo in m at the inter-

val midpoints mid ([i’Y)] )

B
A Test n°1  Test n°2  Test n°3  Test n°4  Test n°5
Test n°1 / 0.0034 0.0047 0.0047 0.0052
Test n°2 - / 0.0074 0.0057 0.0064
Test n°3 - - / 0.0047 0.0060
Test n°4 - - - / 0.0083

Identification of the Parameters of the Electrical Sub-
system:  The parameter identification in the second
stage is performed by numerically minimizing the integral
quadratic error between measured and simulated currents,
where we assume that random measurement errors of the
position and the electric current average out over suffi-
ciently long measurement horizons (150 s) with a sampling
period of 3ms. After performining the minimization of
the cost function with the help of a Nelder-Mead simplex
method, a convex interval hull is again determined over
several experiments with either constant positions x1 or si-
nusoidal trajectories (including a transition from the initial
equilibrium with vanishing voltage). This hull operation,
cf. Tabs. 4 and 5, accounts for the systematic mismatch
between the actual time constant and its approximation
in terms of an interval representation. A visualization of
the interval-based time constant model is given in Fig. 3.

Andreas Rauh et al. / IFAC PapersOnLine 56-2 (2023) 8494-8499

Table 4. Interval bounds for the parameters of
the mechanical subsystem model.

Fomp1 in N-m - A—2
[0.0294 ; 0.2898]

m in kg
0.0571

Femp2 in m
(0.0026 ; 0.0104]

Table 5. Interval bounds for the parameters of
the electrical subsystem model.

fip1 inm-s fip2 in m
[0.0069 ; 0.0076]  [0.0071 ; 0.0293]
kiin A.-V~1 ¢ in A

[2.8713 ; 2.8974] [—0.1532; —0.1464]

30,
[Jwith position unc. [ Jwithout position unc.‘

—

0 0.005 0.01 0.015
position z; in m

Fig. 2. Identification of the uncertainty of the position-
dependent magnetic force characteristic Fep,(z1) for
the electric current x3 = 0.5 A.

n 1F
“E

=

g

2 0.5

5]

5]

g

0 L L ]
0 0.005 0.01 0.015

position x; in m

Fig. 3. Identification of the uncertainty of the position-
dependent time constant fi,(z1).

3. STOCHASTIC AND ELLIPSOIDAL STATE
ESTIMATION

For the state estimation procedures in this section, the
system model of the magnetic levitation system is dis-
cretized by means of an explicit Euler method with the
step size 3ms. Moreover, additive process uncertainties
are included in the discretized state equations, which are
given by zero-mean Gaussian noise with the covariance Cy,
in the stochastic case and a suitable ellipsoid of a given
confidence percentage in the set-valued counterpart. The
measured system states ym r4+1 are the position and the
electric current with the measurement covariance C,.

8.1 Unscented Kalman Filter

For the stochastic state estimation, a UKF according
to Julier et al. (2000) is used which consists of an al-
ternating evaluation of prediction and innovation steps.
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To handle the nonlinearity in the state equations, 2ny
sigma points are determined. These points are obtained
by systematically adding increment vectors x(*) onto the
most recent expected value vector p ;. from the predecing
innovation step according

xW =ps  +x0, ie{l,..., 20}, (9)

and x(™H) = — (@)j

(10)

, T
<) — ( /nxci,k),
for i € {1,...,nx}; (1 /nxC;k) denotes the ¢-th row of

the matrix square root of the scaled symmetric positive-
definite state covariance matrix of the innovation stage.

where

During the prediction step, the sigma points are indi-
vidually propagated through the discretized model of the
magnetic levitation system, yielding XZ’_&). With the help
. . . p, (%)
of the.se predicted sigma p01nt§ Xph1s
covariance are obtained according to

2Ny

the new mean and

p _ p, (%)
Py 1= m X1 and
i=1

2Ny

1
Ci,k+1 = R Z (X

i=1

(1)

p,(i) _  p p,(4) _ ,,p T +C
k1 — Mok )\ Xp11 = Bk w.k -
(12)

Subsequently, the next innovation step is evaluated accord-
ing to

P k1 = Mi,kﬂ + Lgy1 - (Ym,k+1 -C- Ni,kﬂ) , (13)
Copt1 = (I -LpC)-CL 1ty s (14)

where — due to the linearity of the measurement model
Yi+1 = C - Xg4+1 — the time-varying gain matrix Ly is
obtained as in the classical linear Kalman filter.

3.2 FEllipsoidal State Estimator

For the ellipsoidal state estimation, we assume that the
set of reachable states is bounded at the time instant k by
the ellipsoid

Ek (e, Tk)
= {Xk € R™ ’ (Xk — [l,k)T I‘,;TF,ZI (Xk — [,Lk) <1
with the positive definite shape matrix
Qr=I,If =0 (16)
(given in factorized form with the 4-th column T )
and the midpoint vector p, € R™=. As a generalization
of the procedure derived by Rauh and Jaulin (2021),
a simple ellipsoid state prediction procedure is given
by the Algorithms 1 and 2, where we assume that the
discrete-time system model is given by the expression

Xp+1 = £ (Xp, ug, p) with the bounded parameters p € [p]
according to the previous section.

(15)

For the applicability of the approach, the Jacobian

of

A= 2 ;
k axk (ukauk}ap)

evaluated at the ellipsoid midpoint py and at the mid-
point p of the interval box of the uncertain parameters
is assumed to be invertible. The interval extension of the
Jacobian required in Algorithm 2 is denoted by [J¢].

(17)
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Algorithm 1: Ellipsoid state prediction step

input : f (xg,ur,P), {tk, Ti}, [P
output: {pr11,Ty1}
1 pgr = £ (pg, uk, D)
2 Ay =25 (wr,ur, D)
3 Ippi=Ap Ty
4 pr < Compute norm of the linearization
error

Tiv1:=(1+pk) Thtr

S}

Algorithm 2: Compute norm of the linearization error

input : py, Ly, Tryr

output: pg
T L R T A A CHSS
2 [xk] = [T1,6] X ... X [Tnk]
3 3 =[] (el s o))
o [ = (Ot T 1,
=]}

The predicted ellipsoid with the shape matrix Ty - T},
is then inflated by means of

1
Qrt1 = (1 + 5) (Crpr-Ti) +(1+8)-Qw  (18)
with the factor

B = \/trace {Thy1-Ti )
trace { Qw }
determined according to Kurzhanskii and Valyi (1997);
Noack et al. (2009), where Qy = 12, - Cy is the confidence
ellipsoid related to the process noise with the inflation
factor ryw chosen as described in Wang et al. (2015).

(19)

In the set-based innovation step, an intersection of the
predicted ellipsoid with the measurements described by
the set-based model
T
(Xkt1 = Yirr1) P (Xk1 = Ymg) <1
is performed.

(20)

In the inequality (20), the matrix P/ is a purely diagonal
matrix if the system’s output matrix C in the measure-
ment equation

Vi1 = C xpp1 (21)
represents a direct measurement of selected components
of the state vector xyy1, i.e., being an all-zero matrix
except for a single entry with the value one per row. If
less outputs than state variables are available as measured
data, Eq. (20) is a degenerate ellipsoid in which the matrix
P!, is not invertible.

Using this notation, y7, ;,, is an augmented measurement
vector in which entries that correspond to non-measured
components of the state vector at the time instant k+1 are
set to the associated predicted ellipsoid midpoint pej41.
For a detailed description of the intersection procedure
of two ellipsoids with different midpoints, the reader is
referred to Sec. 3.2.2 in Rauh et al. (2021).
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4. ESTIMATION RESULTS

To validate both the stochastic and set-valued state esti-
mators, identical experimental data are used in all follow-
ing evaluations. The data were generated for the test rig
in Fig. 1 with the control voltage depicted in Fig. 4. This
signal stems from a heuristically tuned PID controller with
a sinusoidal desired variation of the sphere position.

1

I
0

<
=)

<
=~

voltage u in V

<
o

0 50 100 150
time ¢t in s

Fig. 4. Control signal u(t) for the experimental validation.

For a direct application of the UKF, all interval parameters
discussed before are replaced by their midpoints. Then, the
diagonal covariance matrices (given in terms of SI units)

Cy =diag {[3-107° 7.5-107* 3-107°]} and
C, = diag {[1.44-107% 2.5-1073]} |

where C,, has been tuned heuristically and C,, chosen
according to the actual measurement uncertainty, yield
the estimation results in Fig. 5. Although this estimator
is capable of filtering the noisy position and current mea-
surements, it obviously fails to estimate the sphere velocity
consistently (its actual mean must be close to zero to
reflect the sphere motion with constant amplitude) as the
true velocity is mostly not even included in the depicted 3-
standard deviation bounds in Fig. 5(b). This shortcoming
can be removed if the system model is extended according
to

(22)

i?lzl'g
. Fon(zy,23) +2
I CTE R
" (23)
igzi(ki-u-i-ci—{l}g)
fip(21)
T4 =0,

by including an integrator disturbance model for the
disturbance force x4, representing the mismatch between
the model and the real dynamics (cf. Fig. 6).

Finally, the use of the ellipsoidal approach in Fig. 7 yields
estimates for the velocity in Fig. 7(b) which enclose the
physically meaningful solution without the need to in-
clude additional disturbance state variables. All covariance
matrices used before have been replaced by ellipsoids in
this case that correspond to a 95% confidence level of the
corresponding Gaussian probability density.

5. CONCLUSIONS AND FUTURE WORK

In this paper, an ellipsoidal state estimation algorithm
has been presented and validated experimentally against a
UKF for state estimation of a magnetic levitation system.

Andreas Rauh et al. / IFAC PapersOnLine 56-2 (2023) 8494-8499

It has been shown that the proposed interval representa-
tion of state-dependent nonlinearities allows for obtaining
a robust model that leads to a state estimation scheme
that has comparable complexity as a UKF but much
higher consistency of the results. Future work will aim
at extensions toward the online identification of uncertain
parameters by the proposed ellipsoidal framework as well
as its use in model-predictive control procedures.
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Fig. 5. State estimate for a UKF without disturbance estimation; interval parameters are replaced with their midpoints.
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