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Abstract 

Background: Chronic pain is associated with abnormal levels of electrical excitability of the 
somatosensory cortex neurons. Consequently, recording spontaneous and evoked activities by 
means of unitary extracellular recordings and local field potential (LFP) are key understanding the 
mechanisms behind such alterations. There is a growing need to highlight the relationship between 
spiking activity and LFP. Here, we hypothesized that LFP could be inferred from spikes under evoked 
conditions. 

Method: We detail a process to highlight the C-fiber (pain) evoked activity, by removing the A-fiber 
evoked activity using a model-based approach. Then, we applied the convolution kernel theory and 
optimization algorithms to infer the C-fiber LFP from the single cell spikes. Finally, we used a 
probability density function and an optimization algorithm to infer the spikes distribution from the 
LFP. 

Results: We successfully extracted C-fiber LFP in all data recordings. We observed that C-fibers spikes 
preceded the C-fiber LFP and were rather correlated to the LFP derivative. Finally, we inferred LFP 
from spikes with excellent correlation coefficient (r = 0.9) and reverse generated the spikes 
distribution from LFP with good correlation coefficients (r = 0.7) on spikes number.  

Conclusion: We introduced the kernel convolution theory to successfully infer the LFP from spikes, 
and we demonstrated that we could reverse generate the PSTH from the LFP.  
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Highlights 

• Evoked spikes preceded the depression in Local Field Potential 
• Evoked LFP is the result of spikes convoluted by a kernel 
• Evoked PSTH can be inferred from LFP using a probability density function of spikes 
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1. Introduction  
 
Understanding how information is encoded in neural systems requires monitoring a substantial 

fraction of the neuronal population (Georgopoulos et al., 1986). The local field potential (LFP) is one 

of the most popular and easy methods to measure the population activity. Unfortunately, LFP is also 

known to be difficult to interpret and model (Buzsáki et al., 2012; Einevoll et al., 2013). These 

difficulties stem from the fact that LFP is a composite signal of synaptic currents and spiking patterns 

of multiple neurons (Buzsáki et al., 2012). Thus, highlighting the relationship between spiking activity 

and LFP is a major issue that requires an improvement to existing analysis methodologies of 

electrophysiological signals. The most common approach to analyze the spikes/LFP relationship 

consists of averaging the LFP on a small window around each spike time to get the Spike Time 

Average (STA) (Denker et al., 2011; Geng et al., 2019; Nauhaus et al., 2009; Ray, 2015; Ray and 

Maunsell, 2011). The STA is then processed with the spike train, usually through a convolution, to 

reconstruct the theoretical LFP and compared to the measured LFP. Additional methods such as 

maximum likehood (Cui et al., 2016), Hammerstein-Wiener model (Bai et al., 2014), L1 sparse 

approach (Bighamian et al., 2019), Volterra mode (Zanos et al., 2011), MIMO model (Hall et al., 

2014), Generalized Linear model (Arai and Kass, 2017) or Markov chains (Galindo-Leon and Liu, 2010) 

were also proposed to describe the spikes/LFP relationship. Most of these studies were interested in 

LFP during spontaneous activity, in which convergent neurons respond to asynchronous signals 

coming from very heterogenous inputs. Moreover, since LFP is considered as a local, grouped activity 

(Lindén et al., 2011; Liu et al., 2015), its spontaneous fluctuations are subject to the activity of 

different nearby neurons. Thus, although spontaneous recordings are closer to normal neural 

activity, the resulting system is complex to analyze, and even very innovative methods achieved 

medium results. Because previously stated (Denker et al., 2011) spikes/LFP relationship could only be 

highlighted when a group of neurons fires synchronously (Storchi et al., 2012; Zippo et al., 2014), we 

investigated the spikes/LFP relationship in evoked conditions to reduce the number of inputs and 

synchronize the activity of neurons. 

We hypothesized that in evoked conditions, the most important contribution to the LFP is the spike 

pattern. To test this hypothesis, we studied the spikes/LFP relationship in the medullary dorsal horn 

(MDH) that receives nociceptive inputs from the head and neck. Based on electrophysiological 

recordings of MDH neuron response to facial electrical stimulation of nociceptive C-fibers, we first 

assessed whether LFP and spikes are synchronized. Then we aimed to reconstruct LFP from the 

evoked spike pattern, using a model-based approach based on convolution kernel theory (Nawrot et 

al., 1999; Shimazaki and Shinomoto, 2010). Finally, we tested whether the spike pattern could be 

reconstructed from the LFP. 

 
2. Materials and methods 
 
2.1. Animals 
 
Adult male Sprague-Dawley rats (250–300 g; Charles River, L’Arbresle, France) were stabulated at 23 
± 1 °C in plastic cages (425 x 266 x 185 mm , 2-3 rats per cage; Tecniplast, Comerio, Italy) with soft 
bedding and water and food ad libitum in a 12-h/12-h dark/light cycle for at least one week before 
experiment.  
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Animal experiments were performed according to the ethical guidelines of the International 
Association for the Study of Pain, the Directive 2010/63/UE of the European Parliament and the 
Council on the protection of animals used for scientific purpose. Protocols for animal care and use 
applied in this work were approved by the appropriate local committee at the University of 
Clermont-Ferrand-Auvergne and authorized by The Research Ministry (nb #7080, #12899, # 18346). 
All experiments, analysis, and reports followed the ARRIVE guidelines, and were carried out in 
accordance with the U.K. Animals (Scientific Procedures) Act, 1986 and associated guidelines, EU 
Directive 2010/63/EU for animal experiments, or the National Institutes of Health guide for the care 
and use of Laboratory animals (NIH Publications No. 8023, revised 1978). All efforts were made to 
minimize the number of animals used.  
 
The protocols used for the animal surgery were like those described previously (Boyer et al, 2014; 
Flores Ramos et al., 2017). Briefly in vivo electrophysiological recordings within the MDH were 
performed under 2% isoflurane (Aerane®, Baxter SAS) in a NO2/O2 mixture (1/3 – 2/3). After tracheal 
cannulation to perform artificially ventilation, carotid artery and external jugular vein catheterized, 
animals were paralyzed by an i.v. perfusion of vecuronium bromide (2.4 mg/h). The level of 
isoflurane, O2, N2O and the end-tidal CO2 (3.5–4.5%) were monitored during the entire 
experimental period by a gaz monitoring system (Dragër®, Vamos, Allemagne). Colorectal 
temperature was kept at 37 ± 0.5 °C. The animals were placed in a stereotaxic frame with the 
head fixed in a ventroflexed position. The trigeminocervical complex was exposed by removing the 
overlying musculature, atlanto-occipital membrane, dura mater and a cervical laminectomy. The 
dura overlying the dorsal surface of the right hemisphere and transverse sinus was exposed and 
flooded with artificial cerebro-spinal fluid. After surgery, the level of isoflurane was reduced to 0.75% 
and maintained at this level during the recording period.  
 
2.2. Electrophysiological recording and electrical stimulation 
  
Unitary extracellular recordings Glass microelectrodes (2-8 MΩ) filled with 5% NaCl containing 
pontamine sky blue were used to record activities within the right MDH. The electrophysiological 
setup was essentially as described previously (Boyer et al., 2014; Flores Ramos et al., 2017). Briefly, 
on a first channel, single-unit activities were amplified on a differential amplifier (50 Hz band-stop 
filter, High pass filter 10 KHz, low pass filter 300 Hz, gain 103). The activities recorded went into a 
window discriminator (WPI, 121 Windows discriminator) connected to a CED 1401plus interface 
(Cambridge Electronic Design) and a PC computer (Spike 2® version 6.16 software, CED, Cambridge, 
UK). On a second channel, the LFP and spikes were recorded with the same microelectrode, 
amplified (No band-stop filter, High pass filter 0.1 Hz, low pass filter 10k Hz, gain 102) and directly 
connected to a PC through CED 1401plus interface. 
A systematic search for MDH neurons responding to percutaneous electrical stimuli was performed. 
Electrical square-wave stimuli (2 ms duration, 2-8mA intensity) were applied through a pair of 
stainless-steel needle electrodes subcutaneously placed on the face to elicit two peaks of activation 
at different but fixed latencies. According to literature (Burgess and Perl, 1973; Gasser and Erlanger, 
1927), these two peaks correspond to peripheral conduction velocities in the A- and C-fiber ranges, 
respectively. 
A total of 18 animals underwent the following procedure. Once a MDH neuron was identified, we 
applied multiple series of 30 cutaneous electrical stimulations, from 6 to 19 depending on the 
duration of the recording, for a total of 232 series. Stimulation period was 1500ms and series period 
was 15 min.  Data were analyzed using post-stimulus time histograms (PSTH).   
 
2.3. Signal preprocessing 
 
The electrophysiological responses recorded by the CED software were stored in a binary file for data 
analysis and processing using homebrew Matlab code (© 2014 The MathWorks, Inc.). Recordings 
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were synchronized with the electrical stimulation, denoised from 50Hz artifact, and spikes were 
removed using a 3rd order, 31 points Savitzky-Golay filter (Savitzky and Golay, 1964), as presented 
figure 1. 
 
 
 
 
 
2.4. C-fiber evoked LFP extraction algorithm 
 
Signals were then smoothed by calculating the median value over 30 stimulations. The analysis will 
now focus on the C-fiber LFP. In order to remove the A-fiber LFP from the signal, the first step was to 
identify the A-fiber LFP, which was modelled as a single exponential curve. To this end, segments of 
signal were selected manually with four time stamps placed (figure 2): one at the max depression of 
the A-fiber LFP (t1), one at the beginning of the C-fiber LFP usual timing (t2), one at the end of the C- 
fiber LFP (t3), and one at the end of LFP recording (t4). 
 
 
The (t1-t2) and (t3-t4) portions of the LFP only are used as the curve to match for the algorithm. Then, 
a non-linear least-squares approach (Newton-Gauss) was used to model the A-fiber LFP depression. 
Finally the modelled A-fiber LFP was removed to extract only the C-fiber LFP (Björck, 1996). See 
above for iterative steps, with the following model and Jacobian matrix:  
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With � being the total LFP, ���	  the C-fiber LFP, � a random noise, �
 the amplitude of the A-fiber 
LFP model, � the decay rate of the A-fiber LFP model, �� the offset, and � the linear drift. Stop 
criterion was the same as above. Once the algorithm had converged, the A-fiber LFP model was 
subtracted from the LFP to extract the C-fiber LFP depression (see figure 7.A and 7.B for result). 
 
2.5. Analysis of LFP – spikes synchronization 
 
To characterize the synchronization between the spikes and LFP, we analyzed the C-fiber portion of 
the PSTH by using only the spiking time within 50ms-150ms. We then transformed the PSTH into a 
continuous variable using the averaged sliding windows to produce a smoothed PSTH. We also 
calculated the time derivative of the LFP and analyzed the time relationship between smoothed PSTH 
and LFP by comparing the latencies between the peaks of each signal.  
 
Also, we considered the PSTH as a reflection of the underlying firing frequency. That observation led 
us to consider applying the kernel convolution to explain the relationship between spikes and LFP. 
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Briefly, spike latencies corresponding to the 30 stimulations used to calculate the LFP were gathered 
to provide a binary spiking variable: a continuous vector of ‘0’ (no spike) and ‘1’ (spike) at the same 
sampling frequency than the LFP. That binary variable was then convoluted with a kernel, smoothed 
using a Savitzky-Golay filter, and compared to the LFP. The kernel’s parameters that produced the 
best fit was a double exponential decay:  

"�#$�% ���, ��, ��, �
, ��, �� = ��������'��( . )1 * ������'��+ , + �� 

With �� the amplitude (µV),�� the decay rate (in ms), �� the rising rate (in ms), �
 a minor delay 
(usually less than 1ms) representing a spike-to-LFP propagation time, and �� the offset correction. 
 
In order to find the best parameters, we needed a cost function to minimize. Let f be the function 
that takes the spikes binary information as vectoral input (spikes), and returns the LFP as output:  ��� =  - ���, ��, ��, �
, ��� = ./0123451 ∗ "�#$�% ���, ��, ��, �
, ��, 7�8 
 
With (*) operator being the convolution, SG is a Savitzky-Golay filter of 2nd order and window length 
of 5ms, and 7 the time vector corresponding to the recorded LFP. Let 9 be the vector of parameters: 9 = :��, ��, ��, �
, ��;. We used the SIMPLEX algorithm(Lagarias et al., 1998) to find the optimal 
parameters 9<2=3 that minimize the Euclidian norm of the difference between - and measured LFP, 

to demonstrate that we could find a kernel that transforms the spike pattern into LFP. See figure 3 
for an illustration of the convolution process.  
 

>���_@�%@A%���B = -�9 <2=3�CD�E9<2=3 = min9 ‖���	 * -�9�‖  

 
 
 

Method performance was assessed using Pearson correlation coefficient between measured LFP and 
calculated LFP from convolution. 
 
 
To prove the previous approach can be reversed and that the spiking activity or PSTH can be 
accurately produced from the LFP, we introduce an approach based on the probability density 
function (PDF): this approach is not used to produce spikes, but a distribution of spikes. We randomly 
generate a volley of spikes that follow the PDF, calculate the LFP using convolution method, and 
compare that calculated LFP to the measured LFP. The method consists of finding the best 
parameters of the PDF and the best spikes number that minimize the difference between measured 
LFP and calculated LFP. We finally output the spikes timing and the PSTH. 
 
We used the legit function (inverse of logistic function) to produce the spike sequence (L) of N spikes, 
with a mean value J and a spread value �, and a probability K ∈ :0,1; :  
 �N,O�K� = J + �. %$ P K1 * KQ 

 
The variable K was linearly spaced from 0 to 1, over N values, to build a vector of size N, RS.  
 
The L function was then transformed into a three variables function: ��J, �, T� = J + �. %$ U RS1 * RSV 
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Such L function produces a probability distribution function, similar to a gaussian function, equals to :  

PDFN,O�Z� = ��[�NO
U1 + ��[�NO V� 

The global PDF that was used in the present paper was combinations of two PDF. As a result, the final 
function that produces the spiking probability is:  

�0J�,�, ��,�, T�,�8 = ��\, ], ^� = _ J` + �a. %$ ) RSb1 * RSb,
�

ac�  

With Ja  being the mean values of the ith distribution, �a the spread of the ith distribution, and Ta  the 

number of spikes of the ith distribution. The L function can produce a distribution of spikes of 

different shapes. From that sequence of spikes, we calculated the PSTH and calculated the LFP again 

by convoluting the kernel, using the following equation:  

 ���defdgfe�hi =  j�\, ], ^� = ./���\, ], ^� ∗ "�#$�%� 
  
With (*) operator being the convolution and SG is a Savitzky-Golay filter of 2nd order and window 
length of 5ms. The SIMPLEX algorithm was used to find the optimal parameters (\, ], ^� that 
minimized the Euclidian error between the measured LFP and the computed LFP.Overall we 
reconstructed the PSTH by calculating the optimal spike distribution that, once convoluted with the 
corresponding kernel, fitted with measured LFP. 
 

kl
m
ln �.op = ED��qj#�r��0\<2=3, ]<2=3, ^<2=3 8��$B���shdtuv�sgd�hi = j�\<2=3, ]<2=3, ^<2=3 �CD�E\<2=3, ]<2=3, ^<2=3 = argmin\,],z {���	_|hevgshi * j�\, ], ^�{

 

 
 
As an example, with the same number of spikes, the proposed method can reproduce different PSTH 
width and maximum by changing the mean values (figure 4.A and 4.C). It can also generate a double 
peak shape, either with similar maximum and width (figure 4.D), or a more complex shape with a 
narrow peak followed by a smaller and wider peak (figure 4.B), such as the typical C-fiber evoked 
activity with highly synchronized early spikes and diffused late spikes. 
 
 
2.6. Statistical analysis 
 
The method performance was assessed using Pearson correlation coefficient and regression 
coefficient between measured number of spikes and calculated number of spikes. Statistical analyses 
were done by first testing the normality of distributions with a LillieFors (Lilliefors, 1967) test, and 
depending on the result, a two-sample or paired t-test or a Wilcoxon rank-sum test. All tests were 
done with Matlab Statistical Toolbox (© 2014 The MathWorks, Inc.). 
 
 
3. Results 

 
3.1. Extraction of C-fiber evoked activity in LFP 
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After denoising the data signal and separating LFP from spikes, we successfully extracted C-fiber LFP 
in all the data recordings, even when the C-fiber LFP was much smaller than the A-fiber LFP (figure 5). 
Thus, this result demonstrates the efficiency of the process and its ability to extract all C-fiber LFP 
(figure 5), even within short latency with the A-fiber LFP. Overall, 90% of C-fiber LFP did not exceed 
40% of A-fiber LFP amplitude, with a most common ratio at about 10%. 
 
 
 
 
3.2. LFP - spikes relationship 
 
3.2.1. LFP – spikes synchronization 
 
We observed that the maximum rate of the PSTH, around 70-80ms, preceded the maximum 
depression of C-fiber LFP, around 100ms. Those observations suggest that the C-fiber spikes were 
anterior to C-fiber LFP based on our measurements. We, therefore, compared the PSTH to the 
variation rate of the LFP, brought by the time derivative (figure 6). Our results showed PSTH 
latencies, including the double peaks of the C-fiber evoked activity, fit the derivative of the LFP, and 
not the LFP itself (figure 6A). In order to confirm that observation, the latency from the peak value of 
PSTH to peak value of LFP, and the latency from peak value of PSTH to peak value of the derivative of 
LFP were calculated and compared (figure 6B). Our results showed that absolute latencies between 
maximum depression of PSTH and maximum depression of derivative of C-fiber LFP were lower than 
absolute latencies between peak of PSTH and maximum depression of C-fiber LFP.  
 
 

 
 

 
 
3.2.2. Reconstruction of LFP from spikes 
 
The existence of a relationship between PSTH and C-fiber LFP derivative confirms that spike pattern 
is a significant component of LFP. Consequently, C-fiber LFP should be reconstructed from spikes. To 
test this hypothesis, we successfully convoluted spike trains with a kernel characterized by a double 
exponential decay. Though the kernel convolution did not allow the reconstruction of all the subtle 
variations of the recorded C-fiber LFP, our method successfully reconstructed the main LFP dynamic 
(figure 7). In order to assess the efficiency of the approach, measured and calculated LFP were 
linearly correlated using Pearson correlation coefficient.  
 

 
The average correlation coefficient r² between the recorded and calculated C-fiber LFP was 0.90. 
Thus, our results validated that LFP can be inferred from spikes through kernel convolution.  
 
3.2.3. Reconstruction of PSTH from LFP  
 
The next step was to assess whether the PSTH can be calculated from the LFP. We used the method 
of PDF that allowed us to model spike probability, generate the LFP with the kernel convolution, and 
compare it to the measured LFP. Calculated PSTH were very close to the actual measured PSTH 
(figure 8), with peak timing of PSTH and global shape very comparable.  
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Final performance of the calculation of PSTH from the LFP was assessed by correlating the total 
number of spikes from calculation and measurement, and overall goodness-of-fit was assessed using 
Pearson coefficient on total spikes number. Correlation was done in two folds: the method was good 
if correlation coefficients were close to 1 (same variation), and if regression coefficients were also 
close to 1 (spike numbers were the same). 
 
Overall, calculated spike number was highly correlated to actual measured spike number for the C-
fiber evoked activity (figure 8.B): the correlation coefficient was 0.8, and regression coefficients was 
0.7. The proposed distribution led to an underestimation of the spike number by 30%. 
 
 
4. Discussion 
 
We described a method to analyze the relationship between C-fibers evoked spikes and LFP in low 
signal-to-noise ratio of unitary extracellular recordings. Our results showed that it is possible to 
assess the relationship between LFP and spikes pattern, in both ways, although some studies 
predicted otherwise (Herreras, 2016), mainly thanks to the evoked condition and the proposed 
methods. 
 
Concerning the relationship between spikes, LFP and time derivative of the LFP, our results confirm 
similar conclusions in previously published studies (Storchi et al., 2012; Zippo et al., 2014). Namely, 
PSTH variations correspond to the variations of the first derivative of LFP and not to the variation of 
the LFP itself. In addition, spikes volley precedes LFP depression, confirming previous observations, 
visible on facial pain-evoked recording of LFP (Melin et al., 2017) or sound-evoked recording in 
auditory cortex (Liu et al., 2015). Therefore, LFP depression may not be the image of presynaptic 
events, as the resulting depression would appear before the peak of PSTH. One suggestion can be 
that presynaptic events generate spikes with a well-known mechanism, and also generate the LFP 
depression, but with a separate delay and mechanism. As a result, such a construction would build a 
model with one input (presynaptic events) and two outputs (spikes and LFP). 
This suggests a causality link from spiking activity to LFP variation rate and not with the LFP raw itself.  
As a consequence, this result may be in conflict with the studies that correlate spike with LFP such as 
the spike triggered LFP or the spike-LFP phase (Einevoll et al., 2013; Vinck et al., 2012) , or the link 
between spiking frequency and LFP state (Kelly et al., 2010). The main difference comes from the 
experimental context. Those studies were based on spontaneous activity whereas our work was 
based on evoked conditions where the neurons receive similar and synchronized inputs. This 
generates a deeper LFP signature, synchronized with spiking activity. This observation is in 
accordance with previous studies (Denker et al., 2011) which concluded that spikes synchronization 
is a key factor to explaining LFP oscillations.  
 
Recent works have investigated the relationship between spiking activity and LFP, and worked on 
generation of firing frequency from LFP, based on Support vector Machine (Rasch et al., 2008) or 
least squared correlation (Hall et al., 2014). Best correlation coefficients obtained through their 
proposed method were respectively 0.4 and 0.52 on firing rate. Our approach revealed to be more 
efficient and reached a correlation coefficient of r = 0.77 on spikes number. Again, such improvement 
can be explained by the evoked conditions compared to spontaneous activity. In this last condition, 
LFP reflects mainly the network activity, and is probably polluted by the diversity of inputs.  
Overall, the ability to recover the PSTH from the LFP only is a huge improvement for extracellular 
recording.  Indeed as LFP is easier to record than single cell activity (Maling and McIntyre, 2016), we 
could estimate the neuronal activity from the LFP. However, our method also comes with some 
limitations. We proved that LFP could be inferred from spikes through a convolution process, but the 
very same kernel was needed to infer the PSTH from the LFP. Consequently, inferring the PSTH from 
the LFP in our experimental conditions would not be currently possible without previously identifying 
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the convolution kernel. Additional work is needed to generalize the convolution kernel or at least 
provide a minimal set of functions instead of a mathematical model to be fitted.  
 
The possibility to rebuild spike activity from LFP also provides information about the organization of 
MDH network. LFP is often considered as a spatial integration of the neuronal activity (Herreras, 
2016; Lindén et al., 2011). So, if we see the signature of a stimulation in the LFP, such as the C-fiber 
evoked activity due to the electrical stimulation of C-fiber, the surrounding neurons must be involved 
in processing the same stimulation. Thus, being able to calculate the PSTH from LFP or LFP from PSTH 
suggests that evoked neuronal activity in MDH can be seen as an ergodic system (Pardalos and 
Principe, 2002; von Plato, 1991). In such a system, repeated stimulations of one neuron lead to the 
same statistical response as a single stimulation of a population of neurons. Therefore, and due to 
the somatotopic organization of the MDH, ergodicity may be a signature of both spatial organization 
of neurons and their synchronization.  
Now, it is well known that during single cell recording, the simultaneously recorded LFP comes from 
surrounding neurons, up to 200 µm (Lindén et al., 2011), and this property induces limitations to our 
work. Assuming the ergodicity in MDH, we used only a single convolution function for one recording, 
but we cannot be sure all neurons generating the LFP would follow the same convolution function. 
Therefore, our approach did not achieve perfect reconstruction, and future work will try to include 
multiple convolutional functions in order to reflect the participation of all neurons to the LFP. 
In addition, our method underestimates the total spikes number, by about 30%, whereas the 
corresponding LFP was correctly reconstructed. This was assumed to come from the smoothing step 
of the LFP. Indeed, the Savitsky-Golay filter eliminates all fast-changing elements from the signal, and 
sparse spikes were deleted in the process. As a result, the process produced the good fitting LFP with 
less spikes.  
Secondly, we used a single electrode to record single cell activity and LFP. As previously stated in 
literature (Herreras, 2016), we need multiple electrodes to better understand the relationship 
between single cell activity and LFP. This would lead to proper source separation to associate 
separate convolution function to each neuron. Moreover, this would allow us to understand the 
small fluctuation in the LFP that are not generated by the evoked conditions, such as during 
spontaneous recording.  
 
5. Conclusion 
 
 
We hypothesized that a reciprocal relationship exists between single cell extracellular recording and 
LFP under evoked conditions in the MDH. We successfully demonstrated that PSTH were correlated 
to time derivative of LFP instead of raw LFP. In addition, we introduced the kernel convolution theory 
to successfully infer the LFP from spikes, and we demonstrated that, despite some limitations, we 
could reverse generate the PSTH from the LFP. Those results bring a new insight on how spikes and 
local field potential are connected in evoked conditions. 
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Model-based signal processing enables bidirectional inferring between local field potential and 

spikes evoked by noxious stimulation 

 

 

 
Figure 1. Histologically confirmed and reconstructed loci of single neurons within the medullary 

dorsal horn. (A) Locations of medullary dorsal horn neurons are summarized on one representative 

coronal brainstem plane (Interaural -7mm).(B) Microphotograph showing the histologically 

confirmed recording locus of one trigeminal neuron within the MDH.  
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Figure 2. (A) Raw original recording of evoked answer of a MDH neuron, with heavy powerline noise. 

Voltage in mV against time in ms. (B) Frequency spectrum of original signal and noise free signal 

(Magnitude in dB vs Frequency in Hz). (C) Same recording as (A), but free from powerline noise. (D) 

Noise free and spike free evoked answer. Voltage in mV against time in ms. 
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Figure 3. Example of extraction of C-fiber evoked activity in LFP with the full evoked response with 

portion t1-t2 highlighted in red and portion t3-t4 highlighted in yellow, amplitude in mV, time in ms 
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Figure 4. Illustration of the convolution process. Arbitrary amplitude on all the following lines : C-

fibers spike timing, convolution kernel as a single decaying exponential (kernel 1), result of the 

convolution (before smoothing) and C-fiber evoked activity in LFP, against time (in ms). 
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Figure 5. Examples of PSTH calculated from probability density function (distribution 2) with 4 

different sets of parameters (N1, N2, t1, t2, W1, W2), chosen to illustrate the ability to produce (A) a 

PSTH with a single peak shape (250,250,80,85,5,5), (B) an early peak with a late spread 

(250,250,65,85,5,15), (C) a plateau shape (250,250,67,89,9,9), or (D) a double peak 

(250,250,65,97,4,4)  
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Figure 6. Example of extraction of C-fiber evoked activity in LFP with (A) the full evoked response 

with the A-fiber LFP model (in purple), amplitude in mV, time in ms; (B) C- fiber LFP only once the 

model was subtracted from the full response, amplitude in mV, time in ms. 
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Figure 7. (A) PSTH, LFP and time derivative of LFP for the same set of stimulations. (B) Comparison of 

absolute latencies between maximum depression of PSTH, and maximum depression of LFP and 

derivative of LFP (N = 232, paired t-test, p<10-4). 
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Figure 8. (A) example of goodness-of-fit between measured C-fiber LFP (grey) and calculated C-fiber 

LFP from the convolution kernel 1 (black). (B) : Pearson correlation coefficients r² between measured 

and calculated C-fiber LFP, for all 232 series  
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Figure 9. (A) comparison of measured PSTH (grey) and PSTH calculated from kernel and distribution 

(black). (B) Comparison of number of spikes  

 




