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ABSTRACT:
Acoustic pulses transmitted across air bubbles in water are usually analyzed in terms of attenuation coefficient and

phase velocity in the frequency domain. The present work expresses an analytical approximation of the acoustic

waveform in the time domain. It is introduced by experiments performed with a Gaussian derivative source wavelet,

S0ðtÞ, with a derivative order, b0¼ 4, and a peak frequency, �p0
, much larger than the bubble resonance frequency.

The measurements highlight a significant shape variability of the waveform BxðtÞ, measured at x � 0.74 m and

characterized by a peak frequency �px
’ �p0

. The results are in good agreement with the approximation

BxðtÞ / ðdcx=dtcxÞS0ðdxt – TÞ, where cx is an additional fractional-derivative order determined by an optimization

procedure and T is related to the travel time. The time-scale parameter, dx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b0=ðb0 þ cxÞ

p
, becomes a free param-

eter for more general source signals. The correlation coefficient between BxðtÞ and the approximated waveform is

used to identify the applicability of the method for a wide range of bubbly waters. The results may be of potential

interest in characterizing gas bubbles in the ocean water column and, more generally, in modeling wave propagation

in dispersive media with fractional-derivative orders in the time domain. VC 2023 Acoustical Society of America.

https://doi.org/10.1121/10.0022256
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I. INTRODUCTION

In underwater acoustics, a wave may be drastically

affected by the presence of bubbles, which may act as strong

scatterers (Ainslie and Leighton, 2011). A single bubble is

characterized by a low-frequency resonance, �r, typically

3 kHz for a 1 mm radius air bubble in water as initially quanti-

fied in the 1930s by Minnaert and extensively considered since

then (Ammari et al., 2018; Devaud et al., 2008). For a bubble

cloud, the bubbly water is characterized by an effective com-

plex wavenumber, where real and imaginary parts are related

to the phase velocity, vð�Þ, and attenuation coefficient, að�Þ,
respectively. Many physical phenomena and bubble properties

can be considered when modeling v and a, including multiple

scattering and bubble-bubble interactions (Ando et al., 2009;

Doc et al., 2016; Fuster et al., 2014; Rubinstein, 1985; Valier-

Brasier et al., 2015), encapsulating shell and bubble shape

(Frinking et al., 1999; Hoff et al., 2000; Liang et al., 2008;

Padilla and Weber, 2021), and polydispersity (Fan et al.,
2019). Because of this complexity, various experimental works

have been performed for many years to measure v and a and

compare the results with effective models in the frequency

domain (Commander and Prosperetti, 1989; Fox et al., 1955;

Goertz et al., 2006; Silberman, 1957; Wilson et al., 2005).

Some publications illustrate the acoustic signals in the

time domain (Duraiswami et al., 1998; Duro et al., 2011;

Leroy et al., 2008; Suiter, 1992). For instance, Leroy et al.
(2008) show a 50 kHz acoustic pulse transmitted through a

bubbly gel composed of 0.15% volume fraction of 81 lm

radius bubbles: the shape of the transmitted signal is more

complex than the pulse shape. A quantitative relationship

between this complexity and the dispersive character of the

bubbly gel is not obvious because the measurement had

been performed near resonance, where attenuation and

phase velocity change significantly with the frequency

(Foldy, 1945). For a weak attenuation that linearly increases

with the frequency (Futterman, 1962), waveform changes

can be attributed to fractional integration effects (Ker and

Le Gonidec, 2018). This may not be the case in the bubbly

medium at frequencies far beyond the bubble resonance fre-

quency where the attenuation is weak but follows a decreas-

ing trend with the frequency. In the present work, a 310 kHz

acoustic pulse propagates in bubbly water composed of

roughly 0.2% volume fraction of 1.6 mm radius air bubbles

(�r ’ 2 kHz): the study focuses on analytical descriptions of

phenomenological effects that affect the acoustic waveform.

The laboratory acoustic experiments are described in

Sec. II to introduce qualitative changes of the acoustic

waveforms associated with a propagation distance

x � 740 mm inside the bubbly water. The attenuation coeffi-

cient, að�Þ, and phase velocity, vð�Þ, are measured in the

frequency domain to be compared with effective models.

Section III deals with the methodology developed in the

framework of Gaussian derivative properties with a sourcea)Email: Yves.LeGonidec@univ-rennes.fr

2812 J. Acoust. Soc. Am. 154 (5), November 2023 VC 2023 Acoustical Society of America

ARTICLE...................................

https://doi.org/10.1121/10.0022256
mailto:Yves.LeGonidec@univ-rennes.fr
http://crossmark.crossref.org/dialog/?doi=10.1121/10.0022256&domain=pdf&date_stamp=2023-11-02


wavelet characterized by a derivative order, b0, and peak fre-

quency, �p0
: it introduces a fractional-derivative order and a

time-scale factor to approximate the acoustic waveform in the

time domain and numerically compares the results with theo-

retical waveforms. In Sec. IV, the approach is applied to the

experimental waveforms measured in the water tank, and dis-

cussions concern the applicability range by extending the ana-

lyzing to general bubbly waters. Section V deals with the

conclusion and potential interests of the method, in particular,

for gas bubbles in the ocean water column.

II. EXPERIMENTS IN AN ACOUSTIC WATER TANK

A. Acoustic waveforms

Experiments are performed in an acoustic tank filled

with 5 m3 of water. A piezo-electric transducer with a cen-

tral frequency of 500 kHz is used to emit acoustic pulses. A

similar transducer is placed in front of the emitter to record

the transmitted acoustic signal. The waveform, S0ðtÞ,
recorded at the distance x0¼ 365 mm represents the refer-

ence signal in the following [Figs. 1(a1) and 1(b1)],

FIG. 1. (Color online) Experimental waveforms measured (left) in pure water and (right) in bubbly water, depicting (a1), (b1) reference source signals and

(a2), (b2) transmitted waveforms measured at 211 successive positions x. The waveforms are displayed with a normalized amplitude and arbitrary time refer-

ence. (a3), (b3) Last transmitted waveforms and (a4), (b4) associated amplitude spectra normalized to the amplitude in pure water (solid curves). Note that

the normalized amplitude spectra measured in pure and bubbly waters are similar [(b4), dashed and dotted curves, respectively].
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acquired with a sampling rate of 10 MHz. As a first approxi-

mation, this waveform is a Gaussian derivative wavelet [see

Eq. (14)] composed of five extrema: it is symmetric relative

to the main peak, which defines the center of the waveform

and is arbitrarily set to one (normalized amplitude at x0).

The signal is defined by a frequency spectrum, jŜ0ð�Þj,
which is maximum at the peak frequency, �p0

’ 310 kHz

[Fig. 1(a4)].

The first dataset consists of 221 acoustic waveforms,

WxðtÞ, measured in water between x0 and x0 þ 840 mm

[Figs. 1(a2)–1(a4)]. By correcting the waveform amplitude

from the spherical divergence of the acoustic beam and time

shifting the amplitude peak at t¼ 0, the waveforms, WxðtÞ,
are all similar to S0ðtÞ [Fig. 1(a2)]: in particular, the symme-

try of the waveform and the amplitude spectrum do not

depend on the distance, x, as expected for a nondispersive

medium [Figs. 1(a3) and 1(a4)].

The second dataset consists of 221 acoustic waveforms,

BxðtÞ, measured in bubbly water [Figs. 1(b2)–1(b4)]. Air

bubbles are being released in the water by the use of an arti-

ficial generator composed of eight parallel identical pierced

tubes, 10 cm apart, filled with air under a pressure of 1.4 bars

[Fig. 2(a)]. Each tube is 8 mm in diameter and has been

pierced with 26 holes, 2 cm apart, to create a bubble cloud

in the water. The distance between the acoustic emitter and

the first tube is 10 cm, i.e., the recorded waveform at the ini-

tial position, x0, is B0ðtÞ ¼ S0ðtÞ [Fig. 1(b1)]. Bubbles are

ellipsoidal [Fig. 2(a)], where half minor axes are between 1

and 3 mm and eccentricity is about 1.5 [Fig. 2(b)].

Measurements are not accurate but not critical for the pre-

sent study, and a bubble is approximated to a fluid sphere

whose radius is half the minor axis. A lognormal distribution

highlights a median value of r0¼ 1.6 mm and a polydisper-

sity �¼ 20% [Fig. 2(c)]. The gas volume fraction of the

biphasic medium is estimated from 4
3
pr3

0NbNt=V, where

Nb ’ 11 is the number of bubbles in one picture, Nt¼ 8 is

the number of tubes, and V ’ 1.5 l is the volume associated

with the picture surface multiplied by the length, 740 mm,

of bubbly water. As a rough estimate, the bubbly liquid is

characterized by 0.15% volume fraction of 1.6 mm radius

air bubbles with a 20% polydispersity in water, where the

sound speed is about 1473 m s�1.

The mean acoustic field is measured by averaging 200

signals that propagate through different realizations of the

dynamic bubbly water. As a key observation, the waveform,

BxðtÞ, depends on the distance, x: the symmetry is progres-

sively lost when x increases from 0 to 740 mm [Figs. 1(b2)

and 1(b3)], but the normalized amplitude spectrum is not

modified [Fig. 1(b4)]. This highlights qualitative results on

the continuous modification of the average acoustic wave-

form when the acoustic wave propagates inside the disper-

sive medium.

B. Attenuation coefficient and phase velocity

Based on the acoustic measurements, the bubble-free

water can be approximated to a lossless medium compared

to the bubbly water, i.e., an acoustic wave of angular

FIG. 2. (Color online) (a) Photographs of the eight bubble clouds and few bubbles (inset picture), (b) major and minor axes of elliptical bubbles (circles),

and (c) experimental and lognormal (dashed curve) size distributions are shown.
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frequency x ¼ 2p� propagates in water at a constant speed,

v0, with a real wavenumber, k0 ¼ x=v0. In the Fourier

domain, the acoustic plane wave measured at x is given by

Ŵxð�Þ ¼ Ŝ0ð�Þei2p� t�x=v0ð Þ: (1)

In the dispersive medium, the acoustic wave propagates

with a frequency dependent complex wavenumber, kð�Þ,
where real and imaginary parts are defined by an attenuation

coefficient, að�Þ, and a phase velocity, vð�Þ, respectively,

according to

kð�Þ ¼ 2p�
vð�Þ � iað�Þ; (2)

and the acoustic plane wave measured after a propagation

distance, x, inside the bubbly water is, thus, given by

B̂xð�Þ ¼ Ŝ0ð�Þei 2p�t�kxð Þ
(3a)

¼ Ŵxð�Þe�xað�Þei2p� x=v0�x=vð�Þð Þ: (3b)

The attenuation coefficient is related to the ratio of the mod-

uli jB̂xð�Þj and jŴxð�Þj and the phase velocity to the phase

shift, DU ¼ argðB̂xð�ÞÞ � argðŴxð�ÞÞ, which gives

að�Þ ¼ � 1

x
ln
jB̂xð�Þj
jŴxð�Þj

; (4a)

vð�Þ ¼ xv02p�
x2p� � v0DU

: (4b)

For frequencies close to �p0
� �r, the experiments highlight

very weak dependencies of a and v with � (Fig. 3, circles).

The complex wavenumber, kð�Þ, can be modeled by the

use of an effective medium theory. The model developed by

Foldy (1945) is widely used in the “independent scattering

approximation” for dilute systems and isotropic scatterers

with a radius r < k: the far-field isotropic scattering ampli-

tude of a single bubble (Ye, 1997) is characterized by the

so-called Minnaert frequency, �r. For the radius

r0¼ 1.6 mm, a single bubble resonates at �r ’ 2 kHz, which

is much lower than the source peak frequency, �p0
¼

310 kHz. In the model developed by Lax (1951), the isotro-

pic scattering amplitude is replaced by the forward scatter-

ing amplitude of a fluid sphere (Anderson, 1950) to take

anisotropic scatterers into account when k < r.

The complex wavenumbers are computed by consider-

ing the physical parameters of the experiment, including the

median bubble radius, r0, and the polydispersity, �: only the

volume fraction initially estimated about 0.15% has been

increased to /¼ 0.2% to better fit the model and experimen-

tal results. The Foldy model predicts an attenuation that

strongly depends on the frequency and underestimates the

measurements [Fig. 3(a), dashed curve]: for frequencies as

high as �p0
¼ 310 kHz, air bubbles with r0¼ 1.6 mm cannot

be approximated to isotropic scatterers, and this model is

not adapted. The theoretical attenuation, að�Þ, and phase

velocity, vð�Þ, based on the Lax’s model are in good agree-

ment with the data [Figs. 3(a) and 3(b), solid curves]: in par-

ticular, it correctly predicts the weak decrease in the

attenuation coefficient with the frequency. This means that

FIG. 3. (a) Experimental attenuation

coefficient and (b) phase velocity mea-

sured with a source peak frequency

�0¼ 310 kHz across 0.74 cm of bubbly

water (circles) and predicted by effec-

tive models by Foldy (dashed curve)

and Lax (thin curve) are shown.
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bubbles act as anisotropic scatterers in the biphasic medium

where multiple scattering can be neglected.

III. METHODOLOGY

A. Additional time-derivative order, cx, and time-
dilation factor, mx

The reference source signal, S0ðtÞ, is similar to a

Gaussian derivative wavelet with a derivative order b0¼ 4

(Le Gonidec et al., 2002) such that

B0ðtÞ � S0ðtÞ �
db0

dtb0
e�p2�2

0
ðt�s0Þ2 ; (5)

which is characterized by five extrema and symmetric rela-

tive to the maximum peak located at time s0, and a natural

frequency,

�0 ¼ �p0

ffiffiffiffiffiffiffiffiffiffi
2=b0

p
; (6)

where �p0
¼ 310 kHz is the peak frequency. In the frequency

domain, the wavelet can be expressed by

Ŝ0ð�Þ ¼
�2

�2
p0

e1��2=�2
p0

 !b0=2

ei �2p�s0þpb0=2ð Þ; (7)

and includes the normalization factor of the Gaussian deriv-

ative function (Wang, 2015), i.e., jŜ0ð�p0
Þj ¼ 1. Inside the

bubbly water, the amplitude spectrum of the Fourier trans-

form of the waveform, BxðtÞ, is

jB̂xð�Þj ¼ e�að�Þx �2

�2
p0

e1��2=�2
p0

 !b0=2

: (8)

As a main approximation based on the measurements,

the attenuation coefficient weakly changes the source peak

frequency and

jB̂xð�Þj � j ~̂Bxð�Þj ¼ Ax
�2

�2
px

e1��2=�2
px

 !b0=2

; (9)

where the factor Ax does not depend on the frequency. In

this case, the modified peak frequency, �px
’ �p0

, i.e., the

product �0

ffiffiffiffiffiffiffiffiffiffi
b0=2

p
is nearly a constant. Actually, this does

not require that the natural frequency and derivative order of

the Gaussian derivative wavelet remain constant but may

depend on x via �px
¼ �0x

ffiffiffiffiffiffiffiffiffiffi
bx=2

p
, associated with the modi-

fied derivative order,

bx ¼
�2

0

�2
0x

b0 ¼
b0

d2
x

; (10)

where dx is equivalent to a time-dilation factor. By introduc-

ing the additional derivative order,

cx ¼ bx � b0; (11)

this leads to the formulation of the amplitude spectrum,

j ~̂Bxð�Þj ¼ Ax

����Ŝ0

�

dx

� ����� �

�p0

� �cx

" #d2
x

: (12)

The relationship between the additional derivative order, cx,

and the time-scale parameter, dx, shows that for b0¼ 4, dx

decreases from 1 to 0.98 when cx increases from 0 to 0.1. As

a first approach, the approximation

j ~̂Bxð�Þj ’ Ax

����Ŝ0

�

dx

� ����� �

�p0

� �cx

(13)

is the amplitude spectrum of a Gaussian derivative wavelet

defined as a derivative and dilated version of S0ðtÞ according

to

BxðtÞ � ~BxðtÞ /
dcx

dtcx
S0ðdxt – TÞ; (14)

which can be used to assess the acoustic waveform in the

time domain when �px
’ �p0

. Note that T is introduced as a

time sift related to the travel time. The fractional-derivative

order, cx, is determined by an optimization procedure based

on a simulated annealing method to optimize the normalized

correlation coefficient between BxðtÞ and ~BxðtÞ. The time-

scale factor is then determined by dx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b0=ðb0 þ cxÞ

p
when the source signal is a Gaussian derivative wavelet or

as a second free parameter in the optimization procedure.

B. Theoretical waveform approximation

The Lax’s effective theory is used to model the propa-

gation of a Gaussian derivative source wavelet. To cover

different frequency ranges, three peak frequencies are con-

sidered: �p0=2; �p0, and 3�p0 (Fig. 4), corresponding to a

ratio with the bubble resonance frequency of 77.5, 155, and

465, respectively. The propagation distance is set to the

maximum distance of 0.74 m, which is available in the

experiments.

With b0 ¼ 4, the source wavelet is characterized by a

symmetrical shape and five extrema. For a peak frequency

of 155 kHz, the transmitted waveform determined from the

analytical method is in agreement with the theoretical wave-

form based on the Lax’s theory: the correlation coefficient is

0.992 and the additional derivative parameter c ¼ 1:172 is

larger than one, i.e., the waveforms have theoretically seven

peaks but only six dominate because the seventh peak,

whose amplitude increases with c, is too weak to be

observed [Fig. 4(a)]. For �p0
¼ 310 kHz, the analytical and

theoretical waveforms are in good agreement. The correla-

tion coefficient is close to one and c ¼ 0:678: for 0< c � 1,

the waveforms have six peaks and the sixth peak is weak

when c ¼ 0:678 [Fig. 4(b)]. For a peak frequency of

930 kHz, the analytical and theoretical waveforms are in

2816 J. Acoust. Soc. Am. 154 (5), November 2023 Yves Le Gonidec
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very good agreement with a correlation coefficient about

one and c ¼ 0:228: this derivative parameter is low, associ-

ated with a sixth peak that is too weak to be observed, and

means that the waveform tends to be similar to the source

wavelet, in agreement with the effective attenuation coeffi-

cient and phase velocity that become asymptotically con-

stant at high frequencies.

As a first approach, the quality of the analytical approx-

imation is quantified by the correlation coefficient and has

been explained in a mathematical sense in Sec. III A. An

acoustics interpretation may be related to the fractional

order derivative because time- and space-fractional wave

equations are commonly used to describe lossy media char-

acterized by a power-law response in frequency (Zhao and

McGough, 2018), i.e., by an attenuation aðxÞ ¼ a0jxjy,

where a0 > 0 and 0 � y � 2 are constants (Chen and Holm,

2003). In particular, the exponent y ranges between 1 and 2

for most lossy media (Szabo, 1994), y ¼ 1 for attenuation of

seismic waves in rocks and sediments at frequencies larger

than a cutoff frequency (Futterman, 1962), and y¼ 0 applies

primarily to electromagnetic waves in the high frequency

limit (Holm and Sinkus, 2010; Szabo, 1994). For the bubbly

water discussed in the present paper, a weakly frequency

dependent loss, i.e., y’ 0, is also observed at high frequen-

cies and related to a fractional-derivative parameter.

Fractional order derivatives are nonlocal operators in con-

trast to integer order derivatives in the sense that they

depend on the past history of motion and have memory

(Holm, 2015; Holm and Sinkus, 2010): this may explain the

increase in the additional peak amplitude in the acoustic

waveform when dispersion increases (Fig. 4). Multiple

scattering may represent such a memory and be used to

model wave propagation in random media (Garnier and

Sølna, 2010; Lambert et al., 2015). A simple criterion to

determine whether multiple scattering occurs in the bubbly

water is a propagation distance, x, larger than few scattering

mean free paths, ls (Foldy, 1945): actually, x � 0.74 m and

ls ’ 1 m, i.e., memory effects may not be explained by mul-

tiple scattering in the present experiment, and other mecha-

nisms should be considered (Caputo and Mainardi, 1971).

However, these are preliminary explanations only and the

waveform approximation is mainly phenomenological at

this stage.

IV. APPLICABILITY OF THE METHOD

A. Experimental waveform approximation

The source signal is the experimental signal, S0ðtÞ
[Fig. 5(b1)], which is not a theoretical Gaussian derivative

source wavelet. In addition, the experimental bubbly water

is dynamic and may be not perfectly homogeneous, i.e., its

effective properties may change temporally and spatially.

The aim is quantifying the experimental waveform

changes across the experimental bubbly water by the use

of the additional derivative order, cx, determined accord-

ing to the analytical approximation developed in the pre-

sent paper.

The approach highlights a linear increasing trend of cx

with x in very good agreement with the theoretical results

[Fig. 5(a1)]. Actually, the agreement occurs up to the sixth

bubble cloud located at x0¼ 0.5 m, which may be associated

with a different regime of the bubble release during the

FIG. 4. (a)–(c) Theoretical waveforms

based on the effective model (thin

curves) and Gaussian derivative wave-

let method (bold curves) for three dif-

ferent peak frequencies are displayed.

The propagation distance is

x¼ 0.74 cm.

J. Acoust. Soc. Am. 154 (5), November 2023 Yves Le Gonidec 2817

https://doi.org/10.1121/10.0022256

https://doi.org/10.1121/10.0022256


experiments. The approximated waveforms associated with

cx highlight the progressive loss of symmetry of S0ðtÞ when

x increases [Fig. 5(b2)]. The correlation coefficient between

the measured BxðtÞ and the approximation ~BxðtÞ waveforms

is better than 0.99 [Fig. 5(a2)]. At the maximum distance

x¼ 0.74 m, available in the measurements, the measured

and approximated waveforms are in good agreement with a

S0ðtÞ shape modification quantified by cx ’ 0.6 [Fig. 5(a1)].

It is expected that at larger distances, larger values of cx may

be reached, which are associated with stronger changes of

the acoustic waveforms but also a lower quality of the

approximation based on ~BxðtÞ. This point can be checked

based on a modeling approach where larger distances and a

wide range of different bubbly waters can be considered.

B. Extension to general bubbly waters

Previously, it has been shown numerically that the method

is associated with a correlation coefficient larger than 0.99

when the source peak frequency is larger than 155 kHz for the

bubbly water considered in the present study. Similar results

have been highlighted experimentally with a 310 kHz source

peak frequency and distances x � 0.74 m. To extend this study

to different dispersive media, a numerical approach has been

performed on 100 different bubbly waters with r0 in the range

0.4–4 mm and / in the range 0.05%–0.5% for x¼ 1 and 10 m,

respectively. For each case, the correlation coefficient quanti-

fies the quality of the approximation [Figs. 6(a1) and 6(b1),

respectively].

An arbitrary threshold is fixed to the correlation coeffi-

cients with a minimum value of 0.97. The quality of the

approximation is illustrated by the theoretical and approxi-

mated waveforms at x¼ 1 m [Fig. 6(a2), thin and bold

curves, respectively] associated with r0¼ 1.2 mm and

/¼ 0.25% [Fig. 6(a1), star]: the correlation coefficient is

0.975 for an additional derivative order, cx, as high as 1.957.

At a larger propagation distance, the applicability of the

method requires a larger bubble radius and lower density of

bubbles in water, as illustrated at x¼ 10 m with r0¼ 3.6 mm

and /¼ 0.10% [Fig. 6(b2), where the correlation coefficient

is 0.995 for an additional derivative order cx ¼ 1:068.

In addition, the larger the source peak frequency rela-

tive to the resonance frequency of a bubble, the larger is the

coefficient correlation, which means that the applicability

range of the method can be extended by increasing the

source frequency.

FIG. 5. (Color online) (a1) Additional derivative order, cx, across the experimental bubbly water (circles) and theoretical linear fit (dashed line), (a2) correla-

tion coefficient between the experiment and approximated waveforms, (b1) experiment and approximated source signal, S0ðtÞ, (b2) approximated waveforms

ðdcx=dtcx ÞS0ðdxt – TÞ with dx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b0=ðb0 þ cxÞ

p
, and (b3) last experiment and approximated waveforms (thin and bold curves, respectively) for x¼ 0.74 m

are shown.
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V. CONCLUSION

The present work describes acoustic experiments and ana-

lytical developments to quantify waveform changes of a

Gaussian derivative source wavelet, S0ðtÞ, characterized by a

peak frequency, �p0
, and derivative order, b0, inside a dispersive

medium. The main assumption of the approach deals with the

peak frequency, �px
, of the waveform, BxðtÞ, measured at the

distance x, which is �px
’ �p0

. It is shown that this condition is

satisfied for acoustic experiments performed with 1.6 mm radius

bubbles composing a bubbly water with a gas volume fraction

20%, and for �p0
¼ 310 kHz and x � 0.74 m. Analytical devel-

opments show that if �px
’ �p0

, the acoustic waveform can be

approximated by ~BxðtÞ / ðdcx=dtcxÞS0ðdxt – TÞ, where cx is an

additional fractional-derivative order determined by the use of

an optimization procedure. The time-scale factor is dx ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b0=ðb0 þ cxÞ

p
for a Gaussian derivative source wavelet; oth-

erwise, it is a second free parameter for the optimization

method. The approach applied to the experiments highlights a

linear increase of cx with x from 0 to 0.6 with a very good agree-

ment between numerical and experimental waveforms. A pre-

liminary acoustics interpretation is discussed in the framework

of fractional order derivatives, based on a power-law response

in frequency and a time-domain memory.

To check the applicability of the method to more gen-

eral conditions, the approach has been extended numerically

to different source peak frequencies, different distances of

propagation, and different bubbly waters characterized by

the Lax’s effective medium theory. The aim was using the

theoretical attenuation coefficient, að�Þ, and phase velocity,

að�Þ, of the dispersive medium to model the acoustic wave-

form propagation and quantify the application of the approx-

imation, BxðtÞ ’ ~BxðtÞ, by a normalized correlation

coefficient. Two hundred different configurations of bubbly

waters in large ranges of bubble radius in 0.4–4 mm and vol-

ume fraction in 0.05%–0.5% have been considered for x¼ 1

and 10 m: the maps of correlation coefficients highlight that

the domain of applicability of the method is very large at

short distances and focuses at large distances to low concen-

trations of large bubbles. A threshold of 0.97 on the correla-

tion coefficient corresponds to maximum derivative orders

about two, related to significant shape changes. The applica-

bility of the method, focused in the present work on air bub-

bles in water, may be extended to other dispersive media,

assuming that the peak frequency of the dispersed acoustic

waveform remains constant to the peak frequency of the

source signal.

Similar circumstances of bubbly waters may exist in the

close vicinity of active gas seeps, for instance, where bub-

bles can occur at volumetric void fractions as low as 0.01%

with diameters up to 4 mm and sounded by the use of a very

high frequency echosounder (Wang et al., 2016). In such

natural environments, the present work may motivate future

FIG. 6. (a1), (b1) Maps of normalized correlation coefficients for x¼ 1 and 10 m, respectively (best correlation in black), (a2), (b2) waveforms of the acous-

tic signals modeled with the Lax’s model (thin curves) for a volume fraction / of r0 radius bubbles, identified on the maps by the stars, and approximations

(bold curves) are displayed.
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works on underwater communication by contributing to

acoustic quantification of gas bubbles in the ocean water

column. More generally, it introduces a fractional-derivative

order in the time domain of potential interest when model-

ing acoustic wave propagation in dispersive media.
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