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Abstract

Large-eddy simulations (LES) of the near-field region of large-scale fire
plumes are performed for the first time with a pressure-based Lattice Boltz-
mann method (LBM) with low-Mach number approximation. Two sce-
narios are considered: the large-scale non-reactive helium plume and the
1 m methane pool fire, both investigated experimentally at Sandia. In
the second scenario, a simplified modeling of the combustion and radia-
tion processes is introduced involving a one-step irreversible reaction eddy-
dissipation concept-based combustion model and a radiant fraction model,
respectively. In both scenarios, a quantitative agreement is observed with
the experimental data and model predictions are consistent with previously-
published numerical studies. Our simulations demonstrate the computa-
tional efficiency of the proposed LBM solver to tackle fire-induced flows,
suggesting that LBMs are a good alternative candidate for the modeling of
fire-related problems.

Introduction

Computational Fluid Dynamics models play today an increasing role in
fire safety engineering with the development of LES-based fire simulators
such as FDS by the NIST and FireFoam by FM Global [1, 2]. The near field
of well-controlled fire plumes offers a canonical scenario for the validation
of such simulators since it involves most of the coupled physical processes
encountered in fire problems, namely, buoyancy-controlled flows, buoyancy-
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induced turbulence, turbulent combustion, thermal radiation, soot genera-
tion, and, in the case of pool fires, burning rate [3].

LES of non-sooting and sooting fire plumes were reported in the liter-
ature with different levels of sophistication in the modeling of subrid-scale
turbulence[4–14], turbulent combustion [14–16], radiative heat transfer [17–
19], and soot modeling [16, 20, 21]. One of the difficulty in the modeling of
the near field of fire plumes is that the flow, and the resulting air entrain-
ment that controls the combustion process, is governed by the formation and
growth of the flame base non-dissipative laminar instability near the edge
of the pool that develops periodically to form energy containing large-scale
toroidal vortices [22, 23]. A consequence is that these instabilities have to
be spatially-resolved which requires a grid-resolution of the order of 2 mm
[12–14].

The LES of fire plumes reported in the literature were performed by
using classical Navier-Stokes solvers. On the other hand, Lattice Boltzmann
Methods (LBM) appear as an attractive alternative to the classical Navier-
Stokes solvers due to their lower computational cost, their capacities for
massively parallel computing and the ease to deal with complex geometries
using multi-level Cartesian grids [24]. These methods have been successfully
applied to different classes of problems, including compressible flows [25–30],
atmospheric flows [31–35], reactive flows [36–39] and, recently, to buoyancy-
driven flows encountered in the far field of plumes [40].

The objective of this article is to explore for the first time the capacity of
a pressure-based LBM solver with low-Mach number approximation [41] to
handle fire-related flows. An hybrid strategy is considered where continuity
and momentum are solved with the LBM equation and transport equations
for other scalars (enthalpy, chemical species,...) are solved by classical finite
difference methods. The numerical model is applied to provide LES of two
scenarios representative of unwanted fires. The first involves the large-scale
helium plume investigated at Sandia [42, 43]. The main advantage of this
configuration is that it mimics the dynamics and structure of large-scale
fire plumes while avoiding the complexities associated with combustion and
radiation. The second configuration is relative to the 1 m methane fire
plumes also investigated at Sandia [44, 45]. This scenario enhances the
complexity of the first as it involves turbulent combustion and thermal
radiation.

The article is organized as follows. A detailed description of the ex-
perimental setup is first given. Section 2 presents the numerical method,
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including the LBM strategy, the different turbulence, combustion and radi-
ation models. The results for the helium plume scenario and the methane
pool fire are presented in Sections 3 and 4, respectively. Conclusions are fi-
nally drawn to highlight the findings of this study and suggestions for future
work.

1. Experimental setup

Comparisons are made in this study with experiments performed in the
Fire Laboratory for Accreditation of Models and Experiments (FLAME)
at Sandia National Laboratories in Albuquerque, New Mexico [42]. The
considered experiments involve either a non-reactive helium plume scenario
or a reactive scenario with methane as fuel. The central FLAME chamber
consists of a 6.1m cubical enclosure with a 2.4m diameter chimney.

The plume source is 1m in diameter surrounded by a 0.51m wide floor
(i.e. the ground plane). Further details about the facility can be found in
Tieszen et al. [42].

For the non-reactive case, a gas mixture, composed of 96.4% helium,
1.7% acetone, and 1.9% oxygen by volume, with a molecular weight of 5.45
g/mol, was injected at an average velocity of 0.325m/s. Measurements were
obtained using particle image velocimetry (PIV) for velocity field measure-
ments and planar laser-induced fluorescence (PLIF) for helium mass fraction
[43]. The experimental uncertainty on the measured velocities, concentra-
tions, turbulent statistics, and concentration fluctuations is estimated to be
around ±20, ±18, ±30, and ±21%, respectively.

For the methane pool fires, Tieszen et al. [44, 45] measured the ve-
locity field for methane fire plumes with different heat release rates rang-
ing from 1.56 to 2.61 MW. Nonetheless, no measurements for temperature
were performed. Numerous tests were conducted during the experimental
study [44, 45] where the fuel inlet conditions were varied to cover a wide
range of fire regimes. TEST-24 is chosen as a reference for our numerical
study and whose inlet and boundary conditions are summarized in Tab. 1.

2. Lattice-Boltzmann model for Low-Mach flows

2.1. Macroscopic governing equations
The leading order flow mass, momentum, and energy conservation equa-

tions are introduced as [41]:
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Fuel CH4

Fuel inlet velocity (m/s) 0.097± 3%
Fuel mass flux (kg/m2s) 0.053± 3%
Heat release rate (MW) 2.07± 8%
Ambient pressure (kPa) 81.0± 0.2
Ambient temperature (K) 290± 3

Table 1: Initial and boundary conditions of TEST-24 in the experiments [44, 45]
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ρ
∂Yk

∂t
+ ρui

∂Yk

∂xi

=
∂

∂xi

(ρYkVk,i) + ω̇k, (5)

where ρ is the density, ui is the velocity vector, ph is the hydrodynamic
pressure, P is the thermodynamic pressure, gi is the gravitational acceler-
ation, δij as the Kronecker delta symbol, ρ∞ is the ambient density. The
viscous stress tensor Πij in Eqs. (2-4) reads:

Πij = µ

(
∂ui

∂xj

+
∂uj

∂xi

− δij
2

3

∂uk

∂xk

)
, (6)

with µ the dynamic viscosity. In enthalpy equation (Eqn. 4), h represents
the mass enthalpy. Throughout this work, we set the temporal variation of
the thermodynamic pressure to zero, i.e., dP/dt = 0, to meet the open
boundary conditions [41, 46]. The heat flux qi in the enthalpy equation
reads:

qi = −λ
∂T

∂xi

+

Nsp∑
k=1

ρhkYkVk,i, (7)

where T is the temperature, λ the heat conductivity, obtained assuming
constant Prandtl number (Pr):

Pr =
cpµ

λ
. (8)
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hk is the partial enthalpy of species k, Yk is its mass fraction, and Vk,i

is its diffusion velocity vector. The term YkVk,i constitutes the species mass
flux. The species mass flux is modeled by Hirschfelder and Curtiss approxi-
mation equipped with a correction term ensuring global mass conservation:

YkVk,i = −Dk
Wk

W
∂Xk

∂xi

+ V c
i Yk, (9)

where Dk is the molecular diffusion coefficient of species k, Wk is its
molecular weight and Xk is its molar fraction. W is the average molecular
weight and V c

α the correction velocity introduced in order to ensure the
conservation of total mass (i.e., ensuring

∑Nsp

k=1 YkVk,α = 0) which can be
evaluated by:

V c
α =

Nsp∑
k=1

Dk
Wk

W
∂Xk

∂xα

. (10)

Dk is linked to the viscosity through Schmidt number (Sc) as:

Sc =
µ

ρDk

. (11)

The system of Eqs (1-5) is fully closed by the choice of an equation of
state:

P = ρ.r.T , h =

Nsp∑
k=1

hkYk =

Nsp∑
k=1

Yk(

∫ T

T0

cp,k(θ)dθ +∆h0
k) (12)

with P the thermodynamic pressure, cp,k and ∆h0
k the constant pressure

heat capacity and the formation enthalpy of species k respectively, and
r = R/W the gas constant where R = 8.314JK−1 is the universal gas
constant and its molecular weight is W .

2.2. Turbulence modeling
The filtered expressions for Eqs. 1-5 are widely reported in the literature

(see, e.g., Ref. [46]) and not recalled here. Subgrid-scale models (i.e. tur-
bulence models) are essential to estimate the subgrid terms appearing in
the filtered equations. Applying the subgrid-scale model numerically comes
down to modifying the viscosity µ through the addition of a turbulent vis-
cosity µt. Turbulent models aimed to estimate the correct value of µt that
compensate the non-resolved structures filtered by the mesh (i.e. smaller
than the mesh size).
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2.2.1. Smagorinsky model
The first model to be introduced is the Smagorinsky model [47]. It is

constructed of a length scale term, a time scale length, and a dimensionless
constant Cs called Smagorinsky constant. The turbulent viscosity µt is
calculated through:

µt = ρ(Cs∆m)
∣∣∣S̃∣∣∣, (13)

where ∆m is the local mesh size, and
∣∣∣S̃∣∣∣ is the filtered rate of stress

tensor written as: ∣∣∣S̃∣∣∣ =√2S̃ijS̃ij, (14)

with S̃ij reads:

S̃ij =
1

2
(
∂ũi

∂xj

+
∂ũj

∂xi

), (15)

Care should be taken when using the Smagorinsky model because it has
many drawbacks listed below:

• Cs is a predefined input to the simulation, this constant can not rep-
resent correctly various turbulent flows.

• The eddy viscosity does not vanish for laminar flows.

• The back-scatter of energy from small scale to large scale is prevented
completely since:

(Cs∆
2
m)
√
2SijSij ≥ 0 (16)

• Smagorinsky model introduces too much diffusion to the flow.

2.2.2. Vreman model
Inspired from the Smagorinsky model, Vreman subgrid model was in-

troduced [48], where the µt is described as:

µt = ρC

√
Bβ

αijαij

, (17)

with,

αij =
∂uj

∂xi

, (18)

βij = ∆2
mαmiαmj, (19)

Bβ = β11β22 − β2
12 + β11β33 − β2

13 + β22β33 − β2
23, (20)

6



The constant C is related to the Smagorinsky constant Cs as C = 2.5C2
s .

Vreman model was developed in a try to fix the downsides of Smagorinsky
model. Both Smagorinsky and Vreman models are simple to implement as
they only require the local filter width (i.e. mesh size) and the first order
derivatives of the velocity field.

2.3. Combustion modeling
The combustion modeling aims to compute the species production term

ω̇k (i.e. combustion source term) in the species conservation equation (Eqn. 5).
The eddy dissipation concept (EDC), which is commonly incorporated in
fire simulators such as FDS [49] and FireFoam [2], is adopted in the present
study [50]:

ω̇F = CEDCρ
1

τt
min

(
ỸF ,

ỸO

s

)
(21)

where ω̇F is the fuel mass consumption rate per unit volume (i.e. Kg m−3 s−1),
CEDC is the model constant, ρ is the averaged density, τt is the turbu-
lent/mixing time scale, ỸF and ỸF are the filtered mass fraction of fuel and
oxidizer respectively and finally s is the stoichiometric oxygen-to-fuel mass
ratio. The main parameter that controls and defines the dynamics of the
EDC model is the turbulent/mixing time scale τt. Following the work of
Yaga et al. [51], the CEDC is set to 4.0 whereas the eddy characteristic time
τt is estimated by considering the Kolomogorov scale as:

τt =
(ν
ϵ

) 1
2
, (22)

where ϵ is the dissipation rate of turbulent kinetic energy and ν is the
kinematic molecular viscosity. Assuming local equilibrium between produc-
tion and dissipation of turbulent kinetic energy (same hypothesis adopted
while deriving Smagorinsky SGS model), eddy dissipation rate ϵ is written
as follows:

ϵ = 2νtS̃ij : S̃ij, (23)

where νt is kinematic turbulent viscosity and S̃ij is the strain rate, both
described in Sec. 2.2. The eddy characteristic time scale will then be:

τt =

(
ν

2νtS̃ij : S̃ij

) 1
2

. (24)
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Note the term S̃ij : S̃ij is an inner product and should calculated as
follows:

S̃ij : S̃ij = S̃11

2
+ S̃22

2
+ S̃33

2
+ 2

(
S̃12

2
+ S̃13

2
+ S̃23

2
)
. (25)

A simple radiant fraction-based model is introduced to account for radia-
tive loss. In this approach, commonly used in fire simulators [1], a specified
part of the local heat release rate is assumed to be lost by radiation [1, 2].

2.4. LBM description for Low-Mach number approximation
For a complete description of the numerical method, the reader is referred

to Farag et al. [28, 29]. Lattice-Boltzmann methods are derived from a
space, time, and velocity discretization of the Boltzmann equation [52]. In
the present model, the probability density function fi is solved at each point
x via the Boltzmann equation discretized as:

fi (x+ ciδt, t+ δt) = f eq
i (x, t) +

(
1− δt

τ

)
fneq
i (x, t) +

δt

2
FE
i (x, t) (26)

where δt is the time-step, and ci is the ith discrete velocity of the D3Q19
lattice[24], and FE

i is a volume force including gravity and correcting terms,
as defined in Appendix A. The equilibrium and off-equilibrium populations
(f eq

i , fneq
i ) are to be defined in Eqs (28, 29).

In Eq. (26), the relaxation time τ is related to the dynamic viscosity as:

τ =
µ

ρc2s
+

δt

2
, (27)

where cs = δx/(
√
3δt) is the characteristic velocity of the D3Q19 lattice

[24].
The equilibrium function is obtained as

f eq
i = ωi

(
ρθ +

H(1)
i,α

c2s
ρuα +

H(2)
i,αβ

2c4s
ρuαuβ + a(3) + a(4)

)
, (28)

where ωi is the D3Q19 weight of discrete velocity ci, Hi are the discrete
Hermite polynomials, defined in Appendix A, and a(3) and a(4) are third
and forth order terms also provided in Appendix A.

The off-equilibrium counterpart fneq is obtained as:

fneq
i = ωi

[
H(2)

i,αβ

2c4s
a
(2),neq
αβ +

H(3r)
i,γ

6c6s
a(3r),neqγ

]
, (29)
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with

a
(2),neq
αβ ≡ a

∗(2),neq
αβ − δαβ

3
a∗(2),neqγγ , (30)

a
∗(2),neq
αβ =

∑
i

[(
fi − f eq

i +
δt

2
FE
i

)
H(2)

i,αβ

]
. (31)

and the third-order contribution defined in Appendix A.
Following the work introduced recently by Wang et al. [41], the com-

pressible description of LBM can be adjusted to follow the low-Mach num-
ber approximation (LMNA). This approach divides the pressure field into
the thermodynamic part, pth, and the hydrodynamic part, P . The ther-
modynamic pressure is linked to the equation of state and is spatial inde-
pendent. Thus, only the hydrodynamic pressure appears in the momentum
conservation equation. In practice, the density field is updated using the
thermodynamic pressure and the temperature field, i.e.

ρ(x, t+ δt) =
P (t+ δt)

rT (x, t+ δt)
. (32)

For the simulations in this paper, the thermodynamic pressure P is assumed
to be constant, considering the open boundary conditions.

The hydrodynamic pressure cooperates with the LBM system through
the reduced temperature

θ ≡ ph

ρc2s
, (33)

and ph will be updated following

ph(x, t+δt) = ph(x, t)+c2s

[∑
i

{
f col
i (x− ciδt, t)− f col

i (x, t)
}
− (ρ(x, t+ δt)− ρ(x, t))

]
.

(34)
The velocity fields are calculated through the first-order moment of the

LBM population

ρui(x, t+ δt) =
∑
i

ci

(
fi(x, t+ δt) +

δt

2
F g
i

)
, (35)

where F g
i is the gravity force term defined in Appendix A.

The enthalpy equation (4) is solved at the same time using a finite dif-
ference discretization under the non-conservative form, exactly as presented
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by Tayyab et al. [36, 37]. Second-order consistency to the macroscopic
equations (1-4) can be shown via Chapman-Enskog [52], or Taylor [53, 54]
expansions.

3. Sandia’s 1-m diameter helium plume

3.1. Numerical setup
The simulation is performed on a Cartesian mesh for a cubic domain

sizing 8 × 8 × 4m3 depicted in Fig. 1. The choice of the domain size as
well as the grid resolution is consistent with previous numerical studies
[4, 7, 55, 56].

Three meshes were included in our study, and refinements zones were
used to reduce the calculation cost. The zones of refinements (Fig. 1) are
denoted by ZoneI, ZoneII, ZoneIII and ZoneIV with grid size reduced in
half between two adjacent zones. The coarse mesh contains ZoneI, ZoneII
and ZoneIII corresponding to grid size of 8 cm, 4 cm and 2 cm, respectively,
resulting in a 2 million-cell mesh. This coarse grid will be referred to as
∆x = 2 cm hereafter. In the medium and fine meshes, an additional re-
finement zone is added close to the plume source, indicated by ZoneVI in
Fig. 1, to end up with four levels of refinements. For the medium grid, the
largest and smallest grid size are of 8 cm and 1 cm, respectively, resulting in
a 4 million-cell mesh. This medium grid will be referred to as ∆x = 1 cm
hereafter. For the fine, the mesh sizes are deduced from the medium grid by
applying a scaling factor of 0.8 in each zone. A consequence is that the the
largest and smallest grid size are of 6.4cm and 0.8 cm, respectively, resulting
in a 7.8 million-cell mesh. This fine grid will be referred to as ∆x = 0.8 cm
hereafter.

Boundary conditions are given in Fig. 1. Helium is injected at the center
of the bottom plane through a 1m diameter inlet with a uniform vertical
velocity UHe

inlet = 0.325m/s. The helium inlet is surrounded by an annulus
solid plate of 0.5m width beyond which a co-flow of air is injected at a
much lower speed UAir

coflow = 0.01m/s. At the upper outlet plane a Dirichlet
boundary condition is used for pressure and Neumann for other variables,
with a clip on the streamwise velocity to prevent any backflow from the
outlet. The sides are set to a typical In/Out flow.

At every point in the domain, the composition of the fluid corresponds to
a mixture of helium and air. The air was treated as a whole specie without
separating Oxygen and Nitrogen with an average molecular weight of the
air is taken Wair = 28.9gmol−1. For experimental visualization reasons, the
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Figure 1: Schematic of the computational domain including refinement zones and bound-
ary conditions.
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injected helium was not pure, but rather a mixture of 96.4% helium (He),
1.9% oxygen (O2) and 1.7% acetone (CH3COCH3) resulting in an average
molecular weight WHe = 5.45gmol−1. The ambient (also inlet) temperature
and pressure are T∞ = 285K and p∞ = 80900Pa, respectively, in order to
match the experimental setup.

The Prandtl number Pr was set to 0.7 while the Schmidt number of
helium ScHe is set to 0.2. The dynamic viscosity µ has a constant value of
1.8877× 10−5 kgm−1 s−1 for both air and helium. Resulting in a Reynolds
number Re ≃ 3220 and a Richardson number Ri ≃ 75.4, matching the
experiment.

In the case of homogeneous isotropic turbulence, the model constant is
estimated as Cs = 0.2 [46]. However, Cs depends on the flow configuration
with values of Cs ≈ 0.1 − 0.2 often used [57]. For this simulation, the
Smagorinsky model is used (Sec. 2.2) with a constant Cs = 0.1 as suggested
by Maragkos et al. [8].

The un-resolved SGS heat and species diffusion fluxes are estimated
using the turbulent Prandtl Prt and the turbulent Schmidt Sct, respectively.
Both are set to 0.5 as Maragkos et al. [8] and Chung et al. [55].

The large-eddy simulation is run for 26 s of physical time. The first 13 s
are to ensure the evacuation of the initial field and to reach statistically
stationary flow conditions, and the other 13 s are used to construct the
mean and RMS quantities of the plume. The simulations are performed
at a constant CFL number equaling to 0.6 such that the time step would
depend on the local mesh size. The CFL number is defined as:

CFLu =
(u+ cblack)δt

δx
(36)

where cblack denotes the fictitious reduced speed of sound following the
low-Mach number approximation. The time-step is local (it is halved/doubled
at each mesh transition), and is δt = 38 µs on the smallest mesh region
(where ∆x = 0.8cm). In other words, the CFL number (36) is kept almost
constant in the whole domain. The simulations are parallelized on 120
cores on a Dell PowerEdge C6420 server with 4× 32-core Intel Xeon Gold
6142, 2.6 GHz, and 96 GB RAM. The computational cost of the simulation
with the finest mesh is compared to other studies in Table 2. The corre-
sponding reduced computational time (cost per iteration per grid point) is
close to 2.4µs, an excellent score when comparing with available computa-
tional benchmarks [58–60]. Another advantage of the present approach is
that complex geometry can be easily tackled at no extra cost [61]. Finally,
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the considered Lattice-Boltzmann regularized kernel is well suited for cross-
platform cpu-gpu usage [62], allowing to envision significant speedups in the
future.

Reference mesh δxmin ttotal CPU hours CPU hours
/ 1 sec / 1 sec / 1M cell

DesJardin et al. [4] 2.5M 1.6 cm 20 sec 700 280
Maragkos et al. [8] 1.26M 1.23 cm 30 sec 78 62
Current study 7.8M 0.8 cm 26 sec 130 16

Table 2: Cost comparison between different numerical studies for the finest mesh.

3.2. Results and discussions
3.2.1. Turbulence

Figure 2 shows the energy spectrum based on the axial velocity at dis-
tance z = 0.5 m. The −5/3 power law, predicted by the the theory of
Kolmogorov [63], is well reproduced.
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Figure 2: Temporal energy spectrum at z = 0.5 m for axial velocity. Dashed line indicate
the expected characteristic slope of −5/3 [63].

3.2.2. Instability modes and vortex dynamics
Figure 3 shows a typical puffing cycle. A puffing cycle can be divided

into four distinct phases: In the first phase, instabilities form near the edge
of the plume as observed in Fig. 3(a). The trigger of these instabilities is
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the misalignment of pressure and density gradients which generates a local-
ized torque (baroclinic torque). Those instabilities grow and entrain large
quantity of the surrounding fluid, forming into a toroidal vortex as shown
in Fig. 3(b). While this vortex moves upwards more fluid is pumped at the
center of the plume causing a large streamwise velocity at the centerline
as shown in Fig. 3(c). The increase in streamwise velocity at the centerline
causes a sharp increase in cross-stream velocity near the base of the plume,
as a result of mass conservation, providing a perturbation of the mixing
layer for the next cycle (Fig. 3(d)).

Strong instabilities are observed at the helium-air interface near the
plume source, and it is important to capture those small dynamics as dis-
cussed in the introduction [12–14]. These instabilities are generated by
buoyancy-driven (gravitational and baroclinic) vorticity generation. Thus,
Rayleigh-Taylor and Kelvin-Helmholtz instabilities are triggered, near the
base of the plume, and at last they will form the toroidal structures [4, 43]
as shown in Fig. 3(d).

A better understanding can be made from the analysis of the vorticity
equation:

Dω

Dt
= (ω · ∇)u︸ ︷︷ ︸

vortex stretching

− ω(∇ · u)︸ ︷︷ ︸
dilatation term

+
1

ρ2
(∇ρ×∇p)︸ ︷︷ ︸

baroclinic torque

+
ρ∞
ρ2

(∇ρ× g)︸ ︷︷ ︸
gravitational torque

+∇× (
1

ρ
∇ · τ)︸ ︷︷ ︸

viscous diffusion

(37)

On the right hand side of Eq. (37), five different physical mechanisms
affect the vorticity transport. Those five terms are identified as vortex
stretching, dilatation term, baroclinic torque, gravitational torque and vis-
cous diffusion [64]. In incompressible flows, only the first term prevails.
Vortex stretching represents the enhancement of vorticity by stretching, it
is an essential mechanism by which turbulent energy is transferred to smaller
scales. The dilatation term represents the effects of vorticity field expansion
which causes a decrease in vorticity magnitude. Gravitational torque gen-
erates vorticity due to the misalignment of gravity and density gradients,
while baroclinic torque generates vorticity as a result of non-aligned pres-
sure and density gradients. In buoyancy-driven flows, both the baroclinic
and gravitational torque terms are the principal mechanisms generating
flow vorticity [64, 65]. The DNS [66] demonstrated that the gravitational
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Figure 3: Instantaneous iso-volume of density colored by gravitational torque magnitude
showing a complete puffing cycle. From left to right 4 different instances were captured
which extend over around 0.7 sec which is the periodic time of a puffing cycle.

torque is fundamental mechanism promoting cross-stream vorticity. LES
studies [4, 8] observed that during typical puffing cycle, the maximum grav-
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itational torque is located at the base of the plume. The same behavior can
be observed in the current study, as seen in Fig. 3 where the maximum value
of gravitational torque is observed at the base of the plume. The contribu-
tion of the baroclinic torque has similar importance. Maximum values can
be located in zones where large pressure and density gradients exist near
the base of the plume. Both torques trigger the instabilities at the base and
then nurture its growth. For large plumes and pool fires, this vortex destabi-
lizes rapidly forming secondary azimuthal, or "finger-like" instabilities that
can be detected in Fig. 3, which were also observed experimentally [22, 67].
Those secondary instabilities create streamwise vorticity that promote the
breakdown of large scale toroidal structures and improves the local mixing
eventually. Capturing these instabilities and mechanisms is therefore a pre-
requisite for pool fire simulation because the combustion process for this
type of flows is controlled mainly by the mixing process of fuel and oxidizer.

3.2.3. Puffing frequency
Figure 4 shows both the temporal signal of the centerline streamwise ve-

locity at z = 0.5m and the corresponding power density spectrum obtained
from Fast Fourier transform (FFT). The signal extends over 5 s of physical
time, from 13 to 18 s, in order to be compared with the experimental one.
It is worth mentioning that results revealed a small phase shift compared to
the experiment, probably because we do not have the exact same initializa-
tion as in the experiment. Thus, the simulation time signals in Fig. 4 have
been shifted along the time axis to match the first peak of the experimental
signal for the sake of clearer comparison.

Around 9 cycles are identified for the coarse mesh and 7 cycles for both
medium and fine meshes, versus 7 cycles found in the experiment [43]. In
addition, the predicted puffing frequency is 1.69 Hz for the coarse grid and
1.39 Hz for both the medium and fine grids whereas the observed experi-
mental frequency was 1.37± 0.1Hz. These results suggest that a converged
solution is obtained for the medium grid. This will be further demon-
strated when discussing the profiles of velocities and helium mass fraction.
The predicted puffing frequency on both the medium and fine meshes is
also consistent with the experimental correlation proposed by Cetegen and
Kasper [68] f = 0.8Ri0.38Up/Dp = 1.34Hz from measurements of helium-
air plumes for Ri < 100. In this expression, Ri is a modified Richardson
number defined as Ri1 = (ρ∞ − ρ)gDp/(ρ∞U2

p ) ≃ 76. Furthermore, the
results are also inline with the experimental correlation given by Cetegen
and Ahmed [22] for buoyant diffusion flames (i.e. pool fire) of various fuels
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f = 1.5/
√

Dp = 1.5Hz. The disparity from this latter correlation may
be attributed to the fact that it was suggested for diffusion flames. These
results highlight that the finer mesh enables the correct prediction of the
instabilities generated near the inlet which is the main trigger of the puffing
motion. The same conclusion was drawn by Maragkos et al. [8], DesJardin
et al. [4] and Ma et al. [56].
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Figure 4: (left) Time series of centerline streamwise velocity at z/D = 0.5 in a window
of 5 s. (right) Power spectrum of the centerline streamwise velocity Uz. The principle
frequency (i.e. puffing frequency) is indicated on the figure. The sampling time ts
to construct the power spectrum is taken to be each 10 time steps that is tscoarse =
9.6 × 10−4 sec, tsmedium = 4.8 × 10−4 sec and tsfine = 3.8 × 10−4 sec for the coarse,
medium and fine mesh, respectively.

3.2.4. Statistics of velocity and mass fraction
The mean values and high order statistics (i.e. rms) are discussed in this

section. In all the figures the data with bars represents the experimental
results of O’Hern et al. [43] including the experimental uncertainties as ex-
plained in Sec. 1. Furthermore, we added the results of the LES presented
by Marakgos et al. [8], DesJardin et al. [4] and Ma et al. [56] for further
comparisons.

Figure 5 shows the centerline mean and rms profiles of the streamwise
velocity up to z = 0.8m above the helium source. Both profiles predicted
by the medium (∆x = 1 cm) and fine (∆x = 0.8 cm) grids are in close
agreement and within the experimental uncertainties at all locations along
the plume axis. The rms are more difficult to predict which is consistent
with the findings of Maragkos et al. [8].

The mean and rms profiles of helium mass fraction along the center-
line up to a height of z = 0.8m are displayed in Fig. 6. The mean YHe
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Figure 5: Comparison of mean (left) and rms (right) of centerline streamwise velocity.
The experimental data includes the respective uncertainties reported in the experimental
study [43]. The numerical results of Maragkos et al. [8] are also added.

profile follows that predicted by Maragkos et al. [8] and decays in a slower
manner as compared to the experiment beyond z = 0.3m. Consistently
with the results of Marakgos et al. [8], the rms Y ′

He profile is significantly
over-predicted over the entire axis. It can be observed that the predictions
obtained with both the medium (∆x = 1 cm) and fine (∆x = 0.8 cm) grids
are very similar, confirming that converged solutions are obtained with the
medium grid. Hereafter, only the results obtained with medium grid will
be shown.
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Figure 6: Comparison of mean (left) and rms (right) of centerline helium mass fraction.
The experimental data includes the respective uncertainties reported in the experimental
study [43]. The numerical results of Maragkos et al. [8] are also added.

The radial profiles of mean streamwise velocity at several downstream
locations (z = 0.2m, 0.4m and 0.6m above the inlet) are presented in Fig. 7.
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Our simulation shows a satisfactory agreement with the experimental data
and falls within the experimental uncertainties. The results are also inline
with the numerical results [4, 8, 56]. We should mention that all the radial
profiles are azimuthally averaged all around the plume.
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Figure 7: Comparison of mean radial profiles of streamwise velocity for different resolu-
tions and different turbulence models at heights z = 0.2m (left), z = 0.4m (middle) and
z = 0.6m (right). The experimental data includes the respective uncertainties reported
in the experimental study [43]. Numerical data are also presented [4, 8, 56].

Figure 8 shows RMS values of the streamwise velocity at different heights.
The results reproduce in overall well the experimental data. Nevertheless,
at z = 0.2m, the RMS profile exhibits an M-shaped profile, whereas the
experimental profile is flatter. A similar behavior is observed by Maragkos
et al. [8]. On the other hand, Desjardin et al. [4] overpredicted the centerline
RMS values at all heights.

-0.5 0 0.5
0

0.5

1

1.5

2

2.5

3

-0.5 0 0.5
0

0.5

1

1.5

2

2.5

3

-0.5 0 0.5
0

0.5

1

1.5

2

2.5

3

Figure 8: Comparison of rms radial profiles of streamwise velocity for different resolutions
and different turbulence models at heights z = 0.2m (left), z = 0.4m (middle) and
z = 0.6m (right). The experimental data includes the respective uncertainties reported
in the experimental study [43]. Numerical data are also presented [4, 8, 56].

The cross-stream velocity is presented in Fig. 9. Our results show a
good overall agreement with the experimental data. Maragkos et al. [8],
DesJardin et al. [4] and Ma et al. [56] reported an overestimation on the left
hand side of the plume as seen in Fig. 9. While keeping in mind that the
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experimental data are not perfectly symmetric, we have the same behavior
at z = 0.2m but the disparities in our results are lower. Afterwards farther
downstream, the agreement becomes better compared to experimental data.
The application of SGS model did not increase the cross-stream velocity as
reported by Maragkos et al. [8].

A rise of the cross-stream velocity indicates an increased entrainment
from the surrounding fluid which will result in a surge in the streamwise
velocity following the conservation of mass. So accurate predictions of the
cross-stream velocities is crucial, as in these type of flows, entertainment
controls the mixing (as elaborated in a previous work [40]), which is a fun-
damental parameter in pool fires where the combustion process is mainly
controlled by mixing (i.e., diffusion flame) as will be seen in Sec. 4.
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Figure 9: Comparison of mean radial profiles of cross-stream velocity for different resolu-
tions and different turbulence models at heights z = 0.2m (left), z = 0.4m (middle) and
z = 0.6m (right). The experimental data includes the respective uncertainties reported
in the experimental study [43]. Numerical data are also presented [4, 8, 56].

Figure 10 shows the RMS values of the cross-stream velocity at different
heights. The results agree with the experiment falling within the uncertain-
ties except at some radial locations where they exhibit a slight overestima-
tion. Our simulation shows an M-shaped for the RMS of the cross-stream
velocities, coherent with the observations of Chung et al. [55], DesJardin et
al. [4] and Maragkos et al. [8]. This M-shaped transits progressively to a
bell-shaped profile as the height increases.

The radial profiles of mean helium mass fraction at different heights are
presented in Fig. 11. Slight overestimation can be observed, especially at
z = 0.2m at the left side of the plume. The discrepancies of the centerline
value increase with height consistently with the overestimation in the axial
profile seen in Fig. 6. The profiles align better with the experiment farther
from the centerline. The LES of Maragkos et al. [8] is in better agreement
in comparison with the experimental data.
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Figure 10: Comparison of rms radial profiles of cross-stream velocity for different resolu-
tions and different turbulence models at heights z = 0.2m (left), z = 0.4m (middle) and
z = 0.6m (right). The experimental data includes the respective uncertainties reported
in the experimental study [43]. Numerical data are also presented [4, 8, 56].
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Figure 11: Comparison of mean radial profiles of helium’s mass fraction for different
resolutions and different turbulence models at heights z = 0.2m (left), z = 0.4m (middle)
and z = 0.6m (right). The experimental data includes the respective uncertainties
reported in the experimental study [43]. Numerical data are also presented [4, 8, 56].

Figure 12 shows the radial profiles of the RMS values of helium mass
fraction. Globally, a significant over-prediction from the experimental data
is observed close to the plume inlet for all the simulation. However, the
discrepancies reduce farther downstream from the source. The results are
consistent with those reported in previous numerical studies [4, 7, 56].

4. Sandia’s 1-m diameter methane fire

4.1. Numerical Setup
The computational domain is a 4×4×7m3 box, on which a non-uniform

Cartesian grid was used with refinement zones for cost reduction. The
largest and smallest mesh sizes in the computational domain are δxmax = 4
cm and δxmin = 2 cm, resulting in a 6-million cell mesh. The configuration
of the 1 m diameter methane fire was simplified such that the fuel (methane)
enters the domain through a 1 m diameter inlet surrounded by a 0.51 m
wide steel plate (representing the ground plane).
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Figure 12: Comparison of rms radial profiles of helium’s mass fraction for different resolu-
tions and different turbulence models at heights z = 0.2m (left), z = 0.4m (middle) and
z = 0.6m (right). The experimental data includes the respective uncertainties reported
in the experimental study [43]. Numerical data are also presented [4, 8, 56].

Methane is injected at the ambient temperature and pressure, Tinlet =
285K and Pinlet = 81.0 kPa, respectively. Uniform bulk inlet velocity for
methane is UCH4

inlet = 0.097m/s corresponding to TEST-24 conditions (see
Table 1). In addition, a co-flow air stream is injected outside the annular
plate with a uniform velocity of UAir

coflow = 0.14m/s. The value of the co-
flow velocity was taken following the numerical studies of Han et al. [69]
and Koo et al. [70]. Boundary conditions of the sides and the outlet are
identical to the ones used in the helium study in Sec. 3. Velocities with
negative values were forced to zero at the outlet to prevent flow rentering
the domain (reverse flow), which might trigger numerical instabilities and
pollute the results. The steel plate was modeled as an adiabatic non-slip
wall.

A single-step irreversible chemical reaction of methane is considered:

CH4 + 2(O2 + 3.76N2) → CO2 + 2H2O+ 7.52N2 (38)

The unresolved turbulent stress is modeled using the Vreman model
(Sec. 2.2) with Cs = 0.1 [9]. In order to resolve the filtered heat and species
fluxes, a value of 0.7 is assigned to both turbulent Prandtl (Prt) and Schmidt
(Sct) numbers [9]. The molecular Prandtl number (Pr) is set to 0.7, while
the molecular Schmidt numbers of the species are summarized in Table 3.
The molecular viscosity follows a power law because the simulation will
exhibit high levels of temperature due to combustion, which impacts the
viscosity significantly. The radiant fraction is 25% of the total heat release.

The simulation is run over 27 physical seconds. The first 7 seconds are
thought sufficient to evacuate the initial solution then the remaining 20
seconds are used to construct the statistics for quantitative comparisons.
The time step is local and depends on the local mesh size while keeping a
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CH4 O2 CO2 H2O
0.7275 0.8325 1.0425 0.6225

Table 3: Molecular Schmidt number Sc for different species

constant CFL number (CFL ≈ 0.7). This gives a minimum time step in
the finest zone δtmin ≃ 2.0× 10−4 sec. The simulation is parallelized on 128
cores on a Dell PowerEdge C6420 server with 4× 32-core Intel Xeon Gold
6142, 2.6 GHz, and 96 GB RAM producing a calculation time of ∼ 1050
CPU hours.

4.2. Results and discussion
4.2.1. Turbulence: Energy Cascade

Figure 13 shows the energy spectrum based on the axial velocity at z =
0.5m. The spectrum exhibits the theoretical energy cascade characteristic
reported by the theory of Kolmogorov [63] and that we have the correct
power law of −5/3 in the inertial range, also the dissipation range was
detected at higher frequencies.
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Figure 13: Temporal energy spectrum at z = 0.5 m for axial velocity. The dashed line
indicates the expected characteristic slope of −5/3 [63].

4.2.2. Pool fire dynamics: Instability modes
Large-scale pool fires exhibit a particular behavior where a periodic shed-

ding of large toroidal vortices pulsates at a specific frequency and is pro-
portional to the square root of the diameter [22]. The "puffing" mechanism
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is fundamental for fires as it controls the mixing between fuel and oxidizer,
which conducts the combustion process. Figure 14 shows the different stages
of a puffing cycle (four distinct stages); at first, instabilities are generated
near the edges of the plume at the fire base due to baroclinic and gravita-
tional torques; afterwards, those instabilities grow towards the center of the
source; then, a large toroidal vortex is formed due to Rayleigh-Taylor in-
stability which self-propagates and entrains a large amount of surrounding
air; finally, the destruction of this toroidal vortex because of the creation of
secondary instabilities and Kelvin-Helmholtz instabilities that grow caus-
ing a non-linear breakdown of the toroidal vortex. These stages are then
repeated at every cycle, and the frequency of this motion was quantified
experimentally, and numerical correlations were proposed.

Extensive experiments covering different scenarios and regimes of fires
concluded that the puffing frequency depends only on the fire source diam-
eter regardless of the fuel type. Correlations can be found in the literature
that predicts the puffing frequency, such as the one given by Cetegen and
Ahmed [22]:

f = 1.5
√
D Hz, (39)

and the one given by Zukoski [71]:

f = 0.5
( g

D

) 1
2 Hz (40)

Figure 15 shows the Fast Fourier transform (FFT) performed on the
time signal of axial velocity at z = 0.5m in order to identify the principal
frequency of puffing. Our simulation predicts a puffing frequency of ∼ 1.32
Hz which underestimates the experimental values of 1.57 Hz, while the
correlation of Cetegen gives 1.5 Hz and the correlation of Zukoski estimates
1.57 Hz.

4.2.3. Mean and RMS profiles
The axial profiles of axial velocity and temperature are displayed in

Fig. 16. The velocity Uz in the near-field region is in reasonable agree-
ment with the experiment. On the other, comparisons with the McCaffrey
correlations suggest that it is underestimated in the far-field region. The
temperature decrease rate in the far field is consistent with the correla-
tion of McCaffrey. However, the quantitative comparison suggests that the
temperature is overestimated.
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Figure 14: Snapshots of heat release rate iso-volume throughout 1 second depicting a
complete puffing cycle.

Fig. 17 shows the radial profiles of axial velocity at different elevations
downstream the inlet z = 0.3, 0.5, 0.9m. A decent agreement can be ob-
served with the experimental data, the predicted profiles remaining within
the experimental uncertainties.

Fig. 18 depicts the radial profiles of horizontal velocity, which may be
25
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Figure 15: Fast Fourier transform (FFT) based on the axial velocity at z = 0.5m showing
the puffing frequency.
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Figure 16: Centerline profiles of (left) mean streamwise velocity Uz and (right) temper-
ature T compared to experimental and numerical data

considered as an indicator of the entrainment of air from the ambient en-
vironment toward the fire core. We can clearly notice a good agreement
with the experimental and numerical data indicating a good prediction of
the entrained air towards the fire core.

The rms of velocity was represented by the turbulent kinetic energy
(TKE) which combines the three components of velocity fluctuations:
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Figure 17: Radial profiles of streamwise velocity Uz at z = 0.3m (left), z = 0.5m
(middle) and z = 0.9m (right). Comparison is done with experimental and numerical
data [9, 45]
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Figure 18: Radial profiles of horizontal velocity at z = 0.3m (left), z = 0.5m (middle)
and z = 0.9m (right). Comparison is done with experimental and numerical data [9, 45]

TKE =
1

2

(
u′2
x + u′2

y + u′2
z

)
(41)

Fig. 19 shows the turbulent kinetic energy at different heights. The
agreement is reasonable, although noticeable discrepancies are observed fur-
ther downstream the fire base (i.e., at z = 0.9 m).

4.2.4. Flame height
A quantitative criterion to define the average flame height is to identify

the centerline location where the difference between the mean gas temper-
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Figure 19: Radial profiles of turbulent kinetic energy (TKE) at z = 0.3m (left), z = 0.5m
(middle) and z = 0.9m (right). Comparison is done with experimental and numerical
data [9, 45]

ature and the ambient reaches 500 - 600 K [72]. In our study, a threshold
of 550 K is selected following Maragkos and Merci [9]. Our LES estimates
a height of 5.2 meters which is slightly higher than the reported value of
4.8m [73].

5. Concluding remarks

LES of fire plume scenarios representative of unwanted fire were per-
formed for the first time by using a pressure-based LBM solver with low-
Mach number approximation. Two scenarios were selected involving large-
scale helium and methane pool fires. The capability of the LBM-based
LES to reproduce quantitatively the near-field dynamics of purely buoyant
flows was clearly demonstrated, and numerical results were found similar to
predictions reported with classical Navier-Stokes solvers at a lower compu-
tational cost. These results establish that LBM solvers are good candidates
to serve as a basis for developing fire simulators. The next natural steps
of this work will be to incorporate state-of-the-art turbulence and radiation
sub-models to model more complex configurations.
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Appendix A. Expressions for the LBM solver

In regularized LBM, distribution functions will be constructed using an
orthogonal polynomial basis. The basis of the D3Q19r lattice used in the
current study consists of 19 polynomials, read [29]

H(0)
i ≡ 1 , H(1)

i,α ≡ ciα , H(2)
i,αβ ≡ ciαciβ − c2sδαβ, (A.1)
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where

H(3)
i,αβγ ≡ciαciβciγ − c2s[ciαδβγ + ciβδγα + ciγδαβ] , (A.11)
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i,αβγ ≡H(4)

i,ααββ +
c2s
2
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− c2s(ciαciβδγδ + ciβciγδδα + ciγciδδαβ + ciδciαδβγ + ciγciαδβδ + ciβciδδαγ) .
(A.13)

Any distribution function in the D3Q19r lattice can be written as a
(weighted) sum of the contributions from each base polynomial. For in-
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stance, the equilibrium distribution in equation (28) reads
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i = ωi

{
a(0),eq +

H(1)
i,α

c2s
a(1),eqα +

H(2)
i,αβ

2c4s
a
(2),eq
αβ +

H(3r)
i,γ

6c6s
a(3r),eqγ +

H(4r)
i,δ

24c8s
a
(4r),eq
δ

}
,

(A.14)
where
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It is worth noting that the the forth-order coefficients (a(4),eq) are added
to improve the isotropicity of the lattice, which could be quite important
considering the round jet simulation in the current study.

The third-order off-equilibrium terms are reconstructed recursively from
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the second-order non-equilibrium tensor as

a
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Depending on the order of the Gauss-Hermite quadrature [24] used in the
LB model, an adequate forcing term should be added to achieve a correct
viscous stress tensor:

aneqαβ ≈ −Παβ = −µ(
∂uα

∂xβ

+
∂uβ

∂xα

− 2

D

∂uγ

∂xγ

δαβ), (A.26)

with D the spatial dimension. For the D3Q19r basis, the projected forcing
term reads as

aF
E

αβ = c2suα

[
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]
+ c2suβ
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2
s
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∂xγ

− acorαβ + aFD
αβ(A.27)

where acorαβ is a correction tensor due to the deflection of second order mo-
ments of the population introduced by the modification of the mass equa-
tion, which can be evaluated as

acorαβ ≡ c2sδαβ
∂(ρ(1− θ))

∂t
, (A.28)

which can be discretized using a backward Euler operator and aFD
αβ the

correction tensor due to the defect of the lattice at third order

aFD
αβ = −

 (ρu3
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 (A.29)

where all the differential operations are performed using first order upwind
FD except for the divergence operator for which a second order centered
FD scheme was employed. The final expression of the forcing term is then

FE
i =

ωi

2c4s
H(2)

i,αβa
FE

αβ + F g
i , (A.30)
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where F g
i is the gravity force term defined as

F g
i = ωi(ρ− ρ∞)

[
gαH(1)

i,α

c2s
+

(uαgβ + uβgα)H(2)
i,αβ

2c4s

]
, (A.31)

where gα is the gravity acceleration in the direction α.

Appendix B. Vorticity equation

Helmholtz equation is the transport equation for vorticity, which can
be deduced as follows. Starting from writing the momentum equation of
incompressible flow, that is ∇ · u = 0, but with a variable density ρ.

∂u
∂t

+ u · ∇u = −1

ρ
∇p+

1

ρ
∇ · τ +

(ρ− ρ∞)

ρ
g, (B.1)

The convective term u · ∇u can be written in the following form:

u · ∇u = ∇(u2/2) + ω × u, (B.2)

The following vector identity will be used:

∇× (ω × u) = (u · ∇)ω − u(∇ · ω)︸ ︷︷ ︸
zero

−(ω · ∇)u + ω(∇ · u), (B.3)

where ∇ · ω ≡ 0 (vorticity is solenoidal by definition), the vorticity
equation can be rearranged as:

∂ω

∂t
+ (u · ∇)ω︸ ︷︷ ︸
Dω/Dt

= (ω·∇)u−ω(∇·u)−∇×
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)
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(
1
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ρ
)g
]
,

(B.4)
The pressure term can be written as:

∇×
(
1

ρ
∇p

)
= ∇

(
1

ρ

)
×∇p+

1

ρ
∇× (∇p)︸ ︷︷ ︸

zero

= − 1

ρ2
(∇ρ×∇p) , (B.5)

Further more for a homentropic flow, the pressure is a function of only
of density resulting in the alignment of the two vector ∇p and ∇ρ and
consequently the so called baroclinic torque − (∇ρ×∇p) /ρ2 will vanish.
By the same manner, the buoyancy term will be treated:
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By introducing the material derivative of the vorticity, Dω/Dt, the vor-

ticity equation yields to:

Dω
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(B.7)
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