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Abstract

The stratified resampling mechanism is one of the resampling schemes commonly used in the resam-
pling steps of particle filters. In the present paper, we prove a central limit theorem for this mechanism
under the assumption that the initial positions are independent and identically distributed and the
weights proportional to a positive function of the positions such that the image of their common distri-
bution by this function has a non zero component absolutely continuous with respect to the Lebesgue
measure. This result relies on the convergence in distribution of the fractional part of partial sums of
the normalized weights to some random variable uniformly distributed on [0, 1], which is established in
the companion paper [25] by overcoming the difficulty raised by the coupling through the normaliza-
tion. Under the conjecture that a similar convergence in distribution remains valid at the next steps
of a particle filter which alternates selections according to the stratified resampling mechanism and
mutations according to Markov kernels, we provide an inductive formula for the asymptotic variance of
the resampled population after n steps. We perform numerical experiments which support the validity
of this formula.

1 Introduction

Particle filtering, also known as Sequential Monte Carlo methods (see Chapter 4 in [3] and [24] for a general
introduction), is a powerful method to estimate the evolving state of a system over time, even when the
state cannot be directly observed but can only be inferred through noisy measurements or observations.
It has become a very popular class of numerical methods for the solution of optimal estimation problems
in non-linear non-Gaussian scenarios. This kind of method is used in real-time applications appearing in
fields such as chemical engineering, computer vision, financial econometrics, target tracking, robotics and
statistics (see among others [11] and [10]). The use of Monte Carlo methods for nonlinear filtering problems
can be traced back to Handschin [5] and Mayne [4]. They introduced a sequential version of the importance
sampling method (see [1], [2] as references for the importance sampling) and the corresponding algorithm
is known as sequential importance sampling, often abbreviated SIS. A drawback of the latter was identified
by Gordon et al. in [9]: as the number of iterations increases, the importance weights tend to degenerate (a
phenomenon usually known as weight degeneracy). This means that after a certain number of iterations,
some weights tend to become very small so that the corresponding positions no longer contribute to the
estimation. Thus, Gordon et al. introduced the resampling step where, in view of stabilizing the Monte
Carlo error over time, the key idea is to eliminate the particles having low weights and to replicate the
particles having high weights. Therefore, by propagating M particles through weighting, resampling and
mutation steps (each particle evolves randomly according to a given transition probability kernel), particle
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filters can be used to numerically estimate the state of the system given the observations (see also [10], [24]).

Let us henceforth concentrate on the resampling step. Let M ≥ 1. Given a sequence of Rd-valued
random vectors (Xm)1≤m≤M with associated random weights (wM

m )1≤m≤M such that wM
m > 0 and

M∑
m=1

wM
m = 1, a resampling scheme defines the resampled sequence (Ym)1≤m≤M such that

E

(
1

M

M∑

m=1

δYm

∣∣∣ G
)

=

M∑

m=1

wM
m δXm . (1)

where G := σ
(
(Xm, w

M
m )1≤m≤M

)
. Resampling schemes [8] permit to replace the probability measure

∑M
m=1 w

M
m δXm with non equal weights by some empirical measure 1

M

M∑
m=1

δYm with the same conditional

expectation given G. Depending on the definition used for the random variables Ym, several resam-
pling schemes can be considered. The most common resampling techniques are of the following types:
multinomial, residual , stratified [6] and systematic [7]. See [8] for a brief description of such meth-
ods. The simplest approach is the multinomial resampling. It consists in drawing, conditionally upon
G, the new positions (Ym)1≤m≤M independently from the common distribution

∑M
m=1 w

M
m δXm . While

the residual resampling consists in replicating ⌊MwM
m ⌋-times Xm for m ∈ {1, · · · ,M} and the remaining

M −∑M
m=1⌊MwM

m ⌋ variables Ym are drawn, conditionally upon G, independently from the common distri-

bution 1
M−

∑

M
m=1⌊MwM

m ⌋
∑M

ℓ=1

{
MwM

ℓ

}
δXℓ

. Concerning the stratified resampling, it is not straightforward

to understand its behaviour, notably due to the complicated structure in the definition of the Ym which,
however, continue to be conditionally independent given G. The systematic resampling is even more com-
plicated to understand since the Ym are no longer conditionally independent given G.

Resampling schemes have been largely studied in the literature, we now present a selection of such
results. The asymptotic behaviour for the multinomial resampling scheme has been extensively studied in
[22] (see Corollary 7.4.2 and Section 9.4.2). Douc et al. in [8] showed that residual and stratified resam-
pling improve over multinomial resampling in the sense that they have a lower conditional variance (with
respect to the σ-algebra generated by (Xm)1≤m≤M ). They also proved, by means of a counter-example,
that the same property does not hold for systematic resampling. Furthermore, they established a central
limit theorem for the residual resampling approach suggesting that a similar result should be obtained for
the stratified resampling scheme. One of the last contributions concerning resampling schemes, is given by
Gerber et al. [19]. Using the notion of negative association [16], they first provided a general consistency
result for resampling. An application of this theorem gives the proof of almost sure weak convergence of

1
M

M∑
m=1

δYm in the stratified resampling method. Moreover they provide a counter-example to almost sure

weak convergence for the systematic resampling method. More recently, Chopin et al. [17] studied the
resampling schemes for particle filters with weakly informative observations. Empirical evidence indicates
that when the weights used in resampling exhibit high variability, the selection of the resampling strategy
tends to have a weak impact. However, in cases where the weights are close to being uniform, the perfor-
mance differences between the different resampling methods can be substantial. By keeping M fixed, they
also considered the asymptotic behaviour of the resampling schemes as the weights become less and less
informative. See also [12], [13], [14], [15] for additional references.

In this paper, we focus on the stratified resampling scheme for the weights wM
m = g(Xm)

/ M∑
ℓ=1

g(Xℓ)

where g is a positive measurable function. Our purpose is to study the asymptotic behaviour of the method
as the number of particles M goes to ∞. Let f be a real-valued measurable function. To compute the
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asympotic variance of 1√
M

M∑
m=1

f (Ym), it turns out to be essential to understand the behaviour asM → ∞
of

{
M
∑⌈αM⌉−1

ℓ=1 g(Xℓ)
∑M

ℓ=1 g(Xℓ)

}
(2)

where 0 < α < 1 and where {x} denotes the fractional part of x ∈ R. Under the assumption that
the Xi are i.i.d. such that the law of g (Xi) has an absolutely continuous component, we prove in
the companion paper [25] the convergence in distribution of (2) to a random variable uniformly dis-

tributed on [0, 1]. Under this assumption, we explicit the limit of Var

(
1√
M

M∑
m=1

f (Ym)

)
and prove that

1√
M

∑M
m=1

(
f(YM

m )− E(f(X1)g(X1))
E(g(X1))

)
converges in distribution to a centered Gaussian random variable with

variance equal to the limit. The proof of this Central Limit Theorem relies on the asymptotic behaviour

as M → ∞ of a vector composed of
√
M

(∑M
m=1 g(Xm)f(Xm)
∑M

ℓ=1 g(Xℓ)
− E (f (X1) g (X1))

)
and the fractional

parts (2) for α ∈ {α1, · · · , αs} with 0 < α1 < · · · < αs < 1. In the companion paper [25], we check that
this vector converges in distribution to a vector with centered Gaussian first component and independent
s last components uniformly distributed on [0, 1]s. Under the conjecture that a similar convergence in
distribution remains valid at the next steps of a particle filter which alternates selections according to
the stratified resampling mechanism and mutations according to Markov kernels, we provide an inductive
formula for the asymptotic variance of the resampled population after n steps.

The paper is organized as follows. In Section 2, we recall the definition of the stratified sampling
scheme and the statement of the main result (Theorem 2.2) is given. In Section 3, the asymptotic variance
is derived and in Section 4, the proof of the Central Limit Theorem is given. In Section 5, the proof of
some ausiliary results is provided. In Section 6, we consider a particle filter which alternates selections
according to the stratified resampling mechanism and mutations according to Markov kernels and we pro-
vide an inductive formula for the asymptotic variance of the resampled sequence. We perform numerical
experiments which support the validity of this formula.

Notation We denote by ⌊x⌋ the integer j such that j ≤ x < j +1 and by {x} = x− ⌊x⌋ the fractional
part of x ∈ R. We denote the set of real-valued bounded measurable functions on R

d by Bb

(
R

d
)
. Given

µ a positive measure on R
d endowed with the Borel sigma algebra and φ : Rd → R a measurable function

that is either positive or such that
∫
Rd |φ(x)| µ(dx) <∞, we denote µ(φ) =

∫
Rd φ (x)µ(dx).

2 Statement of the Main Result

Given M > 0, let (Xm)1≤m≤M be a sequence of i.i.d. R
d-valued random vectors following the law η and

let g : Rd → (0,∞) be a measurable function such that 0 < infx∈Rd g(x) ≤ supx∈Rd g(x) < ∞. In what
follows we denote ḡ := supx∈Rd g(x) and g := infx∈Rd g(x).

We now generate the sequence (YM
m )1≤m≤M according to the selection step of the stratified sampling. We

recall that starting from M random variables (Um)1≤m≤M i.i.d. distributed according to the uniform law
on (0, 1) and independent of (Xm)1≤m≤M , the sequence (YM

m )1≤m≤M is defined in the following way

YM
m =

M∑

ℓ=1

1{ℓ−1
∑

j=1

wM
j <m−Um≤

ℓ
∑

j=1

wM
j

}Xℓ form ∈ {1, · · · ,M} (3)
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where wM
m = Mg(Xm)

M
∑

ℓ=1

g(Xℓ)

for m = 1, · · · ,M . Since the weights are preserved when multiplied by a positive

constant, up to dividing g by E(g(X1)), without loss of generality we may suppose that

E(g(X1)) = 1.

Let us observe that the random vectors (YM
m )1≤m≤M are conditionally independent given F , the σ-algebra

generated by the sequence (Xm)1≤m≤M . Moreover one has

E

(
1

M

M∑

m=1

δY M
m
|F
)

=
1

M∑
m=1

g(Xm)

M∑

m=1

g(Xm)δXm . (4)

Given f : Rd → R a measurable function, our purpose is to provide a central limit theorem for
1

M

M∑
m=1

f(YM
m ).

If we start looking at the variance of
1√
M

M∑
m=1

f(YM
m ), using (4) one has

Var

(
1√
M

M∑

m=1

f(YM
m )

)
= Var

(
E

(
1√
M

M∑

m=1

f(YM
m )

∣∣∣ F
))

+ E

(
Var

(
1√
M

M∑

m=1

f(YM
m )

∣∣∣ F
))

(5)

= Var

(
√
M

∑M
m=1 g(Xm)f(Xm)
∑M

ℓ=1 g(Xℓ)

)
+ E

(
Var

(
1√
M

M∑

m=1

f(YM
m )

∣∣∣ F
))

. (6)

Thus, in particular, we will prove respectively the convergence of the first and second term in (6). The
first term is common to all the resampling schemes while the second one really depends on the considered
resampling scheme.

Let us consider the following hypotheses:

I1 supx∈Rd |f(x)| <∞

I2 the law of g(X1) has an absolutely continuous component with respect to the Lebesgue measure on
R

Before providing the statement of the central limit theorem, to express the asymptotic variance we
introduce the real-valued functions β0 and β1 respectively given by

β0(x, y1) = {x+ y1} (1 − {x+ y1}) + x(1 − x)− 2x(1 − x− y1)1{y1<1−x} (7)

β1(x, y1, y2, y3) = 2

(
{x+ y1}

(
1− {x+ y1} − y2

)
1{y2<1−{x+y1}} (8)

− {x+ y1}
(
1− {x+ y1} − y2 − y3

)
1{y2+y3<1−{x+y1}}

− x

(
1− x− y1 − y2

)
1{y1+y2<1−x} + x (1− x− y1 − y2 − y3) 1{y1+y2+y3<1−x}

)
.

Remark 2.1. Let us observe that β0 is continuous. Indeed, the fractional part is continuous apart from
the integers where its left-hand limit is equal to 1 and its right-hand limit is equal to 0. The composition
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with the function f (z) = z (1− z) which is such that f (0) = f (1) = 0, allows us to conclude that
(x, y1) 7→ {x+ y1} (1− {x+ y1}) is continuous. Moreover (x, y1) 7→ x(1− x− y1)1{y1<1−x} is continuous

since the function f̄(x, y1) = 1−x− y1 is equal to 0 on the set
{
(x, y1) ∈ R

2 : y1 = 1− x
}
of discontinuity

points of the indicator function. Similarly it is possible to prove that also β1 is a continuous function on
R× R× R

+ × R
+.

The following result holds.

Theorem 2.2. Under the notation introduced above and under I1-2 we have

lim
M→∞

Var

(
1√
M

M∑

m=1

f(YM
m )

)
= σ2

1(f) + σ2
2(f) (9)

where
σ2
1(f) = η

(
(g (f − η(fg)))

2
)

(10)

and

σ2
2(f) :=

⌈

ḡ
g

⌉

∑

k=0

E (Fk) (11)

with (Fk)k∈N
given by

Fk =






f2(X1)β0 (U1, g(X1)) k = 0

−f(X1)f(Xk+1)β1

(
U1, g(X1),

k∑
ℓ=2

g(Xℓ), g(Xk+1)

)
k > 0

(12)

where U1 ∼ U(0, 1) is independent of X1, · · · , Xk+1.
Moreover the following convergence in distribution holds

√
M

(
1

M

M∑

m=1

f(YM
m )− η(fg)

)
d

=⇒ N
(
0, σ2

1(f) + σ2
2(f)

)
. (13)

We will split the proof of the theorem into two parts: in Section 3, we are going to prove the result
about the asymptotic variance and in Section 4, the proof of the Central Limit Theorem is provided.

3 Asymptotic Variance

The following proposition provides the asymptotic behaviour of the first term in (6). We provide its proof
for the sake of completeness.

Proposition 3.1. Under I1, the following convergence in distribution holds

√
M

(∑M
m=1 g(Xm)f(Xm)
∑M

ℓ=1 g(Xℓ)
− η(fg)

)
d

=⇒ N
(
0, σ2

1(f)
)

(14)

where σ2
1(f) has been defined in (10). Moreover

lim
M→∞

Var

(
√
M

∑M
m=1 g(Xm)f(Xm)
∑M

ℓ=1 g(Xℓ)

)
= σ2

1(f). (15)
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Proof. We recall that we suppose that η(g) = 1. Let us define h := g (f − η(fg)). By observing that
η(h) = 0 and

√
M

∑M
m=1 g(Xm)f(Xm)
∑M

ℓ=1 g(Xℓ)
−
√
Mη(fg) =

M
M∑

m=1
g(Xm)

× 1√
M

M∑

m=1

h(Xm), (16)

by Slutsky’s theorem we have

√
M

(∑M
m=1 g(Xm)f(Xm)
∑M

ℓ=1 g(Xℓ)
− η(fg)

)
d

=⇒ N
(
0, η(h2)

)
.

Let us now prove (15). Let us preliminary study the following quantity

E



(

1√
M

M∑

m=1

h(Xm)

)4

 =

1

M2

M∑

m1,m2,m3,m4=1

E

(
4∏

i=1

h(Xmi)

)
.

Among the M4 expectations appearing in the sum on the right-hand side, the ones where one index is
different from the other three are equal to 0 by the independence of the Xi and the fact that η(h) = 0.
Therefore

E




(

1√
M

M∑

m=1

h(Xm)

)4


 =
1

M
η(h4) +

3(M − 1)

M
η(h2)2 ≤ D, (17)

where D is a finite constant depending on g and f but not on M .
Since (16) holds, to prove (15) we can study the convergence as M goes to infinity of the variance of
√
M

1

ḡM
h̄M given by

E

((√
M
h̄M

ḡM

)2
)

− E

(√
M
h̄M

ḡM

)2

where we denote by ḡM the empirical mean
1

M

M∑
m=1

g(Xm) and by h̄M the empirical mean
1

M

M∑
m=1

h(Xm).

By the Cauchy–Schwarz inequality we have

E

((√
M
h̄M

ḡM
−
√
Mh̄M

)2
)

= E

((√
Mh̄M

)2( 1

ḡM
− 1

)2
)

≤ E
1
2

((√
Mh̄M

)4)
E

1
2

((
1

ḡM
− 1

)4
)

≤ D
1
2 · E 1

2

((
1

ḡM
− 1

)4
)
,

where the right-hand side converges to 0 as M goes to infinity by the Strong Law of Large Numbers
and by Lebesgue’s theorem. With η(h) = 0, this in particular implies that

0 = lim
M→∞

∣∣∣∣∣E
1
2

((√
M
h̄M

ḡM

)2
)

− E
1
2

((√
Mh̄M

)2)
∣∣∣∣∣ = lim

M→∞

∣∣∣∣∣E
1
2

((√
M
h̄M

ḡM

)2
)

− η(h2)
1
2

∣∣∣∣∣

and

0 = lim
M→∞

∣∣∣∣E
(√

M
h̄M

ḡM

)
− E

(√
Mh̄M

)∣∣∣∣ = lim
M→∞

∣∣∣∣E
(√

M
h̄M

ḡM

)∣∣∣∣

and so the proof is complete.
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Let us now study the second term in the expression (6). Our purpose is to prove the following result:

Theorem 3.2. Under I1-2, the following convergence holds

lim
M→∞

E

(
V ar

(
1√
M

M∑

m=1

f(YM
m )|F

))
= σ2

2(f) (18)

where σ2
2(f) has been defined in (11).

To prove Theorem 3.2 we need some preliminary results the proofs of which are given in Section 5.
By the conditional independence of the random vectors (YM

m )1≤m≤M with respect to the σ-algebra F , we
have

Var

(
1√
M

M∑

m=1

f(YM
m )

∣∣∣ F
)

=
1

M

M∑

m=1

Var
(
f(YM

m )
∣∣∣ F
)

(19)

=
1

M

M∑

m=1

E

(
f2(YM

m )
∣∣∣ F
)
− 1

M

M∑

m=1

E

(
f(YM

m )
∣∣∣ F
)2
. (20)

We introduce the following notation that will be useful in what follows: for i = 1, · · · ,M , let us denote

uMi :=
{
wM

1 + · · ·+ wM
i

}
, µM

i := ⌊wM
1 + · · ·+ wM

i ⌋+ 1 where wM
i = Mg(Xi)

M
∑

ℓ=1

g(Xℓ)

has been introduced in (3)

and by convention uM0 = 0, µM
0 = 1.

We now rewrite in a more explicit way the conditional variance Var

(
1√
M

M∑
m=1

f(YM
m )|F

)
. The proof

is given in Section 5.

Proposition 3.3. Under I1, we have

Var

(
1√
M

M∑

m=1

f(YM
m )

∣∣∣ F
)

(21)

=
1

M

M∑

i=1

f2(Xi)β0(u
M
i−1, w

M
i )− 1

M

(M−1)∧
⌈

ḡ
g

⌉

∑

k=1

M−k∑

i=1

f(Xi)f(Xi+k)β1(u
M
i−1, w

M
i ,

k∑

ℓ=2

wM
i+ℓ−1, w

M
i+k) (22)

where β0 and β1 are respectively defined in (7) and (8).

In what follows, without specifying it every time, we will suppose that M ≥ 1+
⌈
ḡ
g

⌉
so that (M − 1)∧

⌈
ḡ
g

⌉
=
⌈
ḡ
g

⌉
.

Let us observe that it is possible to rewrite (22) in the following way

Var

(
1√
M

M∑

m=1

f(YM
m )

∣∣∣ F
)

=

⌈

ḡ
g

⌉

∑

k=0

∫ 1

0

FM
k,α1

dα1 (23)

where

FM
k,α1

=






f2(X⌈α1M⌉)β0(u
M
⌈α1M⌉−1, w

M
⌈α1M⌉) k = 0

−1{⌈α1M⌉≤M−k}f(X⌈α1M⌉)f(X⌈α1M⌉+k)β1(u
M
⌈α1M⌉−1, w

M
⌈α1M⌉,

k∑
ℓ=2

wM
⌈α1M⌉+ℓ−1, w

M
⌈α1M⌉+k) k > 0.
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Given 0 < α1 < 1 and k ∈ N, FM
k,α1

is a function of the vector

TM
α1,k :=

(
f
(
X⌈α1M⌉

)
, f
(
X⌈α1M⌉+k

)
, uM⌈α1M⌉−1, w

M
⌈α1M⌉,

k∑

ℓ=2

wM
⌈α1M⌉+ℓ−1, w

M
⌈α1M⌉+k

)

which is well defined forM big enough. Therefore to study the limit behavior asM → ∞ of the expectation
of FM

k,α1
, we are going to study the limit behavior of the vector TM

α1,k
. To obtain a much more general

formulation useful in the next section, we introduce also the following family of vectors well defined for M
big enough. Let s ≥ 1 and 0 < α1 < · · · < αs < 1. For k := (k1, · · · , ks) ∈ N

s, let us define ∀i = 1, · · · , s

TM
αi,ki

:=

(
f
(
X⌈αiM⌉

)
, f
(
X⌈αiM⌉+ki

)
, uM⌈αiM⌉−1, w

M
⌈αiM⌉,

ki∑

ℓ=2

wM
⌈αiM⌉+ℓ−1, w

M
⌈αiM⌉+ki

)
. (24)

Moreover let

HM :=
√
M




M∑
m=1

(fg)(Xm)

M∑
m=1

g(Xm)

− η(fg)


 (25)

that thanks to (14) converges in distribution to a centered Gaussian random variable with variance
σ2
1(f). The purpose of the next proposition is therefore to study the convergence in distribution of(
HM , TM

α1,k1
, · · · , TM

αs,ks

)
.

Proposition 3.4. Assume I1-2. Let s ∈ N
∗ and k := (k1, · · · , ks) ∈ N

s. We set Ki := k1+· · ·+ki−1+i−1
for i ∈ {2, · · · , s} and K1 := 0. Let (Uj)1≤j≤s be a sequence of i.i.d random variables distributed according

to the uniform law on (0, 1) and independent of H ∼ N
(
0, σ2

1(f)
)
with (U1, · · · , Us, H) independent from

(Xj)1≤j≤Ks+1
. For 0 < α1 < · · · < αs < 1, as M goes to infinity, the following convergence in distribution

holds (
HM , TM

α1,k1
, · · · , TM

αs,ks

) d
=⇒ (H,T1,k, · · · , Ts,k) (26)

where

Ti,k :=


f (XKi+1) , f

(
XKi+1

)
, Ui, g(XKi+1),

Ki+1−1∑

ℓ=Ki+2

g(Xℓ), g(XKi+1)


 ∀i = 1, · · · , s. (27)

Proof of Proposition 3.4. Let M ≥ max

(
2
α1
, ks

1−αs
, max
1≤i≤s−1

ki+1
αi+1−αi

)
so that 2 ≤ ⌈αiM⌉ ≤ M − ki ∀ i =

1, · · · , s and ki < ⌈αi+1M⌉ − ⌈αiM⌉ ∀ i = 1, · · · , s − 1. The last condition allows us to separate the
variables:

(
X⌈αiM⌉, · · · , X⌈αiM⌉+ki

)
is independent of

(
X⌈αjM⌉, · · · , X⌈αjM⌉+kj

)
for i, j distinct elements

of {1, · · · , s}.
By defining JM

αi,ki
:= {⌈αiM⌉, · · · , ⌈αiM⌉+ ki} for i = 1, · · · , s, let JM :=

⋃s
i=1 J

M
αi,ki

.

Moreover let (X̃m)m≥1 be a sequence of i.i.d. R
d-valued random vectors following the law η independent

of (Xm)1≤m≤M . Given x := (xj)1≤j≤Ks+1 ∈ R
d(Ks+1), we define

HM
x :=

√
M




Ks+1∑
j=1

(fg)(xj) +
∑

j /∈JM
s

(fg)(Xj)

Ks+1∑
j=1

g(xj) +
∑

j /∈JM
s

g(Xj)

− η(fg)



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and

H̃M
x :=

√
M




Ks+1∑
j=1

(fg)(xj) +
M−Ks+1∑

j=1

(fg)(X̃j)

Ks+1∑
j=1

g(xj) +
M−Ks+1∑

j=1

g(X̃j)

− η(fg)


 .

Similarly for i = 1, · · · , s we define the vector TM
αi,ki,x

by



















f(xKi+1),f(xKi+1),



































M×

⌈αiM⌉−1
∑

j=1

j /∈JM
s

g(Xj )+
Ki
∑

j=1
g(xj )

Ks+1
∑

j=1
g(xj )+

∑

j /∈JM
s

g(Xj )



































,
Mg(xKi+1)

Ks+1
∑

j=1
g(xj )+

∑

j /∈JM
s

g(Xj )

,

M

Ki+1−1
∑

ℓ=Ki+2
g(xℓ)

Ks+1
∑

j=1
g(xj )+

∑

j /∈JM
s

g(Xj )

,
Mg(xKi+1

)

Ks+1
∑

j=1
g(xj )+

∑

j /∈JM
s

g(Xj )



















and the vector T̃M
αi,ki,x

by











f(xKi+1),f(xKi+1),















M×

⌈αiM⌉−Ki−1
∑

j=1
g(X̃j )+

Ki
∑

j=1
g(xj )

Ks+1
∑

j=1
g(xj )+

M−Ks+1
∑

j=1
g(X̃j )















,
Mg(xKi+1)

Ks+1
∑

j=1
g(xj )+

M−Ks+1
∑

j=1
g(X̃j )

,

M

Ki+1−1
∑

ℓ=Ki+2
g(xℓ)

Ks+1
∑

j=1
g(xj )+

M−Ks+1
∑

j=1
g(X̃j )

,
Mg(xKi+1

)

Ks+1
∑

j=1
g(xj )+

M−Ks+1
∑

j=1
g(X̃j )











.

We notice that
(
HM

x , TM
α1,k1,x, · · · , TM

αs,ks,x

) L
=
(
H̃M

x , T̃M
α1,k1,x, · · · , T̃M

αs,ks,x

)
. (28)

Let us observe that by hypothesis I2 the law of g
(
X̃i

)
has a component absolutely continuous. More-

over since
∫
R
|1 + y|s+1

e−y2

dy <∞ ∀s ≥ 1, we can apply Theorem 1 of [25] with q = s and

• (Yi, Zi) equal to
(
g
(
X̃i

)
, (fg)(X̃i)

)

•

(
β1
M , · · · , βs

M , β
s+1
M

)
equal to (⌈α1M⌉ −K1 − 1, · · · , ⌈αsM⌉ −Ks − 1,M −Ks+1)

• φ(x) = 1
x

• x equal to
Ks+1∑
j=1

g(xj), z equal to
Ks+1∑
j=1

(fg)(xj), (y1, · · · , ys) equal to
(

K1∑
j=1

g(xj), · · · ,
Ks∑
j=1

g(xj)

)
and

θ equal to η(fg)

• T := H ∼ N
(
0, σ2

1(f)
)
by (14)

and deduce the following convergence in distribution as M → ∞

H̃

M
x ,







M ×

⌈αiM⌉−Ki−1
∑

j=1

g(X̃j)+
Ki
∑

j=1

g(xj)

Ks+1
∑

j=1

g(xj)+
M−Ks+1
∑

j=1

g(X̃j)








1≤i≤s




d
=⇒ (H,U1, · · · , Us) . (29)

Moreover by the Strong Law of Large Numbers

lim
M→∞

Mg(xKi+1)
Ks+1
∑

j=1

g(xj)+
M−Ks+1
∑

j=1

g(X̃j)

= g(xKi+1), lim
M→∞

M
Ki+1−1∑
ℓ=Ki+2

g(xℓ)

Ks+1∑
j=1

g(xj) +
M−Ks+1∑

j=1

g(X̃j)

=

Ki+1−1∑

ℓ=Ki+2

g(xℓ)

9



and

lim
M→∞

Mg(xKi+1)
Ks+1∑
j=1

g(xj) +
M−Ks+1∑

j=1

g(X̃j)

= g(xKi+1).

Therefore by Slutsky’s theorem, for each x := (xj)1≤j≤Ks+1 ∈ R
d(Ks+1) we can conclude that the

following random vector

(
H̃M

x , T̃M
α1,k1,x, · · · , T̃M

αs,ks,x

)

converges in distribution as M goes to infinity to

(H,T1,k,x, · · · , Ts,k,x) (30)

where the vector Ti,k,x is given by

(

f(xKi+1),f(xKi+1),Ui,g(xKi+1),
Ki+1−1
∑

ℓ=Ki+2

g(xℓ),g(xKi+1
)

)

.

In particular, given φ : R1+6s → R a continuous bounded function one has

lim
M→∞

E

(
φ
(
H̃M

x , T̃M
α1,k1,x, · · · , T̃M

αs,ks,x

))
= E (φ (H,T1,k,x, · · · , Ts,k,x)) . (31)

We are now ready to prove (26). By conditioning with respect to σ
(
(Xi)i∈JM

s

)
and by applying the

Freezing Lemma, (28) and (31), one has

E
(
φ
(
HM , TM

α1,k1
, · · · , TM

αs,ks

))

=

∫

Rd(k1+···+ks+s)

E
(
φ
(
HM

x , TM
α1,k1,x, · · · , TM

αs,ks,x

))Ks+1∏

i=1

η(dxi)

=

∫

Rd(k1+···+ks+s)

E

(
φ
(
H̃M

x , T̃M
α1,k1,x, · · · , T̃M

αs,ks,x

))Ks+1∏

i=1

η(dxi) −→
M→∞

E (φ (H,T1,k, · · · , Ts,k))

where Ti,k, i = 1, · · · , s is defined in (27) and so the proof is complete.

We are now ready to prove Theorem 3.2 .

Proof of Theorem 3.2. By (23), it is enough to study the convergence as M goes to infinity of

⌈

ḡ
g

⌉

∑

k=0

∫ 1

0

E
(
FM
k,α1

)
dα1. (32)

Let us observe that we can replace β0 and β1 (introduced in (7) and (8)) in the definition of FM
k,α1

respectively by the bounded functions β0 (0 ∨ x ∧ 1, 0 ∨ y1) and β1 (0 ∨ x ∧ 1, 0 ∨ y1, 0 ∨ y2, 0 ∨ y3) that to
simplify the notation we will keep calling β0 and β1.

For what has been said there exists a constant C̃ <∞ such that

sup
(x,y1)∈R2

|β0(x, y1)| ∨ sup
(x,y1,y2,y3)∈R4

|β1(x, y1, y2, y3)| ≤ C̃. (33)
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By Proposition 3.4 applied with s = 1 and by Remark 2.1, we have that for each α1 ∈ (0, 1)

FM
0,α1

d
=⇒ F0

with F0 defined in (12). Moreover by the hypothesis of boundedness of f and (33) we have

lim
M→∞

E
(
FM
0,α1

)
= E (F0) .

By Lebesgue’s theorem,
∫ 1

0
E
(
FM
0,α1

)
dα1 will converge to the same limit.

Let us now study the convergence of

⌈

ḡ
g

⌉

∑
k=1

∫ 1

0
E

(
FM
k,α1

)
dα1. By Proposition 3.4 applied with s = 1 and by

Remark 2.1, we have that for each α1 ∈ (0, 1) and k ≥ 1

FM
k,α1

d
=⇒ Fk

with Fk defined in (12). Moreover by the hypothesis of boundedness of f and (33),

lim
M→∞

E
(
FM
k,α1

)
= E (Fk) .

By Lebesgue’s theorem, limM→∞
∫ 1

0
E

(
FM
k,α1

)
dα1 = E (Fk) for each k = 1, · · · ,

⌈
ḡ
g

⌉
and so the proof is

complete.

We are now ready to provide a central limit theorem for 1
M

M∑
m=1

f(YM
m ) knowing its asymptotic variance.

4 Central Limit Theorem

Theorem 4.1. Let assume I1-2. The following convergence in distribution holds

√
M

(
1

M

M∑

m=1

f(YM
m )− η(fg)

)
d

=⇒ N
(
0, σ2

1(f) + σ2
2(f)

)
(34)

where σ2
1(f) and σ

2
2(f) are respectively defined in (10) and (11).

Proof of Theorem 4.1. Let u ∈ R. By introducing the notation

aMm := e
iu√
M
(f(Y M

m )−E(f(Y M
m )|F)) for m = 1, · · · ,M (35)

and by applying (4), we have

E


e

iu√
M

M
∑

m=1
(f(Y M

m )−η(fg))


 = E


e

iu
√
M

(

E

(

1
M

M
∑

m=1
f(Y M

m )

∣∣∣F
)

−η(fg)

)

E

(
M∏

m=1

aMm

∣∣∣ F
)


= E

(
eiuH

M

E

(
M∏

m=1

aMm

∣∣∣ F
))

(36)

where HM is defined in (25). The purpose of what follows is therefore to study the convergence as M goes
to infinity of (36).
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First step

We are first going to study the conditional expectation E

(
M∏

m=1
aMm

∣∣∣ F
)
.

By using that for each u, y ∈ R

∣∣∣eiuy − 1− iuy + (uy)2

2

∣∣∣ ≤ |uy|3
6 , one has

∣∣∣∣∣a
M
m − 1− iu√

M

(
f(YM

m )− E
(
f(YM

m ) | F
))

+
u2
(
f(YM

m )− E
(
f(YM

m ) | F
))2

2M

∣∣∣∣∣

≤ |u|3
∣∣f(YM

m )− E
(
f(YM

m ) | F
)∣∣3

6M
3
2

≤ 4 ‖f‖3∞ |u|3

3M
3
2

.

Therefore for m = 1, · · · ,M , aMm can be rewritten as

aMm = 1 +
iu√
M

(
f(YM

m )− E
(
f(YM

m ) | F
))

− u2
(
f(YM

m )− E
(
f(YM

m ) | F
))2

2M
+ rMm

with
∣∣rMm

∣∣ ≤ 4‖f‖3
∞|u|3

3M
3
2

.

By defining for m = 1, · · · ,M

bMm := 1− u2
(
f(YM

m )− E
(
f(YM

m ) | F
))2

2M
, (37)

let us now study the difference

∣∣∣∣∣E
(

M∏

m=1

aMm

∣∣∣ F
)

− E

(
M∏

m=1

bMm

∣∣∣ F
)∣∣∣∣∣ . (38)

By rewriting
M∏

m=1
aMm −

M∏
m=1

bMm =
M∑

m=1

m−1∏
ℓ=1

aMℓ
(
aMm − bMm

) M∏
ℓ=m+1

bMℓ , where by convention the empty prod-

uct is equal to one, by using that the random vectors (YM
m )1≤m≤M are conditionally independent given F

and that
∣∣rMm

∣∣ ≤ 4‖f‖3
∞|u|3

3M
3
2

,
∣∣aMℓ

∣∣ ≤ 1 and
∣∣bMℓ

∣∣ ≤ 1 +
2‖f‖2

∞u2

M , (38) becomes

∣∣∣∣∣E
(

M∏

m=1

aMm

∣∣∣ F
)

− E

(
M∏

m=1

bMm

∣∣∣ F
)∣∣∣∣∣

=

∣∣∣∣∣

M∑

m=1

E

(
m−1∏

ℓ=1

aMℓ

(
iu√
M

(
f(YM

m )− E
(
f(YM

m ) | F
))

+ rMm

) M∏

ℓ=m+1

bMℓ

∣∣∣ F
)∣∣∣∣∣

=

∣∣∣∣∣

M∑

m=1

E

(
m−1∏

ℓ=1

aMℓ

∣∣∣ F
)
E

(
iu√
M

(
f(YM

m )− E
(
f(YM

m ) | F
))

+ rMm

∣∣∣ F
)
E

(
M∏

ℓ=m+1

bMℓ

∣∣∣ F
)∣∣∣∣∣

=

∣∣∣∣∣

M∑

m=1

E

(
m−1∏

ℓ=1

aMℓ

∣∣∣ F
)
E

(
rMm

∣∣∣ F
)
E

(
M∏

ℓ=m+1

bMℓ

∣∣∣ F
)∣∣∣∣∣ ≤M × 4 ‖f‖3∞ |u|3

3M
3
2

×
(
1 +

2 ‖f‖2∞ u2

M

)M

−→
M→∞

0.

This implies that

lim sup
M→∞

∣∣∣∣∣E
(
eiuH

M

E

(
M∏

m=1

aMm

∣∣∣ F
))

− E

(
eiuH

M

E

(
M∏

m=1

bMm

∣∣∣ F
))∣∣∣∣∣ = 0. (39)
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Second step

By the previous step, it is enough to study the limit behaviour asM → ∞ of E

(
eiuH

M

E

(
M∏

m=1
bMm

∣∣∣ F
))

where bMm is defined in (37) .

By using the general fact that
M∏

m=1
(1 − cm) =

M∑
s=0

(−1)s
∑

1≤m1<···<ms≤M

s∏
j=1

cmj for any real sequence

(cm)1≤m≤M , we have

E

(
M∏

m=1

bMm

∣∣∣ F
)

=

M∑

s=0

(−u2
2M

)s ∑

1≤m1<···<ms≤M

E




s∏

j=1

(
f(YM

mj
)− E

(
f(YM

mj
) | F

))2 ∣∣∣ F




=
M∑

s=0

(−u2
2M

)s ∑

1≤m1<···<ms≤M

s∏

j=1

E

((
f(YM

mj
)− E

(
f(YM

mj
) | F

))2 ∣∣∣ F
)

(40)

where for the last equality we use that the random vectors (YM
m )1≤m≤M are conditionally independent

given F . Let us introduce Bm1,··· ,ms :=
s∏

j=1

E

((
f(YM

mj
)− E

(
f(YM

mj
) | F

))2 ∣∣∣ F
)
. Since Bm1,··· ,ms is

symmetric in its indexes and satisfies |Bm1,··· ,ms | ≤
(
4 ‖f‖2∞

)s
, for each s ≥ 1 we have

∣∣∣∣∣∣
1

M s


 1

s!

M∑

m1,··· ,ms=1

Bm1,··· ,ms −
∑

1≤m1<···<ms≤M

Bm1,··· ,ms




∣∣∣∣∣∣
≤

(
4 ‖f‖2∞

)s

M s

(
M s

s!
−
(
M

s

))
.

It is therefore possible to rewrite (40) as

E

(
M∏

m=1

bMm

∣∣∣ F
)

=

M∑

s=0

(
− u2

2M

)s ∑

1≤m1<···<ms≤M

s∏

j=1

E

((
f(YM

mj
)− E

(
f(YM

mj
) | F

))2 ∣∣∣ F
)

=

M∑

s=0

(
− u2

2M

)s
1

s!

M∑

m1,··· ,ms=1

s∏

j=1

E

((
f(YM

mj
)− E

(
f(YM

mj
) | F

))2 ∣∣∣ F
)
+ r̄M

=

M∑

s=0

(
−u

2

2

)s
1

s!

(
1

M

M∑

m=1

E

((
f(YM

m )− E
(
f(YM

m ) | F
))2 ∣∣∣ F

))s

+ r̄M

=
M∑

s=0

(
−u

2

2

)s
1

s!

(
Var

(
1√
M

M∑

m=1

f(YM
m )

∣∣∣ F
))s

+ r̄M

with r̄M such that

∣∣r̄M
∣∣ ≤

∑

s≥1

(
2u2 ‖f‖2∞

)s

s!

(
1− M(M − 1) · · · (M − s+ 1)

M s

)
−→

M→∞
0.

With
∣∣∣eiuHM

∣∣∣ ≤ 1, (36) and (39), this implies that

∣∣∣∣∣∣
E


e

iu√
M

M
∑

m=1
(f(Y M

m )−η(fg))


− E

(
eiuH

M
M∑

s=0

(
−u

2

2

)s
1

s!

(
Var

(
1√
M

M∑

m=1

f(YM
m )

∣∣∣ F
))s)∣∣∣∣∣∣

−→
M→∞

0.
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Third step

The purpose of what follows is therefore to study the convergence as M goes to infinity of

E

(
eiuH

M
M∑

s=0

(
−u

2

2

)s
1

s!

(
Var

(
1√
M

M∑

m=1

f(YM
m )

∣∣∣ F
))s)

. (41)

By (23), (41) can be rewritten as

E

(
eiuH

M
)
+

M∑

s=1

(
−u

2

2

)s
1

s!

⌈

ḡ
g

⌉

∑

k1,··· ,ks=0

∫

[0,1]s
E

(
eiuH

M

FM
k1,α1

· · ·FM
ks,αs

)
dα1 · · · dαs

= E

(
eiuH

M
)
+
∑

s≥1

1{s≤M}z(s,M) (42)

where for s ≥ 1 and M ≥ 1

z(s,M) =

(
−u

2

2

)s

⌈

ḡ
g

⌉

∑

k1,··· ,ks=0

∫

[0,1]s
1{0<α1<···<αs<1}E

(
eiuH

M

FM
k1,α1

· · ·FM
ks,αs

)
dα1 · · · dαs

and where we recall that for i = 1, · · · , s

FM
ki,αi

=





f2(X⌈αiM⌉)β0(u
M
⌈αiM⌉−1, w

M
⌈αiM⌉) ki = 0

−1{⌈αiM⌉≤M−ki}f(X⌈αiM⌉)f(X⌈αiM⌉+ki
)β1(u

M
⌈αiM⌉−1, w

M
⌈αiM⌉,

ki∑
ℓ=2

wM
⌈αiM⌉+ℓ−1, w

M
⌈αiM⌉+ki

) ki > 0.

Let us now study the convergence as M → ∞ of (42): lim
M→∞

E

(
eiuH

M
)
= e−

u2σ2
1(f)

2 by (14) and to study

the convergence of the sum we will apply Lebesgue’s theorem.
Given s ≥ 1, we first compute the pointwise convergence as M → ∞ of z(s,M) and then we show the
existence of a function z̃ independent of M that dominates |z| and such that

∑
s≥1

z̃(s) <∞.

Let us start by computing the pointwise convergence. Let s ≥ 1 and 0 ≤ k1, k2, · · · , ks ≤
⌈
ḡ
g

⌉
.

By applying the reasoning based on Proposition 3.4 done in the proof of Theorem 3.2, ∀ 0 < α1 < · · · <
αs < 1 we check that

eiuH
M

FM
k1,α1

· · ·FM
ks,αs

d
=⇒ eiuHF1,k · · ·Fs,k

where, recalling that k denotes the multiindex (k1, · · · , ks) and Ki := k1 + · · ·+ ki−1 + i− 1 ∀i = 1, · · · , s
with the convention K1 := 0, Fi,k for i = 1, · · · , s is given by

Fi,k =





f2(XKi+1)β0 (Ui, g(XKi+1)) ki = 0

−f(XKi+1)f(XKi+1)β1

(
Ui, g(XKi+1),

Ki+1−1∑
ℓ=Ki+2

g(Xℓ), g(XKi+1)

)
ki > 0

and H ∼ N
(
0, σ2

1(f)
)
independent of (Uj)1≤j≤s and (Xj)1≤j≤Ks+1

.

Moreover by the hypothesis of boundedness of f , (33) and the fact that
∣∣∣eiuH

M
∣∣∣ ≤ 1,

lim
M→∞

E

(
eiuH

M

FM
k1,α1

· · ·FM
ks,αs

)
= E

(
eiuHF1,k · · ·Fs,k

)
.

14



By Lebesgue’s theorem and by observing that F1,k, · · · , Fs,k are independent, respectively distributed
as Fk1 , · · · , Fks and independent of H , z(s,M) converges to

(
−u

2

2

)s

⌈

ḡ
g

⌉

∑

k1,··· ,ks=0

∫

[0,1]s
1{0<α1<···<αs<1}E

(
eiuHF1,k · · ·Fs,k

)
dα1 · · · dαs

= e−
u2σ2

1(f)

2
1

s!

(
−u

2

2

)s

⌈

ḡ
g

⌉

∑

k1,··· ,ks=0

E (Fk1) · · ·E (Fks)

= e−
u2σ2

1(f)

2
1

s!

(
−u

2

2

)s




⌈

ḡ
g

⌉

∑

k1=0

E (Fk1)




s

= e−
u2σ2

1(f)

2
1

s!

(
−u

2

2

)s (
σ2
2(f)

)s
.

Let us now show that z is dominated by a summable function z̃. By using that f , β0 and β1 are
bounded functions, for s ≥ 1 one has

|z(s,M)| =

∣∣∣∣∣∣∣

(
−u

2

2

)s

⌈

ḡ
g

⌉

∑

k1,··· ,ks=0

∫

[0,1]s
1{0<α1<···<αs<1}E

(
eiuHF1,k · · ·Fs,k

)
dα1 · · · dαs

∣∣∣∣∣∣∣

≤ C
1

s!




u2
(⌈

ḡ
g

⌉
+ 1
)

2




s

for a given finite constant C. It is now sufficient to observe that
∑
s≥1

1
s!

((⌈
ḡ
g

⌉
+ 1
)
× u2

2

)s
= e

(⌈

ḡ
g

⌉

+1
)

u2

2 <

∞. In conclusion we have proved that (42) converges as M → ∞ to

e−
u2σ2

1(f)

2

∑

s≥0

1

s!

(
−u

2

2

)s (
σ2
2(f)

)s
= e−

u2(σ2
1(f)+σ2

2(f))
2 .

5 Proof of Proposition 3.3

We recall that for i = 1, · · · ,M we denote uMi :=
{
wM

1 + · · ·+ wM
i

}
and µM

i := ⌊wM
1 + · · · + wM

i ⌋ + 1,
where by convention uM0 = 0, µM

0 = 1. The following technical result holds.

Lemma 5.1. If 1 ≤ p < ℓ ≤M then

1. µM
p < µM

ℓ if and only if wM
p+1 + · · ·+ wM

ℓ ≥ 1− uMp

2. µM
p = µM

ℓ if and only if wM
p+1 + · · ·+ wM

ℓ < 1− uMp

3. µM
p = µM

ℓ if and only if uMℓ = uMp + wM
p+1 + · · ·+ wM

ℓ .

Proof of Lemma 5.1. Let us observe that 2. follows directly from 1. and 3. is a direct consequence of the
definition of the integer and fractional part. Therefore it is enough to prove 1.

15



If µM
p < µM

ℓ , then

wM
1 + · · ·+ wM

p − uMp + 1 = µM
p ≤ µM

ℓ − 1 ≤ wM
1 + · · ·+ wM

ℓ

that implies
1− uMp ≤ wM

p+1 + · · ·+ wM
ℓ .

Let us now prove the other implication. If 1− uMp ≤ wM
p+1 + · · ·+ wM

ℓ , then

µM
p = wM

1 + · · ·+ wM
p + 1− uMp ≤ wM

1 + · · ·+ wM
ℓ < µM

ℓ .

The following lemma provides an explicit expression for the conditional expectation E
(
f(YM

m ) | F
)
for

m = 1, · · · ,M which appears in (20) and so it allows to prove Proposition 3.3.

Lemma 5.2. Given ̺ ∈ Bb

(
R

d
)
, for m = 1, · · · ,M we have

E
(
̺(YM

m ) | F
)
=

M∑

i=1

̺(Xi)q
M
m,i1{µM

i−1≤m≤µM
i }

where for i = 1, · · · ,M

qMm,i = 1{µM
i−1<µM

i }(1{µM
i−1<m<µM

i } + 1{m=µM
i−1}(1− uMi−1) + 1{m=µM

i }u
M
i ) + 1{µM

i−1=m=µM
i }w

M
i . (43)

Proof of Lemma 5.2. For m = 1, · · · ,M , by (3), by observing that m − Um is uniformly distributed on
[m− 1,m] and by the Freezing Lemma, we have

E
(
̺(YM

m ) | F
)
=

M∑

i=1

̺(Xi)

∫ m

m−1

1{i−1
∑

j=1
wM

j <u≤
i
∑

j=1
wM

j

}du. (44)

By observing that for i = 1, · · · ,M

1 = 1{m<µM
i−1} + 1{m>µM

i } + 1{µM
i−1<µM

i }
(
1{m=µM

i−1} + 1{m=µM
i } + 1{µM

i−1<m<µM
i }
)
+ 1{m=µM

i−1=µM
i },

let us study the value of the integral in (44) according to this partition. Ifm < µM
i−1 thenm ≤ µM

i−1−1 ≤
wM

1 + · · ·+wM
i−1 and if m > µM

i then m ≥ µM
i +1 > wM

1 + · · ·+wM
i +1 and so in both cases the integral is

zero. Let us now suppose that µM
i−1 < µM

i . If µM
i−1 < m < µM

i , then m ≥ µM
i−1 + 1 > wM

1 + · · ·+wM
i−1 + 1

and m ≤ wM
1 + · · ·+ wM

i . Therefore

∫ m

m−1

1{i−1
∑

j=1

wM
j <u≤

i
∑

j=1

wM
j

}du = 1.

If m = µM
i−1: ∫ m

m−1

1{i−1
∑

j=1
wM

j <u≤
i
∑

j=1
wM

j

}du =

∫ µM
i−1

wM
1 +···+wM

i−1

du = 1− uMi−1.

If m = µM
i :

∫ m

m−1

1{i−1
∑

j=1

wM
j <u≤

i
∑

j=1

wM
j

}du =

∫ wM
1 +···+wM

i

µM
i −1

du = uMi .
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Finally if m = µM
i = µM

i−1:

∫ m

m−1

1{i−1
∑

j=1

wM
j <u≤

i
∑

j=1

wM
j

}du =

∫ wM
1 +···+wM

i

wM
1 +···+wM

i−1

du = wM
i .

To sum up we have obtained that for i = 1, · · · ,M
∫ m

m−1

1{i−1
∑

j=1
wM

j <u≤
i
∑

j=1
wM

j

}du

= 1{µM
i−1<µM

i }(1{µM
i−1<m<µM

i } + 1{m=µM
i−1}(1− uMi−1) + 1{m=µM

i }u
M
i ) + 1{µM

i−1=m=µM
i }w

M
i .

Proof of Proposition 3.3. Let us rewrite (20). By Lemma 5.2 we have

1

M

M∑

m=1

E
(
f2(YM

m )|F
)
− 1

M

M∑

m=1

E
(
f(YM

m )|F
)2

=
1

M

M∑

m=1

M∑

i=1

f2(Xi)q
M
m,i1{µM

i−1≤m≤µM
i } − 1

M

M∑

m=1

M∑

i=1

f2(Xi)(q
M
m,i)

21{µM
i−1≤m≤µM

i }

− 2

M

M∑

m=1

∑

1≤i<j≤M

f(Xi)f(Xj)q
M
m,iq

M
m,j1{µM

i−1≤m≤µM
i }1{µM

j−1≤m≤µM
j }

=
1

M

M∑

m=1

M∑

i=1

f2(Xi)
(
qMm,i − (qMm,i)

2
)
1{µM

i−1≤m≤µM
i } − 2

M

M∑

m=1

∑

1≤i<j≤M

f(Xi)f(Xj)q
M
m,iq

M
m,j1{m=µM

i =µM
j−1}.

(45)

We are now going first to rewrite the first component of the right-hand side and then the second one.

First term:

Let us observe that by Lemma 5.1 applied to the couple (p, l) equal to (i − 1, i), we have 1{µM
i >µM

i−1} =

1{wM
i ≥1−uM

i−1} and 1{µM
i =µM

i−1} = 1{wM
i <1−uM

i−1} for i = 1 · · · ,M . Therefore by Lemma 5.2 and by using

that µM
i − µM

i−1 = uMi−1 − uMi + wM
i , we have

M∑

m=1

qMm,i1{µM
i−1≤m≤µM

i }

=

M∑

m=1

(
1{wM

i ≥1−uM
i−1}(1{µM

i−1<m<µM
i } + 1{m=µM

i−1}(1 − uMi−1) + 1{m=µM
i }u

M
i ) + 1{wM

i <1−uM
i−1}1{µM

i−1=m=µM
i }w

M
i

)

= 1{wM
i ≥1−uM

i−1}
(
µM
i − µM

i−1 − uMi−1 + uMi
)
+ 1{wM

i <1−uM
i−1}w

M
i = wM

i 1{wM
i ≥1−uM

i−1} + wM
i 1{wM

i <1−uM
i−1} = wM

i .
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Let us observe that since, by (4), 1
M

M∑
m=1

E
(
f2(YM

m )|F
)
= 1

M

M∑
i=1

f2(Xi)w
M
i , we got the expected result.

Similarly, by using that µM
i − µM

i−1 = uMi−1 − uMi + wM
i , we have

M∑

m=1

(qMm,i)
21{µM

i−1≤m≤µM
i }

= 1{wM
i ≥1−uM

i−1}(µ
M
i − µM

i−1 − 1 + (1− uMi−1)
2 + (uMi )2) + 1{wM

i <1−uM
i−1}(w

M
i )2

= (wM
i − uMi (1− uMi )− uMi−1(1− uMi−1))1{wM

i ≥1−uM
i−1} + (wM

i )21{wM
i <1−uM

i−1}
= wM

i − uMi (1− uMi )− uMi−1(1− uMi−1)− (wM
i (1 − wM

i )− uMi (1− uMi )− uMi−1(1 − uMi−1))1{wM
i <1−uM

i−1}.

Substrating the two quantities and using Lemma 5.1 to rewrite uMi as wM
i + uMi−1 if wM

i < 1 − uMi−1 , we
have

M∑

m=1

qMm,i1{µM
i−1≤m≤µM

i } −
M∑

m=1

(qMm,i)
21{µM

i−1≤m≤µM
i }

= uMi (1 − uMi ) + uMi−1(1− uMi−1) + (wM
i (1− wM

i )− uMi (1− uMi )− uMi−1(1− uMi−1))1{wM
i <1−uM

i−1}
= uMi (1 − uMi ) + uMi−1(1− uMi−1) + (wM

i (1− wM
i )− (wM

i + uMi−1)(1 − wM
i − uMi−1)− uMi−1(1− uMi−1))1{wM

i <1−uM
i−1}

= uMi (1 − uMi ) + uMi−1(1− uMi−1)− (2uMi−1(1− uMi−1)− 2wM
i uMi−1)1{wM

i <1−uM
i−1}.

Therefore by observing that for i = 1 · · · ,M uMi =
{
uMi−1 + wM

i

}
, the first term can be rewritten as

1

M

M∑

m=1

M∑

i=1

f2(Xi)
(
qMm,i − (qMm,i)

2
)
1{µM

i−1≤m≤µM
i } =

1

M

M∑

i=1

f2(Xi)β0(u
M
i−1, w

M
i ) (46)

with β0 defined in (7).

Second term:

By Lemma 5.2 and by rewriting 1{µM
i−1<µM

i } = 1 − 1{ωM
i <1−uM

i−1}, we can rewrite the right-hand side of

(45) in the following way

2

M

M∑

m=1

∑

1≤i<j≤M

f(Xi)f(Xj)q
M
m,iq

M
m,j1{m=µM

i =µM
j−1}

=
2

M

∑

1≤i<j≤M

f(Xi)f(Xj)
(
1{µM

i−1<µM
i }u

M
i + 1{µM

i−1=µM
i }w

M
i

)

×
(
1{µM

j−1<µM
j }(1− uMj−1) + 1{µM

j−1=µM
j }w

M
j

)
1{µM

i =µM
j−1}

=
2

M

M−1∑

k=1

M−k∑

i=1

f(Xi)f(Xi+k)
(
ρMi,k + ρ̃Mi,k

)

where for k = 1, · · · ,M − 1 and i = 1, · · · ,M − k

ρMi,k = uMi

(
1{µM

i+k−1<µM
i+k}(1− uMi+k−1) + 1{µM

i+k−1=µM
i+k}w

M
i+k

)
1{µM

i =µM
i+k−1}

ρ̃Mi,k =
(
wM

i − uMi
)(

1{µM
i+k−1<µM

i+k}(1− uMi+k−1) + 1{µM
i+k−1=µM

i+k}w
M
i+k

)
1{µM

i−1=µM
i }1{µM

i =µM
i+k−1}.
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Let us now rewrite ρMi,k and ρ̃Mi,k. To simplify the notation, we will denote
j2∑

ℓ=j1

wM
ℓ for 1 ≤ j1 ≤ j2 ≤M

by sj2j1 . We can apply Lemma 5.1 to the couples

1. (p, ℓ) = (i, i+ k − 1) so that 1{µM
i =µM

i+k−1} = 1{si+k−1
i+1 <1−uM

i }
2. (p, ℓ) = (i− 1, i) so that 1{µM

i−1=µM
i } = 1{ωM

i <1−uM
i−1}

3. (p, ℓ) = (i+k−1, i+k) so that 1{µM
i+k−1=µM

i+k} = 1{ωM
i+k<1−uM

i+k−1} and 1{µM
i+k−1<µM

i+k} = 1{ωM
i+k≥1−uM

i+k−1}

so that, by observing that when si+k−1
i+1 < 1− uMi we can rewrite uMi+k−1 as uMi + si+k−1

i+1 , one has

ρMi,k = uMi

(
1{ωM

i+k≥1−uM
i+k−1}(1− uMi+k−1) + wM

i+k1{ωM
i+k<1−uM

i+k−1}
)
1{si+k−1

i+1 <1−uM
i }

= uMi

(
1{ωM

i+k≥1−uM
i −si+k−1

i+1 }(1 − uMi − si+k−1
i+1 ) + wM

i+k1{ωM
i+k<1−uM

i −si+k−1
i+1 }

)
1{

s
i+k1−1

i+1 <1−uM
i

}

= uMi (1− uMi − si+k−1
i+1 )1{si+k−1

i+1 <1−uM
i ≤si+k

i+1} + uMi w
M
i+k1{si+k

i+1<1−uM
i }

= uMi (1− uMi − si+k−1
i+1 )1{si+k−1

i+1 <1−uM
i } − uMi (1− uMi − si+k

i+1)1{si+k
i+1<1−uM

i }

and, by observing that when wM
i < 1 − uMi−1 and si+k−1

i+1 < 1 − uMi we can rewrite uMi = uMi−1 + wM
i

and uMi+k−1 = uMi−1 + si+k−1
i , one has

ρ̃Mi,k =
(
wM

i − uMi
) (

1{ωM
i+k≥1−uM

i+k−1}(1− uMi+k−1) + wM
i+k1{ωM

i+k<1−uM
i+k−1}

)
1{ωM

i <1−uM
i−1}1{si+k−1

i+1 <1−uM
i }

= −
(
uMi−1 + wM

i

) (
1{si+k

i ≥1−uM
i−1}(1− uMi−1 − si+k−1

i ) + wM
i+k1{si+k

i <1−uM
i−1}

)
1{si+k−1

i <1−uM
i−1}

+ wM
i

(
1{si+k

i ≥1−uM
i−1}(1− uMi−1 − si+k−1

i ) + wM
i+k1{si+k

i <1−uM
i−1}

)
1{si+k−1

i <1−uM
i−1}

= −uMi−1(1− uMi−1 − si+k−1
i )1{si+k−1

i <1−uM
i−1≤si+k

i } − uMi−1w
M
i+k1{si+k

i <1−uM
i−1}

= −uMi−1(1− uMi−1 − si+k−1
i )1{si+k−1

i <1−uM
i−1} + uMi−1(1− uMi−1 − si+k

i )1{si+k
i <1−uM

i−1}.

Therefore we have obtained that

1

M

M∑

m=1

∑

1≤i<j≤M

f(Xi)f(Xj)q
M
m,iq

M
m,j1{m=µM

i =µM
j−1}

=
1

M

M−1∑

k=1

M−k∑

i=1

f(Xi)f(Xi+k)β1

(
uMi−1, w

M
i ,

k∑

ℓ=2

wM
i+ℓ−1, w

M
i+k

)

with β1 defined as in (8). Let us now observe that there exists a finite constant C1 such that for k =
1, · · · ,M − 1, i = 1, · · · ,M − k

∣∣∣∣∣β1

(
uMi−1, w

M
i ,

k∑

ℓ=2

wM
i+ℓ−1, w

M
i+k

)∣∣∣∣∣ ≤ C11{ k
∑

ℓ=2

wM
i+ℓ−1<1

} ≤ C11




k<1+
ḡ

g







. (47)
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Therefore

1

M

M−1∑

k=1

M−k∑

i=1

f(Xi)f(Xi+k)β1

(
uMi−1, w

M
i ,

k∑

ℓ=2

wM
i+ℓ−1, w

M
i+k

)

=
1

M

(M−1)∧
⌈

ḡ
g

⌉

∑

k=1

M−k∑

i=1

f(Xi)f(Xi+k)β1

(
uMi−1, w

M
i ,

k∑

ℓ=2

wM
i+ℓ−1, w

M
i+k

)
.

6 Asymptotic Variance for the Next Steps

What we have seen so far is the study of the stratified sampling selection step: it is actually part of a more
general algorithm where each step consists of a selection part and a mutation part that we are now going
to describe more in details (see for instance [22] for a more general version of the algorithm).

For each step n ≥ 0, we are going to recursively define the selection sequence
(
YM,m
n

)
1≤m≤M

and the

mutation sequence
(
XM,m

n

)
1≤m≤M

. Let gn : Rd → (0,∞) , n ≥ 0 be a family of measurable functions

such that 0 < infx∈Rd gn(x) ≤ supx∈Rd gn(x) < ∞. In what follows we denote ḡn := supx∈Rd gn(x) and
g
n
:= infx∈Rd gn(x). Let for n ≥ 0 and k ≥ 0

φn(k) :=

⌈
ḡn

g
n

(1 + k)

⌉
. (48)

Moreover let (Zk)k≥0 be a R
d-valued time-inhomogeneous Markov chain that is for each bounded measur-

able function h : Rd → R, E (h (Zk) |σ (Z0, · · · , Zk−1)) =
∫
Rd h(x)Pk (Zk−1, dx) for a transition kernel Pk

possibly depending on k. We denote the law of Z0 by η.

Initialization: we generate a sequence (XM,m
0 )1≤m≤M of i.i.d. R

d-valued random vectors following the law η. By

convention YM,m
0 := X

M,m
0 for 1 ≤ m ≤M .

From n to n+1: the transition from
(
YM,m
n , XM,m

n

)
1≤m≤M

to
(
Y

M,m
n+1 , X

M,m
n+1

)

1≤m≤M
for n ≥ 0 consists of two steps.

Selection: we generate the random vectors
(
Y

M,m
n+1

)

1≤m≤M
conditionally independent given

Fn := σ

((
X

M,m
i , Y

M,m
i

)

1≤m≤M,0≤i≤n

)
by

Y
M,m
n+1 =

M∑

ℓ=1

1












M
ℓ−1
∑

j=1
gn(XM,j

n )
M
∑

j=1
gn(XM,j

n )
<m−Um

n ≤
M

ℓ
∑

j=1
gn(XM,j

n )
M
∑

j=1
gn(XM,j

n )















XM,ℓ
n m = 1, · · · ,M (49)

where (Um
n )1≤m≤M is a sequence of i.i.d. random variables independent of Fn and distributed

according to the uniform law on (0, 1).
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Mutation: given Gn+1 := σ

((
X

M,m
i , Y

M,m
i

)

1≤m≤M,0≤i≤n
,
(
Y

M,m
n+1

)

1≤m≤M

)
we generate the random

vectors XM,m
n+1 , 1 ≤ m ≤M conditionally independent and respectively distributed according to

the probability measure Pn+1

(
Y

M,m
n+1 , ·

)

For each n ≥ 0 we denote the weights by

wM,m
n =

Mgn(X
M,m
n )

M∑
ℓ=1

gn(X
M,ℓ
n )

m = 1, · · · ,M.

Moreover let us observe that the selection property for n = 0 (4) remains valid for each n: ∀n ≥ 0

E

(
1

M

M∑

m=1

δY M,m
n+1

|Fn

)
=

M∑

m=1

wM,m
n

M
δXM,m

n
. (50)

The study of the asymptotic variance of the selection part of the first step that is Var
(

1√
M

∑M
m=1 f

(
Y

M,m
1

))

for a given bounded measurable function f : Rd → R was the object of Section 3. Our purpose now is to

generalize this result by studying the asymptotic variance of 1√
M

M∑
m=1

f
(
Y

M,m
n+1

)
for n ≥ 1.

Before doing it let us begin with some notation: for n ≥ 0, M ≥ 1 and k = 0, · · · ,M − 1 let

η̃k,Mn :=
1

M

M−k∑

i=1

δ(Y M,i
n ,··· ,Y M,i+k

n )

η̄k,Mn :=
1

M

M−k∑

i=1

δ(XM,i
n ,··· ,XM,i+k

n ).

Remark 6.1. Let f ∈ Bb

(
R

d
)
. If k = 0 and n = 0, by the classical Strong Law of Large Numbers we have

lim
M→∞

η̃
0,M
0 (f) = lim

M→∞
η̄
0,M
0 (f) = η̄00(f) := η(f) = E (f (Z0)) a.s.

It is possible to prove that a Strong Law of Large Numbers holds (see [22, Corollary 7.4.2]) also in the
case k = 0 and n ≥ 1:

lim
M→∞

η̃0,Mn (f) = lim
M→∞

1

M

M∑

i=1

f
(
YM,i
n

)
= η̃0n(f) :=

E

(
f (Zn−1)

∏n−1
p=0 gp (Zp)

)

E

(∏n−1
p=0 gp (Zp)

) a.s.

lim
M→∞

η̄0,Mn (f) = lim
M→∞

1

M

M∑

i=1

f
(
XM,i

n

)
= η̄0n(f) :=

E

(
f (Zn)

∏n−1
p=0 gp (Zp)

)

E

(∏n−1
p=0 gp (Zp)

) a.s..

We are now going to prove that given h : R2d → R a bounded measurable function, the study of

the asymptotic variance of 1√
M

M∑
m=1

h
(
Y

M,m
n+1 , X

M,m
n+1

)
depends on the study of the asymptotic variance of

1√
M

M∑
m=1

f
(
Y

M,m
n+1

)
for f : Rd → R a bounded measurable function.
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Proposition 6.2. Let h ∈ Bb

(
R

2d
)
. The following convergence holds

∣∣∣∣∣∣
Var

(
1√
M

M∑

m=1

h
(
Y

M,m
n+1 , X

M,m
n+1

))
−Var

(
1√
M

M∑

m=1

Pn+1h
(
Y

M,m
n+1

))
−
η̄0n

(
gn

(
Pn+1h

2 − (Pn+1h)
2
))

η̄0n(gn)

∣∣∣∣∣∣
−→

M→∞
0.

Proof of Proposition 6.2. By using that the XM,m
n+1 are conditionally independent given Gn+1 and that the

Y
M,m
n+1 are Gn+1 measurable, one has

Var

(
1√
M

M∑

m=1

h
(
Y

M,m
n+1 , X

M,m
n+1

))

= Var

(
1√
M

M∑

m=1

E

(
h
(
Y

M,m
n+1 , X

M,m
n+1

) ∣∣∣ Gn+1
))

+ E

(
1

M

M∑

m=1

Var
(
h
(
Y

M,m
n+1 , X

M,m
n+1

) ∣∣∣ Gn+1
))

= Var

(
1√
M

M∑

m=1

E

(
h
(
Y

M,m
n+1 , X

M,m
n+1

) ∣∣∣ Gn+1
))

+ E

(
1

M

M∑

m=1

E

(
h2
(
Y

M,m
n+1 , X

M,m
n+1

) ∣∣∣ Gn+1
))

− E

(
1

M

M∑

m=1

E

(
h
(
Y

M,m
n+1 , X

M,m
n+1

) ∣∣∣ Gn+1
)2
)
.

Since L
(
X

M,m
n+1 | Gn+1

)
∼ Pn+1

(
Y

M,m
n+1 , ·

)
, for each bounded measurable function h̃ : R2d → R one

has

E

(
h̃(YM,m

n+1 , X
M,m
n+1 ) | Gn+1

)
= Pn+1h̃

(
Y

M,m
n+1

)
:=

∫

Rd

h̃(YM,m
n+1 , x)Pn+1

(
Y

M,m
n+1 , dx

)
. (51)

Therefore we obtain that

Var

(
1√
M

M∑

m=1

h
(
Y

M,m
n+1 , X

M,m
n+1

))

= Var

(
1√
M

M∑

m=1

Pn+1h
(
Y

M,m
n+1

))
+ E

(
1

M

M∑

m=1

Pn+1h
2
(
Y

M,m
n+1

))
− E

(
1

M

M∑

m=1

(
Pn+1h

(
Y

M,m
n+1

))2
)

= Var

(
1√
M

M∑

m=1

Pn+1h
(
Y

M,m
n+1

))
+ E

(
M∑

m=1

wM,m
n

M
Pn+1h

2
(
XM,m

n

)
)

− E

(
M∑

m=1

wM,m
n

M

(
Ph
(
XM,m

n

))2
)

where to obtain the last equality we use the selection property (50). By Remark 6.1,

lim
M→∞

1

M

M∑

m=1

gn
(
XM,m

n

)
Pn+1h

2
(
XM,m

n

)
= η̄0n(gnPn+1h

2) a.s.,

lim
M→∞

1

M

M∑

m=1

gn
(
XM,m

n

) (
Pn+1h

(
XM,m

n

))2
= η̄0n(gn (Pn+1h)

2) a.s.,

lim
M→∞

1

M

M∑

m=1

gn
(
XM,m

n

)
= η̄0n(gn) a.s.
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Thus by Lebesgue theorem,

lim
M→∞

E

(
M∑

m=1

wM,m
n

M
Pn+1h

2
(
XM,m

n

)
)

=
η̄0n(gnPn+1h

2)

η̄0n(gn)
,

lim
M→∞

E

(
M∑

m=1

wM,m
n

M

(
Pn+1h

(
XM,m

n

))2
)

=
η̄0n(gn (Pn+1h)

2)

η̄0n(gn)

and this concludes the proof.

We are now ready to study for n ≥ 1 and f ∈ Bb

(
R

d
)
the convergence as M → ∞ of

VM
n+1 (f) := Var

(
1√
M

M∑

m=1

f
(
Y

M,m
n+1

))
.

With the aim of studying limM→∞ VM
n+1 (f), we will assume the following conjectures:

Conjecture 1. For each f ∈ Bb

(
R

d
)
one has

∣∣∣∣∣∣
Var

(
√
M
η̄0,Mn (gnf)

η̄
0,M
n (gn)

)
− VM

n (Pnfn)

(η̄0n (gn))
4 −

η̄0n−1

(
gn−1

(
Pnf

2
n − (Pnfn)

2
))

(η̄0n (gn))
4
η̄0n−1 (gn−1)

∣∣∣∣∣∣
−→

M→∞
0

where

fn := gn
(
η̄0n (gn) f − η̄0n (gnf)

)
.

Remark 6.3. In Section 3 we proved that in the case n = 0, by observing that Var

(
√
M
η̄
0,M
0 (g0f)

η̄
0,M
0 (g0)

)
=

Var


√

M
η̄
0,M
0

(
g0

η(g0)
f
)

η̄
0,M
0

(
g0

η(g0)

)


, one has

∣∣∣∣∣Var
(
√
M
η̄
0,M
0 (g0f)

η̄
0,M
0 (g0)

)
− η(f2

0 )
η(g0)

4

∣∣∣∣∣ −→
M→∞

0.

For n ≥ 1 the idea underlying the Conjecture 1 is the following: by considering

Var

(
√
M

(
η̄0,Mn (gnf)

η̄
0,M
n (gn)

− η̄0n (gnf)

η̄0n (gn)

))
= Var

(
√
M

η̄0,Mn (fn)

η̄
0,M
n (gn) η̄0n (gn)

)
,

we asymptotically replace in the denominator of the right-hand side η̄0,Mn (gn) by η̄
0
n (gn). Thus we have

∣∣∣∣∣Var
(
√
M

η̄0,Mn (fn)

η̄
0,M
n (gn) η̄0n (gn)

)
− 1

(η̄0n (gn))
4Var

(√
Mη̄0,Mn (fn)

)∣∣∣∣∣ −→
M→∞

0.

We then rewrite Var
(√

Mη̄0,Mn (fn)
)
following the same reasoning used in the proof of Proposition 6.2.

Conjecture 2. Let t ∈ N. Given ψ ∈ Bb

(
R

t+2
)
continuous and h ∈ Bb

(
R

d(t+1)
)
, the following conver-

gence holds

∣∣∣∣
1

M

M−t∑

m=1

E
(
h
(
XM,m

n , · · · , XM,m+t
n

)
ψ
(
uM,m−1
n , wM,m

n , · · · , wM,m+t
n

))

− 1

M

M−t∑

m=1

E

(
h
(
XM,m

n , · · · , XM,m+t
n

) ∫ 1

0

ψ
(
u, g̃n(X

M,m
n ), · · · , g̃n(XM,m+t

n )
)
du

) ∣∣∣∣ −→
M→∞

0
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where uM,m−1
n =





M

m−1
∑

i=1

gn(XM,i
n )

M
∑

i=1

gn(XM,i
n )




 and g̃n(x) =
gn(x)
η̄0
n(gn)

.

Remark 6.4. In Section 3 we have provided a formal proof of Conjecture 2 in the case n = 0. In that

case we strongly used the fact that the random variables we are working with

((
X

M,m
0

)

m≥1

)
are i.i.d.

and the fact that the law of g0

(
X

M,m
0

)
has an absolutely continuous component to prove that is possible

to asymptotically replace uM,i−1
0 with a uniformly distributed random variable independent of F0 and wM,i

0

with
g0(XM,i

0 )
η̄0
0(g0)

.

Before providing the main result of this section, let us introduce some notation.

For k ≥ 0 let P
⊗(k+1)
n : Bb

(
R

d(k+1)
)
→ Bb

(
R

d(k+1)
)
be defined by

P⊗(k+1)
n h (x0, · · · , xk) :=

∫

Rd(k+1)

h (y0, · · · , yk)Pn (x0, dy0) · · ·Pn (xk, dyk)

and let for sk = 0, · · · , φn−1(k), T
k→sk
n−1 : Bb

(
R

d(k+1)
)
→ Bb

(
R

d(sk+1)
)
given by

T k→sk
n−1 f (x0, x1, · · · , xsk) =

∑

0≤s1≤s2≤···≤sk

f (x0, xs1 , · · · , xsk)
∫ 1

0

ψs1:sk (u, g̃n−1(x0), g̃n−1(x1), · · · , g̃n−1(xsk)) du

and where given 0 ≤ sk ≤ φn−1(k) and s0 := 0 ≤ s1 ≤ s2 ≤ · · · ≤ sk:

ψs1:sk (u, y0, y1, · · · , ysk) =
⌈1+ḡn/g

n
⌉∑

i=1

k∏

q=0

∫ i+q

i+q−1

1{
u+

sq−1
∑

j=0

yj<u′≤u+
sq
∑

j=0

yj

}du′.

Finally let T k
n−1 : Bb

(
R

d(k+1)
)
→ Bb

(
R

d(φn−1(k)+1)
)
defined by

T k
n−1h

(
x0, · · · , xφn−1(k)

)
=

φn−1(k)∑

sk=0

T k→sk
n−1

(
P⊗(k+1)
n h

)
(x0, x1, · · · , xsk ) .

Theorem 6.5. Let us assume Conjecture 1 and Conjecture 2. Then ∀n ≥ 1 and ∀f ∈ B
(
R

d
)
, VM

n (f)
converges as M goes to infinity and we denote its limit by Vn (f). Moreover, by defining φm:n (0) :=
φm (φm+1 (· · · (φn (0)))) for m ≤ n, m,n ∈ N, Vn (f) is defined by the following recursive formula:

Vn+1 (f) =
Vn (Pnfn)

(η̄0n (gn))
4 +

η̄0n−1

(
gn−1

(
Pnf

2
n − (Pnfn)

2
))

(η̄0n (gn))
4
η̄0n−1 (gn−1)

+

∫
T φ1:n(0)
0 · · · T φn−1:n(0)

n−2 T φn:n(0)
n−1 f̄n (x) η

⊗φ0:n(0) (dx)

where f̄n ∈ Bb

(
R

d(1+φn(0))
)
is given by

f̄n
(
x0, · · · , xφn(0)

)
:=

φn(0)∑

k=0

f (x0) f (xk)

∫ 1

0

β̄k (u, g̃n (x0) , · · · , g̃n (xk)) du

with β̄k (u, y0, · · · , yk) = β0(u, y0)1{k=0} − β1

(
u, y0,

k−1∑
ℓ=1

yℓ, yk

)
1{k 6=0} where β0 and β1 are respectively

defined in (7) and (8).

24



Remark 6.6. Let us observe that by Theorem 2.2, lim
M→∞

VM
1 (h) = V1 (h) = σ2

1(h) + σ2
2(h) ∀h ∈ Bb

(
R

d
)
.

The proof of Theorem 6.5 relies on the following proposition the proof of which is provided after the
proof of the theorem.

Proposition 6.7. Let us assume Conjecture 2. Given n ≥ 1 and h ∈ Bb

(
R

d(φn(0)+1)
)
one has

∣∣∣∣E
(
η̄φn(0),M
n (h)

)
−
∫
T φ1:n(0)
0 · · · T φn−1:n(0)

n−2 T φn:n(0)
n−1 h (x) η⊗φ0:n(0) (dx)

∣∣∣∣ −→
M→∞

0.

Proof of Theorem 6.5. Similarly to what we have done in (5) and (6), we can rewrite the variance in the
following way

VM
n+1 (f) = Var

(
1√
M

M∑

m=1

f(YM,m
n+1 )

)

= Var

(
E

(
1√
M

M∑

m=1

f(YM,m
n+1 )

∣∣∣ Fn

))
+ E

(
Var

(
1√
M

M∑

m=1

f(YM,m
n+1 )

∣∣∣ Fn

))

= Var

(
√
M

∑M
m=1 gn(X

M,m
n )f(XM,m

n )
∑M

m=1 gn(X
M,m
n )

)
+ E

(
Var

(
1√
M

M∑

m=1

f(YM,m
n+1 )

∣∣∣ Fn

))
(52)

where to obtain the last equality we use the selection property (50). Conjecture 1 gives the asymptotic
behavior of the first term of (52).

Let us then study the second term of (52). Using the definition of YM,m
n+1 and following the same reasoning

done to prove Proposition 3.3, we can rewrite the expression inside the expectation: for M ≥ 1 + φn(0)

Var

(
1√
M

M∑

m=1

f(YM,m
n+1 )

∣∣∣ Fn

)
(53)

=
1

M

φn(0)∑

k=0

M−k∑

i=1

f(XM,i
n )f(XM,i+k

n )β̄k
(
uM,i−1
n , wM,i

n , · · · , wM,i+k
n

)
(54)

with β̄k (u, y0, · · · , yk) := β0(u, y0)1{k=0} − β1

(
u, y0,

k−1∑
ℓ=1

yℓ, yk

)
1{k 6=0} where we recall that β0 and β1

are respectively defined in (7) and (8). Given k = 0, · · · , φn(0), we can apply Conjecture 2 with t = k,
h (x0, · · · , xk) = f (x0) f (xk) and ψ (u, y0, · · · , yk) = β̄k (u, y0, · · · , yk) and obtain that

∣∣∣∣∣∣
E

(
Var

(
1√
M

M∑

m=1

f(YM,m
n+1 )

∣∣∣ Fn

))
−

φn(0)∑

k=0

E

(
η̄k,Mn

(
f̃k

))
∣∣∣∣∣∣

−→
M→∞

0 (55)

where for k = 0, · · · , φn(0), f̃k (x0, · · · , xk) = f (x0) f (xk)
∫ 1

0
β̄k (u, g̃n (x0) , · · · , g̃n (xk)) du.

We now observe that by defining f̄n
(
x0, · · · , xφn(0)

)
=

φn(0)∑
k=0

f̃k (x0, · · · , xk), one has
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∣∣∣∣∣∣

φn(0)∑

k=0

η̄k,Mn

(
f̃k

)
− η̄φn(0),M

n

(
f̄n
)
∣∣∣∣∣∣

=
1

M

∣∣∣∣∣∣

φn(0)∑

k=0




M−k∑

i=1

f̃k
(
XM,i

n , · · · , XM,i+k
n

)
−

M−φn(0)∑

i=1

f̃k
(
XM,i

n , · · · , XM,i+k
n

)




∣∣∣∣∣∣

≤ C

M

φn(0)∑

k=0

(φn(0)− k) −→
M→∞

0

for a finite constant C. Thus we can combine it with (55) and obtain that
∣∣∣∣∣E
(
Var

(
1√
M

M∑

m=1

f(YM,m
n+1 )

∣∣∣ Fn

))
− E

(
η̄φn(0),M
n

(
f̄n
))
∣∣∣∣∣ −→
M→∞

0.

We can now apply Proposition 6.7 with h = f̄n and obtain that
∣∣∣∣E
(
η̄φn(0),M
n

(
f̄n
))

−
∫
T φ1:n(0)
0 · · · T φn−1:n(0)

n−2 T φn:n(0)
n−1 f̄n (x) η

⊗φ0:n(0) (dx)

∣∣∣∣ −→
M→∞

0.

Thus we have obtained that ∀n ≥ 1, ∀f ∈ Bb

(
R

d
)

∣∣∣∣V
M
n+1 (f)−

VM
n (Pnfn)

(η̄0n (gn))
4 −

η̄0n−1

(
gn−1

(
Pnf

2
n − (Pnfn)

2
))

(η̄0n (gn))
4
η̄0n−1 (gn−1)

−
∫
T φ1:n(0)
0 · · · T φn−1:n(0)

n−2 T φn:n(0)
n−1 f̄n (x) η

⊗φ0:n(0) (dx)

∣∣∣∣ −→
M→∞

0.

To conclude the proof, it is now sufficient to observe that by Theorem 2.2, ∀h ∈ Bb

(
R

d
)
VM
1 (h) converges

as M goes to infinity and its limit is given by V1 (h) = σ2
1(h) + σ2

2(h).

The proof of Proposition 6.7 is a direct consequence of the following Lemma.

Lemma 6.8. Let n ≥ 0 and k ≥ 0. Given h ∈ Bb

(
R

d(k+1)
)
one has

∣∣∣E
(
η̄
k,M
n+1(h)

)
− E

(
η̄φn(k),M
n (T k

n h)
)∣∣∣ −→

M→∞
0.

Proof of Lemma 6.8. Since the XM,m
n+1 are conditionally independent given Gn+1 and L

(
X

M,m
n+1 | Gn+1

)
∼

Pn+1

(
Y

M,m
n+1 , ·

)
, for each bounded measurable function h : Rd(k+1) → R one has

E

(
h(XM,i

n+1, · · · , XM,i+k
n+1 ) | Gn+1

)
= P

⊗(k+1)
n+1 h

(
Y

M,i
n+1 , · · · , YM,i+k

n+1

)
(56)

:=

∫

Rd(k+1)

h(x0, · · · , xk)Pn+1

(
Y

M,i
n+1 , dx0

)
· · ·Pn+1

(
Y

M,i+k
n+1 , dxk

)
. (57)

Therefore for M ≥ k + 1

E

(
η̄
k,M
n+1(h)

)
=

1

M

M−k∑

i=1

E

(
h
(
X

M,i
n+1, · · · , XM,i+k

n+1

))
(58)

=
1

M

M−k∑

i=1

E

(
P

⊗(k+1)
n+1 h

(
Y

M,i
n+1 , · · · , YM,i+k

n+1

))
= E

(
η̃
k,M
n+1(P

⊗(k+1)
n+1 h)

)
. (59)
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Thus our purpose now becomes to study the asymptotic behaviour of E
(
η̃
k,M
n+1(f)

)
for a given f ∈

Bb

(
R

d(k+1)
)
. Recalling the definition (49) of YM,m

n+1 , let us observe that if we denote by ℓm the random

index in {1, · · · ,M} such that 1{ℓm−1
∑

j=1

wM,j
n <m−Um

n ≤
ℓm
∑

j=1

wM,j
n

} = 1 so that YM,m
n+1 = XM,ℓm

n , one has that

m 7→ ℓm is non decreasing.
Therefore given k ≥ 0, M ≥ k + 1 and 1 ≤ i ≤M − k one has:

(
Y

M,i
n+1 , · · · , YM,i+k

n+1

)

=

M∑

ℓ0=1

· · ·
M∑

ℓk=ℓk−1

(
XM,ℓ0

n , · · · , XM,ℓk
n

) k∏

q=0

1{ℓq−1
∑

j=1

wM,j
n <i+q−Ui+q

n ≤
ℓq
∑

j=1

wM,j
n

}.

We can now apply the following change of variables m = ℓ0, s1 = ℓ1 − ℓ0, s2 = ℓ2 − ℓ0, · · · , sk = ℓk − ℓ0
and set s0 := 0 so that the above expression becomes

∑

0≤sk≤M−1

∑

0≤s1≤s2≤···≤sk

M−sk∑

m=1

(
XM,m

n , XM,m+s1
n , · · · , XM,m+sk

n

) k∏

q=0

1{m+sq−1
∑

j=1

wM,j
n <i+q−Ui+q

n ≤
m+sq
∑

j=1

wM,j
n

}.

Therefore one has

E

(
η̃
k,M
n+1(f)

)
=

1

M

M−k∑

i=1

E

(
f
(
Y

M,i
n+1 , · · · , YM,i+k

n+1

))
=

1

M

M−k∑

i=1

E

(
E

(
f
(
Y

M,i
n+1 , · · · , YM,i+k

n+1

)
| Fn

))

=
1

M

∑

0≤sk≤M−1

∑

0≤s1≤s2≤···≤sk

M−sk∑

m=1

E

(
f
(
XM,m

n , XM,m+s1
n , · · · , XM,m+sk

n

)

×
M−k∑

i=1

k∏

q=0

∫ i+q

i+q−1

1{m+sq−1
∑

j=1

wM,j
n <u≤

m+sq
∑

j=1

wM,j
n

}du

)

where to obtain the last equality we apply the Freezing Lemma and the fact that the sequence (Um
n )1≤m≤M

is independent of Fn and the sequence
(
XM,m

n

)
1≤m≤M

is Fn - measurable.

Given k ≥ 0, M ≥ k + 1, 0 ≤ sk ≤ M − 1, 0 ≤ s1 ≤ s2 ≤ · · · ≤ sk and 1 ≤ m ≤ M − sk, let us now focus
on the sum over i appearing in the above expression:

M−k∑

i=1

k∏

q=0

∫ i+q

i+q−1

1{m+sq−1
∑

j=1

wM,j
n <u≤

m+sq
∑

j=1

wM,j
n

}du.

Let us first observe that if the quantity inside the sum is different from zero, then in particular∫ i

i−1 1
{

m−1
∑

j=1

wM,j
n <u≤

m
∑

j=1

wM,j
n

}du 6= 0 and
∫ i+k

i+k−1 1
{

m+sk−1
∑

j=1

wM,j
n <u≤

m+sk
∑

j=1

wM,j
n

}du 6= 0. This implies that

m∑
j=1

wM,j
n > i− 1 and

m+sk−1∑
j=1

wM,j
n < i+ k. Thus

g
n

ḡn
(sk − 1) ≤

m+sk−1∑

j=m+1

wM,j
n =

m+sk−1∑

j=1

wM,j
n −

m∑

j=1

wM,j
n < i+ k − i+ 1 = k + 1
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and so we have obtained an upper bound for sk: sk ≤
⌈
ḡn

g
n

(k + 1)

⌉
= φn(k) where we use the notation

introduced in (48).
Moreover we observe that we can replace the finite sum over i with an infinite sum: if i ≥M − k + 1

∫ i+k

i+k−1

1{m+sk−1
∑

j=1
wM,j

n <u≤
m+sk
∑

j=1
wM,j

n

}du = 0

since
m+sk∑
j=1

wM,j
n ≤

M∑
j=1

wM,j
n =M .

Therefore after all one has

M−k∑

i=1

∫ i

i−1

k∏

q=0

∫ i+q

i+q−1

1{m+sq−1
∑

j=1

wM,j
n <u≤

m+sq
∑

j=1

wM,j
n

}du

= 1{sk≤φn(k)}
∑

i≥1

k∏

q=1

∫ i+q

i+q−1

1{m+sq−1
∑

j=1

wM,j
n <u≤

m+sq
∑

j=1

wM,j
n

}du.

We can now apply the change of variable u := u′ +

⌊
m−1∑
j=1

wM,j
n

⌋
in each of the above integrals so to

obtain

∑

i≥1

k∏

q=0

∫ i+q

i+q−1

1{m+sq−1
∑

j=1

wM,j
n <u≤

m+sq
∑

j=1

wM,j
n

}du

=
∑

i≥1

k∏

q=0

∫ i+q−
⌊

m−1
∑

j=1

wM,j
n

⌋

i+q−1−
⌊

m−1
∑

j=1

wM,j
n

⌋ 1{
uM,m−1
n +

m+sq−1
∑

j=m

wM,j
n <u′≤uM,m−1

n +
m+sq
∑

j=m

wM,j
n

}du′

=
∑

i≥1

k∏

q=0

∫ i+q

i+q−1

1{
uM,m−1
n +

m+sq−1
∑

j=m

wM,j
n <u′≤uM,m−1

n +
m+sq
∑

j=m

wM,j
n

}du′ (60)

where to obtain the last equality we use the fact that if i < 1,
∫ i

i−1 1
{

uM,m−1
n +

m−1
∑

j=m

wM,j
n <u′≤uM,m−1

n +
m
∑

j=m

wM,j
n

}du′ =

0. We observe that if the quantity inside the sum is different from zero, then in particular

∫ i

i−1

1{uM,m−1
n <u′≤uM,m−1

n +wM,m
n }du

′ 6= 0.

This implies that i − 1 < uM,m−1
n + wM,m

n ≤ 1 +
ḡn

g
n

and so i ≤
⌈
1 +

ḡn

g
n

⌉
. In conclusion, (60) can be

rewritten as

⌈1+ḡn/g
n
⌉∑

i=1

k∏

q=0

∫ i+q

i+q−1

1{
uM,m−1
n +

m+sq−1
∑

j=m

wM,j
n <u′≤uM,m−1

n +
m+sq
∑

j=m

wM,j
n

}du′. (61)
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We denote (61) by ψs1:sk

(
uM,m−1
n , wM,m

n , wM,m+1
n , · · · , wM,m+sk

n

)
where ψs1:sk : Rsk+2 → R.

Therefore if M ≥ max (1 + k, 1 + φn(k)) we have obtained that

E

(
η̃
k,M
n+1(f)

)
(62)

=

φn(k)∑

sk=0

∑

0≤s1≤s2≤···≤sk

1

M

M−sk∑

m=1

E

(
f
(
XM,m

n , XM,m+s1
n , · · · , XM,m+sk

n

)
(63)

× ψs1:sk

(
uM,m−1
n , wM,m

n , wM,m+1
n , · · · , wM,m+sk

n

)
)
. (64)

We can therefore apply Conjecture 2 with t = sk, h (x0, x1, · · · , xsk) = f (x0, xs1 , xs2 , · · · , xsk),
ψ (u, y0, · · · , ysk) = ψs1:sk (u, y0, · · · , ysk).

∣∣∣∣∣∣
E

(
η̃
k,M
n+1(f)

)
−

φn(k)∑

sk=0

E
(
η̄sk,Mn (T k→sk

n f)
)
∣∣∣∣∣∣

−→
M→∞

0 (65)

where T k→sk
n : Bb

(
R

d(k+1)
)
→ Bb

(
R

d(sk+1)
)
is defined by

T k→sk
n f (x0, x1, · · · , xsk) =

∑

0≤s1≤s2≤···≤sk

f (x0, xs1 , · · · , xsk)
∫ 1

0

ψs1:sk (u, g̃n(x0), g̃n(x1), · · · , g̃n(xsk )) du

and where given 0 ≤ sk ≤ φn(k) and 0 ≤ s1 ≤ s2 ≤ · · · ≤ sk:

ψs1:sk (u, y0, y1, · · · , ysk) =
⌈1+ḡn/g

n
⌉∑

i=1

k∏

q=0

∫ i+q

i+q−1

1{
u+

sq−1
∑

j=0

yj<u′≤u+
sq
∑

j=0

yj

}du′.

We now observe that by defining T k
n : Bb

(
R

d(k+1)
)
→ Bb

(
R

d(φn(k)+1)
)
by

T k
nf
(
x0, · · · , xφn(k)

)
=

φn(k)∑

sk=0

T k→sk
n f (x0, · · · , xsk) ,

one has
∣∣∣∣∣∣

φn(k)∑

sk=0

η̄sk,Mn (T k→sk
n f)− η̄φn(k),M

n (T k
nf)

∣∣∣∣∣∣

=
1

M

∣∣∣∣∣∣

φn(k)∑

sk=0




M−sk∑

i=1

(
T k→sk
n f

) (
XM,i

n , · · · , XM,i+sk
n

)
−

M−φn(k)∑

i=1

(
T k→sk
n f

) (
XM,i

n , · · · , XM,i+sk
n

)




∣∣∣∣∣∣

≤ 1

M

φn(k)∑

sk=0

∥∥T k→sk
n f

∥∥
∞ (φn(k)− sk) −→

M→∞
0.

Combining the above estimate with (65) we obtain that

∣∣∣E
(
η̃
k,M
n+1(f)

)
− E

(
η̄φn(k),M
n (T k

nf)
)∣∣∣ −→

M→∞
0. (66)
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In conclusion, combining (59) with (66) by taking f = P
⊗(k+1)
n+1 h, we obtain that

∣∣∣E
(
η̄
k,M
n+1(h)

)
− E

(
η̄φn(k),M
n (T k

n h)
)∣∣∣ −→

M→∞
0

where T k
n = T k

nP
⊗(k+1)
n+1 and this concludes the proof.

7 Numerical Results

In what follows we fix d = 1 and given a sequence (Wn)n≥1 of independent real-valued random variables
distributed according to the uniform law on (0, 1), let Zn+1 = Zn +Wn+1 for n ≥ 0 with Z0 distributed
according to the uniform law on (0, 1)

(
η(dx) = 1[0,1] (x) dx

)
. Thus in this case the transition kernel is

given by P (x, dy) = 1[x,x+1](y)dy. Moreover we will fix gn (x) = f (x) = ex ∀n ≥ 0, ∀x ∈ R.

In this section, we are first going to numerically verify the Conjecture 1 in the case n = 1 and the
Conjecture 2 in the case n = 1 and n = 2.
In the second place, we will test the two conjectures together by directly studying the asymptotic variance.
As done in the theory, we study numerically the asymptotic behaviour of following expression:

VM
n+1 (f) = Var

(
√
M
η̄0,Mn (gnf)

η̄
0,M
n (gn)

)
+ E

(
Var

(
1√
M

M∑

m=1

f(YM,m
n+1 )

∣∣∣ Fn

))
. (67)

We will consider separately the case n = 0 and the case n = 1. We recall that the first case has been fully
studied in Section 3 without the need to introduce any conjecture.

7.1 Verification of the Conjectures

7.1.1 Conjecture 1

We recall the notation

f1 := g1
(
η̄01 (g1) f − η̄01 (g1f)

)
.

Since we have fixed gn (x) = f (x) = ex ∀n ≥ 0, ∀x ∈ R, one has η̄00 (g0) = e − 1, η̄01 (g1) = e2−1
2 ,

η̄01 (g1f) =
1
6 (e

3 − 1)(e + 1). Moreover Pf1(x) = η̄01 (g1)
e2(x+1)−e2x

2 − η̄01 (fg1)
(
ex+1 − ex

)
and Pf2

1 (x) =(
η̄01 (g1)

)2 e4(x+1)−e4x

4 +
(
η̄01 (fg1)

)2 e2(x+1)−e2x

2 − 2η̄01 (g1) η̄
0
1 (fg1)

e3(x+1)−e3x

3 and

η̄00

(
g0

(
Pf2

1 − (Pf1)
2
))

=
(
η̄01 (g1)

)2
(
e5 − 1

5

)(
e2 − 1

2

)
+
(
η̄01 (g1f)

)2
(
e3 − 1

3

)(
e2 − 1

2
− (e− 1)

2

)

− η̄01 (g1) η̄
0
1 (g1f)

(
e4 − 1

4

)(
2

3

(
e3 − 1

)
−
(
e2 − 1

)
(e− 1)

)
.

We first observe that given a sequence (Ti)i≥1 of square integrable i.i.d. random variables, by using the
delta method it is possible to prove that as M goes to infinity the following convergence in distribution
holds:

√
M




 1

M

M∑

i=1

T 2
i −

(
1

M

M∑

i=1

Ti

)2

−Var (T1)


 d

=⇒ N
(
0,Var

(
(T1 − E (T1))

2
))

. (68)

The general strategy will be the following: we fix M = 10000 and
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1. we simulate n1 = 107 independent samples Tj of
√
M
η̄
0,M
1 (g1f)

η̄
0,M
1 (g1)

=
√
M

M
∑

i=1

(g1f)(XM,i
1 )

M
∑

i=1

g1(XM,i
1 )

and we com-

pute, by using (68), the estimator

v̂1 :=
1

n1

n1∑

i=1

T 2
i −

(
1

n1

n1∑

i=1

Ti

)2

(69)

of Var

(
√
M
η̄
0,M
1 (g1f)

η̄
0,M
1 (g1)

)
with relative 95% confidence interval [a1, b1] given by

a1 := v̂1 −
1.96√
n1

√√√√√√
1

n1

n1∑

i=1



Ti −
1

n1

n1∑

j=1

Tj




4

−




1

n1

n1∑

i=1



Ti −
1

n1

n1∑

j=1

Tj




2



2

(70)

b1 := v̂1 +
1.96√
n1

√√√√√√
1

n1

n1∑

i=1



Ti −
1

n1

n1∑

j=1

Tj




4

−




1

n1

n1∑

i=1



Ti −
1

n1

n1∑

j=1

Tj




2



2

. (71)

2. we simulate n1 = 107 independent samplesHj of
1√
M

M∑
m=1

Pf1(Y
M,m
1 ) and we compute the estimator

v̂2 of VM
1 (Pf1) = Var

(
1√
M

M∑
m=1

Pf1(Y
M,m
1 )

)
with relative 95% confidence interval [a2, b2] with

v̂2, a2, and b2 respectively defined as in (69), (70) and (71).
Therefore

v̂2

(η̄01 (g1))
4 +

η̄00

(
g0

(
P1f

2
1 − (Pf1)

2
))

(η̄01 (g1))
4
η̄00 (g0)

is an estimator of
V M
1 (Pf1)

(η̄0
1(g1))

4 +
η̄0
0(g0(P1f

2
1−(Pf1)

2))
(η̄0

1(g1))
4
η̄0
0(g0)

with relative 95% confidence interval


 a2

(η̄01 (g1))
4 +

η̄00

(
g0

(
Pf2

1 − (Pf1)
2
))

(η̄01 (g1))
4
η̄00 (g0)

,
b2

(η̄01 (g1))
4 +

η̄00

(
g0

(
P1f

2
1 − (Pf1)

2
))

(η̄01 (g1))
4
η̄00 (g0)


 .

3. we check that v̂1 is close to v̂2

(η̄0
1(g1))

4 +
η̄0
0(g0(P1f

2
1−(Pf1)

2))
(η̄0

1(g1))
4
η̄0
0(g0)

as expected

RESULTS

n=1 value CI (95%)
v̂1 2.8021446 [ 2.7775619 , 2.8267273 ]

v̂2

(η̄0
1(g1))

4 +
η̄0
0(g0(P1f

2
1−(Pf1)

2))
(η̄0

1(g1))
4
η̄0
0(g0)

2.7932862 [ 2.7831461 , 2.8034263 ]
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7.1.2 Conjecture 2

Let n ∈ {1, 2} and t ∈ {1, 2}. Moreover let h (x0, · · · , xt) = x0 + · · · + xt and ψ (u0, w0, · · · , wt+1) =
u0 + w0 + · · ·+ wt+1 .
The general strategy will be the following: we fix M = 10000 and

1. we simulate n1 = 105 independent samples Tj of
1
M

M−t∑
m=1

h
(
XM,m

n , · · · , XM,m+t
n

)
ψ
(
uM,m−1
n , wM,m

n , · · · , wM,m+t
n

)

and we compute the standard estimator

v̂1 :=
1

n1

n1∑

j=1

Tj (72)

of 1
M

M−t∑
m=1

E
(
h
(
XM,m

n , · · · , XM,m+t
n

)
ψ
(
uM,m−1
n , wM,m

n , · · · , wM,m+t
n

))
with relative 95% confidence

interval [a1, b1] given by

a1 := v̂1 −
1.96√
n1

∗

√√√√ 1

n1

n1∑

j=1

(Tj − v̂1)
2

(73)

b1 := v̂1 +
1.96√
n1

∗

√√√√ 1

n1

n1∑

j=1

(Tj − v̂1)
2

(74)

2. we simulate n1 = 105 independent samples Hj of

1

M

M−t∑

m=1

h
(
XM,m

n , · · · , XM,m+t
n

)
ψ
(
U, g̃n(X

M,m
n ), · · · , g̃n(XM,m+t

n )
)

where U is a random variable uniformly distributed on (0, 1) independent of Fn and g̃n = gn
η0
n(gn)(

η01 (g1) =
e2−1
2 , η02 (g2) =

e3−1
3

)
. We then compute the standard estimator v̂2 of

1

M

M−t∑

m=1

E
(
h
(
XM,m

n , · · · , XM,m+t
n

)
ψ
(
U, g̃n(X

M,m
n ), · · · , g̃n(XM,m+t

n )
))

with relative 95% confidence interval [a2, b2] with v̂2, a2, b2 respectively defined as in (72), (73) and
(74).

3. we check that v̂1 is close to v̂2 as expected

RESULTS

n=1

t=1 value CI (95%)
v̂1 5.7510732 [ 5.7509322 , 5.7512143 ]
v̂2 5.7509738 [ 5.7470892 , 5.7548583 ]

t=2 value CI (95%)
v̂1 11.8853516 [ 11.8850608 , 11.8856425 ]
v̂2 11.8835799 [ 11.8777417 , 11.8894182 ]
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n=2

t=1 value CI (95%)
v̂1 9.2154319 [ 9.2152408 , 9.215623 ]
v̂2 9.2150201 [ 9.2087834 , 9.2212568 ]

t=2 value CI (95%)
v̂1 19.0901421 [ 19.0897513 , 19.0905329 ]
v̂2 19.0895089 [ 19.0801501 , 19.0988676 ]

7.2 Focus on the Variance

7.2.1 case n = 0

We recall the notation η̄00(h) := η(h) ∀h ∈ Bb (R) and f0 := g0
(
η̄00 (g0) f − η̄00 (g0f)

)
.

By (15) and by observing that Var

(
√
M
η̄
0,M
0 (g0f)

η̄
0,M
0 (g0)

)
= Var


√

M
η̄
0,M
0

(
g0

η(g0)
f
)

η̄
0,M
0

(
g0

η(g0)

)


, one has

∣∣∣∣∣Var
(
√
M
η̄
0,M
0 (g0f)

η̄
0,M
0 (g0)

)
− η

(
f2
0

)

η (g0)
4

∣∣∣∣∣ −→
M→∞

0

where with the choices made η̄00 (g0) = e−1, η̄00 (g0f) =
e2−1
2 , η

(
f2
0

)
=
(
η̄00 (g0)

)2 e4−1
4 +

(
η̄00 (g0f)

)2 e2−1
2 −

2η̄00 (g0) η̄
0
0 (g0f)

e3−1
3 .

The application of Theorem 3.2 with g = g̃0 = g0
η̄0
0(g0)

gives

∣∣∣∣∣∣
E

(
Var

(
1√
M

M∑

m=1

f(YM,m
1 )

∣∣∣ F0

))
−

φ0(0)∑

k=0

E (Fk)

∣∣∣∣∣∣
−→

M→∞
0

with (Fk)k∈N
given by

Fk =






f2(XM,1
0 )β0

(
U1, g̃0(X

M,1
0 )

)
k = 0

−f(XM,1
0 )f(XM,k+1

0 )β1

(
U1, g̃0(X

M,1
0 ),

k∑
ℓ=2

g̃0(X
M,ℓ
0 ), g̃0(X

M,k+1
0 )

)
k > 0

(75)

where U1 ∼ U(0, 1) is independent of XM,1
0 , · · · , XM,k+1

0 and β0 and β1 are respectively defined in (7) and
(8). By using that when U1 is uniformly distributed on (0, 1), {U1 + r} is uniformly distributed on (0, 1)
for each r ≥ 0, we can apply the Freezing Lemma to rewrite E (Fk) ∀k = 0, · · · , φ0(0) :

φ0(0)∑

k=0

E (Fk) =

φ0(0)∑

k=0

E

(
φk,g̃0

(
X

M,1
0 , · · · , XM,k+1

0

))
(76)

for measurable functions φk,g̃0 : R(k+1) → R given by

φ0,g̃0(x) =
1

3

(
f2(x)

(
1− 1{g̃0(x)<1} (1− g̃0(x))

3
))

(77)

and for each k ≥ 1

33



φk,g̃0(x) =
1

2






f(x1)f(xk+1)1{ k

∑

i=2
g̃0(xi)<1

}1{k+1
∑

i=1
g̃0(xi)<1

}g̃0(x1)g̃0(xk+1)

(

2− 2
k
∑

i=2

g̃0(xi)− (g̃0(x1) + g̃0(xk+1))

)







+
1

6






f(x1)f(xk+1) · 1{ k

∑

i=2
g̃0(xi)<1

}1{k+1
∑

i=1
g̃0(xi)≥1

}

(

1−

k
∑

i=2

g̃0(xi)

)3






−

1

6






f(x1)f(xk1+1) · 1{ k

∑

i=2
g̃0(xi)<1

}1{k+1
∑

i=1
g̃0(xi)≥1

}







(

1−

k
∑

i=1

g̃0(xi)

)3

1{ k
∑

i=1
g̃0(xi)<1

} +

(

1−

k+1
∑

i=2

g̃0(xi)

)3

1{k+1
∑

i=2
g̃0(xi)<1

}











.

(78)

Thus using numerical methods we are going to check what we already know theoretically that is
∣∣∣∣∣∣
VM
1 (f)− η

(
f2
0

)

η (g0)
4 −

φ0(0)∑

k=0

E

(
φk,g̃0

(
X

M,1
0 , · · · , XM,k+1

0

))
∣∣∣∣∣∣

−→
M→∞

0.

The general strategy will be the following: we fix M = 10000 and

1. we simulate n1 = 107 independent samples Tj of
1√
M

M∑
m=1

f(YM,m
1 ) and we compute the estimator

v̂1 of V
M
1 (f) = Var

(
1√
M

M∑
m=1

f(YM,m
1 )

)
with relative 95% confidence interval [a1, b1] with v̂1, a1, b1

respectively defined as in (69), (70) and (71).

Therefore v̂1 − η(f2
0 )

η(g0)
4 is an estimator of VM

1 (f) − η(f2
0 )

η(g0)
4 with relative 95% confidence interval

[
a1 −

η(f2
0 )

η(g0)
4 , b1 −

η(f2
0 )

η(g0)
4

]
.

2. We simulate n2 = 105 independent samples Zj of
φ0(0)∑
k=0

φk,g̃0

(
X

M,1
0 , · · · , XM,k+1

0

)
and we compute the

standard estimator v̂2 of
φ0(0)∑
k=0

E

(
φk,g̃0

(
X

M,1
0 , · · · , XM,k+1

0

))
with relative 95% confidence interval

[a2, b2] with v̂2, a2, b2 respectively defined as in (72), (73) and (74).

3. We check that v̂1 −
η(f2

0 )
η(g0)

4 is close to v̂2 as expected.

RESULTS

n=0 value CI (95%)

v̂1 −
η(f2

0 )
η(g0)

4 0.07943 [ 0.079127 , 0.079733 ]

v̂2 0.0793412 [ 0.0790773 , 0.0796051 ]

7.2.2 case n = 1

In this case the asymptotic behaviour of the first term of the right-hand side of (67) is given by Conjecture
1

∣∣∣∣∣∣
Var

(
√
M
η̄
0,M
1 (g1f)

η̄
0,M
1 (g1)

)
− VM

1 (Pf1)

(η̄01 (g1))
4 −

η̄00

(
g0

(
Pf2

1 − (Pf1)
2
))

(η̄01 (g1))
4
η̄00 (g0)

∣∣∣∣∣∣
−→

M→∞
0
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and by (55) the asymptotic behaviour of the second term of the right-hand side of (67) is given by
∣∣∣∣∣∣
E

(
Var

(
1√
M

M∑

m=1

f(YM,m
2 )

∣∣∣ F1

))
−

φ1(0)∑

k=0

E

(
η̄
k,M
1

(
f̃k

))
∣∣∣∣∣∣

−→
M→∞

0 (79)

where for k = 0, · · · , φ1(0),

f̃k (x0, · · · , xk) = f (x0) f (xk)

∫ 1

0

β̄k (u, g̃1 (x0) , · · · , g̃1 (xk)) du

with β̄k (u, y0, · · · , yk) := β0(u, y0)1{k=0} − β1

(
u, y0,

k−1∑
ℓ=1

yℓ, yk

)
1{k 6=0}. We recall that β0 and β1 are

respectively defined in (7) and (8) and g̃1 = g1
η̄0
1(g1)

.

We now observe that

φ1(0)∑

k=0

E

(
η̄
k,M
1

(
f̃k

))
=

φ1(0)∑

k=0

E

(
η̄
k,M
1 (φk,g̃1 )

)
(80)

where the φk,g̃1 : R(k+1) → R are measurable functions defined in (77) and (78).

Thus using numerical methods we are going to check that
∣∣∣∣∣∣
VM
2 (f)− VM

1 (Pf1)

(η̄01 (g1))
4 −

η̄00

(
g0

(
Pf2

1 − (Pf1)
2
))

(η̄01 (g1))
4
η̄00 (g0)

−
φ1(0)∑

k=0

E

(
η̄
k,M
1 (φk,g̃1 )

)
∣∣∣∣∣∣

−→
M→∞

0

so that Conjecture 1 and Conjecture 2 are numerically verified at the same time.

The general strategy will be the following:

1. (a) we simulate n1 = 107 independent samples Tj of
1√
M

M∑
m=1

f(YM,m
2 ) and we compute the es-

timator v̂1,1 of Var

(
1√
M

M∑
m=1

f(YM,m
2 )

)
with relative 95% confidence interval [a1,1, b1,1] with

v̂1,1, a1,1, and b1,1 respectively defined as in (69), (70) and (71).

(b) we simulate n1 = 107 independent samplesHj of
1√
M

M∑
m=1

Pf1(Y
M,m
1 ) independent of (Tj)1≤j≤n1

.

We compute the estimator v̂1,2 of Var

(
1√
M

M∑
m=1

Pf1(Y
M,m
1 )

)
with relative 95% confidence in-

terval [a1,2, b1,2] with v̂1,2, a1,2, and b1,2 respectively defined as in (69), (70) and (71).

(c) we compute the estimator v̂1,1 − v̂1,2

(η̄0
1(g1))

4 − η̄0
0(g0(Pf2

1−(Pf1)
2))

(η̄0
1(g1))

4
η̄0
0(g0)

of

VM
2 (f)− VM

1 (Pf1)

(η̄01 (g1))
4 −

η̄00

(
g0

(
Pf2

1 − (Pf1)
2
))

(η̄01 (g1))
4
η̄00 (g0)

with 90% confidence interval

a1,1 −

b1,2

(η̄01 (g1))
4 −

η̄00

(
g0

(
Pf2

1 − (Pf1)
2
))

(η̄01 (g1))
4
η̄00 (g0)

, b1,1 −
a1,2

(η̄01 (g1))
4 −

η̄00

(
g0

(
Pf2

1 − (Pf1)
2
))

(η̄01 (g1))
4
η̄00 (g0)


 .
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2. We simulate n2 = 105 independent samples Zj of
φ1(0)∑
k=0

η̄
k,M
1 (φk,g̃1 ) and we compute the standard

estimator v̂2 of
φ1(0)∑
k=0

E

(
η̄
k,M
1 (φk,g̃1 )

)
with relative 95% confidence interval [a2, b2] with v̂2, a2, b2

respectively defined as in (72), (73) and (74).

3. We check that v̂1,1 − v̂1,2

(η̄0
1(g1))

4 − η̄0
0(g0(Pf2

1−(Pf1)
2))

(η̄0
1(g1))

4
η̄0
0(g0)

is close to v̂2 as expected.

RESULTS

n=1 value CI

v̂1,1 − v̂1,2

(η̄0
1(g1))

4 − η̄0
0(g0(Pf2

1−(Pf1)
2))

(η̄0
1(g1))

4
η̄0
0(g0)

0.4729737 [ 0.4690806 , 0.4768669 ]

v̂2 0.4725217 [ 0.4724719 , 0.4725714 ]
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