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Abstract 

Purpose: The aim of this study was to implement a clinically deliverable VMAT planning technique dedicated to 

advanced breast cancer, and to predict failed QA using a machine learning (ML) model to optimize the QA 

workload.   

Methods: For three planning methods (2A: 2-partial arc, 2AS: 2-partial arc with splitting, 4A: 4-partial arc), 

dosimetric results were compared with patient-specific QA performed with the electronic portal imaging device of 

the linac. A dataset was built with the pass/fail status of the plans and complexity metrics. It was divided into 

training and testing sets. An ML metamodel combining predictions from six base classifiers was trained on the 

training set to predict plans as ‘pass’ or ‘fail’. The predictive performances were evaluated using the unseen data 

of the testing set. 

Results: The dosimetric comparison highlighted that 4A was the highest dosimetric performant method but also 

the poorest performant in the QA process. 2AS spared the best heart, but provided the highest dose to the 

contralateral breast and lowest node coverage. 2A provides a dosimetric compromise between organ at risk sparing 

and PTV coverage with satisfactory QA results. The metamodel had a median predictive sensitivity of 73% and a 

median specificity of 91%. 

Conclusions: The 2A method was selected to calculate clinically deliverable VMAT plans; however, the 2AS 

method was maintained when the heart was of particular importance and breath-hold techniques were not 

applicable. The metamodel provides promising predictive performance, and it is intended to be improved as a 

larger dataset becomes available. 

Key words : breast, VMAT, patient-specific QA,  machine learning.  
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1. Introduction 

Breast cancer is one of the most common cancers, but remains one of the most technically challenging to treat 

with radiation therapy. The shape and size diversity of the breast or chest wall, its superficial location, and its direct 

proximity to organs at risk (OARs) make this location particularly challenging. Conventional 3D conformal 

radiation therapy techniques (3D-CRT) can fail to provide appropriate target dose conformity and homogeneity 

while sparing OARs, in particular, for locally advanced breast cancers involving the internal mammary chain 

(IMC). In response to this limitation, over the past few years, intensity modulated radiation therapy (IMRT) has 

been increasingly popular for the treatment of breast cancer. Among the advanced advantages are better target 

coverage and homogeneity, sparing surrounding OARs from a high dose, and a lower dose to the heart and 

ipsilateral (IL) lung [1-8]. Several modulation techniques have been proposed, including static IMRT, tomotherapy, 

volumetric modulated arc therapy (VMAT), and hybrid techniques. This study focuses on VMAT techniques 

dedicated to lymph node-positive breast cancer with IMC. The literature offers a wide range of planning methods 

for VMAT techniques. After Popescu et al. [1] ] published their two partial-arc methods in 2010, many published 

methods involved a similar two-arc ballistic [5-17]. Nonetheless, some published VMAT techniques also proposed 

three or four partial arcs [18-21] and more confidentially only one partial arc [22,23]. To the best of the author’s 

knowledge, patient-specific quality assurance (PSQA) results are rarely presented with published VMAT planning 

techniques [10,22]. PSQA measurements are strongly recommended for verification before each modulated 

radiation therapy treatment delivery [24-25]. For example, in our institution, a PSQA measurement is performed 

for each VMAT plan after it is approved by a radiation oncologist. Breast cancer is the first female cancer in France, 

and the implementation of a modulated technique for breasts in a clinical routine may therefore imply a severe 

increase in quality control activity. As evidenced by the multiplicity of published techniques, VMAT planning 

dedicated to the breast remains challenging and can involve highly complex modulated plans, leading to PSQA 

failure. This may involve re-planning until PSQA is successful, which may overload the dosimetric/pre-treatment 

QA workflow. Consequently, with the implementation of such a technique for breasts in clinical routine, it would 

be interesting to predict the outcome of the PSQA to minimize the time lost in measuring treatment plans that are 

likely to fail QA. One way to predict the PSQA results is to use metrics that quantify the complexity of the plans 

and correlate them with the results of the PSQA already measured. Several studies have proposed plan complexity 

metrics (PCMs), as reviewed by Chiavassa et al. [26] and Antoine et al. [27]. As discussed in these two reviews, 

the correlation between PCMs and PSQA results depends on the local procedures, as it is impacted for example by 

anatomical localization, dose calculation algorithm, dose measurement technique, or analysis protocol. In addition, 

only weak or moderate correlations were found between PCM and PSQA results, leading to unreliable PSQA result 

predictions. Recently, the rise of machine learning (ML) techniques has paved the way for the further optimization 

of these predictions through the use of supervised learning methods based on PCMs. Such methods make it possible 

to combine several PCMs, and have led to more accurate predictions [28-37]. Most published ML methods for 

PSQA predictions involve ML algorithms, such as support vector machine models, decision trees, or linear 

regressions. In the context of technique implementation with a small dataset of PSQA results, combining multiple 

ML algorithms in an ensemble model is proposed, to enhance the robustness of the predictions.  

This study aimed to select a clinically deliverable VMAT technique dedicated to advanced breast cancer, that 

meets our dosimetric objectives, while preventing the overload of our workflow by limiting the number of QA 

failures. In summary, the objectives were to 1) compare the dosimetric results of three different VMAT planning 

techniques, 2) compare the QA results of these techniques, and 3) propose a method for predicting the QA results. 

2. Methods 

 

2.1. Patient selection and target definition 

Computed-tomography (CT) images of 28 lymph node-positive breast cancer patients, previously treated with 

3D-CRT technique, were retrospectively selected for this study (14 left-sided and 14 right sided, named ‘LS’ group 

and ‘RS’ group, respectively). Eighteen patients underwent mastectomy (eight LS and ten RS), and ten underwent 

breast conservative surgery (six LS and four RS). All the patients were imaged with a 2.5 mm slice thickness 
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(Optima CT 580RT, GE Medical Systems) in free breathing. The clinical target volumes (CTVs) included the 

supraclavicular and axillary nodes (CTVn), IMC (CTVIMC), and breast/chest wall (CTVB/CW). The planning target 

volumes (PTVs) were created from the CTVs with a 5 mm margin and cropped within 3 mm from the skin. The 

prescribed dose was 50 Gy in 25 fractions for all PTVs.  

2.2. Treatment planning 

All VMAT plans were optimized for a Varian iX linear accelerator (Varian Medical Systems) with a Millennium 

120 multileaf collimator (MLC). The Eclipse treatment planning system (TPS) was used to perform plan 

optimization (photon optimizer algorithm version 13.7.16) and dose calculation (anisotropic analytical algorithm 

version 13.7.16) with a 2.5 mm dose matrix resolution. An 8 mm virtual bolus (set to -100 HU) was added to the 

surface of the breast/chest wall. An optimized PTV was created by expanding the original PTVB/CW 5 mm outside 

the skin in the 8 mm bolus. Bolus and PTVopt were used for the plan optimization. The virtual bolus method forces 

the MLC leaves to be positioned beyond the patient’s outer contour to improve the robustness of the treatment 

delivery. The efficiency of this method has been demonstrated in several studies [13,14,38,39]. For each plan, the 

final dose was calculated with and without a virtual bolus with the same number of monitor units (MU). The plan 

had to be acceptable in both situations regarding the dosimetric objectives listed in Appendix A.  

As previously mentioned, the most published VMAT ballistics for treating advanced breast cancer involve two 

partial arcs from 280-340° to 130-180° (for LS patients) with or without collimator rotation. Based on this typical 

ballistic, Boman et al. [9] proposed in 2016, to split the two arcs into two, towards the middle of their trajectory, 

to optimize collimator rotations to patient anatomy and better spare the heart and ipsilateral (IL) lung. In addition, 

based on the classical two-partial-arc ballistic, Lang et al. [20] proposed in 2019, to add two partial arcs with a 90° 

collimator rotation to improve dose conformity.  

Three VMAT ballistics were compared in this study:  

- 2A: two partial arcs with a 10/350° collimator angle based on the two-arc classic method. 

- 2AS: two partial arcs based on the method of Boman et al. [9]. The collimator angle of the subarcs was set 

to ±10°/±30° for the two upper arcs and ±330°/±350° for the two lower arcs. The internal X-jaw ( to the 

patient) of each subarc was set closer to the isocenter (about 2 cm depending on patient anatomy) to reduce 

the heart and IL lung irradiation. 

- 4A: four partial arcs inspired by the Lang et al. method [20], with 10/350° and 80/280° collimator angles. 

The 80/280° collimator angle arcs overlap by at least 4 cm at the isocenter.   

For all ballistics, the arcs ranged from 300° to 179.9°, or 60° to 180.1°, respectively, for patients with LS and 

RS breast cancer. The jaw opening in the X-direction was limited to 15-17 cm to avoid modulation deterioration 

owing to the maximum 15 cm leaf span of the MLC. The three VMAT plans were calculated for each of the 28 

selected CT scans. The dose-volume histogram (DVH) data were extracted from the 84 plans calculated without 

the virtual bolus and statistically compared using Wilcoxon signed-rank tests. Statistical significance was set at p 

< 0.05. The 2A ballistic dosimetric results were taken as a reference, since 2A is the most published VMAT 

technique. 

2.3. Pre-treatment quality assurance 

Pre-treatment quality assurance measurements were carried out for all plans using portal dosimetry software 

(Varian Medical System, PDIP v13.7.16). The TPS dose calculation was compared to VMAT integrated images 

acquired using an electronic portal imaging device (Varian EPID aSi 500). Comparison was made in terms of 

gamma passing rate (GPR) based on an absolute dose global gamma analysis with a lower dose threshold of 10%. 

For a plan to be validated by a medical physicist, all arcs in that plan must pass QA, that is, they must have a GPR 

greater than 95%. A plan was classified as failed if any of its arcs failed quality control. Gamma criteria for dose 

difference and distance to agreement were set at 2% and 2 mm, respectively. In the context of technique 

implementation, these criteria were in agreement with those of Heilemann et al. [40] and with the AAPM Task 

Group No. 218  [25] recommendation to use tighter criteria than their recommended 3%/2mm criteria to emphasize 
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subtle regional errors and systematic errors for a specific treatment site. Judging in a sufficiently strict manner the 

quality of the plans optimized with a newly implemented technique was of particular importance, especially since 

a particular modulation effort was required of the treatment machines, with asymmetric fields and several OARs 

close to the target.  

2.4. Supervised machine learning classifier  

2.4.1. Dataset implementation 

Twenty-two PCMs [41-46] were selected to characterize the VMAT plan complexity and were calculated from 

the DICOM RT plan files using an in-house Python program. PCMs were averaged over the control points (every 

2°) and over the beams according to their respective weights. The PTVB/CW volume in cc was added to the features, 

in addition to the PCMs. These are listed in Appendix B. 

A dataset was created with the minimum GPR for each plan and corresponding features. The GPR was 

transformed into a binary class of PSQA status for each plan (“pass” or “fail”) based on a predefined GPR 

threshold. This threshold was defined as the 95% validation threshold plus the margin estimated from the EPID 

delivery uncertainty. To evaluate the EPID response variation over time, 18 randomly selected plans (equally 

distributed among the planning methods) and 60 partial arcs in total were acquired three times with the portal 

imager, three months apart. 

2.4.2. Data pre-processing 

  The dataset was divided into training and testing sets (70% and 30% of the original dataset, respectively) using 

stratification to ensure the same distribution of the plan QA classes over both sets. Training data was used to train 

the ML model and testing data was unseen data only used to evaluate the performances of the validated ML model.  

Training set features were scaled via a standardization process so that the features had a mean of 0 and a standard 

deviation of 1. The testing set features were scaled based on the mean and standard deviation of the training set 

features.  

2.4.3. Feature relative importance 

The number and nature of the features used in model training have an impact on its accuracy. The use of 

irrelevant features can reduce the predictive performance of ML models and unnecessarily increase the cost of 

acquiring data. An automated feature selection strategy was applied to the training set to estimate the relative 

importance of each feature contributing to the model performance. They were ranked using a recursive feature 

elimination (RFE) method based on six different algorithms that were used to build the metamodel:  

- K nearest neighbors (KNN) 

- Linear discriminant analysis (LDA) 

- Regularised logistic regression (LR) 

- Naïve-Bayes (NB) 

- Support vector machine with a radial kernel (SVM) 

- Random forest (RF) 

The process was performed with R software version 3.6.1. and the ‘caret’ library (Classification And 

REgression Training, from the Comprehensive R Archive Network).  

The RFE algorithm starts by building a classifier (based on the chosen algorithm) with all features and calculates 

its performance. Thereafter, for each feature Fi in the feature set Fall, it trains a classifier with Fall-Fi features and 

calculates its performance and the difference between the performance of the classifier trained with Fall. Finally, it 

computes the feature rank from the performance-loss profile. Performance was evaluated using the average area 

under the receiver-operator characteristic curve (AUROC). The RFE process was performed using 5-fold cross-

validation (CV). During a 5-fold CV, the input dataset was randomly divided into five subsets, four training subsets, 
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and one validation subset. Five sub-models were iteratively fitted on the training subsets and evaluated on the 

remaining validation subset. The mean performance was computed for the five sub-models (Fig 1.).  

To evaluate the variation in the final RFE feature rank, the process was performed for each ML algorithm using 

100 random splits of the original dataset into training and testing sets. The feature rank was averaged over all splits 

and algorithms to limit its dependence on the data split and ML algorithm.       

 

Fig 1. Five-fold cross-validation process.  

2.4.4. Model building 

An ensemble approach was implemented to generate QA outcome predictions. This approach is based on the 

principle that combining predictions from several base classifiers allows the construction of a more robust model. 

Base classifiers were trained using the same training data but with different families of algorithms (Appendix C.) 

to generate the diversity needed to obtain a complementary set of predictions. The aim is to combine models with 

sufficiently dissimilar characteristics that are not constantly unanimous in predictions. Simple algorithms with no 

more than two hyperparameters to tune were chosen to limit the complexity of the models and reduce the risk of 

overfitting. Hyperparameters are used to train the model for a specific problem. For example, they can control the 

strength of the regularization process, which modifies the cost function to penalize the complexity of the model. 

These parameters were tuned during the training process. 

For each base learner, training was performed on the training set using a 100-repeated 5-fold CV that repeats 

100 times the random split of the input dataset into five subsets, resulting in 500 sub-models. Global performance 

was estimated by averaging the performances resulting from each 5-fold CV. The 100-repeated 5-fold CV was 

used to select the best hyperparameter combination using a random search process. The hyperparameters were 

chosen to maximize the average CV score, defined as the AUROC. In addition to hyperparameter tuning, the CV 

process provides an early estimate of the skill of the validated model over the validation subsets (validation 

AUROC). Once the hyperparameter combination was validated, each base model was trained using the entire 

training set. Prediction probabilities from each validated base model were used as inputs to build the ensemble 

metamodel using a 100-repeated 5-fold CV. The performances of each validated model were evaluated on the 

unseen data of the testing set. To measure the variation of the predictive performances and obtain a robust estimate 

of the performances that was less impacted by the original data split, the whole process was repeated 100 times, 

and the overall performances were averaged over the 100 resulting validated models. The entire process is 

summarized in Fig 2.  

The final metamodel used to predict PSQA outcomes of future plans was trained with exactly the same process 

but with the full dataset in order to enhance its predictive performances. Consequently, they were only estimated 

on the validation sets of the CV process and compared to the median validation performance obtained over the 100 

data splits. 
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Fig 2. Metamodel construction scheme. Pre-processed original dataset was randomly split into training (70%) and testing set (30%) using 

stratification to ensure the original class distribution. A 100-repeated 5-fold cross-validation (CV) was performed to tune hyperparameters 

of each model with a random search and train the validated model. The CV performance was evaluated with the area under the receiver-

operator characteristic curve (AUROC). Prediction probabilities from each base model was used as input to train the metamodel via the 

same 100-repeated 5-fold cross validation process. Final performances were evaluated with the AUROC, true positive rate (TPR) and false 

positive rate (FPR) and averaged over 100 random splits of the original dataset. 

A naïve Bayes algorithm was used to train the metamodel, which assumes the independence of the features 

from each other (naïve aspect) so it can quickly learn to use a high number of features relative to the number of 

observations compared to more sophisticated methods, and requires less training data to converge. In many 

algorithms, features are not considered independently which is more representative of real life. However, this 

implies the need for a covariance matrix to estimate predicted probabilities. A small training set can then lead to a 

highly variable covariance matrix which can decrease the performance of the maximum likelihood estimator 

(defined by the cost function that maximizes the likelihood of obtaining the desired output data). A naïve Bayesian 

classifier does not require the covariance matrix, as its independence assumption only implies the calculation of 

one-dimensional variances for each predictor; thus, the maximum likelihood estimator is less affected by the 

problem of a small training set.    

2.4.5. Model performance evaluation 

The classification performance of the validated models was evaluated on the validation and testing sets using four 

metrics:  

- AUROC (a value of 0.5 indicates that model predictions are equivalent to random predictions; a 

value of 1 indicates a perfect predictive model). 

- True positive rate (TPR): rate of failed plans predicted failed  

- False positive rate (FPR): rate of failed plans predicted passed  

- AUROC difference: the difference between validation and testing AUROCs. 
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The AUROC was chosen as the performance score for training ML models, as it characterizes a trade between 

TPR (also known as “sensitivity”) and FPR (also known as “1-specificity”).  

The AUROC difference allows for the evaluation of the generalizability of models, that is, their ability to generate 

predictions on unseen data as accurately as on training data. A large difference between the validation and testing 

AUROC indicates that the models were overfitted to the training data.  

For the final classification, the default 0.5 decision threshold on the output probabilities of belonging to a class was 

lowered to 0.2 with the aim of reducing the FPR ratio as much as possible by maintaining a satisfactory TPR. 

Indeed, it is important to not re-optimize too many plans that will have passed the QA; the risk will be to overload 

the dosimetric workflow by optimizing the QA workflow.  

An appropriate set of features was selected by building the ML models with four subsets of 5, 10, 15, and 22 (whole 

set) features and evaluating the performance of each ML model. The features were selected in each subset 

according to the RFE feature rankings.  

3. Results 

 

3.1. Dosimetric comparison 

Dosimetric results from the investigated VMAT techniques are detailed in Tables 1 and 2 for RS and LS breast 

cancer patients, respectively. Results were averaged over the 14 patients in each group, except for the liver; only 

seven CT scans from the LS group and eight from the RS group included the whole liver, therefore the absorbed 

dose to the liver was only reported for these cases.  

All VMAT techniques resulted in similar dose coverage of PTVn and PTVB/CW (D95%, D2%, and Dmax). For 

PTVIMC, the 2AS method resulted in a significantly lower dose delivered to 95% of the volume in both patient sets.   

In the LS group, a significant difference in heart sparing was observed between methods 2AS and 2A, with a 

decrease in Dmean and V5Gy of 1.8 Gy and 24.3%, respectively, with 2AS. The same trend was observed for V5Gy in 

the IL lung, with a 6% decrease in 2AS compared with 2A. Esophagus mean dose was also significantly lower 

with 2AS (-2 Gy compared to 2A). However, the 2AS method significantly increased the mean dose and V5Gy to 

the contralateral (CL) breast, respectively, from 3.1 Gy and 12.8% with 2A to 4.3 Gy and 28.4% with 2AS. In the 

same group, the 4A method showed similar results to 2A, except in the IL lung, where significantly lower V20Gy, 

V30Gy, and Dmean values were obtained.  

For the RS group, similar results were obtained between the VMAT techniques, except in the IL lung: V5Gy 

increased from 68.5% with the 2A method to 75.8% with the 4A while it decreased to 62.6 % with 2AS. 
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Table 1. Dosimetric comparison between 2A, 4A, and 2AS plans of 14 right-sided breast cancer patients in free breathing for 25 x 2 Gy 

fractionation scheme. P-value comes from a Wilcoxon rank sum test. * p-value <0.05: sample means are significantly different. Dmean is 

the mean dose to the volume. Dmax is the maximum dose delivered to the volume. Dx% is the dose delivered to x% of the volume. VxGy 

is the volume receiving at least xGy. IL: ipsilateral, CL: contralateral 

 

Structure Parameter 2A 4A 2AS

mean (min - max) mean (min - max) p-value 4A vs 2A mean (min - max) p-value 2AS vs 2A

PTVTotal D95% (Gy) 47.3 (45.9-48.1) 47.4 (46.5-48.1) 0.612 47.3 (45.4-48.0) 0.645

D2% (Gy) 52.4 (51.4-53.1) 52.2 (51.3-53.4) 0.167 52.4 (51.2-53.2) 0.963

Dmax (Gy) 53.9 (52.7-54.7) 53.5 (52.7-54.4) 0.093 54.0 (52.8-55.0) 0.765

PTVBreast/Wall D95% (Gy) 47.7 (46.4-48.5) 47.4 (46.2-48.2) 0.300 47.6 (45.1-48.9) 0.890

D2% (Gy) 52.5 (51.5-53.2) 52.2 (51.4-53.4) 0.167 52.5 (51.2-53.4) 0.982

Dmax (Gy) 53.7 (52.4-54.6) 53.4 (52.5-54.4) 0.154 53.9 (52.3-55.0) 0.519

PTVn D95% (Gy) 47.1 (44.8-48.8) 47.7 (47.0-48.4) 0.073 47.4 (46.0-48.6) 0.519

D2% (Gy) 51.6 (50.4-52.7) 51.4 (49.8-53.2) 0.394 51.6 (50.4-52.1) 0.782

Dmax (Gy) 53.2 (52.1-54.6) 52.7 (50.9-54.3) 0.118 53.1 (52.4-54.4) 0.747

PTVIMC D95% (Gy) 46.0 (44.4-47.0) 46.5 (45.0-48.3) 0.147 44.8 (41.5-46.5) 0.038 *

D2% (Gy) 52.6 (51.8-53.7) 52.2 (51.5-52.9) 0.038 * 52.6 (51.6-53.4) 1.000

Dmax (Gy) 53.5 (52.4-54.7) 53.1 (52.3-54.1) 0.069 53.5 (52.4-54.5) 0.890

Heart Dmax (Gy) 30.1 (15.2-38.9) 27.7 (13.7-36.2) 0.352 31.1 (13.5-40.8) 0.597

Dmean (Gy) 5.4 (3.4-8.5) 5.3 (3.8-8.3) 0.854 5.1 (3.2-7.0) 0.730

V5Gy (%) 42.7 (21.0-76.2) 42.7 (25.2-76.0) 0.982 35.4 (14.9-51.4) 0.301

V10Gy (%) 10.1 (1.9-26.4) 9.6 (1.5-26.2) 0.874 11.3 (0.7-23.4) 0.535

V20Gy (%) 1.1 (0.0-4.7) 0.7 (0.0-2.6) 0.592 1.7 (0.0-4.6) 0.379

IL Lung V30Gy (%) 9.1 (6.7-14.1) 8.1 (5.4-13.1) 0.103 8.6 (6.4-14.3) 0.447

V20Gy (%) 18.2 (14.9-25.7) 16.8 (13.3-24.3) 0.118 17.4 (13.1-24.1) 0.454

V10Gy (%) 38.2 (31.4-47.6) 37.8 (30.0-51.0) 0.730 36.0 (26.0-46.1) 0.421

V5Gy (%) 68.5 (61.8-76.7) 75.8 (60.1-88.0) 0.024 * 62.6 (52.4-70.8) 0.002 *

Dmean (Gy) 11.8 (10.7-14.3) 11.7 (10.3-14.6) 0.747 11.0 (9.5-13.1) 0.084

CL Lung V5Gy (%) 27.6 (13.5-53.1) 27.2 (17.2-51.4) 0.890 35.7 (20.0-55.5) 0.085

Dmean (Gy) 4.2 (3.0-6.1) 4.1 (3.3-6.0) 0.747 4.6 (3.5-6.2) 0.323

Total Lung V5Gy (%) 50.7 (45.3-60.7) 54.6 (43.9-67.4) 0.069 51.0 (42.9-61.5) 0.818

V20Gy (%) 10.2 (8.5-14.3) 9.4 (7.8-13.5) 0.051 9.9 (7.8-13.5) 0.565

V30Gy (%) 5.0 (3.8-7.9) 4.5 (3.1-7.3) 0.107 4.8 (3.7-8.0) 0.205

Spinal Cord Dmax (Gy) 18.1 (11.2-22.6) 17.5 (12.0-21.2) 0.629 18.5 (11.1-24.6) 0.910

D2cc (Gy) 13.3 (5.8-18.2) 14.0 (9.5-16.7) 0.581 14.6 (7.8-19.3) 0.323

CL Breast Dmax (Gy) 14.0 (9.9-31.5) 14.0 (9.5-30.0) 0.783 16.0 (10.7-35.0) 0.135

Dmean (Gy) 3.8 (2.2-5.8) 3.5 (2.0-6.0) 0.475 4.2 (2.3-7.4) 0.448

V5Gy (%) 24.6 (4.5-56.7) 19.8 (3.7-58.7) 0.421 29.1 (6.3-75.8) 0.667

Esophagus V20Gy (%) 16.5 (0.0-27.7) 13.7 (0.0-22.7) 0.250 16.0 (3.1-30.2) 0.730

Dmean (Gy) 9.2 (5.9-11.9) 9.6 (6.7-11.7) 0.566 7.8 (4.9-10.8) 0.081

Thyroid Dmean (Gy) 16.3 (5.3-32.5) 16.2 (5.3-35.1) 0.927 16.5 (4.7-34.2) 0.927

Liver V5Gy (%) 19.1 (10.1-28.9) 20.1 (12.5-37.8) 0.878 16.3 (10.0-20.2) 0.103
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Table 2. Dosimetric comparison between 2A, 4A, and 2AS plans of 14 left-sided patients in free breathing for 25 x 2 Gy fractionation 

scheme. P-value comes from a Wilcoxon rank sum test. * p-value <0.05: sample means are significantly different. Dmean is the mean dose 

to the volume. Dmax is the maximum dose delivered to the volume. Dx% is the dose delivered to x% of the volume. VxGy is the volume 

receiving at least xGy. IL: ipsilateral, CL: contralateral 

The dosimetric results published in the literature and derived from equivalent methods are listed in Table 3. 

When available, only results from LS breast cancer patients were extracted since LS irradiation involves higher 

dosimetric constraints on the heart. The 2AS results were extracted from the study by Boman et al. [9] in 11 LS 

patients, including three patients with deep inspiration breath hold (DIBH). The 4A results were taken from the 

study by Lang et al. [20] in 11 patients: four RS and seven LS DIBH patients-  except for the heart for which results 

exclusively from LS patients were available in the study. 2A results were obtained from seven studies [1, 6, 9, 12-

14, 17] that performed two-partial arc VMAT for advanced LS patients in free-breathing. Two studies [6, 13] also 

included RS patients in their results, and one study [9] partially used DIBH. For 2A method, published results were 

consistent with Table 2, except for the IL lung (+10% for V5Gy and +4 Gy for Dmean) and the CL breast (+20% 

for V5Gy). These differences can be explained by the reported greater tolerance to the dose delivered to the IL lung 

and in most cases the only constraint on the mean dose for the contralateral breast. Published results for 2AS were 

Structure Parameter 2A 4A 2AS

mean (min - max) mean (min - max) p-value 4A vs 2A mean (min - max) p-value 2AS vs 2A

PTVTotal D95% (Gy) 47.7 (46.7-48.5) 47.7 (46.4-48.2) 0.982 47.5 (46.7-48.4) 0.333

D2% (Gy) 52.6 (51.8-53.0) 52.5 (51.6-53.0) 0.694 52.6 (51.8-53.9) 0.800

Dmax (Gy) 54.3 (53.3-54.9) 54.0 (53.4-54.8) 0.180 54.4 (53.6-56.1) 0.532

PTVBreast/Wall D95% (Gy) 47.6 (46.4-48.8) 47.5 (45.6-48.3) 0.596 47.4 (46.0-48.3) 0.357

D2% (Gy) 52.6 (51.8-53.1) 52.6 (51.7-53.1) 0.661 52.6 (51.8-53.7) 0.982

Dmax (Gy) 54.0 (53.0-54.9) 54.0 (53.4-54.8) 0.890 54.2 (53.1-55.3) 0.405

PTVn D95% (Gy) 48.0 (47.3-48.8) 48.2 (47.5-48.9) 0.288 48.1 (47.3-48.6) 0.661

D2% (Gy) 52.0 (51.1-52.9) 52.0 (51.0-52.7) 0.818 52.0 (50.6-53.3) 0.890

Dmax (Gy) 53.5 (52.3-54.5) 53.3 (52.7-54.1) 0.240 53.6 (52.1-55.1) 0.872

PTVIMC D95% (Gy) 47.6 (46.1-49.0) 47.6 (46.7-49.7) 0.890 46.3 (43.5-50.9) 0.019 *

D2% (Gy) 52.8 (52.2-53.7) 52.5 (51.6-53.2) 0.116 52.8 (51.8-55.3) 0.564

Dmax (Gy) 53.9 (53.0-54.9) 53.4 (52.4-54.3) 0.027 * 53.9 (53.2-56.1) 0.501

Heart Dmax (Gy) 43.6 (31.4-52.2) 42.4 (29.9-53.9) 0.713 41.6 (23.6-54.7) 0.535

Dmean (Gy) 7.0 (5.1-9.3) 6.5 (4.4-9.3) 0.434 5.2 (3.2-8.7) 0.009 *

V5Gy (%) 56.1 (33.6-80.3) 50.5 (26.0-84.8) 0.401 31.8 (15.7-52.5) 0.000 *

V10Gy (%) 17.4 (7.4-29.5) 14.0 (3.8-28.3) 0.312 13.2 (3.2-28.3) 0.135

V20Gy (%) 3.2 (0.5-7.3) 2.4 (0.2-6.1) 0.334 3.3 (0.0-11.2) 0.836

IL Lung V30Gy (%) 8.7 (4.8-12.1) 6.5 (4.2-9.2) 0.004 * 8.4 (5.9-10.2) 0.730

V20Gy (%) 18.2 (11.0-23.1) 15.6 (12.2-19.3) 0.006 * 18.2 (14.1-22.8) 0.818

V10Gy (%) 39.5 (30.1-48.1) 36.8 (31.9-40.7) 0.069 40.0 (32.7-46.7) 0.550

V5Gy (%) 70.2 (57.7-84.5) 71.7 (60.9-85.4) 0.713 64.0 (55.5-78.3) 0.006 *

Dmean (Gy) 11.8 (9.7-13.2) 11.1 (10.3-12.3) 0.007 * 11.3 (10.1-12.5) 0.174

CL Lung V5Gy (%) 30.9 (18.4-50.4) 29.5 (17.5-53.9) 0.748 36.2 (23.7-60.8) 0.246

Dmean (Gy) 4.5 (3.5-5.8) 4.3 (3.6-5.7) 0.320 4.6 (3.4-6.2) 0.782

Total Lung V5Gy (%) 48.3 (38.7-59.3) 48.2 (38.3-65.2) 0.982 48.6 (39.5-62.5) 0.734

V20Gy (%) 8.2 (4.5-10.7) 7.0 (5.0-8.9) 0.017 * 8.5 (5.8-10.6) 0.581

V30Gy (%) 3.9 (2.0-6.3) 2.9 (1.9-4.5) 0.006 * 3.8 (2.4-5.3) 0.765

Spinal Cord Dmax (Gy) 17.3 (11.6-24.2) 18.1 (14.3-22.1) 0.646 17.9 (13.7-21.7) 0.696

D2cc (Gy) 12.8 (8.5-16.6) 13.6 (10.9-16.9) 0.535 12.9 (9.6-17.2) 0.872

CL Breast Dmax (Gy) 13.7 (8.9-35.9) 13.2 (8.7-33.4) 0.565 16.6 (10.6-41.7) 0.190

Dmean (Gy) 3.1 (2.3-4.4) 3.0 (2.0-4.9) 0.490 4.3 (2.5-10.4) 0.040 *

V5Gy (%) 12.8 (3.2-28.5) 12.7 (2.2-35.0) 0.945 28.4 (8.8-88.7) 0.016 *

Esophagus V20Gy (%) 18.5 (8.9-33.4) 19.9 (9.0-36.8) 0.581 17.8 (9.7-32.5) 0.662

Dmean (Gy) 10.9 (7.3-17.2) 11.7 (7.5-18.4) 0.408 8.8 (5.8-15.8) 0.005 *

Thyroid Dmean (Gy) 20.1 (0.0-32.9) 19.7 (0.0-33.4) 0.748 20.6 (0.0-33.0) 0.730

Liver V5Gy (%) 8.2 (1.9-22.3) 6.1 (1.2-16.4) 0.383 13.7 (0.0-36.6) 0.318
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significantly lower for the heart (-13% for V5Gy) owing to the use of DIBH and a greater tolerance to the dose 

delivered to the CL breast (+13.8% for V5Gy and +1.7 Gy for Dmean) allowing an easier spare of the heart. Published 

results for the 4A method showed a higher dose for IL lung (+12% for V5Gy and +3 Gy for Dmean) and CL breast 

(+36.2% for V5Gy and +3 Gy for Dmean), that probably led to the lower dose to the heart (-2.8 Gy for Dmean) associated 

with the use of DIBH.  

 

Table 3: Dosimetric results extracted from published studies with equivalent method. For 2A method, studies included between 6 and 19 

patients. Results were calculated from free-breathing LS breast cancer treatments except for two studies [6, 13] including LS and RS patients 

in their results and one study [9] partially using deep inspiration breath hold for LS treatments. For 2AS method, Boman et al. [9] results in 

IL lung, heart and CL lung included 8 free-breathing and 3 DIBH LS breast cancer patients. Results from 8 RS breast cancer patients were 

included in the calculation of the mean for the CL breast. For 4A method, Lang et al [20] included 4 RS and 7 DIBH LS cancer patients in 

their results except for the heart for which only LS cancer patients were included.  

 

 

Fig 3. Proportion of plans meeting dosimetric objectives for the 28 patients for A. PTV and B. OARs.  

Fig 3.A shows the proportion of plans meeting D95% PTV objective >45 Gy. This objective was met by all the 

planning methods except for the IMC: only 68% of the 2AS plans reached the objective against more than 90% of 

the 2A and 4A. 

Fig 3.B shows proportion of plans meeting dose limit objectives for most important OARs. The 2AS method 

achieved better agreement to the dose objectives for the volume of IL lung receiving at least 5 Gy, compared to 

2A methods 2AS method 4A method

[1][6][9][12-14][17] [9]  [20]

Structure Parameter mean (min-max) mean ± SD mean (min-max)

IL Lung V20Gy (%) 26.2 (15.4-35.9) 28.0 ± 4.0 24.6 (22-27)

V5Gy (%) 80.3 (70.2-89.3) 65.9 ± 5.5 84.3 (71-95.6)

Dmean (Gy) 14.9 (11.4-18.2) 14.4 ± 1.4 15.1 (13.4-17.1)

Heart V5Gy (%) 54.4 (39.0-83.0) 18.9 ± 11.7 -

V10Gy (%) 26.0 (20.2-35.7) 6.3 ± 5.6 -

Dmean (Gy) 7.8 (4.6-10.9) 3.9 ± 1.3 3.7 (3.3-5.6)

CL Lung V5Gy (%) 27.6 (8.1-50.7) 27.7 ± 17.5 36.5 (27.3-50.7)

Dmean (Gy) 3.7 (2.5-6.0) 4.1 ± 2.1 4.8 (2.7-5.8)

CL Breast V5Gy (%) 32.6 (24.4-43.5) 42.2 ± 22.9 48.9 (max 67.7)

Dmean (Gy) 4.6 (2.0-8.7) 6.0 ± 3.6 6.0 (max 7.2)

Reported results in literature



11 
 

the 2A and 4A methods. 4A plans fulfilled most of the other objectives (IL lung V20Gy, Heart Dmean, CL lung V5Gy 

and Dmean, CL breast V5Gy and Dmax). 

3.2. Deliverability considerations 

Approximately 18% of the 2A, 12% of the 2AS and 29% of the 4A arcs did not pass the action level of >95% 

(Fig 4.A). Assuming that a plan is not valid if one of its arcs is out of tolerance, Fig 4.B shows the distribution of 

the minimum GPR obtained for each plan. Whereas 71% of the 4A arcs were within the acceptable GPR limits, 

this proportion fell to 21% when considering 4A plan validity (6 plans out of 28, Fig 4.C). To a lesser extent, the 

same trend was observed for 2A and 2AS plans with 68% of plans within the GPR tolerances (19 plans out of 28, 

Fig 4.C).   

 

Fig 4. GPR distribution for each VMAT method. A. GPR for each arc of VMAT plans. B. Minimum GPR by plan. C. Proportion of plans 

that failed PSQA for each VMAT technique. Dashed line represents the 95% GPR action level. 

3.3. Supervised ML classifier 

3.3.1. Data pre-processing: GPR conversion to pass/fail binary class 

For the 60 EPID images acquired three months apart, 75% of the GPR amplitudes obtained were below 1% 

(Fig 5). As a result, a GPR threshold of 96% was considered to convert plans into a pass/fail binary class.  

 

Fig 5. Amplitude of EPID response variation for 60 images acquired three months apart. 

3.3.2. Feature relative importance 
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Fig 6. Ranks of features of SVM, NB, RF, LR, KNN and LDA algorithms, from the highest, 1, to the lowest, 22, for all data splits. If for a 

particular split, a feature was not selected at the end of the RFE process and not ranked, then it was manually ranked 22 to account its 

irrelevance determined by the RFE process. Grey points represents these manually ranked features. Red points are the mean of the ranks 

over all splits for each feature. Final rankings of the relative importance of features were the mean of rankings over all the splits and 

algorithms 

Fig 6 shows that the rankings of the relative importance of the features were globally in accordance with the 

different algorithms. The main differences were found in the RF algorithm. The RF mean ranks of the MAD and 

MUtot metrics were 11 and 13, respectively, whereas they were 5 and 7, respectively, for all other algorithms. In 

addition, RF ranked SAS 10 fourth, contrary to other algorithms that ranked it sixteenth. In the final ranking, the 

first ranked metric characterizes the MLC modulation complexity, and the next two metrics are representative of 

the overall field complexity. The volume of PTVb/cw and standard deviation of the MU among the control points 

were also in the top five ranks. The last five ranked were MCS, PM, AAV, and MIt(f=0.5 and f=0.2). MCS, PM, 

and AAV are relative to leaf sequence and aperture area variability, and MIt is relative to the speed and acceleration 

of the MLC, gantry acceleration, and dose rate variation.  

 

3.3.3. Model performance evaluation 

The AUROC scores for the metamodel trained with different subsets of features reached a plateau for the subset 

of the 15 first-ranked features (Fig 7.A). In addition, the average AUROC difference was minimal for the 15-

feature subset (Fig 7.B). It can also be noticed that standard deviation of the results was the smallest for the 15-

feature subset. Consequently, the final metamodel was built with this subset.   
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Fig 7. Validation and testing AUROC (A.) and AUROC difference (B.) for the validated metamodel trained with 5, 10, 15 or 22 features 

averaged over 100 data splits. Error bars represents standard deviation.  

 

Fig 8. Classification performances of each of the validated models trained with 15 features on 100 data splits. A. Validation and testing 

AUROC. Dashed line is the 0.5 AUROC threshold below which classification performance is worse than random classification. B. AUROC 

differences between validation and testing AUROCs calculated for each split. C. True positive and D. false positive rates calculated on 

validation and testing set. Average ROC curve for each model are available in Appendix D. 

The largest median difference between the testing and validation AUROCs (Fig 8.B) was 0.07 for the SVM, RF, 

NB and LDA models. The meta- and KNN models exhibited the smallest median AUROC difference of 0.05. 

AUROC values for all the ML models over the 100 splits were above the 0.5 threshold representative of a random 

guess, indicating satisfactory predictive performance (Fig 8.A). The median AUROC was above 0.8 for both the 

validation and testing sets for all the models. The scores on the testing sets were representative of model predictive 
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performance with new, unseen data. On the testing sets, metamodel showed the highest median AUROC of 0.87. 

The lowest value was obtained for the NB model at 0.83. The meta- and NB models exhibited the highest median 

TPR at 73%. The lowest median TPR scores were for the LR model at 40%. The metamodel median FPR shown 

in Fig 8.D, was at 9%, below NB and LDA models, respectively, at 13% and 10%, but above the four other models 

at 0%. The range among the testing values within each model was higher than among the validation values since 

validation data were already seen by the model during the CV training.  

The range of interquartile variation of the performance scores over the 100 data splits was around 0.1 and 0.05 

among testing and validation AUROCs, between 5% and 30% among TPR values, and between 0 and 15% among 

FPR values. These variations indicated that the results varied according to the data split. Consequently, only one 

data split will not be sufficient to fairly estimate the classification performances of ML models, as it can lead to an 

overly optimistic or pessimistic estimate.  

 

Table 4. Median performance scores of metamodel trained on 70% of the dataset over the 100 data splits and performance scores of the 

metamodel trained on 100% of the dataset.  

The validation AUROC and TPR of the final metamodel (trained with the full dataset) were equivalent to the 

median scores of the 100 metamodels trained on 70% of the dataset (Table 4). The TPR was smaller, at 7.4% versus 

8.6%. These results could indicate that predictive performances of the final metamodel on new data is likely to be 

equivalent or better (for FPR) than observed median scores obtained on the testing sets over the 100 data splits.   

4. Discussion 

The aim of this study was to implement in clinical routine, the VMAT technique for advanced breast cancers, 

by selecting a relevant planning method and preventing QA workflow perturbation owing to the introduction of a 

technique, potentially affecting 30% of the annual pool of breast patients. Three VMAT treatment methods for 

advanced breast cancer with IMC involvement were evaluated. A cohort of 28 patients (14 LS and 14 RS patients) 

was planned for free-breathing using each method. Several studies have demonstrated the benefit of including IMC 

in target volumes to improve the overall survival of patients with node-positive breast cancer [47-49]. Compared 

with 3D-CRT and static IMRT techniques, VMAT techniques have been shown to achieve better target coverage 

with greater cardiac and pulmonary sparing, especially when IMC is included [1,4,22,50,51]. Nevertheless, cardiac 

and pulmonary toxicities in patients with breast cancer remain an important issue because they have been shown 

to be related to heart and lung exposure to radiotherapy [52-57]. In this study, the 2AS method achieved the lowest 

dose on the heart, but at the cost of an increased dose delivered to the CL breast and a significantly lower IMC 

coverage. This result was in agreement with the study by Boman et al. [9] for OARs but not for the IMC coverage 

because the IMC was not distinguished from other targets in their study. The advantage of the 4AS method was 

the highest target dose coverage while reasonably sparing the OARs compared to the other two methods. The 2A 

method led to acceptable target coverage and best achieved OAR dose objectives after the 4A method. The 

dosimetric comparison was conducted in free-breathing. Deep inspiration breath-hold techniques would improve 

heart sparing, in particular, for patients with LS cancer. However, for a proportion of patients, holding a blocked 

inspiration is not an option, and for these patients, it remains interesting to propose alternative techniques that make 

it possible to best achieve individual dosimetric constraints. 

In addition to the dosimetric results, this study focused on the clinical deliverability of the plans. The PSQA 

investigation showed that the 4A plans exhibited the poorest QA results despite their promising dosimetric results, 

indicating that caution should be taken when selecting the 4A method. The increased proportion fails in the 4A 

plans compared to 2A and 2AS can be explained by a significantly higher value of modulation units delivered per 

plan, and a higher value of SAS, MAD, and PI metrics (Fig 9), representative of aperture complexity. In addition, 

CAS and AFW values were significantly lower for the 4A method (Fig 9), synonymous with greater asymmetry 

trained on 70% of the data trained on 100% of the data

AUROC 0.908 0.910

FPR 0.783 0.785

TPR 0.086 0.074

Metamodel
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of the MLC. These observations are in accordance with the published results of Li et al. [46] and Crowe et al. [41] 

based on the same complexity metrics.  

 

Fig 9. Distribution by planning methods of PCMs for which a significant difference (Wilcoxon test) was found between the 4A planning 

method and the other two methods (2A and 2AS).  

The mathematical introduction of the VMAT technique for breast cancer involves an increase in the QA 

workload. In addition, VMAT techniques are also more sensitive than 3D-CRT techniques to anatomical changes 

in patients during treatment owing to beam modulation [39, 58]. During the course of breast cancer radiotherapy, 

significant changes in breast anatomy can be observed, in particular, patients who have undergone breast-

conserving surgery. The dosimetric margin added outside the breast surface could not be sufficient to compensate 

for the anatomical change, and a re-evaluation of the VMAT plan followed by a new QA measurement could be 

required. Therefore, with the implementation of the VMAT technique in routine clinical practice for breast cancers, 

there is an additional risk of increased QA workload. In this context, a lever of action is to prevent QA process 

overload by predicting plans that are likely to fail. Building a ML model was a necessary step to reach robust 

predictions of QA outcomes, since a direct relationship between PCMs and QA outcomes would have led to a 

significantly lower prediction accuracy, as shown in Appendix E. ML techniques have been increasingly developed 

in recent years, in the field of medical physics in radiation therapy, to optimize the dosimetric workflow [59-61]. 

Valdes et al. [33] were among the first to publish a study on PSQA prediction based on an ML algorithm in 2017. 

They used a Poisson regression with Lasso regularization to predict GPR values from diode array detector and 

EPID measurements, with 3% and 3.5% accuracy, respectively. After their study, several ML methods were 

proposed to predict the IMRT and VMAT plan QA outcomes. They are based on convolutional networks [34,35], 

SVM [28,36], decision trees [30, 31,35], linear regression [35,30] or an association of two algorithms to combine 

the regression and classification methods [37]. Ensemble strategies were applied for example by Interian et al [62], 

Tomori et al. [34] or Li et al. [30] to improve the prediction accuracy by decreasing the variance of the models. 

These strategies relied on ensembled ML models, based on the same algorithm, but tuned with different 

hyperparameters. In this study, the originality of the ML classifier of VMAT plans as ‘pass’ or ‘fail’ was to rely 

on the predictive performance diversity from the different ML algorithms. The metamodel was built on a stack of 

ML models trained with different algorithms, but tuned with no more than two hyperparameters to limit their 

complexity, and reduce the generalization error. The relative importance of PCMs was ranked prior to ML training 

to limit the complexity of the model and improve its generalization performance. It highlighted that the five metrics 

that came first had a low degree of complexity, characterizing the variation in MLC aperture or MU and PTV 

volume. More complex PCMs, such as MIt and MCS, were ranked near the end. Metamodel performance 

evaluation over different subsets of these features favored the 15 first-ranked metrics. The predictive performances 

evaluated over the 100 testing sets showed that the metamodel significantly outperformed the base classifiers’ 

individual performances with the highest median AUROC and sensitivity (respectively at 87% and 73%), by 

keeping the specificity in a reasonably high level (91%). The base classifiers for which sensitivity was the highest 
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were those with the lowest sensibility, and vice versa. Their combination in the metamodel improved the overall 

predictions based on a complementary set of individual predictions. Predictive performances were expected to be 

better on the validation data as ML models already seen this data during the CV process whereas they never seen 

the testing data, but the difference between validation and testing performances should be kept reasonable.  For the 

base and meta- models,  testing AUROCs were sufficiently consistent with validation AUROCs to estimate that 

the generalization performances from training to testing were satisfactory. The AUROC differences were the 

smallest for the metamodel, as well as the variation of the testing TPR and AUROC values over the 100 splits. 

These results demonstrate that the metamodel reduced the variance and achieved more robust classification results 

by improving generalization performance. The final metamodel that will be used for the PSQA prediction was 

trained with the full dataset. The estimated predictive performances on the cross-validation sets were similar to 

that estimated on the 100 training splits. These results indicate that the estimated predictive performance over the 

100 testing splits could be a fair estimate of the final predictive performance of the model on future unseen data. 

Despite these encouraging results, the proposed metamodel has limitations. One limitation is directly related to the 

small sample size of plans with which it was trained in the context of VMAT implementation for breast localization. 

Even though efforts have been devoted to reducing generalization error through feature selection, use of simple 

ML models, repeated cross-validation and stacking of ML models via a naïve Bayesian algorithm, generalization 

performance is expected to improve as a larger sample of training becomes available; that is, additional QA was 

carried out. The second limitation is the performance dependence of the selected features designed by domain 

experts. To overcome this limitation, some studies have recently paved the way for a fully automated process using 

radiomics features automatically extracted from gamma images [63, 64] or fluence maps [62] without human expert 

supervision.   

 

5. Conclusion 

Prior to the clinical implementation of VMAT for advanced breast cancer in our institution, this study provided 

a comprehensive process for obtaining VMAT plans meeting the dosimetric objectives, clinically deliverable by 

the treatment machines, and proposed a way to anticipate the increase in QA workload. The three investigated 

VMAT methods led to significant differences in the dose distribution. The 2A method could be suggested as a 

dosimetric basis because it allows a reasonable sparing of OARs while covering the targets in an acceptable 

manner. In the event that the heart is of particular importance for patients with no DIBH option, the 2AS method 

leaves open the possibility of achieving better heart-sparing, bearing in mind that this comes at the cost of a lower 

target coverage and the highest contralateral breast irradiation. 4A method should be selected with caution since 

4A plans exhibited higher MLC modulation and field asymmetry, making them poorly reproducible by the 

treatment machine in the context of this study. The proposed ML metamodel, with 73% sensitivity and 91% 

specificity, proved to be a promising tool for classifying PSQA results to prevent the measurement of treatment 

plans that are likely to fail QA. As a larger dataset becomes available, the performance of the metamodel can be 

improved. Future investigations will focus on automated radiomic characteristic extraction as features for the ML 

model to achieve a fully automated model and overcome the dependence of the model on the selected PCMs.  
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Appendix  

A: Dosimetric objectives used for each plan optimization. IL = ipsilateral. CL = contralateral. 

 

 

B: Summary of the calculated plan complexity metrics (PCMs) . Metrics were averaged over the control points 

(every 2°) and over the beams according to their respective weights.  

 

Volume Dosimetric objective

PTVs D95% > 45Gy

D2% < 53.5Gy

Dmax < 55Gy

Heart Dmean < 8Gy (L)

Dmean < 6Gy (R)

IL Lung V20Gy < 20%

V10Gy < 50%

V30Gy < 10%

V5Gy < 75%

Dmean < 13Gy

CL Lung Dmean < 5Gy

V5Gy < 30%

Total Lung V5Gy < 50%

V20Gy < 10%

V30Gy < 5%

Spinal Cord D2cc < 20Gy

CL Breast Dmean < 4Gy

Dmax < 13Gy

V5Gy < 30%

Esophagus Dmean < 10Gy

V20Gy < 20%

Thyroid Dmean < 30Gy

Liver V5Gy < 20%

Abbrev Metric Ref

MUtot Total number of monitor units of the plan -

StdMU
Standard deviation of monitor units delivered by control 

point
-

VolPTV Volume of the PTVB/CW -

MIt 0.2 Total modulation index with f  = 0.2 44

MIt 0.5 Total modulation index with f  = 0.5 44

MIt 1 Total modulation index with f  = 1 44

MIt 2 Total modulation index with f  = 2 44

MCS Modulation complexity score 42

EM Edge metric 43

SAS 2 Small aperture score 2 mm 41

SAS 5 Small aperture score 5 mm 41

SAS 10 Small aperture score 10 mm 41

SAS 20 Small aperture score 20 mm 41

LSV Leaf sequence variability 42

MAD Mean asymmetry distance 41

PI Plan averaged beam irregularity 45

PM Plan averaged beam modulation 45

CAS Cross-axis score 41

AAV Aperture area variability 42

CLS Closed leaf score 41

AFW Average field width 46

ALT Average leaf travel 46
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C: Algorithms used in base models and tuned hyperparameters during the cross-validation process. 

Abbreviations: KNN: K nearest neighbors, LDA : linear discriminant analysis, LR: regularized logistic 

regression, NB: naïve Bayes, SVM: support vector machines, RF: random forest. 

 

 

D: ROC curves for each base model and the metamodel, averaged over all testing splits. Error bars represent 

standard deviation of the true positive rate, only displayed for the metamodel. Abbreviations: AUC: area under 

the curve, KNN: K nearest neighbors, LDA : linear discriminant analysis, LR: regularized logistic regression, NB: 

naïve Bayes, SVM: support vector machines, RF: random forest. 

 

 

Algorithm Description Tuned hyperparameters

KNN

Find k samples that have similar features and assign the 

observation to the class to which the majority of its neighbors 

belong. 

number of neighbors considered in the nearest 

neighbor calculation

LDA

Calculates a linear discriminant function using a covariance 

matrix to maximize the scatter between class and minimize it 

within class. 

none

LR
Binary regression based on sigmoid function with 

regularization. 

cost penalty for misclassifications (regularization 

strength) and regularization type (Ridge regression 

or Lasso)

NB

Uses the prior probability of the classes (based on class 

distribution) to estimate the posterior probability of an 

observation to belong to the class given the predictor 

information.  

kernel used to calculate the conditional probability 

(a kernel density estimation or a gaussian 

distribution)

SVM

Identifies the optimal non-linear hyperplane  to separate 

classes by mapping the original space into an higher 

dimensionnal space to facilitate the class separation using a 

kernel function. 

sigma (parameter that controls the SVM decision 

boundary) and cost penalty for misclassifications 

(regularization strength)

RF
Fits many decision trees to random subsamples of the data 

and features and averages the trees. 

number of randomly selected features at each cut 

in the tree
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E: ROC curves generated for each of the 15 first-ranked complexity metrics. The area under the curve (AUC) 

quantifies the ability of the metric to distinguish between failed and successful QA (defined with the GPR 

threshold at 96%). The AUC for each metric taken independently was more than 10% lower than the AUC 

obtained with the ML models. 
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