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Abstract

In this work, we prove the joint convergence in distribution of ¢ variables modulo one obtained as
partial sums of a sequence of i.i.d. square integrable random variables multiplied by a common factor
given by some function of an empirical mean of the same sequence. The limit is uniformy distributed
over [0,1]7. To deal with the coupling introduced by the common factor, we assume that the joint
distribution of the random variables has a non zero component absolutely continuous with respect to
the Lebesgue measure, so that the convergence in the central limit theorem for this sequence holds in
total variation distance. While our result provides a generalization of Benford’s law to a data adapted
mantissa, our main motivation is the derivation of a central limit theorem for the stratified resampling
mechanism, which is performed in the companion paper [15].

1 Introduction

Given (Y;),~, a sequence of i.i.d. square integrable random variables and a measurable real valued function
¢, we are going to give sufficient conditions for the convergence in distribution to the uniform law on [0, 1]
of

Bm
{eﬁ(%;n) <Y1+---+YM>}, (1)

for (Bar) >, © N* such that Mlim VM (B—Af/‘[f - B) = 0 with 8 > 1. Here {z} denotes the fractional part
= —00

of the real number z given by {z} = = — || where |z] is the integer such that |z| <z < |z| + 1 and we
also define [z] as the integer such that [z] —1 < 2 < [z]. Our main motivation for considering (1) comes
from the derivation of a central limit theorem for the stratified resampling mechanism. Before giving more
details about this particular application, let us review the existing literature which addresses the case of
a constant function ¢ with the derivation of Benford’s law as a common motivation.

The convergence in distribution of the sequence (Vay = {Y1+ -+ + Ym})m>1 of sums of random
variables defined modulo 1 to the uniform distribution on [0, 1] has been studied by many researchers
using Fourier analysis. In 1939, Lévy [1] gave necessary and sufficient conditions for this convergence when
the Y; are i.i.d.. In 1986, Stormer [2] provided sufficient conditions in terms of the distribution functions
of the Y; for the convergence to hold when the Y; are merely independent. In 2007, under the assumption
of independent absolutely continuous Y;, Miller and Nigrini [3] characterized the convergence of (Vas)pr>1
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in L' ([0,1]). In 2010, Szewczak [5] generalized the above results by getting rid of the hypothesis of
independence of the Y;. In particular he proved that, if the absolute value of the characteristic function of
Y1+ -+ Y)y satisfies a certain growth condition and if the set {n € N'\ {0} : |E (e2™¥1)| = 1} is empty,
then (Vas)ar>1 converges in distribution to a uniform random variable on [0, 1].

Let us now briefly introduce Benford’s law and the problem of the distribution of the leading digits of
products of random variables (see for instance [4]). Benford’s law in base b > 1 is the probability measure
up on the interval [1,b) defined by

wy ([1,a)) = logy a, Va € [1,b).

The mantissa in base b of a positive real number z is the unique number M, (x) in [1,b) such that
z = My (x) x blloee®)]  Given a sequence of positive random variables (Xi);>1, many researchers ([11],

M
[13], [12], [14]) were interested in studying the weak convergence as M — oo of the law of M, (H Xl-)
=1

to wp. Since logy M, (z) = {log, (z)} for each positive real number x, one has

M M

log, M, <H Xi> = {Zlogb (Xi)},
i=1 i=1

and this convergence is equivalent to the weak convergence of the partial sums modulo 1 of the random

variables (logy, (X;))i>1 by continuity of [1,b) 5 z — log,(z) and its inverse.

The introduction of a non-constant function ¢ in our work permits to address the choice of a data
dependent mantissa for instance given by the geometric mean bar = exp (BM EﬂM In(X )) Indeed,

M E]W 1n( ) 1 By M 1
log;,, M, lj[lX = m =<0 MZ;ln(Xi) Z;m(xi) where §(x) = -

Compared to previous works, the main difficulty that we have to address comes from the coupling between
the variables introduced through the common factor ¢ ( i Z ) To overcome this difficulty, we assume
that the Y; are i.i.d. according to a common distribution Wlth a non-zero component absolutely continuous
with respect to the Lebesgue measure. This allows us to apply one of the key results for our proof, the
convergence in total variation in the central limit theorem, that we now recall. Let F' be a centered
square-integrable random vector in R™ with identity covariance matrix and let (F;);>1 independent copies
of F. Under the assumption that the law of F has an absolutely continuous component, Prohorov [6] in
the one-dimensional case n = 1 and Halikov [16] and Makshanov [17] in the multidimensional case, proved
that the total variation distance between the distribution of ﬁ Zi\il F; and the standard Gaussian law
in R™ goes to 0 as M — oo.

The study of the joint convergence of several partial sums modulo 1 with a common factor and an
additional component satisfying a central limit theorem does not add further significant difficulties and is
useful in the derivation of the central limit theorem for the stratified resampling mechanism. That is why
we address the convergence in distribution of

q+1 q+1

Z (vi+-+7p,) , ZY MZZ—H (2)

1<i<q

for (k- B4 Jarz1 € No such that lim VM (G — 8') = 0with 0 < 81 < - < 371 and (%),

such that the sequence ((Y;, Z;))i>1 also is i.i.d. and the last component where 6 is a constant (typically



equal to B771¢ (B4 E(Y1)) E(Z1)) converges in distribution to T as M — co. We give mild conditions
ensuring that the full vectors converge in distribution to (U, T') where U is uniformly distributed on [0, 1]¢
and independent of T'.

Main motivation

Let us now come back to our main motivation. We are interested in providing a central limit theorem
for the stratified resampling scheme under the simplifying assumption that the R%-valued initial drawings
(Xm)m>1 are independent and identically distributed and weighted proportionally to their image by some
measurable function g : R? — (0,400). For M > 1, resampling schemes (see for instance [10]) permit
ny/{:l 9(Xm)dxp,
Z%:1 9(Xm)
= Ef\le d¢m with the same conditional expectation given F = o ((Xm)m>1). For (Up)m>1 an independent
sequence of independent random variables uniformly distributed on (0, 1), the stratified resampling scheme
consists in setting

to replace the probability measure with non equal weights by some empirical measure

M
SR MY g(Xm) ,
= lyam a1 X; form e {1,--- M}WlthSM Lfor]€{1~-~ M}
S m—U,, <S! I ) Ll 9 )
2 (st <m-vnzsyt) SN (X

under the convention S} = 0. For f: RY — R measurable, we have

M m
B(AEDIF) =Y £ [ sy, cuzsnydu -
i=1 m—

The central limit theorem deals with the asymptotic behaviour of ﬁ Zﬂj‘le ( F(EMy — % ) as

M — oo. Let us explain how the computation of the asymptotic variance is related to our main result.
By a standard decomposition of the variance and the conditional independence of (£M)1 << given F,

ar<\/Lﬁﬁlf‘<§%>)=V8“~"<E(L Aj ‘f>>+E<V“(FZf WT))

 Var S 9(X)f (Xim) SV (X)) (1 Y
- <\/M S 9(Xom) )HE( S g(Xom) ) E(M;E(f@m)‘f))

m:lg m:lg

Since the asymptotic behaviour as M — oo of the first two terms in the right-hand side can be analysed
using standard arguments, we focus on that of the third term. Using (3) and SY¥ = M, we get that

2%21 E (f(ﬁ%ﬂ]:)? is equal to

M—1

M—k m
Z 1+ 11y) Z FX) f(Xitr) Z / X 1{S‘j‘{l<u§§§”}du/ Lism,  <uxsy, ydu.
k=0 =1

m
m>[SM 417" m—t

Since - Zf\il Vi = fol Yanda, we deduce that 47 Zn]\le E (f({“,]‘f)|]:)2 is equal to the sum over k € N of
1
oM Mg(Xrann Mg(Xrann
1+ 1{1@21})/0 Lram v —ky f (Xran) f(Xpanr+1) %k ({S[QM]l} ; % ﬁ) da
u0+Z we<u<ug+ Z wy

where )y, (UOu Wy, - 7wk+1) = Z L:Ll 1{uo<u§uo+w1}du fanl { k41 }du That is why,
m>1

in order to compute the asymptotic variance of (€M) it is very useful to understand the

1 M
\/—M ZmZI f



behaviour as M — oo of {S%M]fl} which is equal to the first component in (2) when ¢ = 1, Y; =
9(X3),¢(z) =L, B}, = [aM] —1 and 83, = M.

Regarding the Central Limit Theorem, the characteristic function of \/LM M ( feMy - %)

writes for u € R

( i /fM<ZfV,{:1 9(Xm)f (Xm)  E(£(X1)9(X1))
e

M
S - RS )HE(e;%(.fwf)—E(f@%)f))m),
m=1

iu

(¢ M (¢ M
Using some Taylor expansion of eW(j (&m)—E(/ (&m )|f)), one may approximate the product by a sum of

integrals of functions of
({Stean-a} {Stean-ao o {S8oan1})

with respect t0 1{g<a,<as<-.<a,<1yd1das - - -dag. This closely relates the asymptotic behaviour of the
characteristic function to the one of the vectors (2) for the choice Y; = g(X;), ¢(z) = %, Z; = g(Xi) f(Xa),
By = [asM]—1forie{l,---,q} and [3;{}1 = M. In the companion paper [15], using the main result of
the present paper, we compute the asymptotic variance and prove the associated central limit theorem.

2 Notation

We denote by N* the set of natural numbers without 0 and by R the set of non negative real numbers.
We denote by |z] the integer j such that j <z < j+1 and by {x} = 2 — || the fractional part of x € R.
We denote by uy the law of a Re-valued random vector Y = (Yl, e ,Yd) where d € N* and by ¢y

its characteristic function given by ¢y (u) = E(e™"Y) = Jga e Yy (dy), u € RY. The convergence in

distribution is denoted by :d>. Moreover let py = py,c + pty,s denote the decomposition of py into a part
1y,c absolutely continuous with respect to the Lebesgue measure and a singular part py,s. Notice that
there exists A, a Borel subset of R?, such that ty,s(A) =0 and fRd 1{zgaydr = 0. Let py denote a density
of py,. with respect to the Lebesgue measure. In what follows, we will always consider absolute continuity
with respect to the Lebesgue measure and so we avoid to write it everytime. Moreover, when we write
that the law of a random variable has an absolutely continuous component we mean a non zero absolutely
continuous component. We denote by my = (E (Yl) yoo L, E (Yd)) the expected value vector of Y.

For the total variation distance between the measures p and uo, we write

drv () = swp |n(A) — () = 5 swp | [ () (o) — pua(z) ()
AeB(RY) 2 1 flle o<1 | JRe
1w () () = o) 5)
1flloo c<11/RE

where the first supremum is taken over the real-valued measurable functions and the second one is taken
over the complex-valued measurable functions. The latter formulation is less usual so we will provide the
proof of the third equality in the Appendix (see Lemma 5).

Given two R%valued random vectors X and Y and a measurable function g : R¢ — RY where d’ € N*
the following inequality holds

drv (Hg(x)s Hg(v)) < drv (ix, py ). (6)



In particular,
drv (10,x) (0,y)) = drv (X, fy) (7)

and given A € R?*? an invertible matrix

drv(pax, pay) = drv(ix, by ). (8)

Additionally we introduce the following notation: given a real sequence (z;);>1 and a real number ¢ € R
we define for any integer M > 1

e . Ti+--t+aTMFC

Ty = i .

3 Main Result

Let (Y3, Zi);~, be a sequence of square-integrable i.i.d. random vectors in R? where Y; is not constant.
Moreover let ¢ € N* and consider a sequence of vectors of integers (83, , gjl) m>1 € N9+ guch that
(B
li M(=-581=0
with
0<pBl <. < patt,
Let us observe that for M big enough 0 < 8}, < -+- < [3;{;{1. Given (z,2,y1, * ,Yq) € RI™ and ¢ a

measurable real-valued function, we are interested in studying the convergence in distribution as M — oo
of the following random vector

1 7,y [3;1\;1_ ﬁgjl
Y Y I~ ” s
{RﬁMl}’”. ’{RﬁM }’ M (b M Y,@gjl X i ZBK}Fl —0 (9)
where
. ﬁﬂ_l—
©YioL__ X
RﬁM =0 M Yﬁﬂl (Yl R Yﬁ?w + yl) (10)
and
0=¢ (ﬂqule) ﬂquZ. (11)

Remark 1. Let us observe that if ¢ is differentiable at B9 'my, the application of the delta method
provides the convergence in distribution of the last component of (9):

;{jl—m B?\jl—z d 2
VM| 6| Yo | x - Zey =0 = T~ N (0,07) (12)

where o3 = BT (¢! (B9 my )BT maz, 6(B7 my)) T S 20y (¢ (BT my ) B+ mz, (8T my ) being
Yw1,z,) the covariance matriz of (Y1, Z1).

We are now ready to state the main result of this work.

Theorem 1. Let (Y, Z;);~, be a sequence of square-integrable i.i.d. random vectors in R? such that the
law of Y; has an absolutely continuous component. Moreover let (z,z,y1,- -+ ,yq) € R1T% and let ¢ : R — R

be a measurable function differentiable at S my such that ¢(B9 my) # 0. If there exists M €N such

that
1

/R 6B my 1 )

7My2dy < 00, (13)



then the random vector

1 Ay i+ Lith
»Y1 s € —Z*
{RBM }, ,{RﬂMq}, M| o Yﬂ?wﬂ X ZB?V[H -0

converges in distribution as M — oo to (U,T) where T has been introduced in (12) and where U is a
uniform random variable on [0,1]? independent of T.

Remark 2. Let us observe that we can apply Theorem 1 to (Y;,0),~, where (Y;),~, is a sequence of
square-integrable i.i.d. real-valued random variables such that the law of Y; has an absolutely continuous

component. In particular we have
Ly .y d
({miy- {mir}) = v

where U is a uniform random variable on [0,1]?. It is possible to prove that in this case the hypothesis
(13) can be replaced by the following slightly weaker hypothesis: AM € N such that

1 w2
e Y dy < oo. (14)
/]R lp(Be+tmy + y)|?
We are now going to provide the statement of Theorem 1 in the particular case where the law of (Y1, Z7)
has an absolutely continuous component and (z,y1,- - ,y4) = (0,---,0). This, together with the lemma
that immediately follows, will allow to prove Theorem 1.

Proposition 1. Theorem 1 holds under the reinforced hypotheses that the law of (Y;, Z;) has an absolutely
continuous component and (z,y1,- - ,yq) = (0,---,0).

Lemma 1. Let Y and Z be two real-valued random wvariables such that the law of Y has an absolutely
continuous component. If £ is an absolutely continuous real-valued random variable independent of (Y, Z),
the law of (Y, Z 4+ &£) has an absolutely continuous component.

We provide the proof of Proposition 1 in Section 4 and the proof of Lemma 1 in the Appendix.

Proof of Theorem 1. The proof consists of two steps. In step (i) we are going to check that the con-
clusion still holds when the hypothesis of existence of an absolutely continuous component for (Y7, Z7)
made in Proposition 1 is weakened to the existence of an absolutely continuous component for Y;. More-
over we suppose that (z,y1, -+ ,y4) = (0,---,0). In step (i) we deal with the case when the vector

(Zvylv"'ayq)#(oa"'vo)' . 0

(i) To simplify the notation in what follows we write R%M instead of RES/I and Z ot instead of Zga+1.
Let (&);~, be a sequence of zero-mean absolutely continuous square-integrable i.i.d. real-valued ran-
dom variables independent of (Y;,Z;),~,. For each n > 1, let £ = % and let us consider the se-

quence (Y;, Z; + &)~ of square-integrable i.i.d. random vectors in R? such that by Lemma 1 the law of
(Yi, Z; + £") has an absolutely continuous component. Thus we can apply Proposition 1 and obtain that
for each n > 1 the random vector

q+1

(b o v (o2

where 0 = ¢ (Bq+1my) B4 my, U is a uniform random variable on [0,1]? independent of T,, and by
Remark 1, T), ~ N (0,07, ) with

— BtH-l = - d
Yﬁf)X A (Zog +Tg) =0) | < T (19

o7, = B (¢ (BT my )BT myg, ¢(ﬁq+1mY))T Sy zitep) (@ (B my ) B mz, ¢(B7  my)) .



Since (Y7, Z1 +&7) converges in L? to (Y1, Z1) as n goes to infinity, Yvi,ziver) — Xvi,z,) and 02—
n—00 "

n—oo
T
2= BT (¢ (B9 my ) B9 mz, ¢(BT my ) By, zy) (¢ (B9 my ) B9 mz, p(BT  my )
Let us now prove that this implies the convergence in distribution as M — oo of (9) to (U,T) where

T ~ N (0,0%) independent of U = (Uy, - -+ ,Uy).
Let (u1,u2) € R? x R and let us denote the random vector ({RBM} e ,{R%M}) by {RfﬂM}»< . For
i<q

n > 1 one has
+1 a+1

o i . Bl e Bi;

B <6W1 ({RﬁM }i§q>+“‘“ M(¢< M 5}{}1>X M ZB}’M“ )\ _ E (eiulTU> e~ 307U
(1 (o ( 7 )27 (7 ) e

. ; . = B 7= -
E(ewl ({RBM}@J;“Q 5 (o Tigpr )< M 2,00 -0) (1_6“‘2 ol o ) e Bxﬁm

iuy ({Rﬁ } )"'W?V ( (Bijlvzﬁl)xi;(f g+1+ET q+1>—9> iuT 152 4,2
El(e M BMm Py 7 B —E (ewl U) e 29T, U2

<

+

T i ; 83 e i (7 e
i R ) +zu2\/M<¢( Y g+1 | X F—( Z q+1+E™ 1)—0 T 1.2 2
+|E <6 1 ({ BM}qu) M pdl M BLF Bif _E (ewl U) e~ 307, U3
1.2 2
+ ‘ UTnuZ — e 29TY2| |

Let us now study the first term of the right-hand side.
a+l__o q+1_
By observing that Hy, = v M@ (%Y;ﬁvjl) %%gyl Y (0, patp? (ﬂqﬂmy) Var (5)), this in par-

ticular implies that the sequence Hjy is tight: Ve > 0 there exists K. > 0 such that sup,;~; P (|Hy| > K.) <
€. One has -

) 21w

=E (‘1 — 61.%2HM} 1|HM|§K€> +E (}1 - €i1:T2HM 1\HM\>KE)

|U2|

— K+ 2¢

where to obtain the last inequality we use that ‘1 — e”‘ < |z|, Vo € R.
Therefore we have obtained that Ve > 0, Vn > 0

g1 q+1
T i T By
i R +iua vV M ( ( Y? )>< Z —0) T 2 2
E <6 1 ({ ﬁM} ) 2 TM et )M St E (ewl D) e—%UTuz

2,2

2 2 1
K + 2¢ + ‘ 30T, U2 _ T30

g+1

o T i By - —
R 7Y L (Z n —0 .
E<e (503, it (o (B T ) (7,087 00 )) B (0 o]

_|_




To conclude this part of the proof it is sufficient to take in the above expression first the superior limit as
M — oo so that the last term converges to 0 by (15), then the superior limit as n — oo so that %KE -0

1.2 .2 1.2 .2
and |e7297%2 — ¢ 29T, U2

(ii) Let us now take (z,y1,-- ,y,) € RIT2 different from the zero vector. One has

({Rﬁxvl} : {Réz"},\/ﬂ@(ﬂgjlifﬁw) i _9)) (16)
= (({¢( }'leﬂqﬂ) yi + {RBM}})lgigq’\/_ (¢ (BQHYﬂq#) ﬂngﬁqH B 9)>

+ (07... ,07\/%(;5 ('Gq IYﬂqH)) .
gatt

By the Strong Law of Large Numbers and the hypothesis of continuity of ¢ at 57t my-, N}im 1) ( M Y5q+l> Yy =
— 00

10) (ﬂq+1my) y;- We can therefore apply the previous step and Slutsky’s theorem to deduce the following
convergence in distribution

a+1l__g a+1__
(¢ (B%J Yﬁ?ﬂrl) b + {Rél\/f} e ’¢ (Bﬂ

q+1 q+1 __
] )yq {R%M} Y% M (Qb (ﬂM Yﬁtfrl) B%I Zﬂgjl — 9))

:d> (¢ (ﬁq+1mY) Y1+ U17 T 7¢ (ﬁq+1mY) Yq + Uq7 T) .
Now by observing that the set of the points of discontinuity of the function (x1,---,zq,y) —
({z1},-- ,{zq} . y) has a zero measure with respect to the law of (¢ (87 my ) y1 + U1, -+ , ¢ (BT my ) ys + Uy, T)

and applying the continuous mapping theorem we can deduce that

(({¢ (5%17;%) wr R M}})lsz'Sq VM (¢ (5%17;%1) X ﬁglzﬁifl B 9>)
=5 ({0 (B my ) yr + Ur ), {0 (B my ) yg + Uy}, T) = (Ur,-++, Up, T).

g1 __
This combined with the fact that (O, -0, \/Lﬁqﬁ (Bﬁ

zero vector allows to conclude that (16) converges in distribution to (U, T).

) converges as M goes to infinity to the

O

4 Proof of Proposition 1

Before proving Proposition 1, we need some preliminary results. As done in the proof of Theorem 1, in
. ;. ; - . —0
what follows we write Rj —instead of R;gf and Z ga+1 instead of Z guL. Let us observe that for each
M

jzlv"'uq

i

J _ (—1:0

R}, =Y Rf,
=1

. a+1 __
where we have introduced the notation Réj_v[l'é =9 (Bﬁ Y;Xﬁ) (Yﬁfglﬂ +o 4 Y%[) with 89, := 0 for

each M by convention. Let us therefore study the asymptotic behaviour of the vector

(Rar, Kr) (17)



where
0:1 1:
R (RBM ’ RBM’ o R%M q)

and
q+l

q+1 g+1 & (Y51 ) B at1 — MO
KM:—\/M(Qb(ﬁ]\Nj[ Yﬁa+1> BLZBq+1—9>— ( Ok )M Pas

M vM
with 6 as in (11).
The proof of the following proposition is given in Section 5.

Proposition 2. Let v = (61,62 — Bl ... pT— Bq_l). Under the assumptions of Proposition 1 the fol-
lowing convergence in total variation holds

arv (1 (Bucmsgtanss ) O ) i (13)
M ’

where T € RHDX(a+) 45 o positive definite covariance matriz.

Let us now state the Weyl criterion concerning the convergence in distribution to a vector composed
of a uniform random variable on [0, 1]? and an independent vector.

Theorem 2 (Weyl criterion). Let (B )y, be a sequence of R7-valued random vectors and let (Hnr) yr,

be a sequence of RY -valued random vectors that converges in distribution to a RY -valued random vector

H. Then as M — oo the sequence ({B } - {Bi,}, HM) converges in distribution to (U, H) where U
is independent of H and uniformly distributed on [0,1)7 if and only if for every k € Z9\ {0} and u € RY

I\/}gn ¢(BM Hyy) (2]{7‘-7’“) =0. (19)

For the sake of completeness, the proof of Theorem 2 is provided in Section 5. We are now ready to
prove Proposition 1.

Proof of Proposition 1. By Theorem 2, it is sufficient to prove that for each k € Z9\ {0} ,u € R

lim ) gatl_ Il _ (2]{37‘(,’[},) =0.
M5 (et T (6 Ty )« A7 00))

Let us observe that it is equivalent to prove that for each k € Z7\ {0} , u € R

A}l_rfl ¢(RZ\/I KNI)(2k7T u) =0 (20)

where (Rps, Kps) has been introduced in (17).
By Proposition 2,
S drv (an Bartbar Kar)s 1Y) = 0 (21)
where ap; = \/Lﬁ, by = —my d(B7  my )V M~y and Y ~ N(0,T), T positive definite.
For u := (u1,u2) € {R?\ {0}} xR

iuf bps

U7 Uy
}¢(RM,KM)(ulvu2)| = }d)(aMRM-‘rbM,KM) (@;UQ) € oM }d)(aMRM-‘rbM,K]W) ( M7u2>

u
< ‘¢(GZ\/IRZ\/I+IU\/17K]\/I) (a - > oy (_ U2>‘ oy (— UQ)’
M apnr anr




Since by (5) the first term of the right-hand side can be bounded from above by 2d7v (£(ay; Ras+bar, Kar)s 1Y )5

we deduce that
uy
(by <_7 U2>
apr

Since the law of Y is absolutely continuous and limy;_, apr = 0, the right-hand side goes to 0 as M — oo
by the Riemann Lebesgue lemma. In particular (20) is true.

lmsup |d(r,, i y) (U1, u2)| < limsup
M —o0 M —o0

O

5 Proof of Proposition 2 and Theorem 2

In this section we are first going to prove Proposition 2. Let (Y;, Z;);~, be a sequence of square-integrable
i.i.d. random vectors in R? such that the law of (Y;, Z;) has an absolutely continuous component. We
denote by X its covariance matrix which has rank 2.

The proof of Proposition 2 strongly relies on the following result.

Theorem 3. Let (Y, Z;);~, be a sequence of square-integrable i.i.d. random vectors in R? such that the
law of (Y;, Z;) has an absolutely continuous component. Under the notations introduced above

N}im drv (M LM ,MG) =0
oo For L (e Zy—m2)

where G ~ N(0,%).

Let F' be a centered square-integrable random variable in R™ with identity covariance matrix and let Fy,
k € N*, independent copies of F'. The main instrument that we will use in the proof of Theorem 3 is the re-

sult about the convergence in total variation for the CLT that is limp; o0 d7y (u% MR N(O, Ian)) =
— > hl

0 where I,,«, denotes the identity matrix of size n.

Prohorov [6] in 1952 was the first to give his contribution to the problem: he proved that, in dimension
1, a necessary and sufficient condition in order to get the result is that there exists My such that the law
of ZQ/I:”l F}, has an absolutely continuous component. Halikov [16] and Makshanov [17] contribute in the
same direction by extending the result to any dimension. contribute in the same direction by extending
the result to any dimension. They prove that under the assumption that the law of F' has an absolutely

continuous component, limpy; oo dry | i LM ,N(O,Inxn)> = 0. See also [7]. We are now ready to

&
VM

prove Theorem 3.

Proof of Theorem 3. Let O € R?*2 be an orthogonal matrix (OTO = I) that diagonalizes ¥ that is ¥ =
OT DO where D is the diagonal matrix containing the eigenvalues A1, A2 of ¥. Given G ~ N(0,3) and by

introducing the following notation D~z = diag (ﬁ, \/LE), we have

drv (M M 7MG> =drv |p _1 um TR
1 D”2 D 20G
= k§1(Yk_mY)Zk_mZ) = kzz:l O(Yiy—my ,Z—mz)

where to obtain the above equality we apply (8) with A = D2 0. By the hypothesis that the law of
(Y1, Z1) has an absolutely continuous component, the right-hand side converges to 0 as M — oo by the
result of Halikov and Makshanov mentioned above. O

10



We now recall a result obtained by Parthasarathy and Steerneman in the second section of [8] regarding
the behavior of the total variation convergence with respect to the sum and the multiplication by a real
sequence.

Lemma 2. Let (BM)M21 and (Tar) pr>, be two independent sequences of R?-valued random variables such

that limps 00 drv (B, , tB) = 0 and Tiy :d> T for R%-valued random variables B, T. If up is absolutely
continuous with respect to the Lebesque measure, then limpr— oo drv (UBy 47y, kB+7) = 0. Moreover
under the same condition, Bmps—oo drv (fer By teoB) = 0 if (car) py> 95 a deterministic real sequence
converging to cy € R*.

The first step in the proof of Proposition 2 consists in applying Theorem 3 so that we can work with
gaussian random vectors. Thus the new problem becomes to study the convergence in total variation of
the law of a given function of a normal random vector. The following lemma deals with this problem and
its proof is given after the proof of Proposition 2.

Lemma 3. Let
o (M1, MMqr2)M>1 C RI*2 such that for i = 1,---,¢q +2 lim \/M(% —m) = 0 with
- M—o0
(M, -+ s Mgt2) € RIT?
o (W1, -+, Wyt2) a zero-mean normal vector with a positive definite covariance matriz X1 € R(a+2)x(a+2)

o ¢:R — R be a measurable function differentiable at ng42 and such that ¢(ng42) # 0.

If there exists M € N such that

1 i
——— e MYy < oo, (22)
/R (g2 + )7

the law of the following random vector

o (WTLIH + %) (\/MWZ + nM,i) — Mp(ng+2)n:
VM

1<i<g+1
converges in total variation as M — oo to the law of (¢(ng+2)Wi + 1i¢' (Ng+2)Wat2) 1 <ic 11

Remark 3. Let us observe that it is not difficult to prove the pointwise convergence of (23) to
(@(Mg+2)Wi +1:0" (Ng+2)War2)  <icgur -

Indeed fori=1,--- g+ 1, using that A}im vM (% — 77j) = 0 and the hypothesis of differentiability of
—00
@ at Ngy2, one has

o (5 + "7 ) (VAIW: 4 v ) = Molng o)
VI

= ¢(ng+2) (Wi +vVM (77]1\\21 - m)) + ¢’ (1g+2) (Wq+2 +VM (nM—Aj[H - 77q+2)> (% + 77]\]\21) +o(1)

Mjoo ¢(77q+2)Wi + 77i¢/(77q+2)Wq+2-

The proof of the convergence in total variation will require more effort.
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Remark 4. Let us observe that the covariance matrix of the zero-mean normal random vector
(@(Ngr2)Wi + i (Ng42)War2)1 << gy 18 A1Z1A] with Ar € RI+1X(1+2) the g + 1-rank matriz given by

d(Ngr2) 0 0 0 - 0 me' (Ng+2)
0 P(1g+2) 0 e 0 0 29 (Mg+2)
0 0 ¢(g+2) 0 0 0 e
A = 0 ] (24)
$(gs2) 0
0 0 0 0 0 ¢(Ng+2)  Mg+19' (Ng+2)

Therefore the covariance matrixz is positive definite.
The combination of Theorem 3, Lemma 2 and Lemma 3 allows to prove Proposition 2.
Proof of Proposition 2. Let
= (51,52 _517”, , 34 _ﬂq—l,ﬂq—l-l _ﬂq)
= (B = 8% 57 — B+, 87— 1, BT — §7) = (5, 871 — 1)

with 8° := 0 by convention. For j = 1,---,q + 1 let us consider the following independent R2-valued

random vectors ‘
B

1
Vi, = (Vjtll,javja,j) = W Z (Y; —my, Z; —mz)
i=pl 41

Ry —my¢(B9 my)

VM

and let us rewrite ( M'Y,KM) in terms of Vi := (Var,j)1<j<q+1. One has

Ry — my (BT my ) My o) = Ryeve — my (B9 my )3 M
( VM ’ M) - VM

) Koar | =90 Var)
1<4<q

with the component gar,¢ of gas : R2@+) — R+ for £ = 1,--- g given by: Ve = (c},c2

2(q+1)
3 i<icon € R

)
> YiC;

myBi e | = ~ Mk ¢ _ pl—1Y\) _ q+1 5 M
10} —r — ta T — (\/'Yé ¢, +my (ﬁM ﬁM )) mY¢(ﬁ mY)’W

gue(c) = i . (25)

2

and Ve = (c}, cj € R2(at+1)

)1§j§tZ+1

o BIFL 2 Vi€ q+1
] 72@”1 + 47+ ;lm (\/M 21 V6 + mzﬁﬁf) —mz¢ (BT my) BITIM
J:

9M,q+1 (C) = \/M
(26)

_ +1
The purpose now is to “asymptotically rewrite” the vector (RM my¢% mY)’YM,KM) = gv (V) in

terms of a normal random vector so to apply Lemma 3. By recalling that we denote by X the covariance

12



matrix of (Y, Z;), let G = (G1, -+, Gg41) where the two dimensional vectors G; = (G]l, Gf) 1<j<q+1
are i.i.d. according to N (0,%) . By the independence of the random vectors Vj ;, the independence of the
random vectors G; and the well known fact that dry (Hle Ui, Hle I/i) < Ele dry (D3, v;) with 7, v,
probability measures for ¢ = 1,--- . £, we have

q+1

drv (Hvay, pa) < Z drv (v ;> BG;)- (27)
j=1

We are now going to prove that the right-hand side converges to 0 as M — oco. Let us observe that for
j = 17 g + 1

Bir = Bir 1 S
Vi = Noni ><\/ﬁ > (Yi—my,Zi—mz) (28)
J By — B i=pd 41
B =B’

with hmM o) —
Thanks to Theorem 3 and the hypothesis that the law of (Y;, Z;) has an absolutely continuous compo-

Bar
nent, Vj = 1,---, ¢+ 1 we have that the law of \/ﬁ > (Yi—my,Z; — myz) converges in total
MEEM =g 1

variation as M — oo to the law of G; and, by Lemma 2 and (28), this implies
T dry (s ohc) =0, =L q 41

Hence we have proved the right-hand side of (27) converges to 0 as M — co. Applying (6) with g = gas,
we deduce that

dry (ugM(vM), ugM(c)) <drv (v, pa) ij)o 0.

We are now going to prove the convergence in total variation of the law of g/ (G) and to do so we

apply Lemma 3. Recalling that G; ~ N (O ¥) where ¥ is positive definite, G; i.i.d., it is possible to prove
q+1
that the random variables Z VGl Z V7G5 VG, -+ /374Gy are linearly independent.

Thus by using that A}lm vM (ﬂM [31) =0fori=1,---,9+ 1 and (13), we can apply Lemma 3
— 00
with

— B
o (s g marassmnge2) = (my (8 = 83) -+ omy (83— 817 ) smaBf ! i + &)

and (7717 e 777q777q+17nq+2) = (mYﬁla e 7mYﬁq7mZﬁq+lumYﬁq+l)
_ 1q-i-l _ 2q-i-l _
o (Wi, -+, q+2) VY le 7\/’7qu7 Zl \/’YjGja Zl \/”YjGj
J= J=

to conclude that the law of gns(G) converges in total variation as M — oo to the law of Y ~ A (0,T)
where T € RtDx(a+1) jg positive definite by Remark 4.
O

The following lemma contains the key result to prove Lemma 3 . Its proof is provided in the Appendix.
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Lemma 4. Let (Yar)m>1 be a sequence of R%-valued random vectors such that
liminf py,, (z) > p(z) dz a.e. (29)
M—o0
with p the density of an absolutely continuous R%-valued random variable Y. Then
1. limps oo fpa [Py (@) — p(@)|de =0
2. limpr—oo drv (fyas, pty) = 0.

Proof of Lemma 3. According to Lemma 4, to prove the convergence in total variation of the law of the
random vector (23) it is enough to check that its density with respect to the Lebesgue measure converges
pointwise to that of its limit.

Let us preliminary observe that the density of the zero-mean normal vector (Wr,---, Wy42) is given
by
1 1T sl 9
p(T1q42) = TPtz That2 g0 € RIT (30)
! (2m) % x det(S)1/2 !
where we denote the vector (z1,---,%g+2) by Z1:q+2. Let us moreover observe that by the property of

positive definiteness of Efl, the smallest eigenvalue A\; of Efl is positive and we have

a+2
1 —2M (Z w>
p(x1:q+2) < 12 € ’ =t ) $12q+2 S R(I"FQ. (31)

T 2m)*T x det(X,)1/?

Let us now compute the density of (23). Let f : R?"!1 — R, be a non-negative measurable function.
Writing the expectation

¢(77MT"+2 + \/qﬁ) (\/_W +77Mz) — Mo(ng+2)mi

E 32
d Vi (52
1<i<q+1
as an integral with respect to the density p and then applying the change of variable
¢ (77Mli/q[+2 + $q+2) ( / xz + 77M z) _ M¢(nq+2)777,
P = i=1,---,g+1
¢ Vil ’
with inverse
L[ VME& + M¢(ngi2)ni .
i = - i = 15 Y 1
M, V M ¢ (771\/1 ,g+2 Iq+ ) M, ! 1 * (33)

V)§

for 2442 € R outside the set {t eER:¢ (WT"” + 2

wavi O} which is Lebesgue negligible since by a change

of variable and (22)

n
e_M<M_nq+2+r) dt = \/_/ : +1¢ e~ Mv* dy < o0,
|p(ng+2 + )|

b



we get

1
/ dﬂ?q+2/ 1 Crgr1)p (Tar1, -+
R Rat+1

(78

S EM,q+1, Tqt2) dE1ig41-

VM

. . o Mar2 | Wor2 ) (/a4 i)—Mé¢ )i
We have therefore obtained that the density of ( ( X /A )( ) Clav2) at
1<i<g+1
¢ € R is given by

1P (@a,15 T g 1, Tar2) dTgpa. (34)

[ e

Since, by hypothesis, ¢ is continuous at 712 with ¢(ng4+2) # 0, there exists 6 > 0 such that V&t € R : [¢t| < J

|9(1g+2)]
(D0nge + )] > 2L (3)
Let us now study the pointwise convergence of (34). Let M > 1 and let us rewrite the integral as

1
‘¢ "Mq+2 Zqt2 Q+1p(IM71:q+17xq+2)qu+2: | |<e¢vVM ¢ "Mq+2 Tqt2 q+1p(IM71:q+17xq+2)qu+2
+i) o o (252 + 252
(36)
1
“)
|zgya]>2 ‘/_}d)(an“—i- q+2)

VM

1P ($M711q+1= $q+2) dzgyio.

(37)

Let us start studying the convergence as M — oo of (36)

. Thanks to (35) and (
enough so that | 442 — | < ¢, we have

31) and for M big

1
q+1p(IM,1:q+1;Iq+2) S ¥
o ()

2a+1
1{|$q+2\S%\ﬁ}

1 2
. e 2MTg 2
q

(21) % x det(%1)? |p(ngr2)| "

and since by hypothesis ¢ is continuous at 742, for each z412 € R we have

NIM,q+2 | Tq+2
¢( Y —\/M) s D(1g+2)- (38)
Moreover for each 2412 € R, using that A}im v M (M — 771) =0fort=1,---,¢+2 and the hypothesis
— 00
of differentiability of ¢ one has

1 \/_gz + Mo(ng+2)n: DM
\/M b (UMAq+2 + q+2) ’
nm

TM,i =

& + ¢ (Ng+2) VM (771

2rt) = & (g+2) Y/M—l (wqﬁ + PR - 77q+2) +o(1)

¢(77q+2) + ¢/(Wq+2) (\;ﬁ + WMIV"[” — anrQ) +o0 (\/LM)
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§i — ¢ (Ng+2) NiTgr2
M—ro0 P(1g+2) '

(39)

We can therefore apply Lebesgue’s theorem to (36) and obtain that for each & € RI*1

. 1
lim TP (XM 1:g41, Tqr2) dTgi2
M—o00 |zgt2|<EVM ’¢ (UM,q+2 4 Zax2
M VM

= ; é.’b - ¢/ (nq+2) 77in+2) d
16 (g+2) " /Rp << B(ng+2) 1<i<q+1 ,Iq+2> e

- /Rp((¢(7lq+2)Wi+¢’(77q+2)7h'Wq+2)1§i§q+17Wq+2)(51:q+1’ IQ+2)dxq+2
- p((¢(nq+2)Wi+¢’(nq+2)qu+2)1§i§q+1) (51:q+1)'

Let us now prove that (37) converges to 0 as M — oo. By applying a change of variable and by

choosing M big enough so that ’nMﬁ“ — nq+2‘ < %, we obtain

1

/|zq+2>%\/ﬁ ‘¢(ani/q[+2 + %)

VM —
TP (@0 1011, Tg2) dg o :/ s 1o (Mg o @it (IM’“I“’ My) o
>4 |6 (P55 + )]

vM
S/ 16 ( >|q+1p(l‘lesq+1’VM”VM(W‘M))CZZ-
Z>Z

Ng+2 + 2 M
Therefore by (31) and by using that V1,29 € R (21 — 22)? > é — 23, one has
1 vM
{lz1>4}
¢ (Ng+2 + 2)

MM, q+2
A )

< Ues) o e e b0 (VAT VT2 )
<lg.as — -
U2 T X det($1)3 |6 (g2 + 2)| 7T

g

e_%klMﬁe%)‘l(m(nM’TqH—ﬁqw))Q

<1 2|>8 q+2
=4} oy ™ % det(20)% 16 (nse + 2)

< Cl{‘z‘>é} ) ]1\4 1eii>‘le2
T 2m) T x det(21)7 ¢ (g2 + 2)|7T

where for the last inequality we use that the sequence (\/M (2 — nq+2)) converges to 0 and so
M>1

. . 1 NMM,q+2 2
in particular o3 M (VM (52 —nq12))
converges to 0 as M — oo.

Let us now observe that for |z| > g and t > %,

is bounded by a positive constant C' < oo. The right-hand side

4 Vi

Therefore if M > M := max ({M-‘ , [6231—‘), where M is defined in the statement of the Lemma 3,

1

71)\1z2t
(Ve Mty = L <3 - z%xl) <0.
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VM —1M M VM O

8 G e+ = e g e 4 )T (10)
M G T .

where the last term is integrable by hypothesis (22). By Lebesgue’s theorem we can therefore conclude
that f‘z|>% Ww%p (l'M,l:q-i-lu VMz+vM (77q+2 _ nhlji;JrQ)) dz tends to 0 as M — oo.

1%
¢(WTQ+2+Q7\/%2) (VMWi+nn,i)—Mé(ngy2)n: )
1<i<q+1

In conclusion, we have obtained that the density of ( T

converges pointwise as M — oo to the density of ((¢(nq+2)Wi + ¢I(77q+2)77iWq+2)1<i<q+1>' O

We are now going to prove Theorem 2.
Proof of Theorem 2. We denote ({Bun}, Hy) = ({Bi;}, -+, {Bi;},Hu). Let us first observe that for
every k € Z9,u € RY one has

q .
—i27 > k;| B2 )
= L MJ ewTHM

. T .T . T
¢({BM},HM) (271—k7u) —F (ez2wk {BM}elu HM) — [ ei27k" Bu g _ ¢(BM,HM) (27Tk,u).

(42)

If ({Ba}, Har) converges in distribution as M — oo to (U, H) where U is independent of H and
uniformly distributed on [0, 1]%, V(k,u) := (k1,- -+ , kg, u) € {Z%\ {0}} x R? one has

im @y, 1) 27k, u) = A}l_f)ﬂoo (B Hy) 27k u) = ) (2km,u) =E (ei%kU) E (ei“H) =0. (43)

M—o0

Conversely, assume that (19) holds for every (k,u) € {Z¢\ {0}} x RY and let us prove that V(uy, us) €
RY x RY

1\411—I>noo ¢({BM}7HNI)(U17 U‘?) = ¢u (u1)¢H(u2)

with (U, H) as above.

Fix (u1,uz) € {R7\ {0}} x RY. Given 0 < € < 1, let us define for j =1,--+ g a complex [%]—times
continuously differentiable function ¢, ; defined on [0,1] that coincides with z; + ™% on [0,1 — ¢
and such that ¢ ;(1) = ¢ ;(0). It is possible to choose ¢ ; such that sup,coq)l¢e;(z)] < C'7, with

C < oo not depending on € and j. If we now consider the function ¢, (21, ,2q) 1= de1 (1) -+ Pe g (4)

V(z1,-+ ,2q) € [0,1]%, then it is [<51]-times continuously differentiable, coincides with (z1,- -+, 24) —
L1 .

ettt ... elUqu on [07 1- e]q and ¢6($17 e 7xj—1707$j+17 e ,.’I]q) = ¢6(.’I51, o, Ty—1, 17$j+17 e 7:Eq) v.?a

V(21 Tio1, T4, 0, Tq) € [0, 1]q_1. By the theory of Fourier’s series (see for instance the Section

Sobolev Spaces in Chapter 5 of [9]), there exists M€ € N such that

. T ; T
sup |o(xz) — Z e T = sup b (x) — Z Z e T < ¢ (44)

velor® _max [k |<M¢ relo? ka[ <M [y <Me
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where for k € Z1

¢ = / belw)e 2 2y
0.0

satisfies |¢§| < C. Let vas denote the law of ({Bas}, Har) (having support in [0,1]7 x RY).
Given M > 1 one has

|¢({BM};HM) (w1, u2) — ¢U(U1)¢H(U2)|

< / (eiusz — G (3:)) emgyuM(dx, dy)
[0,1]9 x R4’

+ / ¢€(x)ei“2TyyM(dx,dy) - Z ci/ eiQ”kT””emz‘TyyM(dx,dy)
[0,1]9 x R4’ [0,1]9 x R4’

max |k;|<Me
j=1,--,q

+ Z CZ/ , ei%k%eiugyyM(dx,dy) + | 5Py, (u2) — 5o (uz)]
max [kj|<Me o 0 HTXRS
i=1,-.q

+|cgpm (uz) — du(u1)pm (u2)|

<a+o) [ var(de, R ) + € + S Ot (2T w)
[0,1]%\[0,1—¢] max |k | <Me k#£0
j=1,---.,q -

+ C oy, (u2) — ¢r(u2)| + |pr(u1) — cgl .

Let us look in more detail at the first term of the right-hand side. Let ¢ be a real continuously
differentiable function defined on [0, 1] that is equal to 0 on [2¢, 1 — 2¢] and equal to 1 on [0, €] and [1 — ¢, 1].
By the theory of Fourier’s series, there exists M€ € N such that

sup |pe(z) — Z dse®®™| < ¢ (45)
z€[0,1] \e| <D
where for ¢ € Z
dy = be (x)eﬂ'zﬂhdaj.
[0,1]

One has

q

q
v da:,Rq/ < / tyni 1 (de) < (;3633;1 i 1 (dx
/[O)l]q\[ovl_e]q wn RS [ i) <3 [ 6 ngay )

1 q
< Z /[071] be () — Z d;eﬂﬂem M{B“}'w}(dx) + Z Z dj /[011] elzﬂx,u{B}iw}(dI)

|e| <1 G=1 | [0|< NI 00

q
Sqety | D didg (2m0)| +qldg).

3=1 ||e|<NI< 00
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Thus we have obtained that

|¢({BM};HM) (w1, u2) — ¢U(U1)¢H(U2)|

q
SAU+C) (qe+ Y | Y didgy (2n0)| +aldg| | +e+ > Ch(Bar Har) (27K, U2)
J=1{|£| <M< 0 jmax k| <M<, k#0

+ C oy, (u2) — ¢r(u2)| + |dr(u1) — cgl .

Given 0 < € < %, we can first take the superior limit as M — oo of the right-hand side.
By (19) we have

q

Jim SO Y digpy, (2m0)) = 0= lim > CP(Bas Har) (27K, )
J=1 ||¢|<N¢ ££0 j:r{{a?§1q|kj|SM€,k;éO

and by the hypothesis that Hy; < H we have Iv}im |@rry, (u2) — & (ug)] = 0. We therefore obtain
—00

L SUp [ 241 (1, 02) = G0 (1) (1) < (14 C) (e + ) + €+ [ow (un) = . (40)
—00
Now since

|dg| = df = be(z)dr < 4e
(0,1]

and

|pr (u1) — ¢l = ‘/{0 1]q(€m1Tz — ¢e())dx

S(C+1)/ dx

[0,1]9\[0,1—¢]?
with [i; o1 _qgedr =1—(1—€)* — 0, the limit as e = 0 of the right-hand side of (46) is 0.

If u3 = 0 and ug € R, by the hypothesis that Hps 4 H, we directly obtain

P Bary Har) (0, U2) = Gryy (u2) —— Gmr(uz) = du(0)dm (uz)-

O
6 Appendix
Lemma 5. Given the measures p1 and po on RY, one has
sup (#) (pa(dr) — pa(de))| = 2drv (1, p2) (47)
1)l o o<1 I/ RE

where the supremum is taken over the complez-valued measurable functions.
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Proof of Lemma 5. By observing that the set of complex-valued measurable functions contains the set of
real-valued measurable functions and that || f|| . - = || f|l.c.g When f is real-valued, thanks to (4) we can
easily obtain that

sup () (a1 (dx) = pa(de))| > 2drv (p1, p2) -

1 lloe e <1

R4

For what concerns the other inequality, let f be a complex-valued measurable function such that || f|| . ¢ <
1. Then there exist ¥ > 0 and p € [0, 27) such that

[ £ () = () = v

Note that Hi)‘{e(e’ipf)HooﬁR < Heiiproo,«: = [[fllo.c < 1. Hence

= [ Re(e™”f(2)) (m1(dw) — pa(d))

[ 7@ (1 (da) = ot

R4
< swp_ | [ g(o) (o) ~ pa(de))| = 2y ()
llgll o g<1 IJRE
where for the last equality we use (4). Since f is arbitrary, we can conclude the proof. O

Proof of Lemma 1. Let £ be an absolutely continuous random variable independent of (Y, Z) where the law
of Y has an absolutely continuous component and let us observe that py,z) (dy, dz) = pzjy—,(dz)uy (dy)
where f17)y—,(dz) denotes the conditional law of Z given ¥ = y. Given f : R* — R, a non-negative
measurable function, one has

E(f(Y,Z+¢)) = / Ty, 2+ pey,z,e) (dy, dz, de) = / f(y, 2+ €)pe (€) gy, zy (dy, dz) de
R3 R3
= Wf@w+fMAduman@m%@Me=A;ﬂ%wmaw—@umnwwdm%@Mw
= [ 100) [ pcta =z @py@avde + [ 0.0) [ pelo =2z (@) dn)da

where [po [ pe (2 — 2) gy =y (dz)py (y)dydz is positive since Y has an absolutely continuous component
and £ is an absolutely continuous random variable. Thus the law of (Y, Z + £) has an absolutely continuous
component. ([l

Proof of Lemma 4. Let us first observe that by Fatou’s lemma, (29) and the fact that p is a probability
density, one has

1iminf/ pyM(x)dJJZ/ liminfpyM(x)dajz/ p(z)dx = 1.
M—oo Jpa Rd M—o0 Rd

Moreover fRd Py, ()dx <1 for each M € N*. Therefore we can conclude that

lim [ py, (z)de = 1. (48)
M — 00 Rd

As an immediate consequence of (48) we have that

lim fiy,, s(RY) =1— lim Dy, (x)dx = 0. (49)
M — oo d

M—oo Jp
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Let us now prove the L' convergence. For each M € N*,
[ 0@) = oy @ldo =2 [ o) = vy @) do = [ o) vy ) o
R4 R4 R4

where the second component of the right-hand side goes to 0 as M — oo by (48) and the fact that p is
a probability density while the first component goes to 0 as M — oo by Lebesgue theorem and the fact that

0 < liminfaroe (p(2) = Pyyy ()" < Hmsupyy oo (p(2) = pyay ()" = (limsupy, o (p(2) = pyy (2))" =
0.

Hence limys o0 [pa [P(2) — pyy, (2)] dz = 0.
Let us now prove the second point of the Lemma. For a fixed M € N*, one has

drv (byva, py) = sup |uyy, (A) —py (A)l = sup  [uyy e (A) + pivag,s (A) — py (4)]
AcB(R4) AeB(RY)

< sup |MYM,C (A) = py (A)| + UYar,s (Rd) < / |pYM (CL‘) —p($)| dr + py,, s (Rd) :
AeB(R4) Rd

and the right-hand side tends to 0 as M — oo thanks to what has been proved in the previous steps. [
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