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Diagrammatic	proofs	in	mathematics:	(almost)	20	years	of	research		

Valeria	Giardino	

	

Abstract.	The	objective	of	this	chapter	is	to	present	some	of	the	views	that	have	
been	put	forward	in	almost	20	years	of	research	on	diagrammatic	proofs	in	the	
philosophy	of	mathematical	practice.	In	Section	1,	some	contextual	elements	will	
be	presented	on	 the	reasons	why	diagrammatic	proofs	have	attracted	so	much	
philosophical	 attention	 in	 the	 past	 years.	 In	 Section	 2,	 the	 “first	 wave”	 in	 the	
research	 on	 diagrammatic	 proofs	 based	 on	 the	 analysis	 of	 case	 studies	will	 be	
described:	this	is	how	it	started.	In	Section	3,	the	“second	wave”,	which	is	calling	
for	“big	pictures”	and	divides	into	two	different	strategies,	will	be	discussed:	this	
is	where	it	is	going.	In	Section	4,	some	conclusions	will	be	drawn.		

Keywords.	 Diagrammatic	 proofs,	 Greek	 (Euclidean)	 geometry,	 enhanced	
manipulative	imagination,	fruitful	representations,	informal	and	formal	proofs.		

	

1.	Introduction	

It	is	undeniable	that	diagrams	are	part	and	parcel	of	the	practice	of	mathematics:	
mathematicians	 draw	 them	 on	 blackboards	 and	 occasionally	 on	 napkins	 at	
conference	 lunches;	 they	use	them	to	teach	students	and	to	show	to	colleagues	
that	 some	 relations	 obtain,	 or	more	 simply	 to	 share	 ideas	with	 them;	 in	 some	
cases	 –	 but	 not	 as	 often	 compared	 to	 their	 heavy	 presence	 in	 more	 informal	
exchanges	–	diagrams	end	up	being	published	 in	handbooks,	 encyclopedias,	 or	
research	 articles.	 How	 can	 the	 pervasiveness	 of	 diagrams	 in	 the	 practice	 of	
mathematics	be	accounted	for?	To	clarify,	this	phenomenon	can	be	investigated	
in	two	related	but	conceptually	distinct	ways.		

First,	very	general	questions	can	be	asked.	Why	do	diagrams	seem	so	effective	in	
mathematics	(and	beyond)?	How	are	they	used?	Do	they	help	understanding	and	
explanation?	If	so,	do	they	in	all	cases?	What	cognitive	advantages	do	they	offer?	
What	 are	 their	 cognitive	 costs?	 What	 are	 the	 cognitive	 foundations	 of	 the	
reasoning	based	on	them?	Are	diagrams	typical	of	Western	mathematics	or	are	
they	 also	 found	 in	 other	 mathematical	 cultures?	 And	 how	 are	 they	 related	 to	
other	forms	of	visualizations?	All	these	questions	are	of	crucial	interest	not	only	
for	 philosophy,	 but	 also	 for	 other	 disciplines	 in	 its	 vicinity,	 such	 as	 history,	
sociology,	anthropology,	and	education.		

Additionally,	 a	 second,	 more	 specifically	 philosophical,	 question	 can	 be	 raised	
about	the	role	that	diagrams	might	–	or	might	not	–	play	in	mathematical	proofs.	
Of	 course,	 answers	 to	 the	 first	 set	 of	 questions	 are	 relevant	 to	 discuss	
diagrammatic	 proofs;	 nonetheless,	 it	 is	 important	 to	 note	 that	 the	 second	
question	 is	 relatively	 independent	 from	 the	 first	 se	 of	 questions:	 it	 is	 indeed	
possible	to	accept	that	diagrams	are	omnipresent	and	useful	tools	in	the	practice	
of	mathematics,	 that	 they	are	 important	heuristic	 tools	used	 for	discovering	or	
even	 for	 proving	 some	mathematical	 results,	 and	 yet	 to	 consider	 that	 they	 are	
not	and	cannot	be	parts	of	proofs	or	necessary	for	them.		
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In	this	chapter,	 I	will	 focus	on	the	second	question,	that	 is,	on	the	possibility	of	
finding	 proofs	 in	 the	 practice	 of	 mathematics	 that	 make	 use	 of	 diagrams.	 My	
objective	will	be	to	survey	some	of	the	views	that	have	been	put	forward	so	far	in	
the	literature	in	the	philosophy	of	mathematical	practice.	In	order	to	do	that,	at	
times	I	will	raise	some	of	the	more	general	questions;	however,	this	will	be	done	
only	 to	 the	 extent	 that	 some	 of	 the	 replies	 can	 be	 used	 as	 evidence	 for	 the	
presence	 of	 diagrams	 in	 proofs.	 I	 will	 proceed	 by	 presenting	 some	 of	 the	
available	proposals	and	by	describing	how	the	discussion	in	the	philosophy	and	
partially	 in	 the	history	of	mathematical	practice	has	 taken	shape	 in	 the	 last	20	
years	or	so.		

In	the	following,	I	will	 introduce	some	contextual	elements	that	are	essential	to	
understand	 the	 reasons	 why	 diagrammatic	 proofs	 have	 attracted	 so	 much	
philosophical	 attention	 in	 the	 past	 years.	 As	 already	 said,	 it	 is	 undeniable	 that	
diagrams	 appear	 in	 some	 proofs;	 however,	 the	 nature	 of	 their	 contribution	 is	
controversial,	that	is,	there	is	no	agreement	on	whether	diagrams	are	necessary	
for	the	proof	to	go	through	or	whether	they	are	just	useful	illustrations	that	can	
be	 in	 principle	 removed	 from	 the	 proof	 without	 epistemic	 loss.	 Before	
proceeding,	 a	word	 of	 caution	 is	 necessary	 regarding	 the	meaning	 of	 the	 term	
“diagram”.	It	is	evident	from	the	literature	that	there	is	no	consensus	on	how	to	
define	diagrams.	“Diagram”	has	indeed	been	used	for	a	long	time	in	a	loose	way,	
in	 order	 to	 refer	 to	 different	 objects,	 spanning	 from	 Euclidean	 diagrams	 –	
figures?	 –	 to	 diagrams	 –	 schemas?	 –	 in	 category	 theory.	 As	 I	 will	 show,	 some	
scholars	consider	two-dimensionality	as	a	necessary	feature	for	something	to	be	
considered	 as	 a	 diagram,	while	 others	 focus	 on	 the	manipulations	 that	 can	 be	
performed	on	 the	diagrams	 to	be	 their	 characteristic	 feature,	 thus	opening	 the	
way	for	linear	notations	to	be	included	into	the	class	of	diagrams.	In	this	chapter,	
I	 will	 keep	 using	 “diagram”	 in	 a	 general	 fashion,	 as	 a	 sort	 of	 umbrella	 term	
encompassing	several	kinds	of	representations,	without	taking	any	stance	on	the	
debate	on	how	to	better	define	them.		

The	relation	between	diagrams	and	proofs	is	as	old	as	mathematics.	Famously	in	
his	 Parallel	Lives,	 in	 the	 section	 entitled	Marcellus	(2nd	 century	 AD),	 Plutarch	
describes	 the	 death	 of	 Archimedes,	 which	 deeply	 afflicted	 Marcellus.	 In	 this	
account,	 Archimedes	 happened	 to	 be	 by	 himself,	 “working	 out	 some	 problem	
with	the	aid	of	a	diagram,	and	having	fixed	his	thoughts	and	his	eyes	as	well	upon	
the	matter	of	his	study,	he	was	not	aware	of	 the	 incursion	of	 the	Romans	or	of	
the	capture	of	the	city”	(emphasis	mine).	A	soldier	ordered	him	to	go	with	him	to	
see	Marcello,	 but	 Archimedes	 refused	 because	 he	wanted	 to	 first	 establish	 his	
proof.	Hearing	these	words,	the	soldier	got	angry,	drew	his	sword,	and	killed	him.	
Archimedes	was	thus	attempting	to	prove	a	result	by	fixing	not	only	his	eyes	but	
also	his	 thoughts	 upon	 the	 matter	 of	 his	 study	 –	 the	 diagram	 itself	 or	 what	 it	
represents?	Whatever	 the	 reply	 to	 this	 latter	question,	Plutarch’s	 story	 tells	us	
that	nothing	at	the	time	prevented	a	mathematician	to	use	a	diagram	in	a	proof	–	
at	the	exception	of	a	Roman	intruder.		

As	is	well	known,	things	had	changed	by	the	late	19th	century,	when	the	urge	to	
make	mathematics	 rigorous	 had	 grown	 stronger	 and	 stronger,	 to	 the	 point	 of	
pressing	Pasch	to	claim	that	“the	theorem	is	only	truly	demonstrated	if	the	proof	
is	 completely	 independent	of	 the	 figure"	 (see	Pasch,	 1882).	Dedekind	was	 also	
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very	 much	 dissatisfied	 with	 the	 appeal	 to	 diagrams	 that	 exploited	 geometric	
intuition	in	analysis	–	notwithstanding	the	fact	that	his	manuscripts	are	replete	
of	tables,	doodles,	and	sketches	(see	Haffner,	forthcoming)	–	and	Russell	(1901)	
agreed	that	the	best	(mathematical)	books	do	not	contain	figures.1		

These	 attitudes	 contributed	 to	 the	 definition	 of	 what	 has	 been	 labeled	 the	
“received	view”	of	mathematics	 (see	van	Bendegem,	1993),	according	 to	which	
only	 reasoning	 that	 is	 expressed	 in	 formulas	 can	 bear	 epistemological	 weight,	
while	 the	 rest	 of	 the	 representations	 that	 are	 found	 in	 the	 practice	 of	
mathematics	–	geometric	figures,	for	example	–	are	just	illustrations	or	at	best	a	
form	of	heuristics	that	would	facilitate	the	grasp	of	the	content	of	their	linguistic	
counterparts,	 but	 nothing	 more.	 This	 received	 view,	 inherited	 from	 the	 19th	
century,	 became	 the	 standard	 in	 the	 philosophy	 of	 mathematics	 of	 the	 20th	
century,	as	summed	up	in	Tennant	(1986,	p.	304)’s	claim:	"[the	diagram]	has	no	
proper	place	 in	 the	proof	as	such.	For	 the	proof	 is	a	syntactic	object	consisting	
only	 of	 sentences	 arranged	 in	 a	 finite	 and	 inspectable	 array"2.	 Despite	 the	 fact	
that	diagrams	can	be	important	for	understanding	or	explanation,	they	have	no	
place	in	proofs.	

The	context	changed	again	at	the	beginning	of	the	present	century	(for	a	survey,	
see	 Giardino,	 2017a	 and	 Carter,	 2019a):	 in	 2005,	 Mancosu,	 Jørgensen,	 and	
Pedersen	edited	a	volume	of	essays	that	were	devoted	to	“new”	–	compared	to	
the	 received	view	–	 research	subjects:	Visualization,	explanations	and	reasoning	
styles	 in	mathematics	 (Mancosu	 et	 al.,	 Eds.,	 2005).	 In	 the	 introduction	 to	 this	
volume,	 the	 editors	 explain	 how	 the	 focus	 of	 the	 research	 in	 philosophy	 of	
mathematics	should	be	on	“what	mathematicians	are	actually	doing	when	 they	
produce	 mathematics”,	 thus	 posing	 the	 foundations	 for	 a	 philosophy	 of	 the	
practice	 of	 mathematics.	 Indeed,	 three	 years	 later,	 Mancosu	 edited	 a	 new	
collection	of	articles	on	The	Philosophy	of	the	Mathematical	Practice,	to	show	that	
several	topics	–	concept-formation,	understanding,	heuristics,	changes	in	style	of	
reasoning,	 analogies,	 and	 diagrams	 –	 still	 belong	 in	 the	 domain	 of	 philosophy,	
despite	 the	 fact	 that	 philosophers	 had	 neglected	 them	 for	 a	 century	 or	 so	
(Mancosu,	Ed.,	2008).	The	essays	collected	in	this	volume	constitute	evidence	for	
a	restored	interest	in	these	subjects	that,	according	to	him,	were	complementary	
to	 more	 traditional	 and	 ‘received’	 questions,	 for	 instance	 the	 one	 about	 the	
access	 to	 mathematical	 objects.	 A	 challenge	 for	 research	 was	 to	 put	 these	
questions	 in	 relation	 with	 each	 other,	 for	 example	 by	 exploring	 how	
mathematical	 concepts	 and	 objects	 are	 generated	 and	 how	 the	 process	 of	
justification	 works.	 In	 his	 words,	 epistemology	 of	 mathematics	 could	 not	 be	
reduced	 to	 “a	 torso”	 (Mancosu	 (Ed.),	 2008,	 p.	 1),	 and	 it	was	 time	 to	 return	 to	
issues	 like	 fruitfulness,	 evidence,	 visualization,	 diagrammatic	 reasoning,	
understanding,	and	explanation.		

	
1	For	 the	 details	 of	 this	 historical	 background	 and	 a	 general	 discussion	 of	 the	 epistemology	 of	
visual	thinking	in	mathematics,	see	Giaquinto	(2020).	
2	This	 passage	 from	 Tennant	 (1986)	 is	 quoted	 in	 Barwise	 and	 Etchemendy	 (1996,	 p.	 3)	 as	
expressing	the	“dogma	of	logocentricity”	that	the	authors	want	to	challenge.	Despite	the	fact	that	
the	 context	 here	 is	 logic,	 the	 quote	 is	 still	 relevant	 for	mathematics.	 I	will	 briefly	 refer	 to	 the	
relation	between	the	question	about	diagrammatic	proofs	in	logic	and	in	mathematics	later	in	the	
article.			
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In	 this	 renewed	 philosophical	 panorama,	 studies	 on	 diagrams	 ended	 up	
occupying	 a	 preeminent	 position.	 The	 aim	 of	 this	 chapter	 is	 to	 trace	 back	 the	
literature	about	 the	 role	of	diagrams	 in	proofs	 starting	 from	 the	publication	of	
Mancosu’s	2008	volume,	that	is,	15	years	ago.	However,	given	this	long	period	of	
time,	 it	 will	 be	 impossible	 to	 cover	 all	 of	 the	 details	 –	 other	 people,	 including	
myself,	have	done	it	already	(see	Giardino,	2017b).	What	I	will	try	to	do	is	rather	
to	propose	a	narrative	of	how	this	research	started	and	where	it	is	going	today.	
Given	the	distinction	I	made	between	two	different	sets	of	questions	concerning	
diagrams,	I	will	focus	on	the	second	one	and	therefore	on	a	selection	of	studies	
devoted	to	giving	an	account	of	cases	 in	which	diagrams	are	part	and	parcel	of	
mathematical	proofs.	In	order	to	do	that,	it	is	necessary	to	specify	which	features	
they	 posses	 and	 how	 they	 are	 intended	 to	 be	 used,	 and	 furthermore	 which	
relations	they	entertain	with	other	elements	of	the	practice	of	mathematics.		

On	this	last	point,	 let	us	recall	an	important	methodological	issue.	To	say	that	a	
proof	 is	 “diagrammatic”	 does	 not	 mean	 that	 it	 is	 "without	 words",	 as	 three	
celebrated	volumes	edited	by	Nelsen	seem	to	suggest	(Nelsen,	1997,	2001,	2015).	
The	 proofs	making	 use	 of	 diagrams	 that	 scholars	 are	 interested	 in	 are	 always	
proofs	 that	 also	 include	 some	 form	 of	 text,	 be	 it	 the	 labels	 accompanying	 the	
diagrams	 or	 the	 formulas	 obtained	 by	 considering	 some	 of	 the	 diagram’s	
features.	 The	 point	 about	 diagrammatic	 proofs	 is	 precisely	 to	 understand	 how	
diagrams	 and	 text	 –two	 crucial	 elements	 in	 the	 practice	 of	mathematics	 –	 are	
related,	and	how	the	contribution	of	the	diagram	to	the	information	presented	in	
the	text	can	be	(or	not)	essential	for	the	proof	to	go	through.	In	epistemological	
jargon,	 the	 interesting	 question	 is	 about	 how	 a	 mathematical	 belief	 that	 is	
obtained	by	looking	at	the	spatial	features	of	the	diagram	and	by	manipulating	it	
can	be	raised	to	 the	status	of	knowledge	 in	 the	absence	of	 independent	 textual	
grounds,	as	well	as	be	related	to	other	pieces	of	knowledge	expressed	in	the	text.		

The	narrative	that	I	propose	is	the	following.	In	Section	2,	I	will	quickly	describe	
the	“first	wave”	in	the	research	on	diagrammatic	proofs.	As	I	mentioned	above,	at	
the	beginning	of	the	2000s,	old	topics	were	brought	back	to	the	front	by	raising	
questions	that	had	been	almost	forgotten.	This	is	how	it	started.	Since	then,	many	
articles	have	been	published	 that	present	 case	 studies	of	diagrammatic	proofs,	
with	Greek	mathematics	taking	center	stage;	as	we	will	see,	we	have	to	wait	until	
the	 beginning	 of	 the	 2010s	 for	 case	 studies	 in	 contemporary	 mathematics.	 In	
Section	 3,	 I	 will	 describe	 what	 I	 call	 the	 “second	 wave”	 in	 the	 research	 on	
diagrammatic	 proofs.	 This	 is	where	 it	 is	 going.	 Now	 that	 the	 richness	 and	 the	
variety	of	diagrammatic	proofs	have	been	demonstrated,	 it	 is	 time	 to	draw	big	
pictures,	 which	 is	 what	 some	 scholars	 are	 presently	 trying	 to	 do.	 In	 order	 to	
introduce	this	second	wave,	I	will	first	focus	on	pioneering	work	on	the	richness	
of	mathematics	 and	 then	on	 two	 strategies	 that	 are	 emerging	 today,	 aiming	 to	
specify	 what	 is	 meant	 by	 “proofs”	 –	 first	 strategy	 –	 and	 by	 “diagrammatic”	 –	
second	strategy	–	in	“diagrammatic	proofs”.	In	Section	4,	I	will	briefly	sum	up	the	
topics	of	the	chapter.	

Two	 last	methodological	notes.	First,	nothing	of	what	 I	will	write	about	 in	 this	
chapter	will	 refer	 to	 research	on	diagrammatic	 proofs	 in	logic,	 despite	 the	 fact	
that	some	of	the	questions	and	resources	in	the	literature	are	common	to	the	two	
disciplines.	The	reason	for	this	is	that	I	consider	that	the	practice	of	logic	has	its	
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own	specificities	and	thus	deserves	a	separate	treatment.3	However,	logic	will	be	
evoked	at	times	in	discussing	rigor	in	contemporary	mathematics.	Second,	I	will	
mainly	 focus	on	studies	 in	 the	philosophy	of	mathematical	practice.	 I	am	aware	
that	enormous	work	has	been	done	in	history	–	and	I	would	say	also	archeology	
–	of	mathematics	on	diagrammatic	proofs	from	the	past,	not	only	in	the	West	but	
also	 in	 places	 such	 as	 old	 China	 and	 Mesopotamia	 (see	 for	 reference	 Chemla,	
2005	and	Høyrup,	2005).	Many	of	the	chapters	of	this	handbook	are	devoted	to	
the	 history	 of	 the	 practice	 of	 mathematics	 and	 will	 tackle	 the	 subject	 of	
diagrammatic	proofs	among	others;	 therefore,	 for	pragmatic	 reasons,	 I	will	not	
go	 into	 that	 research	 here.	 However,	 integration	 between	 the	 historical	 and	
philosophical	points	of	view	on	diagrammatic	proofs	is	desirable:	as	testified	by	
the	first	of	Mancosu’s	collections	in	2005,	historians	and	mathematicians	started	
working	 together	on	 these	new-old	 topics.	 Since	 then,	 the	 two	disciplines	 took	
their	own	research	paths;	it	is	time	to	foster	again	collaboration	between	the	two	
to	give	an	account	of	the	practice	of	mathematics.4		

	

2.	 The	 first	 wave	 of	 research	 on	 diagrammatic	 proofs:	 looking	 for	 case	
studies		

2.1	The	philosophers’	darling:	Greek	mathematics	

The	Greek	diagram	is	to	some	extent	the	paradigm	of	diagrammatic	reasoning	in	
mathematics,	which	explains	why	it	has	been	a	privileged	target	of	research	for	
philosophy	 for	 a	 long	 time.	 There	 is	 no	 need	 to	 be	 a	 philosopher	 or	 a	
mathematician	 to	 be	 familiar	 with	 Euclidean	 geometry,	 and	 in	 Euclidean	
geometry	the	recourse	to	diagrams	is	natural	and	spontaneous:	starting	from	a	
very	 early	 age,	 these	 geometrical	 figures	 become	part	 of	 our	 visual	 repertoire.	
From	this,	can	we	take	their	presence	and	effectiveness	in	proofs	for	granted?		

As	 Netz	 (1999)	 pointed	 out,	 diagrams	 are	 interdisciplinary	 research	 objects,	
because	they	are	of	interest	both	for	the	science	of	cognition	–	that	is	looking	at	
knowledge	from	the	point	of	view	of	 its	practices	–	and	for	history	of	science	–	
that	studies	cultural	artifacts.	For	this	reason,	diagrams	are	the	perfect	subjects	
for	 what	 he	 calls	 a	 “cognitive	 history”	 and	 can	 be	 approached	 from	 many	
different	 points	 of	 view.	 I	 agree	 with	 this	 and	 I	 consider	 philosophy	 as	 the	
approach	 targeting	 more	 specifically	 their	 role	 in	 proofs.	 In	 his	 book	 on	
deduction	 in	 Greek	 geometry	 –	 going	 also	 beyond	 Euclid’s	 Elements	 –	 Netz	
defends	 the	 idea	 that	 the	 “lettered	 diagram”	 is	 an	 effective	 geometric	 tool	
because	of	the	richness	of	the	different	levels	at	which	it	can	be	accessed,	which	
is	 what	 makes	 it	 appropriate	 to	 promote	 and	 justify	 deduction	 and,	 as	 a	
consequence,	to	demonstrate	mathematical	propositions.		

The	 lettered	 diagram	 can	 in	 fact	 be	 considered	 from	 several	 points	 of	 view:	
logical,	cognitive,	semiotic,	and	historical.	At	all	of	these	levels,	 it	combines	two	

	
3	There	are	several	studies	that	are	relevant	in	this	respect,	for	example	Shin	(1995),	Allwein	&	
Barwise	(1996),	or	Stenning	(2002).	More	recently,	Dutilh-Novaes	(2012)	discussed	the	role	of	
formal	language	and	notation	in	logic.	
4	Another	 subject	 I	 will	 not	 touch	 upon	 in	 this	 section	 is	 computational	 approaches	 to	
diagrammatic	proofs.	Some	relevant	references	can	be	found	in	Giardino,	2017b.	
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elements	that	would	normally	be	considered	to	be	in	contrast	to	each	another,	if	
one	 follows	 the	 standard	 opposition	 between	 image	 and	 language:	 lines	 and	
letters	at	the	logical	level,	visual	features	and	models	at	the	cognitive	level,	icons	
and	 indices	at	 the	semiotic	 level,	and	a	kind	of	know-how	together	with	a	very	
sophisticated	reflexivity	at	the	historical	one.	According	to	Netz,	a	proof	in	Greek	
geometry	is	based	on	the	lettered	diagram,	and	as	a	consequence	is	an	event	that	
occurs	on	a	papyrus	or	in	a	given	oral	communication.	Despite	its	singularity,	it	is	
felt	 to	 be	 valid:	 the	 materiality	 of	 the	 proof	 is	 important	 as	 well	 as	 its	
immateriality,	since	the	proof	is	considered	as	an	invariant	under	the	variability	
of	the	single	action	of	drawing	one	diagram	on	the	papyrus	or	of	presenting	the	
particular	proof	orally.	The	proof	can	be	repeated,	which	is	what	matters	for	it	to	
be	recognized	as	a	proof;	contrary	to	what	we	are	used	to	think	today,	the	focus	
is	not	on	the	possibility	of	generalizing	the	result.	For	Netz,	 in	order	to	give	an	
account	of	how	the	lettered	diagram	makes	the	proof	go	through,	it	is	necessary	
to	 consider	 its	 cognitive	 appeal.	 The	 diagram	 is	 in	 fact	 a	 static	 object	 that	 is	
nonetheless	 related	 to	 the	 text	 via	 the	 letters,	 which	 makes	 it	 kinesthetic:	 a	
diagram	gets	constructed	and	can	be	manipulated.		

In	a	very	renowned	paper,	which	has	been	circulating	since	the	1990s	but	was	
published	only	in	2008,	Manders	(1995/2008)	investigates	Euclidean	geometry	
specifically.	He	reminds	us	that	up	to	the	19th	century	no	one	would	have	denied	
that	the	practice	of	Euclidean	geometry	was	rigorous;	rather,	such	a	practice	was	
considered	 to	be	 the	most	 rigorous	practice	among	 the	various	human	ways	of	
accessing	knowledge.	In	Manders’	view,	such	a	practice	is	based	on	a	division	of	
labor	between	two	artifact	types	–	the	diagram	and	the	text	sequence	–	that	must	
be	considered	together.	As	humans,	we	have	cognitive	limitations,	and	therefore	
we	cannot	control	the	interpretation	of	a	diagram	so	as	to	avoid	any	case	that	is	
alternative	 to	 the	 correct	 one;	 for	 this	 reason,	 the	 text	 is	 introduced.	 In	 the	
practice,	diagram	and	text	share	the	responsibility	of	allowing	the	practitioners	
to	respond	to	physical	artifacts	in	a	“stable	and	stably	shared	fashion”	(p.	83).	In	
this	framework,	proofs	have	a	verbal	and	a	graphical	part	–	the	diagram	and	the	
discursive	 text:	 the	 diagram	 makes	 the	 very	 objects	 of	 traditional	 geometry	
appear,	while	 the	 text	ascribes	particular	 features	 to	 the	diagram,	 the	so-called	
diagram	attributions.	 Letters	 are	 introduced	 so	 as	 to	 facilitate	 cross-references	
between	 the	 text	 and	 the	 diagram.	 In	 this	 reconstruction	 of	 the	 Euclidean	
practice,	Manders	introduces	a	distinction	between	co-exact	and	exact	features	of	
a	diagram	that	became	very	influential.5	A	co-exact	 feature	is	a	 feature	that	can	
be	 directly	 attributed	 to	 the	 diagram,	 having	 certain	 perceptual	 cues	 that	 are	
fairly	 stable	 across	 a	 range	 of	 variations;	 such	 a	 feature	 cannot	 be	 readily	
eliminated,	 because	 of	 what	 Manders	 calls	 the	 diagram	 discipline,	 that	 is,	 the	
proper	exercise	of	skill	in	producing	diagrams	that	is	required	by	the	practice.	An	
exact	feature	is	instead	in	general	affected	by	deformation,	and	it	is	licensed	by	
the	discursive	text:	for	example,	the	fact	that	in	a	diagrams	two	segments	have	to	
be	 considered	 as	 –	 “seen	 as”	 –	 equal.	 Note	 that	 in	 both	 Netz’	 and	 Manders’	
proposals	the	diagram	is	part	and	parcel	of	the	proof	because	of	the	combination	
of	diagram	and	text	and	thanks	to	 its	dynamic	 features:	 invariances	or	co-exact	
features	–	not	varying	under	deformations.		

	
5	Mander’s	 work	 was	 influential	 to	 the	 point	 of	 inspiring	 cognitive	 research.	 See	 Hamami	 &	
Mumma	(2013)	and	the	more	recent	Hamami	et	al.	(2021).		
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Macbeth	 (2012,	 2014)	 proposed	 another	 account	 for	 the	 use	 of	 diagrams	 in	
Euclidean	proofs,	that	emphasizes	their	nature	of	“signs”.	She	considers	Euclid's	
Elements	as	 a	 system	 of	natural	deduction,	 where	 common	 notions,	 postulates,	
and	definitions	are	not	intended	as	premises,	but	as	rules	or	principles	according	
to	which	 to	reason.	Along	 these	 lines,	 she	suggests	 that	 in	order	 to	understand	
and	 use	 a	 diagram	 one	 has	 to	 recognize	 the	 intention	 that	 is	 behind	 its	
construction.	Moreover,	 in	her	 view,	 a	diagram	 is	 fruitful	 because	 it	 is	 an	 icon,	
that	 is,	 it	 “resembles”	 what	 it	 signifies.	 The	 Euclidean	 diagram	 has	 to	 be	
considered	at	different	 levels:	 first,	 it	has	primitive	parts	–	points,	 lines,	angles	
and	areas;	then,	thanks	to	the	concepts	of	geometry,	one	gets	the	elements	that	
someone	 doing	 geometry	 will	 be	 interested	 in	 –	 for	 example,	 an	 equilateral	
triangle	 is	 “seen	as”	composed	of	 three	equal	 lines;	 finally,	one	has	 to	consider	
the	diagrams	as	a	whole,	which	shows	at	a	glance	the	elements	in	the	other	two	
levels.	 In	 this	 sense,	 a	 Euclidean	 diagram	 is	 not	 different	 from	 other	 kinds	 of	
representations	such	as	the	famous	Wittgensteinian	duck-rabbit.		

Consider	 for	 example	 the	 diagram	 of	 an	 equilateral	 triangle	 obtained	 from	 a	
segment	AB	by	drawing	two	circles	with	center	A	and	B	respectively	intersecting	
in	C.	Draw	the	two	segments	from	A	to	C	and	from	B	to	C	–	this	is	Euclid	I,	1:	the	
“same”	segments	–	AB,	AC	and	BC	–	are	“seen	as”	the	sides	of	the	triangle	as	well	
as	 the	 radii	 of	 the	 same	 circle	 (see	Figure	1).	Thanks	 to	 the	 combination	of	 all	
these	 different	 elements	 in	 the	 same	 icon,	 one	 reasons	 in	 the	 diagram	 and	
obtains	the	proof.6		

	

	
Figure	 1.	 Euclid,	 Book	 I,	 Proposition	 1.	 To	 construct	 an	 equilateral	 triangle	 on	 a	 given	 finite	
straight	line.	

Another	 interesting	 notion	 to	 apply	 to	 Euclidean	 proofs	 was	 proposed	 by	
Azzouni	(2005).	In	his	view,	traditional	mathematical	proofs	imply	the	appeal	to	
a	kind	of	know-how	and	tacit	knowledge	involving	“inference	packages”	applied	
to	 the	 proof	 as	 “black	 box	 units”.	 The	 elements	 encapsulated	 by	 an	 inference	
package	are	in	principle	not	visible	by	introspection	as	a	list	of	assumptions,	for	
the	 reason	 that	 these	 assumptions	 have	 been	 “knit	 together”	 in	 the	
representations	of	the	objects.	In	traditional	proofs	–	compared	to	derivations	in	
algorithmic	 systems	 –	 it	 is	 not	 the	 case	 that	 each	 step	 follows	 from	 some	

	
6	Actually,	 there	 is	 a	 difference	 between	 the	 duck-rabbit	 and	 the	 triangle	 in	 Euclid,	 since	 the	
second	is	not	an	instable	percept;	on	the	contrary,	someone	who	is	competent	in	geometry,	will	
be	able	to	see	the	two	aspects	and	acknowledge	that	they	are	not	incompatible.	For	a	discussion	
of	this	point,	see	Giardino	&	Wöpking	(2019).	
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sentences	appearing	earlier	in	the	proof:	traditional	proofs	work	“semantically”	
rather	 than	 “syntactically”,	 that	 is,	mathematicians	 recognize	 properties	 of	 the	
objects	 their	 inferences	 are	 about	 by	 operating	 with	 the	 available	
representations.	 The	 details	 of	 the	 inferences	 provided	 by	 inference	 packages	
are	 thus	not	only	 left	 out	because	 everyone	 is	 familiar	with	 them,	but	because	
they	are	not	introspectively	accessible	to	practitioners.	In	this	semantic	view	of	
proofs,	representations	–	for	example	some	particular	diagram	–	have	precisely	
the	 role	of	 allowing	 for	 a	 form	of	 intuition	 to	 apply	 the	 inference	package	 that	
comes	 with	 them,	 and	 for	 this	 reason	 they	 should	 be	 at	 the	 core	 of	 the	
philosophical	investigation	(Azzouni,	2005,	pp.	23-24).7	

I	have	discussed	elsewhere	these	views	and	others	focusing	on	the	case	of	Greek	
diagrams	and	diagrammatic	proofs	(Giardino,	2017b),	and	therefore	I	will	not	go	
here	 into	 further	 details.	 In	 the	 following,	 I	 will	 simply	 sum	 up	 some	 of	 the	
important	points	 that	have	been	proposed	 for	 the	case	of	Euclidean	(or	Greek)	
diagrammatic	proofs.	It	is	crucial	to	note	that	all	these	studies	show	that	in	order	
to	 give	 an	 account	 of	 diagrammatic	 proofs	 it	 is	 necessary	 to	 go	 beyond	 the	
insistence	on	the	alleged	opposition	between	a	“visual”	and	a	“linguistic”	part	of	
mathematical	 proofs,	 for	 two	 reasons.	 First,	 diagrams	 have	 to	 be	 considered	
together	with	the	text,	and	therefore	the	focus	of	the	research	should	be	on	the	
way	in	which	the	two	relate.	Second,	diagrams	can	be	interpreted	as	dynamic:	for	
example,	 co-exact	properties	are	not	 subject	 to	modifications	–	which	 suggests	
that	 the	 diagram	 has	 to	 be	 manipulated	 in	 order	 to	 “test”	 our	 correct	
interpretation	of	 it;	 the	 text	 clarifies	what	 the	 intentions	 in	 the	 construction	of	
the	 diagrams	 are	 in	 relation	 to	 the	 properties	 that	 may	 vary	 under	 the	 same	
manipulations.	 Such	manipulations	 allow	 for	 particular	 inferences	 that	 are	 not	
accessible	through	the	text	only.	Seeing	the	same	configuration	“differently”,	by	
identifying	 several	 levels	 that	 have	 to	 be	 considered	 separately	 but	 also	 as	 a	
whole,	may	be	considered	as	a	very	basic	way	of	making	the	diagram	“dynamic”	
without	 modifying	 it.	 Moreover,	 the	 proof	 is	 an	 “event”	 that	 can	 be	 repeated,	
once	the	diagrams	and	the	text	are	correctly	put	together.		

In	the	following	subsection,	we	will	look	at	more	recent	case	studies	taken	from	
contemporary	mathematics	and	see	how	they	relate	to	the	features	that	emerged	
in	the	analyses	of	Greek	mathematics.	

2.2	Contemporary	mathematics	enters	the	scene	

If	Greek	diagrams	have	been	at	the	center	of	philosophical	discussion	for	a	long	
time,	 case	 studies	 of	 diagrammatic	 proofs	 taken	 from	 contemporary	
mathematics	 have	 started	becoming	of	 interest	 to	philosophers	 in	most	 recent	
years,	approximately	after	2010.	Why	so	late?	Of	course,	a	strong	background	in	
the	 practice	 of	mathematics	 is	 necessary	 to	 get	 the	 gist	 of	 the	 examples	 taken	
from	 contemporary	 mathematics.	 Only	 recently,	 philosophers	 who	 were	
previously	 trained	 in	 mathematics	 started	 tackling	 specific	 questions	 about	
diagrammatic	 proof	 and	 collaborations	 between	 philosophers	 and	
mathematicians	 have	 developed	 –	 a	 good	 thing,	 given	 the	 interdisciplinary	
nature	of	the	topic.	It	should	also	be	noted	that	the	support	of	interdisciplinarity	

	
7	To	learn	more	about	Azzouni’s	view,	see	Azzouni	(this	volume).	
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in	 education	 today	 is	 encouraging	 more	 than	 before	 –	 when	 the	 training	 was	
more	rigidly	disciplinary	–	the	creation	of	a	new	generation	of	interdisciplinary	
scholars.	 I	 have	 already	 presented	 some	 of	 these	 more	 recent	 case	 studies	 in	
detail	(Giardino,	2017b);	 in	the	rest	of	this	section,	I	will	sum	up	some	of	these	
results.		

Carter	(2010)	was	one	of	the	first	scholars	to	introduce	case	studies	from	today’s	
mathematics	–	as	well	as	one	of	the	first	who	are	now	trying	to	think	in	terms	of	
more	 comprehensive	 pictures,	 as	 we	will	 see	 below.	 In	 her	 contributions,	 she	
focused	 on	 the	 role	 that	 diagrams	 have	 in	 a	 proof	 to	 define	 its	 strategy.	 She	
analyses	a	case	from	free	probability	theory,	where	diagrams	are	introduced	in	
informal	 discussions	 among	 mathematicians	 to	 represent	 particular	
mathematical	entities,	for	example	permutations	(see	Figure	2).		

	
Figure	2.	An	example	of	a	diagram	of	a	permutation,	in	this	case	the	permutation	𝝅	(13)(24).	

Carter	argues	 that	diagrams	make	 it	easier	 to	evaluate	 relevant	properties,	e.g.	
whether	the	permutation	is	crossing	or	not,	or	whether	neighboring	pairs	can	be	
canceled.	Despite	the	fact	that	they	are	not	published	in	the	final	article,	it	can	be	
shown	 that	 they	 still	 suggest	 definitions	 and	proof	 strategies,	 thus	 inspiring	 at	
least	 a	 part	 of	 the	 formal	 version	 of	 the	 proofs.	 Diagrams	 here	 function	 as	 a	
framework	 for	 the	 proof,	 and	 help	 breaking	 it	 down	 into	 parts	 that	 are	 more	
manageable	 than	 the	whole	proof.	We	mentioned	 above	 the	 importance	of	 the	
relationship	 between	 diagrams	 and	 text	 in	 Greek	 diagrams:	 here,	 some	
properties	of	the	diagrams	correspond	to	formal	definitions,	but	experiments	are	
performed	on	the	diagrams.8	However,	the	relations	used	in	the	proof	based	on	
the	 diagrams	 refer	 to	 relations	 that	 also	 hold	 in	 the	 algebraic	 setting,	 which	
allows	 going	 back	 from	 the	 diagram	 to	 the	 algebraic	 setting.	 Moreover,	 some	
features	 of	 the	 diagrams	 –	 for	 example	 crossings	 and	 neighboring	 pairs	 –	 are	
indeed	co-exact	properties,	since	they	do	not	change	under	a	series	of	variations.	
Carter’s	 inspiration	 is	 C.	 S.	 Peirce’s	 philosophy,	 according	 to	 which	 all	
mathematical	 reasoning	 is	 diagrammatic:	 in	 her	 case	 studies,	 diagrams	 are	
considered	as	 icons	 in	relation	to	 the	algebraic	setting.	One	recognizes	 in	 them	
“indices”	–	letters	–	as	an	element	that	captures	attention	and,	as	Peirce	writes,	
tells	the	user	to	look	“There!”	(CP	3.361).	Another	case	study	Carter	focuses	on	is	
directed	graphs	(Carter,	2018).	Also	here	diagrams	are	 icons,	 that	 is,	mediating	
objects,	which	link	–	metaphorically	–	two	types	of	mathematical	objects.	This	is	
possible	because	they	constitute	a	“faithful”	representation,	which	is	able	to	put	

	
8	On	experiments	and	diagrams,	see	Schlimm	&	Fernández	González	(this	volume).	
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together	 the	 metaphorical	 aspects	 of	 using	 a	 mathematical	 diagram	 with	 the	
control	that	it	is	necessary	to	exercise	on	its	manipulation.	In	fact,	manipulations	
that	are	performed	on	 the	diagram	respect	 the	 relations	between	 the	concepts	
that	 they	 represent,	 and	 this	 leads	 to	 the	 definition	 of	 new	 relations	 between	
parts	of	those	concepts	that	were	not	appearing	at	the	beginning.9		

In	 Carter’s	 view,	 diagrams	 are	 fruitful	 frameworks	 in	 parts	 of	 proofs	 because	
they	trigger	imagination.	She	refers	to	the	notion	of	“manipulative	imagination”	
as	introduced	by	De	Toffoli	and	Giardino	(2014)	in	the	context	of	an	analysis	of	
the	 role	 of	 knot	 diagrams	 in	 topology	 (see	 Figure	 3).	 In	 our	 reconstruction,	
experts	in	knot	theory	have	developed	a	form	of	imagination	that	allows	them	to	
manipulate	these	diagrams	–	by	redrawing	them	or	by	figuring	out	in	their	mind	
which	kinds	of	actions	can	be	performed	on	them.10	Manipulative	imagination	is	
very	effective	in	low-dimensional	topology,	where	diagrams	are	used	to	explore	
the	properties	of	mathematical	objects	and	eventually	to	prove	theorems	about	
them,	 for	 example	 in	 Rolfsen’s	 demonstration	 of	 the	 equivalence	 of	 two	
presentations	 of	 the	 Poincaré	 homology	 sphere	 (see	 De	 Toffoli	 and	 Giardino,	
2015).	 In	our	 view,	 the	 actual	practice	of	 proving	 in	 low-dimensional	 topology	
involves	a	kind	of	 reasoning	 that	requires	 intuition:	 the	manipulations	 that	are	
allowed	for	and	on	the	representations	as	well	as	the	representations	themselves	
are	 epistemologically	 relevant,	 because	 they	 are	 integral	 parts	 both	 of	 the	
reasoning	and	of	the	justification	provided	by	the	proofs.	

	
Figure	3.	An	example	of	a	knot	diagram.	By	applying	the	appropriate	manipulations,	one	finds	out	
that	this	is	a	knot	diagram	of	the	unknot.		

In	a	more	recent	paper,	De	Toffoli	(2017)	describes	commutative	diagrams	and	
the	“diagram-chasing”	technique	in	homological	algebra,	where	a	new	feature	of	
diagrams	 in	 proofs	 emerges.	 Diagrams	 indeed	 can	 correspond	 to	 an	 abstract	
counterpart	 of	 geographic	 maps.11	As	 she	 explains,	 the	 Five	 Lemma	 and	 the	
Fundamental	 Theorem	 of	 Homological	 Algebra	 are	 both	 based	 on	 chasing	 an	
element	in	different	places	in	the	diagram,	which	in	the	second	case	is	potentially	
infinite	(see	Figure	4).	

	
9	In	a	more	recent	paper,	Carter	(2021)	reviews	some	of	her	previous	examples	by	referring	to	
the	notion	of	 “free	 ride”	 as	proposed	by	 Shimojima	 (2015).	 In	 the	paper,	 she	 shows	 that	 “free	
rides”	are	not	completely	“for	free”:	in	most	cases,	some	interpretation	is	required	to	“read-off”	
some	properties	from	a	diagram,	and	therefore	a	free	ride	is	not	always	a	free	sight.		
10	In	previous	work,	I	defined	diagrams	as	props	–	by	referring	to	Walton’s	theory	of	imagination	
–	for	some	mathematical	object:	working	with	them	would	correspond	to	test	ways	in	which	the	
mathematical	 objects	 they	 allude	 to	 might	 “behave”	 (Giardino,	 2018a).	 On	 the	 notion	 of	
manipulative	imagination,	see	also	Giardino	(2018b).	
11	For	case	studies	in	category	theory,	see	Halimi	(2012)	and	Weber	(2013).	



		

	 11	

	
Figure	4.	The	commutative	diagram	used	in	the	proof	of	the	Five	Lemma.		

The	chase	aims	to	identify	paths	in	the	diagram	by	exploiting	its	commutativity	
in	order	to	verify	some	algebraic	properties.	The	basic	idea	is	to	imagine	moving	
an	 element	 around	 the	 diagram	 by	 following	 the	 relations	 that	 are	 there	
displayed	 –	 –	 perhaps	 the	 analogues	 of	 the	 “co-exact”	 properties	 of	 Euclidean	
diagrams	–	according	to	some	definitions	–	the	“exact”	attributions	of	the	text.	De	
Toffoli	 explains	 that	 in	 the	 case	of	homological	 algebra,	 commutative	diagrams	
play	 the	 two	 roles	 already	 identified	 by	 Carter,	 that	 is,	 they	 inspire	 the	 proof	
strategy	and	they	offer	a	framework	that	allows	getting	to	it.	However,	they	also	
have	 two	 additional	 roles:	 first,	 they	display	 algebraic	 content	 in	 a	way	 that	 is	
meaningful	and	mathematically	tractable;	second,	they	allow	for	calculations	that	
can	 be	 integral	 parts	 of	 the	 proof.	 In	 De	 Toffoli	 (forthcoming)	 she	 argues	 that	
commutative	diagrams	(as	well	as	certain	topological	diagrams)	not	only	can	be	
used	within	 rigorous	proofs	but	are	even	essential	 to	 the	proofs	 in	which	 they	
figure.	 This	 would	 mean	 that	 non-diagrammatic	 conversions	 of	 such	 proofs	
would	 plausibly	 be	 classified	 not	 as	 different	 presentations	 of	 the	 same	 proof,	
but	as	different	proofs.		

To	 sum	up,	 a	 look	at	 case	 studies	 from	contemporary	mathematics	 shows	 that	
diagrams	happen	 to	 be	 used	 effectively	 in	 proofs,	 for	 the	 reason	 that	 they	 can	
make	new	properties	or	relations	appear.	Of	course,	this	is	done	in	reference	to	
some	 mathematical	 context.	 However,	 there	 are	 some	 caveats.	 First,	 not	 all	
diagrams	are	used	specifically	in	proofs:	some	diagrams	support	intuition	in	the	
context	 of	 discovery.12	What	 emerges	 clearly	 from	 the	 literature	 is	 in	 fact	 the	
variety	 of	 diagrams:	 diagrams	 to	 display	 permutations	 have	 very	 different	
features	compared	to,	say,	commutative	diagrams.	This	said,	a	common	feature	
seems	 to	 be	 their	 way	 of	 triggering	 some	 form	 of	 intuition	 or	 imagination	 –	
whether	they	can	be	ultimately	part	and	parcel	of	a	proof	depends	on	the	control	
that	may	be	applied	to	them	by	fixing	their	interpretation.	To	use	an	expression	
from	Larvor	(2012),	within	a	certain	diagrammatic	practice,	some	actions	on	the	
diagrams	 are	 recognized	 by	 the	 experts	 as	 “permissible”	 or	 not.	 There	 is	
something	more	to	note	–	to	which	I	will	return	when	I	will	discuss	where	we	are	
now	 in	 the	 research	 on	 diagrammatic	 proofs:	 cases	 in	 contemporary	
mathematics	show	that	diagrams	and	notations	can	be	brought	together.	In	her	
paper	 on	 homological	 algebra,	 for	 example,	 De	 Toffoli	 explicitly	 argues	 for	
diagrams	 as	 a	 subset	 of	 notations	 and	 gives	 three	 criteria	 to	 evaluate	 them	 as	
such:	expressiveness,	calculability,	and	transparency.	For	Carter	as	well,	a	piece	of	
notation	 such	 as	 2k	+	1	 for	 some	 natural	 number	 k	 is	 also	 a	 case	 of	 a	 faithful	
iconic	 representation	 of	 the	 concept	 of	 odd	 number.	 I	will	 return	 to	 this	 issue	
below.		

	
12	For	an	interesting	case	on	Caley	graphs	and	their	use	for	discovery,	see	Starikova	(2010).	
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3.	The	second	wave:	Calling	for	big	pictures	

3.1	Pioneering	work	on	the	richness	of	the	practice	of	mathematics	

In	the	narrative	that	I	propose	in	this	chapter	about	these	past	20	years	or	so	of	
studies	 on	 diagrammatic	 proofs,	 I	 maintain	 that	 the	 urge	 for	 providing	 a	 big	
picture	 about	 their	 role	 in	 proofs	 has	 appeared	 only	 very	 recently.	However,	 I	
will	focus	here	on	two	scholars	who	were	undoubtedly	the	first	to	try	to	offer	a	
comprehensive	 account	of	 the	 richness	of	 the	mathematical	 practice	 related	 to	
diagrammatic	proofs.13			

Giaquinto	 (2007/2011)	 was	 maybe	 the	 first	 to	 consider	 visual	 thought	 in	
mathematics	 in	 an	 interdisciplinary	 fashion,	 by	 relying	 on	 some	 explanations	
coming	 from	 cognitive	 science,	which	was	 on	 the	 rise	 at	 the	 time.	 The	 general	
aim	 of	 his	 book	 was	 to	 give	 an	 account	 of	 the	 complexity	 of	 mathematical	
thinking.	To	do	so,	he	explored	and	presented	some	results	in	cognitive	science	
about	 our	 capacity	 for	 visualizing	 in	 an	 attempt	 to	 integrate	 them	with	 other	
more	 theoretical	 reconstructions	 of	 high-level	 processing	 of	 information.	 The	
book	 is	 interestingly	devoted	 to	discovery	 in	mathematics,	which,	 according	 to	
Giaquinto	 and	 in	 line	 with	 the	 revival	 for	 the	 attention	 to	 the	 practice	 of	
mathematics,	is	a	subject	that	had	been	neglected	by	the	most	recent	philosophy	
of	 mathematics	 as	 legitimately	 philosophical.	 However,	 there	 are	 parts	 of	 the	
book	where	Giaquinto	discusses	the	possible	presence	of	diagrams	in	proofs.	In	
his	 view,	 there	 is	 no	 need	 to	 give	 a	 uniform	 story	 about	 visual	 thinking	 in	
mathematics,	 which	 comes	 in	 a	 variety	 of	 ways:	 depending	 on	 the	 specific	
mathematical	context,	visual	operations	can	be	different	and	consequently	it	may	
be	possible	to	evaluate	differently	their	epistemic	value.		

One	 point	 that	 seems	 important	 in	 the	 present	 context	 is	 Giaquinto’s	 focus	 on	
aspect	 shifting	 in	 mathematics.	 Consider,	 for	 example,	 a	 possible	 proof	 of	 the	
Pythagorean	 theorem.	 In	 order	 to	 understand	 that	 it	 is	 valid,	 here	 is	 one	
possibility	(see	Figure	5).	

	
Figure	5.	One	of	the	many	so-called	“visual	proofs”	of	the	Pythagorean	theorem.		

First,	 one	 reasons	 geometrically	 and	 arranges	 a	 small	 square	 and	 four	 right	
triangles	 in	 a	 bigger	 square,	 so	 that	 each	 of	 the	 longer	 of	 the	 two	 sides	 of	 the	

	
13	Another	 important	 early	 publication	 on	 diagrams	 in	 mathematics	 is	 Brown	 (1999),	 where	
several	 cases	 of	 diagrammatic	 reasoning	 are	 discussed.	 Brown’s	 view	 has	 strong	 Platonic	
assumptions:	his	“bold	conjecture”,	as	the	author	famously	put	it,	is	that	(some)	pictures	“are	not	
really	pictures,	but	rather	are	windows	to	Plato’s	heaven	(p.	40,	emphasis	in	the	original).		
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triangles	 corresponds	 to	 one	 of	 the	 sides	 of	 the	 bigger	 square	 and	 their	
hypotenuses	 form	 the	 smaller	 square.	 Then,	 one	 reasons	 algebraically	 and	
calculates	the	area	of	the	smaller	square	plus	the	areas	of	the	four	triangles	and	
equates	it	to	the	area	of	the	bigger	square.	Some	more	calculations,	and	the	claim	
is	established.	This	procedure	 is	accessible	because	we	shift	 from	one	aspect	–	
what	we	“see”	in	the	diagram	–	to	the	other	–	what	the	rules	on	how	to	obtain	the	
area	of	a	square	and	of	a	triangle	tell	us.	If	this	is	the	case,	would	this	reasoning	
be	 primary	 geometric	 or	 primary	 algebraic?	 In	 the	 last	 chapter	 of	 the	 book,	
Giaquinto	 suggests	 that	 neither	 of	 these	 two	 categories	 would	 be	 fully	
appropriate	to	capture	it.	Is	this	a	general	feature	of	mathematical	reasoning?	

Another	 interesting	 early	 work	 is	 Grosholz	 (2007,	 2011),	 which	 discusses	 at	
depth	 the	heterogeneity	 of	mathematical	 reasoning	as	 something	 that	has	been	
overlooked	by	what	she	identifies	as	the	Russell-Carnap	tradition	–	the	received	
view?	Also	 in	 this	case,	 the	practice	of	mathematics	went	back	 to	 the	center	of	
the	philosophical	 investigation.	 In	Grosholz’	 reconstruction,	 the	Russell-Carnap	
tradition	 represents	 an	 epistemological	 ideal	 whose	 objective	 is	 to	 unify	
mathematics,	 or	mathematics	 and	 the	 sciences,	 in	 one	 formalized	 theory.	With	
this	 objective	 in	 the	 background,	 this	 tradition	 demands	 that	 logic	 is	 the	
homogeneous	 idiom	 constituting	 the	 only	 vehicle	 for	 deductive	 inference.	
Macbeth’s	 view	 that	 was	 mentioned	 in	 the	 previous	 section	 on	 Euclidean	
diagrams	recalled	Grosholz’	notion	of	"productive	ambiguity"	of	diagrams,	which	
is	precisely	what	allows	us	to	see	different	things	in	the	same	configuration	–	the	
sides	of	an	equilateral	triangle	and	the	radii	of	the	same	circles	–	and	to	put	the	
two	 together	 in	 order	 for	 the	 proof	 to	 go	 through.	 However,	 productive	
ambiguity	 and	heterogeneous	 reasoning	go	beyond	geometry:	 one	of	Grosholz’	
examples	 is	 Gödel's	 procedure	 in	 his	 incompleteness	 theorem.	 In	 her	
reconstruction,	by	his	use	of	numbering	as	a	strategic	bridge	between	formalized	
arithmetic	 qua	 logical	 system	 and	 arithmetic,	 Gödel	 exploits	 a	 “carefully	
controlled	and	fruitful	ambiguity”	(Grosholz,	2011,	p.	421),	which	multiplies	the	
information	that	is	available	to	a	mathematician.	As	she	puts	it,	“it	 is	hard	for	a	
logician	 to	 admit	 that	 he	 is	 trafficking	in	heterogeneity”	 (ibid.,	 p.	 425,	 emphasis	
mine).	As	we	see,	the	richness	and	the	variety	of	the	representations	involved	in	
the	reasoning	process	were	extended	to	other	parts	of	mathematics	and	even	to	
logic.	This	opened	up	a	new	research	horizon	that	will	constitute	a	heritage	for	
the	views	that	I	will	present	in	the	next	subsection.		

3.2	Today’s	views	on	diagrammatic	proofs	

In	Section	2,	I	summarized	some	of	the	case	studies	of	diagrammatic	proofs	that	
were	 subject	 to	 philosophical	 scrutiny,	 starting	 from	 Greek	 mathematics	 and	
growing	into	cases	from	contemporary	mathematics.	This	variety	called	for	some	
kind	of	comprehensive	framework	that	could	account	for	them.	However,	how	is	
it	possible	to	talk	in	terms	of	a	“big	picture”	for	a	phenomenon	that	is	so	diverse	
and	 that	 also	 depends	 –	 as	 Giaquinto	 suggests	 –	 on	 the	 specificity	 of	 the	
mathematical	context	considered	in	turn?	

Let	 us	 focus	 on	 the	 term	 “diagrammatic	 proofs”	 and	 the	 way	 in	 which	 it	 is	
commonly	intended.	On	the	one	hand,	“proofs”	is	here	meant	narrowly,	mostly	in	
the	 sense	 of	 the	 received	 view:	 the	 question	 about	 diagrammatic	 proofs	 is	
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whether	 forms	of	 reasoning	 that	make	use	 of	 diagrams	 reach	 the	 standards	 of	
what	is	commonly	considered	as	a	proof	–	to	the	point	that	“diagrammatic	proofs”	
may	 sound	 to	 some	 as	 an	 oxymoron.	 On	 the	 other	 hand,	 “diagrammatic”	 is	
interpreted	as	having	a	very	wide	scope	so	as	to	include	many	case	studies	and	
thus	has	 the	advantage	of	 accounting	 for	 their	 richness.	However,	 the	 fact	 that	
the	 term	 is	 used	 very	 loosely	 has	 also	 its	 disadvantages.	 What	 exactly	 is	 a	
diagram?	 Are	 geometrical	 figures	 diagrams?	 Are	 they	 analogous	 to	 a	 matrix?	
What	is	the	relationship	between	diagrams	and	notations?	Are	they	one	and	the	
same	thing?		

In	 my	 view,	 the	 strategies	 to	 give	 a	 comprehensive	 account	 of	 diagrammatic	
proofs	 can	 be	 divided	 into	 two	 groups.	 First,	 one	might	 argue	 for	 a	 notion	 of	
proof	 that	 moves	 away	 from	 definitions	 à	 la	 Tennant	 and	 easily	 includes	
diagrammatic	 proofs	 as	 perfectly	 acceptable.	 Second,	 one	 might	 try	 to	 put	
forward	some	criteria	for	different	categories	of	diagrams	in	mathematics,	thus	
providing	a	 taxonomy	and	more	 importantly	drawing	a	 line	between	diagrams	
that	 can	 be	 reliably	 used	 in	 a	 proof	 and	 others	 that	 play	 the	 role	 of	 useful	
illustrations	or	good	heuristics	but	do	not	possess	 the	necessary	 features	 to	be	
considered	part	and	parcel	of	a	proof.		

In	the	following	sections,	I	will	briefly	present	some	of	the	views	that	correspond	
to	these	two	strategies,	which	would	give	on	my	view	a	fair	picture	of	where	the	
research	on	diagrammatic	proofs	is	going	today.14		

3.2.1	First	strategy:	what	is	a	“proof”?	

The	 first	 strategy	 that	 has	 recently	 emerged	 in	 the	 literature	 is	 the	 focus	 on	
mathematical	 proofs	 in	 the	 practice.	 Such	 an	 investigation	 does	 not	 target	
diagrams	 in	 particular,	 but	 aims	 to	 move	 away	 from	 the	 narrow	 definition	 of	
proof	 typical	 of	 the	 received	 view.	 I	 will	 present	 here	 some	 frameworks	 that	
would	allow	for	diagrams	to	have	a	constitutive	role	in	proofs:	I	will	start	from	
the	recipe	model	of	proofs	introduced	in	Tanswell	(forthcoming)	and	then	briefly	
discuss	recent	work	on	informal	proofs.	It	is	important	to	note	that	the	topic	of	
informal	proof	in	particular	would	demand	a	chapter	of	its	own,	and	for	reasons	
of	space	I	will	not	be	able	to	go	into	the	details;	my	discussion	will	be	limited	to	
the	aspects	of	this	debate	that	are	relevant	for	diagrammatic	proofs.	

In	 Tanswell	 (forthcoming)’s	 “recipe	 model”,	 proofs	 are	 to	 be	 intended	 as	
analogous	to	cooking	recipes	since,	as	cooking	recipes,	they	give	instructions	on	
how	 to	 carry	 out	 actions	 –	 in	 the	 case	 of	 a	 proof,	 “mathematical”	 actions	 –	 in	
order	 to	 obtain	 the	 desired	 result.	 Of	 course,	 this	 does	 not	 conform	 with	 the	
received	 view,	 according	 to	which	 the	 proof	 is	 a	 deductive	 syntactic	 argument	
that	moves	from	some	axioms	to	a	conclusion	by	following	some	pre-established	
inference	rules.	In	Tanswell’s	view,	despite	the	success	and	fruitfulness	of	such	a	
definition	 of	 proof,	 it	 is	 time	 to	 provide	 a	 new	 definition	 that	 would	 be	more	
faithful	to	the	practice	of	contemporary	mathematics:	written	proofs	are	written	
records	of	how	the	theorem	is	obtained,	and	their	main	objective	is	to	explain	to	
the	 reader	 how	 to	 actually	 do	 the	 reasoning	 that	 is	 required	 in	 order	 for	 the	

	
14	Given	that	the	studies	I	will	refer	to	are	newly	published,	I	might	happen	not	to	know	yet	about	
other	studies	that	could	easily	be	included	in	this	survey.	
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proof	 of	 the	 theorem	 to	 go	 through.	 As	 in	 the	 case	 of	 recipes,	 proof	 has	 a	
communicative	 intention	 and	 there	might	 be	 different	 styles	 of	 presenting	 the	
same	proof.		

The	evidence	 that	Tanswell	brings	about	 to	argue	 for	 this	analogy	 is	 first	of	all	
linguistic:	 the	 texts	 of	 proofs	 include	 instructions	 in	 the	 imperative	 tense	 (see	
Tanswell	 &	 Inglis,	 in	 this	 volume).	 However,	 such	 a	 view	 of	 proof	 allows	
including	diagrams	and	figures	interacting	with	the	text	as	alternative	means	of	
giving	 instructions.	 The	 opposition	 between	 assertions	 on	 the	 one	 hand	 and	
pictures	on	the	other	is	ill	posed:	both	of	them	can	convey	instructions,	and	for	
both	 of	 them	 some	 competence	 for	 interpretation	 is	 required.	 However,	 in	
Tanswell’s	view,	pictures	give	instructions	more	directly	than	text,	as	is	the	case	
for	LEGO	games	or	 IKEA	 furniture:	 there	 is	no	reason	 to	 require	 that	a	picture	
corresponds	 to	 a	particular	 sequence	of	 assertions,	 since	what	matters	 are	 the	
actions	that	it	guides	the	reader	through	(Tanswell,	2017).	It	is	important	to	note	
that	such	a	view	stresses	the	role	of	action	in	proving,	which	is	in	line	with	what	
we	 have	 seen	 so	 far	 in	 interpretations	 of	 diagrammatic	 reasoning	 as	 based	 on	
conceiving	 the	 legitimate	 operations	 and	 manipulations	 they	 make	 accessible.	
Moreover,	such	a	conception	is	also	related	to	wider	debates;	in	the	following,	I	
will	focus	on	three	of	them.	

First,	as	Tanswell	himself	explains,	the	focus	on	action	is	inspired	by	other	work	
on	informal	proofs,	in	particular	Azzouni	(2004)	and	Larvor	(2012).	The	topic	of	
informal	proofs	is	very	much	discussed	in	the	literature	and	clearly	goes	beyond	
the	 scope	 of	 this	 chapter.	 However,	 some	 of	 the	 elements	 of	 this	 debate	 are	
relevant	for	proofs	using	diagrams.	I	will	refer	to	Burgess	and	De	Toffoli	(2022),	
who	claim	that	the	standard	view,	according	to	which	a	mathematical	argument	
is	 a	 rigorous	proof	 if	 and	only	 if	 it	 can	 in	principle	 be	 converted	 into	 a	 formal	
derivation,	is	a	very	general	claim	–	a	family	of	views	rather	than	a	single	view	–	
that	 can	 be	 specified	 in	 many	 different	 ways.	 However,	 the	 two	 authors	
themselves	 assume	 different	 positions	 in	 relation	 to	 the	 role	 of	 diagrams	 in	
proofs.	 According	 to	 Burgess	 (2015),	 there	 is	 a	 correspondence	 between	 the	
formalized	version	of	the	steps	of	an	informal	proof	and	the	components	of	the	
formal	 proof.	 Formalization	 is	 thus	 a	 process	 of	 filling	 in	 the	 details,	 and	 the	
analysis	 of	 the	 role	 of	 diagrams	 is	 thus	 excluded	 from	 this	 account	 of	 rigor.	
However,	De	Toffoli	 (2021)	argues	that	 this	 is	difficult	 to	accept	 if	one	 looks	at	
the	practice	of	mathematics:	a	definition	of	rigor	such	as	this	one	would	exclude	
a	 considerable	 number	 of	 proofs	 that	 mathematicians	 believe	 to	 be	 rigorous,	
which	 is	 not	 a	 desideratum	 if	 one	 moves	 from	 within	 a	 perspective	 that	 is	
interested	in	the	practice.15	As	a	consequence,	diagrams,	they	claim,	are	relevant	
to	 the	debate.	This	 is	because	 if	 the	connection	between	a	proof	 and	one	of	 its	
formal	counterparts	is	simply	the	one	of	filling	in,	then	diagrams	cannot	be	part	
of	 rigorous	 proofs.	 However,	 the	 relation	 between	 informal	 and	 formal	 proofs	
might	 be	 more	 complicated	 –	 and	 still	 consistent	 with	 some	 versions	 of	 the	
standard	view.16	

	
15	As	I	will	explain	in	the	next	section,	the	way	to	go	according	to	De	Toffoli	is	to	focus	on	what	
kinds	 of	 diagrams	 one	 refers	 to	 when	 asking	 questions	 about	 their	 being	 part	 and	 parcel	 of	
rigorous	proofs.	
16	On	the	standard	view,	see	also	Hamami	(2022).	
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Second,	the	recipe	model	of	proofs	can	be	seen	as	an	element	of	a	larger	picture	
where	 the	 focus	 is	 on	 the	 activity	of	 proof	 (Hamami	 and	 Morris,	 2021).	 If	 a	
mathematical	proof	is	to	be	intended	as	a	sequence	of	deductive	steps,	then	there	
is	an	isomorphism	between	such	steps	and	the	sequence	of	deductive	inferences	
constituting	 the	 proof	 activity.	 The	 analogy	 here	 is	 between	 proof	 activity	 and	
other	 more	 ordinary	 activities	 such	 as	 travelling,	 where	 actions	 need	 to	 be	
planned	in	advance	in	order	to	be	able	to	move	from	the	current	location	to	the	
desired	one.17		

Third,	alternative	models	of	proofs	might	have	important	consequences	in	other	
related	 research	 domains	 such	 as	 mathematics	 education.	 For	 example,	 if	
students	are	taught	the	received	view	according	to	which	proofs	are	sequences	
of	assertions,	they	will	miss	important	elements	of	the	practice,	for	example	they	
will	not	be	aware	of	the	fact	that	there	are	imperatives	in	the	written	reports	of	a	
proof	and	that	these	are	what	would	guide	them	through	the	steps	of	the	proof	
(see	 Weber	 &	 Tanswell,	 2022).	 Why	 should	 students	 be	 taught	 definitions	 of	
proofs	 that	 do	 not	 correspond	 to	 what	 is	 really	 going	 on	 in	 the	 practice	 of	
mathematics	and	in	the	very	practice	of	learning?	More	in	general,	the	results	of	
a	 philosophical	 approach	 to	 the	 practice	 of	 mathematics	 are	 opening	 up	 a	
potentially	 very	 fruitful	 space	 for	 discussion	with	 education	 (see	 for	 reference	
Hamami	&	Morris	2020).	Giaquinto,	in	his	pioneering	work,	was	one	of	the	first	
to	recognize	the	potential	of	such	a	collaboration	and	to	foster	it.	

Once	again,	 these	 topics	go	beyond	diagrammatic	proofs,	 and	 therefore	 for	 the	
details	I	would	encourage	the	reader	to	refer	to	the	articles	in	the	bibliography.	
However,	 from	the	narrative	that	I	offer	 in	the	present	chapter,	 it	emerges	that	
the	 questions	 that	 were	 raised	 in	 the	 context	 of	 diagrammatic	 proofs	 have	 at	
least	in	part	contributed	to	the	definition	of	these	new	research	topics.		

3.3	Second	strategy:	what	is	a	“diagram”?	

The	second	strategy	to	formulate	a	big	picture	concerning	diagrammatic	proofs	
is	based	on	a	 focus	on	the	variety	of	diagrams	and	the	different	roles	 that	 they	
might	 play	 in	 the	 practice	 of	 mathematics,	 some	 of	 them	 being	 relevant	 for	
proofs.		

One	way	 to	 go	 is	 to	 “zoom	out”	 and	 to	 consider	diagrams	 as	 “representational	
cognitive	 tools”,	 that	 is,	 as	 a	 kind	 of	 multi-recruiting	 systems	 constituting	 an	
“interface”	 on	which	 information	 coming	 from	perception	 or	 action,	 already	 at	
play	in	ordinary	pragmatic	contexts,	and	other	more	cognitive	resources	such	as	
conceptual	 knowledge	 gets	 integrated	 (Giardino,	 2018b).	 However,	 this	 more	
cognitive	approach	will	not	suffice	to	respond	to	the	specific	question	about	the	
possibility	of	including	diagrams	as	part	and	parcel	of	proofs.	In	order	to	do	that,	
one	 useful	 notion	 would	 be	 the	 one	 of	 “material	 anchor”,	 as	 introduced	 in	
cognitive	 anthropology	 (Hutchins,	 2005).	 Mathematics	 would	 offer	 physical	
structures	 –	 diagrams	 and	 other	 representations	 –	 that	 result	 from	 a	 cultural	
process	 of	 “crystallization”	 of	 conceptual	 models	 into	 external	 and	 material	
objects.	 Such	 objects,	 when	 correctly	 interpreted,	 can	 be	 manipulated	

	
17	For	a	survey	on	the	recent	studies	about	agency	in	mathematical	practice,	see	Hamami	(in	this	
volume).	
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meaningfully;	 in	 some	 particular	 contexts,	 physical	 manipulations	 can	
correspond	to	mathematical	operations	so	as	to	reduce	memory	and	processing	
loads.	 In	some	cases,	 the	particular	physical	 structure	would	have	an	 influence	
on	the	way	in	which	the	mathematical	content	is	understood	or	conceptualized.	
Some	other	notions	coming	from	cognitive	science	can	in	this	respect	be	applied	
to	such	tools,	so	as	 for	example	the	notion	of	affordance:	diagrams	afford	some	
epistemic	 actions	 on	 them,	 given	 their	 physical	 features	 and	 also	 and	 more	
importantly	their	correct	interpretation	–	the	consideration	of	physical	features,	
if	 not	 controlled,	 can	 lead	 us	 astray.	 As	 Rabouin	 (2018)	 has	 pointed	 out,	 the	
notion	of	material	anchor	might	also	be	relevant	to	account	for	Netz’	or	Manders’	
studies	 of	 Greek	 mathematics,	 which	 consider	 how	 external	 resources	 are	
manipulated	 in	 order	 to	 operate	 on	 imagined	 structures.	 In	 his	 view,	 the	
historical	evolution	of	mathematics	has	brought	to	a	progressive	“internalization”	
of	 these	 structures:	 representational	 tools	 such	 as	 figures	 still	 remained	
important,	 but	 new	 symbols	 were	 introduced	 in	 order	 to	 better	 control	 these	
operations	on	the	imagined	mathematical	structures.		

Another	possibility	to	work	on	a	big	picture	is	to	go	in	the	opposite	direction	and	
to	“zoom	in”,	by	considering	again	the	specifically	mathematical	case	studies	that	
have	 been	 produced	 so	 far	 in	 order	 to	 give	 a	more	 precise	 characterization	 of	
what	can	be	recognized	in	it	as	a	diagram.		

In	a	recent	paper,	Carter	(2019b)	goes	back	to	her	notion	of	fruitful	diagrams	to	
put	together	the	several	examples	of	diagrammatic	proofs	that	were	discussed	in	
the	literature.	She	refers	to	Macbeth’s	work	on	diagrammatic	reasoning	and	her	
claim	 that	diagrams	and,	more	 in	 general,	 other	 forms	of	notations	 are	 fruitful	
because	they	make	mathematical	objects	“pop	out”,	thanks	to	the	way	in	which	
the	representation	is	constructed.	However,	if	this	were	the	case,	what	would	the	
peculiarity	 of	 diagrams	 compared	 to	 other	 forms	 of	 representation?	 Carter’s	
proposal	is	to	define	the	appropriate	class	of	objects	to	think	in,	which	is	the	one	
of	 “faithful	 representations”.	 Her	 background	 is	 once	 again	 Peirce’s	 semiotics,	
according	 to	which	 icons	 –	 a	 type	 of	 sign	 –	 divide	 into	 (i)	 images,	 resembling	
what	 they	 represent,	 (ii)	 diagrams,	 displaying	 relations,	 and	 (iii)	 metaphors,	
depending	 on	 conventional	 rules	 or	 structural	 similarities.	 Faithful	
representations	are	defined	as	icons,	that	is,	as	images,	diagrams	or	metaphors	in	
Peirce’s	 sense;	 moreover,	 manipulations	 made	 on	 them	 would	 respect	
manipulations	made	on	“the	object	of	study”,	which	may	be	properties,	relations,	
concepts	 or	more	 simply	 objects	 –	we	 are	 not	 far	 from	 the	 idea	 that	 they	 are	
material	 anchors.	 These	 representations	 are	 fruitful	 precisely	 because	
manipulations	 performed	 on	 them	 can	 make	 new	 relations	 appear	 that.	 It	 is	
important	 to	 note	 that	 the	 border	 between	 diagrams	 and	 notations	 in	 general	
gets	blurred;	Carter	is	aware	of	this,	and	argues	for	two	peculiarities	of	diagrams.	
First,	 diagrams	 show	 that	 a	 relation	 holds	 between	 objects	 by	 joining	 their	
respective	representations	by	a	line;	in	some	cases,	the	nature	of	the	relation	is	
given	by	the	figure.	Second,	thanks	to	two-dimensionality,	diagrams	can	be	used	
to	 show	 that	 an	 object	 is	 related	 to	 multiple	 objects,	 as	 shown	 in	 Macbeth’s	
examples.	

In	 some	 of	 her	 recent	 work,	 De	 Toffoli	 (2022)	 tries	 to	 give	 a	 more	 precise	
definition	 to	 the	 vague	 notion	 of	 diagrams	 that	 has	 been	 considered	 in	 the	
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philosophy	of	mathematical	practice.	The	taxonomy	that	she	proposes	is	flexible	
enough	to	allow	for	borderline	cases	but	has	the	advantage	of	offering	a	tool	that	
is	useful	to	navigate	the	literature	by	pointing	to	the	relevant	differences.	In	her	
reconstruction,	 and	 in	 line	 with	 her	 previous	 work,	 the	 starting	 point	 is	
notational	 systems	 in	 general,	 some	 of	 which	 are	 geometric-topological	 (GT),	
that	 is,	 they	possess	 geometric-topological	 features	 that	 are	 relevant	 to	 enable	
the	 use	 of	 a	 form	 of	 intuition.	 GT-figures	 can	 be	 diagrams	 or	 illustrations,	 but	
only	the	first	are	used	in	a	systematic	way,	so	as	to	allow	them	to	eventually	be	
part	 and	 parcel	 of	 a	 proof.	 Moreover,	 GT-diagrams	 –	 it	 is	 the	 case	 of	 knot	
diagrams	briefly	mentioned	above	–	trigger	enhanced	manipulative	imagination.	
However,	other	more	precise	distinctions	have	to	be	introduced.	In	fact,	it	is	only	
thanks	 to	 further	 elements	 that	 the	 class	 of	 mathematical	 diagrams	 can	 be	
defined:	mathematical	diagrams	are	indeed	systematic	notational	items	that	are	
either	GT	or	two-dimensional	or	both.		

There	 are	 two	 important	 points	 to	 note:	 first,	 the	 diagrams	 that	 constitute	 a	
challenge	 for	 the	 received	 view	 of	 proof	 –	 and	 the	 ones	 that	 we	 have	 mostly	
discussed	so	far	in	this	chapter	–	are	specifically	GT.	In	fact,	non-GT	diagrams	are	
generally	 accepted	 in	 proofs	 –	 this	 is	 for	 example	 the	 case	 of	 commutative	
diagrams.	However,	 it	 is	 only	 after	 the	middle	 of	 the	 20th	 century	 that	 non-GT	
mathematical	diagrams	entered	the	scene.18	To	sum	up,	according	to	De	Toffoli’s	
big	 picture,	 notational	 systems	 can	 be	 distinguished	 across	 three	 orthogonal	
dimensions:	(i)	systematic	vs.	non	systematic	use;	(ii)	geometric-topological	vs.	
non-geometric-topological;	 (iii)	 two-dimensional	 vs.	 non-two-dimensional.	
Borderline	cases	are	accepted.	We	now	have	a	map	to	situate	the	different	case	
studies,	 also	 in	 relation	 to	 the	 questions	 about	which	 of	 these	 dimensions	 are	
decisive	to	allow	for	diagrams	to	be	part	and	parcel	of	diagrammatic	proofs.		

This	 second	 strategy	 also	opens	up	new	 research	 territories.	On	 the	one	hand,	
diagrams	can	be	considered	as	externalizations	 for	 thought,	and	therefore	 they	
can	 be	 inquired	 from	 the	 point	 of	 view	 of	 cognitive	 science	 –	 as	 Netz	 and	
Giaquinto	had	already	been	suggesting.	Would	that	be	some	piece	of	evidence	in	
favor	of	an	“extension”	of	the	mind?	On	the	other	hand,	diagrams	can	be	intended	
as	signs	and	so	they	have	to	be	studied	in	relation	to	other	kinds	of	notations;	as	
a	 consequence	 –	 as	 already	 proposed	 by	 scholars	 like	 Carter	 –	 diagrammatic	
proofs	are	a	subject	also	for	semiotics.19		

4.	Conclusions	

In	this	chapter,	I	tried	to	build	a	narrative	about	how	the	views	on	diagrammatic	
proofs	have	developed	in	the	philosophy	of	mathematical	practice,	starting	from	
the	 first	 pioneering	 works	 that	 appeared	 at	 the	 beginning	 of	 the	 2000s	 and	
getting	 to	 the	 most	 recent	 publications.	 I	 have	 shown	 that	 the	 interest	 in	
diagrammatic	 proofs	 was	 promoted	 by	 renewed	 attention	 to	 topics	 that	 were	

	
18	It	 would	 be	 interesting	 to	 discuss	 the	 relation	 between	 the	 process	 of	 internalization	 as	
mentioned	above	by	Rabouin	and	the	return	to	diagrams	in	a	very	different	formal	and	formally	
controlled	context.		
19	This	latter	research	direction	is	developed	in	the	Section	of	this	Handbook	on	the	Semiology	of	
Mathematics.	See	 for	example	Waszek	(this	volume)	that,	as	others	papers	 in	the	same	section,	
partially	overlaps	with	some	of	the	topics	of	the	present	chapter.	
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excluded	 from	 the	 philosophical	 research	 by	 the	 so-called	 received	 view	 of	
mathematics.	 The	 question	 about	 the	 role	 of	 diagrams	 in	 proofs	 is	 specifically	
philosophical	 despite	 the	 fact	 that	 it	 relates	 to	 other	 more	 general	 questions	
about	the	effectiveness	of	diagrams	and	their	omnipresence	in	mathematics.	

The	 research	 on	 diagrammatic	 proofs	 is	 characterized	 by	 two	waves.	 The	 first	
wave	 focused	 on	 case	 studies,	 in	 particular	 from	 Greek	 geometry	 and	 more	
recently	from	contemporary	mathematics.	The	second	wave,	to	which	we	assist	
today,	 is	 instead	aimed	to	build	comprehensive	 frameworks	on	how	to	account	
for	diagrammatic	proofs.	In	my	view,	this	wave	is	characterized	by	two	strategies.	
First,	 it	 is	possible	to	stretch	the	notion	of	proof	as	 inherited	from	the	received	
view	 and	 to	 consider	 alternative	 models	 for	 it,	 which	 would	 allow	 including	
diagrammatic	 representations	 in	 proofs.	 Second,	 it	 is	 desirable	 to	 focus	 on	 the	
term	 “diagram”	 and	 to	 focus	 on	 its	 cognitive	 features	 or	 to	 distinguish	 several	
taxa	for	mathematical	representations.	For	both	strategies,	it	is	evident	that	the	
research	on	diagrammatic	reasoning	has	to	widen	its	scope,	either	by	relating	to	
broader	contexts	–	such	as	the	reflection	on	formal	and	informal	proofs	and	rigor	
in	 mathematics	 –	 or	 by	 opening	 up	 to	 new	 research	 domains,	 such	 as	 the	
consideration	 of	 the	 role	 of	 cognitive	 tools	 for	 thought	 and	 the	 philosophical	
study	of	notation	in	mathematics,	which	are	both	crucial	issues	for	education	and	
cognitive	science.	This	sums	up	how	the	interest	in	diagrammatic	proofs	started	
–	almost	20	years	ago	–	and	where	it	is	going	today.			
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