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Abstract

Weed recognition is an essential step for automatic weed control systems. Identifying weeds enables
targeted control measures to be implemented, minimizing the use of chemicals and reducing the
impact on the environment. Deep learning-based approaches proved to be effective for addressing
various complex classification problems. However, to benefit fully from their capabilities, large
amounts of labeled data are required, which represents a limitation for agricultural applications,
consequence of the tedious and time-consuming process of data labeling. Conversely, unlabeled data
could be acquired in large quantities, with relative ease. Hence, our aim is to develop robust and
precise deep learning models, to carry-out the recognition and identification of weed species, using
both types of data. To this end, we propose a method, that adopts the semi-supervised learning
paradigm, to optimally combine labeled and unlabeled data. The method is based on a new deep
neural networks architecture, which consists of a modernized convolutional encoder belonging to the
family ConvNeXt and a thoroughly designed deep decoder network. This architecture, enables a
successful integration of consistency regularization. The conducted experiments on DeepWeeds and
4-Weeds, showed that the semi-supervised models trained through our proposed method provide
a stable and high classification performance, compared to other state-of-the-art deep learning
models, which were affected negatively by the amount of labeled data available, and the presence
of noise during inference. Furthermore, the effectiveness of the proposed method was demonstrated
in comparison to other semi-supervised learning methods. The results obtained demonstrate the
benefits of adopting the semi-supervised learning paradigm, especially in scenarios with very limited
labeled data.

Keywords: semi-supervised learning, deep learning, consistency regularization, precision
agriculture

1. Introduction

All around the world, weeds represent the highest potential yield loss to crops along with
pathogens (fungi, bacteria, etc.) and animal pests (insects, rodents, nematodes, mites, birds,
etc.) being both of lesser concern (Oerke, 2006; Chauhan, 2020).Weeds are highly competitive and
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adaptable to adverse conditions. these traits give them the ability to compete with crops at every
stage of their growth for nutrients, moisture, light and space, reducing the quality and quantity of
the final yield. Furthermore, the reproductive mechanism of weeds is far superior to that of crop
plants, especially under unfavorable conditions. Hence weeds constantly invade fields to overcome
crops (Radicetti and Mancinelli, 2021).Yield losses in crops due to weeds have substantial economic
losses (Pimentel et al., 2005; Llewellyn et al., 2016; Gharde et al., 2018; Chauhan, 2020).

Nowadays, most agricultural weed management practices rely heavily on the use of herbi-
cides which requires an extensive use of chemical compounds, that may lead to undesirable effects
on the health of crop plants, soil and environment (Aktar et al., 2009). Moreover, the over-
reliance on herbicides with similar modes of action caused the evolution of herbicide-resistant
weeds (Chauhan, 2020). Currently there have been 521 unique cases of herbicide-resistant weeds
reported globally (Heap, 2023). Growing concern over the excessive use of agrochemicals is driving
the adoption of precision farming practices. These practices aim to improve the efficiency of the
use of agrochemicals, reduce costs and energy consumption and promote environmental protection
(Radoglou-Grammatikis et al., 2020), by leveraging site-specific automated application of herbi-
cides and robotic weed removal. The development of automated targeting mechanisms for weed
control relies on an accurate identification and recognition of unsown plant species. This is a chal-
lenging problem because of field conditions, such as variation in lighting and illumination, and the
similarities between weeds and crop plants in terms of color, texture, shape (Hasan et al., 2021).

Weed species classification using traditional machine learning approaches is based on the thor-
ough process of feature extraction and selection, to apply machine learning classifiers. Sabzi et al.
(2020) extracted texture features, in addition to color and shape features, and five moment-invariant
features, from ground-based images, then used several algorithms to select discriminative features,
and performed weed classification using various ML-based classifiers including support vector ma-
chines and random forests. Conventional machine learning techniques require deep domain exper-
tise to conduct the complex and time-consuming process of feature engineering. On the contrary
deep learning approaches are characterized by their strong ability of extracting discriminative fea-
tures automatically from data, through representation-learning (Lecun et al., 2015). The high
learning capacity of deep learning models allows them to perform classification and prediction
particularly well, given sufficient amounts of labeled data (Kamilaris and Prenafeta-Boldu, 2018).
There are currently many successful and popular deep network architectures (Bah et al., 2018),
which have been used for agricultural applications. Reedha et al. (2022) applied vision transformer-
based networks, i.e., VIT-B-16 and VIT-B-32 (Dosovitskiy et al., 2020) for weed and crop plants
classification using unmanned aerial vehicle (UAV) imagery. Ahmad et al. (2021) used convo-
lutional neural networks (VGG16 (Simonyan and Zisserman, 2014), ResNet50 (He et al., 2015),
InceptionV3 (Szegedy et al., 2015)) to identifiy weed species in the fields of soybean and corn, from
ground-based imagery.

Recent effective saliency detection methods (Cong et al., 2019; Wang et al., 2022) favor deep
learning-based techniques, for identifying the most important regions and salient objects in images.
This is achieved by exploiting the multi-level features extracted using deep neural networks to
produce saliency maps. Zhao and Wu (2019) proposed pyramid feature attention network to
focus on high-level context-aware features, and on low-level spatial structural features, to capture
contextual information and refine salient object details. High-level and low-level features are then
both used to generate improved saliency maps. Saliency detection can enhance image classification
and segmentation. Zeng et al. (2019) developed a single network that combines a segmentation



network and a saliency aggregation module to explicitly capture the connections between the two
computer vision tasks. Co-saliency detection aims to detect salient regions from a set of related
images (Cong et al., 2019), by exploring inter-image correspondence. Wei et al. (2017) presented
a deep learning scheme based on a fully convolutional network for co-salient objects discovery.
Similarly, co-segmentation seeks to segment common objects from a group of relevant images. Li
et al. (2019) proposed a deep co-segmentation approach for segmenting common objects belonging
to a common semantic class from a pair of images.

Nonetheless, to fully benefit from deep learning algorithms and exploit their potential, large
labeled datasets are required, which is considered as a problem for agricultural applications because
of the difficulties related to the labeling process. Conversely, unlabeled data could be acquired in
large quantities with relative simplicity. One of the challenges to overcome in semi-supervised
learning is not only to be able to achieve a good performance as the one we can reach using
large enough fully annotated data with the same model but, going further, to be able to perform
similarly or better than state-of-the-art supervised models on datasets with a limited amount of
labeled data. One way to do that is to solve the dilemma between using an accurate model with
a sufficient number of parameters, knowing that, only few labeled data will be available to train
it. Our proposition is going in this direction. Henceforth, in this paper we propose a method, that
employs SSL, to generate strong predictive deep learning models, using both types of data, for
weed species classification. The following summarizes our main contributions :

e The development of a new deep neural networks architecture of the auto-encoder type, based
on ConvNext encoder.

e Enabling training in semi-supervised way, by taking advantage of the reconstruction model
with skip-connections to derive the most important and relevant features, mainly from unla-
beled data, to achieve high and accurate classification performance, with limited amounts of
labeled data.

e Integration of consistency regularization constraint, to facilitate and enhance simultaneous
joint learning of image classification and the reconstruction from noisy inputs, in order to
improve generalization and robustness.

e Extensive experiments on three public datasets, for a rigorous evaluation and assessment of
the developed deep semi-supervised model, to demonstrate the effectiveness of our proposed
method.

The remaining of this paper is structured as follows: The next section, presents the related work.
The subsequent section is devoted to in-depth description of our proposed method. The forth
section, describes at length the conducted experiments, as well as the obtained results in comparison
to other state-of-the-art deep learning models. Finally, our conclusions and perspectives, regarding
future work, are given in the last section.

2. Related Work

There exist a few studies in the literature, where the semi-supervised learning paradigm has
been adopted to elaborate methods, for the identification and recognition of weeds. Kerdegari et al.
(2019) proposed an approach based on semi-supervised generative adversarial networks (SGANS)
for semantic segmentation of weed and crop, providing a pixel-wise classification, using aerial
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multispectral imagery. Khan et al. (2021) developed an optimized semi-supervised GAN-based
framework for crops and weeds classification, in UAV images. Shorewala et al. (2021) used a
semi-supervised technique for the estimation of weed density and distribution, from ground-based
images. The approach is comprised of two steps: an unsupervised binary segmentation step, that
is applied to obtain vegetation masks; and a classification step for the identification of weeds and
crops, by using a fine-tuned convolutional neural network. Homan and du Preez (2021) presented
a two-fold approach including feature recognition and species classification based on deep semi-
supervised learning for plant identification. Hu et al. (2021) introduced a method for training
site-specific weed detection models using image synthesis and semi-supervised learning. Liu et al.
(2023) proposed a semi-supervised method, which incorporates a mixed attention mechanism with
an explicit aim of improving model’s ability to capture important features for weeds detection in
wheat fields.

Our proposed method falls under a category of semi-supervised learning, based on consistency
regularization (Yang et al., 2021), which has as an objective, producing reliable high-performing
models. From a semi-supervised perspective we were mostly inspired by the ladder network (Ras-
mus et al., 2015), because of the successful utilization of the consistency regularization. Shortly
afterwards, the m-model and temporal ensembling (Laine and Aila, 2016) were introduced, which
are consistency regularization methods, the first relies on the stochastic transformations of train-
ing samples and the second combines the stochastic transformations with an exponential moving
average of the predictions. Following these two methods Tarvainen and Valpola (2017) proposed
the mean teacher, which focused more on the structure of the networks for the consistency train-
ing. Consistency regularization methods suffer from confirmation bias because they rely on a
single model within the semi-supervised architecture to generate predictions for the consistency
regularization term. In the case where these predictions corresponding to the unlabeled samples
are incorrect, over multiple iterations, it leads to negative impact of the semi-supervised learning
performance. Ke et al. (2019) presented their approach called dual student, which focused also
on the structure and proposed a sample stability constraint with respect to the unlabeled data to
mitigate the effect of confirmation bias. In order to overcome the confirmation bias, we propose
an approach with two joint models. The formulation of the semi-supervised learning criterion is
based on consistency regularization. The latter depends on minimizing the distance between re-
constructed output images and clean output images, to provide accurate learning signals for more
focus on incorporating reliable information about data structure during the training process.

Moreover, the above-mentioned consistency-based methods were applied to general-purpose
datasets, such as CIFAR-10 and CIFAR-100 (Krizhevsky, 2009), the development of our method
was driven by the goal of accurately recognizing and identifiying weed species, from images pro-
cured under real-world conditions. We can also state that, the main difference between our method
and the other consistency regularization-based methods resides in the design of the proposed deep
encoder-decoder architecture that utilizes skip-connections along with a significant number of train-
able parameters, which is over 100 million.

3. ConvNeXt based method

This section describes the approach used in our research work. Figure 1 gives a complete
overview of the proposed deep architecture, further we present in detail the different components
of this architecture. First, we describe the problem statement, then in the following subsections
we present the learning strategy employed and the ConvNeXt encoding-decoding process. These
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components form the foundation of our approach and ensure a thorough understanding of the
developped technique.

3.1. Problem statement

In the supervised learning settings, we are given samples (x1,91), (x2,%2),. .., (n, Yn), where
each pair (z;,¥;), is composed of an input x; in X the space of inputs, and a label y; in ) the space
of outputs. In our case X C R? represents the set of images, and we have ) = {1,...,C} represents

the species of weeds that we want to identify, C refers to the number of classes. The join space
X x Y is assumed to be a probabilistic space with an unknown probability measure P (x,y) and the
data is sampled from this space, in other words (z;,y;) ~ P (z,y). The joint measure P (z,y) can
be decomposed into a measure of the marginal distribution P (z), and a measure of the conditional
distribution P (y|z). Supervised learning aims at estimating a functional relationship © — y,
between a covariate z € X and the class variable y € {1,...,C}, with the goal of minimizing the
classification error. In the semi-supervised learning settings in addition to the labeled data D, =
{(zs,yi)lt =1,...,n} sampled from P (x,y), we have unlabeled data D, = {zp4;|j =1,...,m}
sampled from P (z)(Chapelle et al., 2006). When the process of acquiring labeled samples is costly
and time-consuming, and obtaining unlabeled samples is inexpensive and can be done quickly, then
n < m which means that the size of the labeled portion could be much smaller than the size of the
unlabeled portion. The objective of semi-supervised learning is to leverage the unlabeled data D,,
to provide the prediction function that is characterized by its trainable parameters, with additional
information about the structure of the data distribution P (z), which then leads to an increased
performance along with better generalization to new unseen samples (Oliver et al., 2018; Yang
et al., 2021). Semi-supervised learning requires that the data distribution should be under a set of
assumptions. Otherwise, the prediction performance may not be improved, so that the knowledge
on P (x), obtained through the unlabeled data carries useful information in the inference of P (y|z).
Based on previous studies (Chapelle et al., 2006) and (Yang et al., 2021), the main assumptions
associated with semi-supervised learning are as follows:

e The cluster assumption: If points are in the same cluster, they are likely to be of the same
class, which means that the decision boundary should lie in a low-density region.

e The semi-supervised smoothness assumption: If two points x1, x9 in a high-density region
are close, then so should be the corresponding outputs y1, y2.

e The manifold assumption: high-dimensional data lie approximately on a low-dimensional
manifold. In high-dimensional spaces, the volume grows exponentially with the number of
dimensions, which makes it difficult to estimate reliable densities. The second problem linked
to high dimensions is that the pairwise distances tend to become more similar, and thus less
expressive. If the data lie on a low-dimensional manifold, then the learning algorithms can
overcome the problems related to high-dimensionality, by operating in the corresponding
low-dimensional space.
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Figure 1: Overview of the approach. The proposed deep autoencoder architecture is based on the ConvNeXt-base encoder, and a specifically designed
deep decoder model, with skip-connections, to enable training in semi-supervised way, by using both supervised and unsupervised losses, to ensure a more
effective utilization of the labeled and unlabeled data



3.2. Semi-supervised learning process

Training in semi-supervised way is achieved through the optimization of the set of parameters
related to the joint networks of our proposed architecture, by using both labeled and unlabeled
data, which belong to the training subset. The optimization process is carried out, by minimizing
the error of the objective function, which is composed from the sum of two learning criterions: an
unsupervised loss (consistency regularization loss) and supervised loss. Our aim from the minimiza-
tion of the unsupervised loss, is to utilize the characteristics of our deep joint networks, that allow
for a maximum flow of information in the backward pass and thereby increasing the effect of influ-
encing all the weights of the networks, to learn meaningful, informative, robust representations for
the reconstruction of clean output images and subsequently improve the ability of generalization,
to enhance the classification performance. The function we choose to represent the unsupervised
term (consistency regularization term), is the L2 loss, and it takes into consideration the labeled
and unlabeled portions of the training subset. Its definition is given in the following way:

lunsup (1'1’57,) = ||"I:Z - j31”% = (xl - jZ)Q (1)

Where z; is the input image and z; is the reconstructed image, the output of the decoder.
The supervised loss uses only the labeled portion of the training subset. To represent this term of
the objective function we choose the cross-entropy loss. The supervised loss uses only the labeled
portion of the training subset. To represent this term of the objective function we choose the
cross-entropy loss. The minimization leads to the optimization of the parameters associated to the
Encoder denoted by 6z and the Dense Layer (0p_p ) for the purpose of reducing the classification
error, by relying on the supervised signals of the backward pass. The loss is expressed as follows:

C—1
Lup (Ui f (@i + Gi0p,0p-1)) = = Y yislog(f; (@i + Gi3 0, 0p-1)) (2)
j=o
Where y; is the ground truth label, f (z; + (;;0p,0p_1) refers to the prediction y; of dense
layer that uses the latent space coming from the Encoder, and (; denotes the additive gaussian
noise. As forementioned summing the supervised and unsupervised terms gives us the objective
function:

lssl = lsup (yia f (xz + Ci; ‘9E7 HD—L)) + )\-lunsup (:L'ia 56@) (3)

Here X is a hyper-parameter used to control the degree to which the unsupervised loss con-
tributes to the overall loss.

Clean image ¢ ~(0,(0.1)?) ¢, ~(0,(0.25)2) Reconstructed images

Figure 2: Reconstruction from noisy input images using our proposed auto-encoder (shown in Figure 1), the first
gaussian noise (1 was sampled from a normal distribution of a mean p; equal to zero and a standard deviation o1
equal to 0.1, as for the second gaussian noise (> the parameters of its normal distribution are the following: o
equal to zero and o2 equal to 0.25

7



3.3. ConvNeXt Encoder

ConvNeXt is a family of pure convolutional neural networks, developed through the progressive
process of modernizing standard resnets (He et al., 2015), toward the design of transformers by
exploring the design spaces and limits that can be reached by relying only on convnet modules (Liu
et al., 2022). The series of steps adopted during the modernization process can be summarized in
the following way:

First a change of the compute stage ratio, meaning changing the computation distribution
across stages, by specifying the number of blocks that will be attributed to each stage. In a
multi-stage design the feature map resolution changes depending on the stage.

The second step consists in replacing the standard resnet stem cell, with a 4 x 4 non-overlapping
convolution layer called patchify stem. This design choice was motivated by the patchify layer of
hierarchical vision transformers.

In the third step, a special case of grouped convolution was adopted, called depth-wise con-
volution, (Xie et al., 2016; Howard et al., 2017; Chollet, 2017) this is akin to the weighted sum
operation in self-attention, as it operates on a per-channel basis, by mixing information only along
the spatial dimension. The combination of depth-wise convolution, and 1 x 1 convolution allows
for a separation between the operations of mixing information across the spatial dimension and
mixing information across the channel dimension, which is an important principle shared by vision
transformers.

The fourth step was inspired by the fact that in a transformer block (Dosovitskiy et al., 2020;
Vaswani et al., 2017) an inverted bottleneck is created, due to the hidden dimension of the MLP,
which is four times wider than the input dimension. This design is then used as part of the
modernization process.

The fifth step is related to the implementation of the inverted bottleneck, which also follows
the design of hierarchical vision transformers, where we can see that the Multi-head Self-Attention
(MSA) module is positioned before the MLP layers (Dosovitskiy et al., 2020; Vaswani et al., 2017),
therefore the depth-wise convolution with a large size kernel 7 x 7 will be positioned before the
dense 1 x 1 convolution layer.

In the sixth step the ReLU function (Nair and Hinton, 2010) was replaced with the Gaussian
Error Linear Unit (GELU) (Hendrycks and Gimpel, 2016), as it is the activation function used in
the most advanced transformers. Also the number of activations per block was reduced to one,
following this step the Batch Normalization (BN) layer (Ioffe and Szegedy, 2015) was substituted
with Layer Normalization (LN) (Ba et al., 2016), which is the alternative choice of normalization
in transformers, and the number of normalization layers used per block was also reduced to a single
layer.

For the last step separate downsampling layers were used instead of relying on the residual block
at the start of each stage. Before each downsampling layer an LN layer is added. Regarding the
patchify stem the LN layer is added afterwards. This principle design is also used in hierarchical
vision transformers.

The modernized family of ConvNeXt rivals vision transformers in terms of scalability and
accuracy. For our proposed auto-encoder we have used the variation model called ConvNeXt-Base,
to represent the encoder part of our joint neural networks, this variation has a compute stage ratio
of (3, 3, 27, 3). Figure 3 shows the different elements (convolution layers, normalization layer,
activation function) used in the ConvNeXt residual block, and what mainly changes depending on
the stage is the number of kernels used on the level of convolution layers, and as we go along the
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depth of the encoder from one stage to another, the number of channels increases, which results in
an increase of computation inside the residual block (the encoder is depicted in Figure 4).

Shortcut connection

Input FMs

(in-h, in-w, in-c)

Figure 3: A ConvNeXt residual block (CB), with an input representing feature maps of resolution (in-h, in-w) and
a number of channels equal to in-c. The number of kernels used in the depth-wise convolution layer and the last
1 x 1 convolution layer is equal to in-c, and as for the middle 1 x 1 convolution layer, the number of kernels is equal
to four times in-c

Stage -1-
56, 56, 12
(56, 9 Stage -2-

(28,28,256 Stage -3-

(14,14, 512)

Stage -4-
1_‘ (7,7,1029

(224,224, 3)
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(1,1,1029

27x CB-S3
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Input image
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AP> LN

CONV, (4,4) - LN
LN— CONV, (2,2)
LN> CONV, (2, 2)

T

Patchify stem Downsamplinglayers

_ME—

Figure 4: ConvNeXt-Base Encoder, which has a compute stage ratio of (3, 3, 27, 3) corresponding to the number of
ConvNeXt residual blocks (CBs) belonging to each stage, and their outputs are used through the skip-connections
to connect the encoder to the decoder (see Figure 5 for more details). CB is depicted in Figure 3

3.4. Decoder

As for the network representing the decoder part of our proposed auto-encoder, we have also
adopted a multi-stage design, as it is illustrated in Figure 1, which will then allow us to utilize the
feature maps from all stages of the ConvNeXt-Base encoder during the reconstruction process. The
feature maps on the encoder side are retrieved through residual and non-residual skip-connections.
The residual skip-connections provide the decoder with direct access to the outputs of the residual
blocks at any given stage of the encoder. The non-residual skip-connections provide the decoder
with direct access to the outputs of the downsampling layers, including the patchify stem. The
number of skip-connections used in our proposed architecture is equal to 40. 36 residual skip-
connections corresponding to the ConvNeXt residual blocks, and 4 non-residual skip-connections
corresponding to the downsampling layers and the patchify stem. We chose these two types of
skip-connections to capture the detailed information from the encoder path, and we introduced
the intermediate hidden representations (the encoder feature maps) in a way that it takes into
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consideration the symmetry between the encoder and the decoder, and also the fact that along the
decoder path, we will go from low dimensional representations to high dimensional representations
during the reconstruction process. Figure 5 shows the skip-connections connecting one stage of
the decoder to its corresponding stage of the encoder. Similar to the design of the ConvNeXt-
Base encoder, we also used separate upsampling layers at the beginning of each decoder stage.
Adding these layers is very important for the structure of the decoder, as well as for the process of
incorporating the information coming through the skip-connections at each stage of the decoder.

Residual Skip-Connection (R-SC) (7,7,1024)

(7,7,1024)

|

b {
n
e o (1,1,1024)
8- “u- 8008 -8
)
Ll Feature vector y
(14,14,512) -4 (14,14,512)

(7,7,1024)

Non-Residual Skip-Connection (NR-5C) (7,7,1024)

Figure 5: View of the skip-connections between stage 4 of the encoder and stage 4 of the decoder, where DB and
CB denote the de-convolution block and the ConvNeXt residual block. The downsampling layer is preceded with
layer normalization (LN — CONYV), as for the adaptive average pooling, normalization is applied afterwards (AP
— LN). The two separate de-convolution layers (DE-CONVSs) on the decoder side represent the upsampling layers

In addition to the upsampling layers, every decoder stage has a specific number of de-convolution
blocks associated to it. The number of these blocks is equal to the number of skip-connections
connecting the stage to the encoder path. Each de-convolution block takes as inputs the encoder
representations received from its corresponding skip-connection and the output of the previous
de-convolution block or the separate upsampling layer. The source of this second input depends
on where the de-convolution block is positioned in the stage. First and second inputs are then
combined using element-wise summation, which results in a mixing between the spatial information
of the decoder and the encoder. Following this step a 1x 1 de-convolution layer of stride 1 is applied,
with a number of kernels equal to the number of channels of the summed inputs. Due to the element-
wise summation the dimensions of representations don’t change inside the de-convolution block.
Afterwards the output of the 1 x 1 de-convolution layer is normalized through layer normalization,
and in the last step an activation function is applied to obtain the overall output of the block.
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upsampling
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Figure 6: Detailed view of the first de-convolution block (a) and the fourth de-convolution block (b) belonging to
stage -4- of the decoder

Regarding the activation functions, applied element-wise on the decoder side, we used for the
stages 4, 3, and 2 the activation function LeakyReLU (Maas et al., 2013), which was introduced to
alleviate potential problems related to the hard 0 activation of the ReLLU function, by allowing a
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small, non-zero gradient when the unit is saturated. As for stage 1, we used the activation function
ELU (Clevert et al., 2015) which can help in solving the vanishing gradient problem and could
speed up the learning because of its characteristics.

At the end of the decoder, we added a final 4 x 4 de-convolution layer of stride 4, and a number
of kernels equal to 3, followed by a sigmoid function applied element-wise, in order to obtain the
output image. We have used the sigmoid function because the pixel values of each input image
will be scaled between 0 and 1, through the division of all three channels by 255, the full decoder
architecture is summarized in Figure 7.
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Figure 7: Decoder network, with a multi-stage design to ensure the overall symmetric structure of the proposed
auto-encoder and the integration of skip-connections. An overview of the encoder-decoder model is shown in
Figure 1. Reconstructed outputs from noisy inputs are presented in Figure 2

For the semi-supervised setting an additional Dense-Layer (D-L, see Figure 1) is added, with a
number of units equal to the number of classes we want to identify. The layer takes as input the
feature vector (output of the ConvNeXt Encoder) and it is followed with a SoftMax function applied
element-wise. During the reconstruction process, we added gaussian noise to the input images.
This choice of reconstructing from noisy (corrupted) inputs was motivated by the smoothness
assumption of semi-supervised learning, which implies that a realistic perturbation of the input
should not change the output label of the model (Yang et al., 2021).

4. Experiments and results

This section first introduces the experimental setup and the key aspects of the evaluation
procedure, then comprehensively assess the performance of the proposed semi-supervised approach
for plant classification, particularly focusing on weed datasets. We compare our method with
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state-of-the-art supervised models, that employ a similar range of number of parameters to show
the benefit of the semi-supervised approach. Additionally, we conduct experiments to compare the
proposed method with similar semi-supervised techniques on CIFAR10 dataset.

4.1. Training and evaluation procedure

4.1.1. Selected deep learning models for comparison

In addition to the ConvNeXt-Base supervised model, we have also chose two types of models
belonging to two different families of neural networks, based on their performance and the availabil-
ity of weights pre-trained on the large dataset ImageNet-22K, which is a superset of ImageNet-1K,
and it is comprised of 14,197,122 labeled images divided into 21841 = 22K classes. Using these pre-
trained weights as a starting point for training on the target datasets (DeepWeeds and 4-Weeds),
is beneficial in terms of performance and reducing the required time to train the models, compared
to the method of initializing the weights randomly. These two models are Efficientnet-V2-L (Tan
and Le, 2021)and ViT-B-16 (Dosovitskiy et al., 2020), the first type is part of the improved mod-
els of the family Efficientnet-V2, that are optimized to have a faster training speed and efficient
parameters, and the second type part of the vision transformer family.

Model # Parameters Top-1 Qcc (%) Architecture

ConvNeXt-Base 88.59M 84.06 Convolutional

Efficientnet-V2-L 118.58M 85.80 Convolutional
ViT-B-16 86.46M 81.07 Vision Transformer

Table 1: Models performance on ImageNet-1k

4.1.2. Parameters setup

Regarding the implementation of the deep learning algorithms and the running of the experi-
ments, we used the machine learning framework PyTorch 1.10.2, along with the library PyTorch-
Ignite 0.4.8, and the library timm 0.5.4, and in terms of hardware specifications, we used the
regional computing cluster CaSciModOT, and through this cluster we were able to access three
GPUs of the type Nvidia Tesla V100 32GB and the AMD 7302 CPU. In order to ensure an objective
comparison and evaluation of the performances, that are achieved by the deep learning models, the
same optimal hyperparametric parameters were used consistently in all the conducted experiments.
The initial learning rate was set at 0.01, decreasing by a factor of 0.9 every 10 epochs. The stochas-
tic gradient descent (SGD) algorithm was used to update model parameters, with momentum and
damping set to zero. With regard to the use of pre-trained weights, the dense ImageNet-22k layer
was replaced by a layer containing a number of units corresponding to the classes specific to the
dataset used during training (9 units for DeepWeeds, 4 units for 4-Weeds). With regard to the
characteristics of the gaussian noise added during the semi-supervised training of the ConvNeXt-
Base models, the standard deviation o was set to 0.1, while the mean p was set to zero, and to
initialize the decoders, pre-trained weights on ImageNet-1K were used. As for the hyperparameter
A that balances the unsupervised and supervised terms of the objective function, it was set to 1.
For generating unlabeled data, a single transformation was applied to the 60% labeled portion of
the training subset, involving rotations ranging from -180°to +180°. The resulting images are then
de-labeled and used during the semi-supervised learning. We should also note that when reducing
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the size of the labeled portion of the training subset from 60% to 20%, the labels of the unsampled
images are removed, and added to the unlabeled portion of the training subset.

4.1.8. Evaluation procedure

Two metrics were selected for performance evaluation of the deep learning models, namely:
F1-Score and Accuracy (Sokolova et al., 2006; Tharwat, 2018; Opitz and Burst, 2019). The first
metric represents the harmonic mean of two metrics: 1. Precision that denotes the proportion
of positive predictions that are correctly classified relative to the total number of positive pre-
dictions (F'P 4+ TP). 2. Recall which is the proportion of positive predictions that are correctly
classified relative to the real number of positives (F'N + T'P). As for the second metric, it is
defined as the ratio between correctly classified predictions and the total number of predictions
(FN + FP+ TP+ TN). The equations that define the metrics are expressed as follows:

F1-Score =2 x ((Precision x Recall) / (Precision + Recall)) (4)
Precision = (TP) /(TP + FP), Recall = (TP) (TP + FN) (5)
Accuracy = (TP+TN)/(TP+TN + FP+ FN) (6)

Throughout the experiments that we conducted, we used the 5-fold stratified cross-validation
(Varma and Simon, 2006; Arlot and Celisse, 2010; Raschka, 2018). Its goal is to provide an
accurate estimate of how well a given model will perform in practice on new unseen data samples.
Stratified sampling was used to ensure that each fold will be approximately representative of the
original dataset in terms of class distribution. We initially partitioned the datasets (DeepWeeds
and 4-Weeds) in the following manner: 60% for training, 20% for validation and the remaining
20% for testing, with five rounds of cross-validation. This means that for each model type, a
total number of five models are trained on different partitions of the data, and we have used the
validation subset for the selection of the optimal hyperparameters. During the learning process,
no data augmentation techniques were employed to increase the size of the labeled portion. On
the contrary, as mentioned previously, we avoided such augmentation in order to accurately assess
its impact on model performance. We have carried-out three sets of experiments with variable
amount of labeled data. For the first set we used 60% of the labeled training samples. For the
second set we used 40% of the labeled samples. For the last set of experiments, we used only 20%
of the labeled samples. All models were trained for a duration of time equal to 60 epochs, and
for each model 