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Abstract: Water pixel extraction and correction of the atmospheric signal represent prerequisite
steps prior to applying algorithms dedicated to the assessment of water quality of natural surface
water bodies. The recent multiplication of medium spatial resolution sensors (10–60 m) provides
the required constellation to monitoring bio-optical and biogeochemical parameters of surface
waters at the relevant spatial-temporal scales. Here we present a new approach to identify water
pixels and to extract the atmospheric contribution to the top of atmosphere signal measured
by the NAOMI sensor on board the first Vietnamese satellite, VNREDSat-1. After verifying
the TOA calibration of NAOMI through a vicarious calibration exercise, we adapt a recent
water pixel extraction algorithm (WiPE) to NAOMI, and develop a new atmospheric correction
algorithm (referred to as red-NIR) based on the use of the red and NIR bands (the only bands
available for that purpose on NAOMI) and spectral relationships. The evaluation of red-NIR with
a match-up data set gathering remote sensing reflectance, Rrs, measurements performed at the
AERONET-OC stations in moderately turbid waters indicates excellent performance in the blue
and green part of the spectrum (similar to the performances reached by the SeaDAS NIR-SWIR
algorithms) and lower accuracy in the red. Intercomparison of simultaneous images collected
by NAOMI and OLI over a more turbid water body shows an excellent agreement between the
NAOMI-Rrs estimated by the present processing, and the OLI-Rrs estimated from the ACOLITE
algorithm. This approach will allow sensors that do not have SWIR bands, such as SPOT-6 and
-7, to be processed, making their data exploitation available for long-term temporal analyses.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

The tight societal and economical connections of Vietnam with the sea, mainly due to its 3260
km long coastline, makes this country very sensitive to natural and anthropogenic disasters.
Vietnam is one of the countries that will be severely impacted by climate change through the
modification of precipitation patterns and sea level rise [1,2]. The abrupt changes occurring in
the Mekong Delta area [3–5], the recurrent flooding or pollution events observed in different
provinces [6,7], the potential link between water quality and aquaculture activities [8], are,
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among others, phenomena stressing the urgent need of a better regional monitoring of coastal and
connected inland waters. In that context, satellite remote sensing represents a valuable technique
for a better assessment of the status and evolution of Vietnamese coastal and inland waters. While
standard ocean color observations provide relevant information about the bio-optical status of
surface coastal waters at a daily coverage (in absence of clouds), their spatial resolution (between
300 m and 1 km) may not fully be adapted for the survey of specific areas such as sea harbors,
aquaculture areas, industrial and urban coastal areas, and river outlets.

The recent radiometric improvement of medium spatial resolution (from 10 to 60 m) sensors
now allows the monitoring of water surface quality at the required spatial resolution [9–16].
However, the relatively low revisit time (between 10 to 16 days under clear days) of these sensors
is not adapted to monitor the complex physical and biological interactions occurring in coastal
waters. Combining these sensors into a constellation allows the temporal resolution to be greatly
increased, and thus the required time-scales to be better covered. For instance, the Sentinel-2
constellation provides a revisit time of 5 days at the equator in cloud-free conditions (instead
of 10 days when the two Sentinel-2 are considered separately), and 2.9 days if combined with
Landsat-8 [17]. To reduce the impact of cloud coverage on the surface water remote sensing
monitoring, it is therefore essential to increase the number of observations. For that purpose,
the first multi-spectral optical satellite in Vietnam, VNREDSat-1 has been launched on May 7,
2013. VNREDSat-1 [18] carries the NAOMI (New AstroSat Optical Modular Instrument) sensor
[19], which is similar to SPOT-6 and -7, and which includes four multi-spectral bands and one
panchromatic band at a spatial resolution of 10 and 2.5 m, respectively (Table 1). In order to use
NAOMI images for aquatic applications over coastal and inland waters, water pixels have to be
identified, while the top of atmosphere signal recorded by the sensor above these water surfaces
has to be corrected from atmospheric effects. This is the objective of the present study.

Table 1. Landsat-8/OLI and VNREDSat-1/NAOMI spectral bands and spatial resolutions.

OLI NAOMI

Band Wavelength (nm) Resolution (m) Band Wavelength (nm) Resolution (m)

1 433 - 453 30

2 450 - 515 30 1 450 - 520 10

3 525 - 600 30 2 530 - 600 10

4 630 - 680 30 3 620 - 690 10

5 845 - 885 30 4 760 - 890 10

6 1560 - 1660 30

7 2100 - 2300 30

8 500 - 680 15 5 450 - 740 2.5

9 1360 - 1390 30

The extraction of water pixels on NAOMI images is performed in the present study by adapting
the recent water pixels extraction algorithm (WiPE) developed for Landsat-8 Operational Land
Imager (OLI) and Sentinel-2 Multispectral Instrument (MSI) [20]. Numerous approaches
have already been developed to perform atmospheric correction over water pixels delivered by
medium spatial resolution sensors observations [9,21–27]. Depending on the number of NIR
bands, and the availability of a SWIR band, such as on HSV (SPOT) or ETM+ (Landsat), the
atmospheric correction procedures over water surfaces are based on different approaches. First,
some directly apply a radiative transfer code such as 6S, combined with external information
on the composition of the atmosphere, such as the aerosol optical thickness, the atmospheric
profile, and the aerosol model. Others use the combination of radiative transfer calculations
(6S) and the black target approach [28], as used by [29]. For the OLI sensor on Landsat-8 or
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MSI on Sentinel-2 (A and B) the different existing approaches essentially differ according to
the use or not of several near-infrared (NIR) or short-wave infrared (SWIR) bands, and by their
inherent assumptions. Different validation exercises have recently been performed to evaluate
their respective performances over coastal and inland waters [25,30–33]. However, despites
these numerous inter-comparison exercises, a consensus on the best atmospheric correction
method over coastal waters has not been reached yet. The purpose of the present paper is to
develop a self-consistent (i.e. without any external input on aerosols) atmospheric correction
algorithm (referred to as Red-NIR) for NAOMI, which has only one NIR band and no SWIR
information. To reduce uncertainties related to the use of various in situ data sets, the performance
of the present algorithm is evaluated using the ocean color component of the Aerosol Robotic
Network (AERONET-OC) [34]. Because of the very limited number (N= 6) of coincident
in situ measurements and VNREDSat-1 overpass, the Red-NIR algorithm is applied to OLI
which has four spectral bands in common with NAOMI (Table 1), and for which the number
of available match-up data points (N= 67) is more suitable for a validation exercise. A recent
study emphasized that, among two current atmospheric correction algorithms developed for OLI
(SeaDASS and ACOLITE), and tested over the AERONET-OC data set (i.e. over moderately
turbid waters), SeaDAS performs better [33]. For that purpose, the performance of Red-NIR will
be compared to that obtained from atmospheric correction algorithms implemented in SeaDAS
and using different band combinations in the NIR and SWIR. The objective is here to show how
the Red-NIR algorithm behaves in comparison with similar approaches using SWIR bands, and
not to compare to all available atmospheric correction algorithms available for OLI. While the
AERONET-OC match-up data set only allows evaluating Red-NIR over moderately turbid waters,
the unique scene sampled almost simultaneously by VNREDSat-1 and Landsat-8 over turbid area
will be used to assess its performance for higher turbidity levels. For that purpose, the ACOLITE
[27] algorithm, which shows relatively good performances over highly turbid waters, will be
used.
The radiometric in situ data set used in the algorithm development, and the match-up data

set used for its validation are first presented. Due to the relatively low contribution of the water
leaving radiance to the top of atmosphere (TOA) signal, it is essential to verify the absolute
calibration of the sensor for ocean color applications, which has still not been performed for
NAOMI over water surfaces. For that purpose, in situ remote sensing reflectance measurements
performed at different stations of the AERONET network were propagated through the atmosphere
using a radiative transfer code [35], and compared to the TOA reflectance measured by NAOMI.
Then, the adaptation and validation of the WiPE algorithm to NAOMI is presented, and the new
atmospheric correction method based on the use of the red and NIR bands available on NAOMI
is described. Validation as described above is then provided.

2. The match-up and in situ data sets

2.1. Match-up data set

The match-up data set gathers 67 Landsat-8 scenes collected over 10 Aeronet-OC [34,36–37]
stations, and 6 VNREDSat-1 scenes over Venice and Lucinda Aeronet-OC stations (Fig. 1).
The Landsat-8 scenes were downloaded from the Glovis portal (https://glovis.usgs.gov) of U.S.
Geological Survey (USGS), while the VNREDSat-1 scenes were received from the center for
control and exploitation of small satellite at the Space Technology Institute (STI) of the Vietnam
Academy of Science and Technology (VAST). In situ AERONET-OC [37] radiometric data
were collected at three spectral bands centered at 443, 551, and 667 nm. The match-up data
selection is based on the same criteria as those applied in [25] for coastal waters and high spatial
resolution observations. After application of these match-up criteria 67 and 6 match-up data
points remained for Landsat-8 (Table 2) and VNREDSat-1 (Table 3), respectively. This data set
gathers relatively clear to eutrophic waters, with 26% of the in situ spectra presenting a maximum

https://glovis.usgs.gov
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at 443 nm, and 74% at 531 nm. This data set is then characteristic of clear to moderately turbid
waters. The wind speed values recorded at the AERONET stations are generally lower than 5 m
s−1.

Fig. 1. AERONET-OC stations selected for validation of the algorithm from Landsat-8/OLI
(red stars) and VNREDSat-1/NAOMI (yellow triangles) observations.

Table 2. Landsat-8/OLI match-up at Aeronet-OC stations.

AERONET
station

Number of
match-up Date

COVE 02 26th Oct, 2014; 16th Dec 2015

Galata 04 21st May, 2014; 10th Sep, 2014; 28th Aug, 2015; 18th Dec, 2015

Gloria 10 2nd May, 2013; 15th Aug, 2013; 13th Jan, 2014; 27th Mar, 2014; 15th Dec,
2014; 24th Dec, 2014; 2nd Jun, 2015; 31st Oct, 2015; 27th Dec, 2015;
19th May, 2016

Helsinki 06 23rd Aug, 2013; 22nd May, 2014; 9th Jul, 2014; 25th May, 2015; 27th May,
2016; 14th Jul, 2016

LISCO 06 30th Sep, 2013; 19th Dec, 2013; 17th Sep, 2014; 23rd Jan, 2015; 30th Mar,
2016; 15th Apr, 2016

MVCO 05 23rd Sep, 2013; 18th Oct, 2013; 3rd Apr, 2014; 30th May, 2014; 6th Jul,
2016

Palgrunden 08 5th Jun, 2013; 23rd Jul, 2013; 8th Jun, 2014; 19th Sep, 2014; 26th May,
2015; 27th Jun, 2015; 4th Jul, 2015; 13th Jun, 2016

USC 04 16th May, 2014; 8th Nov, 2014; 27th Jan, 2015; 12th Feb, 2015;

WAVE 05 19th Jan, 2014; 15th Aug, 2014; 18th Oct, 2014; 19th Nov, 2014; 7th Feb,
2015

Venice 17 31st Oct, 2013; 16th Nov, 2013; 9th Apr, 2014; 16th Apr, 2014; 25th Apr,
2014; 12th Jun, 2014; 6th Aug, 2014; 16th Sep, 2014; 23rd Sep, 2014;
2nd Oct, 2014; 19th Nov, 2014; 18th Mar, 2015; 3rd Apr, 2015; 1st Jul,
2015; 14th Apr, 2016; 7th May, 2016; 19th Jul, 2016

2.2. Radiometric in situ data set used for trans-spectral relationships

The atmospheric algorithm developed for VNREDSat-1 in the present study requires the use of
spectral relationships between Rrs(865) and Rrs(655), and Rrs(655) and Rrs(561) (see section 6.2).
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Table 3. VNREDSat-1/NAOMI match-up at Aeronet-OC stations.

AERONET station Number of match-up Date

Lucinda 02 26th Nov, 2016; 1st Dec, 2016

Venice 04 18th Mar, 2015; 23rd Mar, 2015; 29th Nov, 2016; 1st Dec, 2016

For that purpose, a large in situ data-set of remote sensing reflectance has been gathered from
radiomeric measurements performed in the southern North Sea and English Channel [38,39],
the Celtic Sea, the Ligurian Sea, the Adriatic Sea and in the Atlantic Ocean along the coasts
of Portugal and French Guiana [40,41]. All measurements were performed using the TriOS-
RAMSES hyper-spectral sensors. The measurement protocols and associated processing are
fully described in [39] and [42]. This data set covers various optically contrasted coastal waters.
While the clearest waters, characterized by a maximum of Rrs(λ) in the blue, represent about
39% of the data set, green (with a maximum of Rrs around 561 nm), turbid (maximum of Rrs in
the red) and very turbid waters (with a maximum of Rrs at 700 nm) represent about 55.8, 2.4, and
2.8% of the total reflectance spectra, respectively. The suspended particulate matter (estimated
based on [38] at 865 nm), SPM, concentration varies between 1.5 and 726.2 mg.l−1, with a mean
(median) and standard deviation value of 36.8 (8.2)± 87.0 mg.l−1.

3. Statistical indicators of model performance

Graphical comparisons of observations with model predictions are complemented with quan-
titative statistical metrics in order to evaluate model performance over the match-up data set.
Statistical indicators that are typically utilized in the assessment of atmospheric correction model
accuracy [25] are also calculated. These indicators include the root-mean-square difference
(Eq. (1)), RMSD, the median percentage difference (Eq. (2)), MPD, and the mean bias (Eq. (3)),
MB:

RMSD =

√∑N
k=1 (Rkrs,Aeronet − Rkrs,OLI)

2

N
(1)

MPD = Median
( [

Rk
rs,Aeronet − Rk

rs,OLI

Rrs,Aeronet

]
100

)
(2)

MB =
∑N

k=1 Rk
rs,Aeronet − Rk

rs,OLI

N
(3)

where k is the match-up index, and N is the numbers of selected match-up.

4. Verification of the TOA calibration of NAOMI/V1

The top of atmosphere (TOA) radiance of NAOMI, LTOA(λ), is calculated through Eq. (4).

LTOA(λ) =
DN(λ)
gain(λ)

+ bias(λ) (4)

where DN(λ), bias(λ), gain(λ) are the digital number, the bias, and the gain spectral values
provided for each NAOMI image. In a similar way, the top of atmosphere (TOA) radiance of OLI,
LTOA(λ) (in W m−2 sr−1 µm−1), which will be used to test the present atmospheric correction
algorithm due to the large match-up data set for OLI, is defined as follows:

LTOA(λ) = ML(λ)Qcal(λ) + AL(λ) (5)

where ML(λ) is the radiance multiplicative scaling factor (i.e. gain) for each band, Qcal(λ) the
Level-1 pixel value in digital number, and AL(λ) the radiance additive scaling factor (i.e. offset)
for each band.
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The TOA reflectance, ρTOA(λ) for OLI and NAOMI are then calculated from LTOA(λ) using
Eq. (6):

ρTOA(λ) =
πLTOA(λ)d2

F0(λ)cos(θ0)
(6)

where d, F0, and θ0 are the Earth-Sun distance in Astronomical Units, the band average solar
irradiance [43], and the sun zenith angle, respectively.
A comparison between measured and simulated NAOMI TOA reflectance is performed to

check the radiometric calibration of the sensor. Simulations are carried out using the Ocean
Successive Orders with Atmosphere - Advanced (OSOAA V1.4) radiative transfer code [35].
The OSOAA code simulates the propagation of the radiation through the Ocean-Atmosphere
including coupling terms, and the interactions with the wind-ruffled sea surface. The code
outputs (Iout) are radiances normalized to an extraterrestrial solar irradiance set to π:

LTOA(λ) =
Iout(λ)F0(λ)

π
(7)

Equation (6) and (7) lead to Eq. (8), that converts Iout into TOA reflectance to compare directly
with NAOMI measurements:

ρTOA(λ) =
d2Iout(λ)

cos(θ0)
(8)

Simulations are carried out for the exact sun-sensor geometry of the considered scenes presented
in Table 3 and for λ from 420 to 920 nm, with a 1 nm step. For each channel, the spectral TOA
reflectance is convoluted with the spectral response function of NAOMI (Fig. 2) and is finally
integrated to generate the simulated bandpass average.

Fig. 2. VNREDSat-1 bands spectral response.

The comparison analysis is realized over the Venice (Italy) and Lucinda (Australia) Aeronet-OC
sites. The AERONET-OC ground-based measurements (the atmospheric pressure P0 and the
wind speedW at sea level, the aerosol optical thickness AOT(λ), and the normalized water-leaving
radiance LWN(λ)) are used as code inputs. Coastal aerosols are defined according to [44]. Note
that the normalized water-leaving radiance and aerosol optical thickness (from 0.02 and 0.25 in
the NIR depending on the image) from AERONET-OC are interpolated over the wavelength to
provide inputs for the code with a 1 nm resolution. The wavy sea surface is modeled in OSOAA
using the Cox-Munk wave slope probability density depending on the surface wind speed [45].
Reflection by individual whitecaps is neglected, which is adequate for the purpose of our study as
the wind speed is low (W< 2 m.s−1). The pressure at sea level (P0) is used to derive the molecular
optical thickness needed to simulate the Rayleigh scattering. Concerning the water body, the
in-water part of the code has not been considered as the normalized water-leaving radiance,
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measured at the AERONET-OC site and converted into reflectance (Eq. (5)), has directly been
injected into OSOAA (considering a lambertian surface):

ρWN(λ) =
Π

F0
LWN(λ) (9)

Figure 3 displays the NAOMI measured and simulated TOA reflectance. Considering the
6 match-up data points, the relative difference values calculated between the measured and
simulated TOA reflectances, are 10% in the blue, 3.3% in the green, and 15% in the red. This
number are similar to those reported for a similar exercise performed for the GOCI sensor for
which the difference is between 1.05 and 8.14% [46]. The relative high value in the red is
explained by the low absolute value of the signal, and to the signal over noise ratio of NAOMI.
No specific relationship has been found between the aerosol optical thickness and these TOA
relative differences. Supplementary match-up data points are however required to confirm these
results and to derive statistically robust vicarious gains.

Fig. 3. Spectral values of the TOA reflectance measured onMarch 18, 2015 by VNREDSat-1
(black dots) and estimated from radiative transfer calculations ((green stars) over the different
NAOMI match-up stations (Table 3) and using the measured normalized water-leaving
radiance.

5. The water pixel extraction procedure for VNREDSat-1

Detection and extraction of surface water pixels is a prerequisite step prior to applying atmospheric
correction algorithms dedicated to the estimation of Rrs(λ) from LTOA(λ). For that purpose, the
water pixel extraction algorithm (WiPE) recently developed for the Landsat-8 OLI and Sentinel-2
MSI sensors [20] has been adapted to VNREDSat-1 for the present study. This algorithm
which requires the Rayleigh-corrected reflectance spectrum, ρrc(λ), as input paramet, is based on
the application of two successive steps. First, different spectral criteria are applied to mainly
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disregard clouds, vegetation, barren land, and construction pixels. Due to the complex radiative
interactions occurring between thin clouds or cloud shadow and the overlaid water pixels, the
identification of these two latter objects cannot properly be performed using the spectral shape
analysis developed in the first step. For that purpose, the ρrc(λ) spectra are transferred into the
Hue, Saturation Value (HSV) color space to improve the distinction between water pixels and thin
cloud and shadow pixels over water areas. As the complete description of the WiPE algorithm
and its performances are provided in [20], we only provide here the main modifications for the
adaptation of WiPE to VNREDSat-1.

In the present study, 17 VNREDSat-1 images, collected over various bio-optical environments,
similar to the ones described in [20], have been gathered for the development data set. This
spectral database accounts for seven different objects: water (43,843 pixels), cloud (779 pixels),
thin cloud (783 pixels), vegetation (3,122 pixels), construction (360 pixels), barren land (390
pixels), and shadow (1,503 pixels). Due to the lower number of spectral bands of NAOMI
compared to OLI, the two different steps of the WiPE algorithm for NAOMI are based on a
restricted number of spectral criteria (Fig. 4). The spectral analysis based on the development
data set shows that if ρrc(1) is greater than -0.12 ρrc(4)/ρrc(3)+ 0.228 and if ρrc(4)/ρrc(3) is
greater than 1.14 then cloud, some thin cloud and land pixels are removed (Fig. 5). In addition to
removing the totality of the vegetation, cloud, barren land, and construction pixels, the application
of this criteria also removed many thin clouds (91% of total thin clouds pixels) and some shadow
pixels (7% of total shadow pixels). The remaining clouds shadow and thin cloud pixels may
be partly removed by the HSV analysis where different criteria are applied depending on the
wavelengths at which Vmax is reached (Fig. 4). At the end of the whole processing 2% of thin
clouds and 82% of cloud shadows remain on the development data-set. The large percentage of
remaining cloud shadow pixels is due to the unavailability of SWIR bands, in contrast to the
WiPE version developed for OLI [20].

Fig. 4. The logic flow of the water extraction pixel algorithm based on the combination
of spectral shape analysis (step 1) and HSV analysis (step 2) for the NAOMI sensor. This
flowchart requires the Rayleigh corrected reflectance at bands 1, 2, 3, and 4 as input
parameters.

The WiPE algorithm adapted to NAOMI is validated using 5 images not included in the
development data set and collected over contrasted areas (Table 4). For each image, a reference
water pixel map (referred to as the reference WPM hereafter) was derived as in [20] using the
QGIS software. The performance of the WiPE algorithm developed for NAOMI is then quantified
using the Mean Absolute Percentage Difference (MAPD in %) calculated between the reference
number of water pixels (WPM) and the number of water pixels generated by WiPE. The MAPD
varies between 0.07% to 5.6% over the five validation scenes, the highest MAPD value (5.6%)
being found for the scene collected over the Tonle Sap area (Fig. 6(c), 6(d)) which presents
the highest cloud coverage (25%) and cloud shadow. The algorithm allows us to remarkably
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Fig. 5. (a) Scatter plots of ρrc(1) as a function of the ρrc(4)/ ρrc(3) band ratio for the seven
different objects of the development data set (each color corresponds to a different object as
indicated). The black lines correspond to the limit adopted to remove vegetation, clouds,
construction, barren land, and thin clouds (step 1.1). The number of pixels before (panel a)
and after (panel b) the application of the criterion adopted in steps 1.1 are provided in each
panel.

extract water pixels over very turbid waters, without confusion with land or clouds pixels, and
also in complex environments such as aquaculture areas (Fig. 7(c), 7(d)), but seems however to
underestimate the number of cloud shadow pixels. This latter pattern, which mainly explains
why WiPE slightly over estimates the number of water pixels (Table 4), is due to the restricted
number of pertinent bands to perform a proper correction based on the HSV analysis [20].

Table 4. Performance of the WiPE algorithm developed for NAOMI/VNREDSat-1 images. The
number of water pixels identified by WiPE and visual interpretation are used to calculate the Mean

Absolute Percentage Difference (MAPD in %). The numbers are given for whole 5 considered scenes.

Location Date WiPE [Pixels] Visual interpretation [Pixels] MAPD [%]

Danang-Vietnam 19th May 2013 1,649,729 1,643,625 0.371

Tonlesap-Cambodia 13rd Oct 2018 1,517,950 1,444,784 5.064

Lucinda-Australia 26th Nov 2016 2,686,784 2,684,903 0.070

Puoltikasvaara-Sweden 28th May 2013 200,552 200,772 0.110

Tien river estuary-Vietnam 15th Apr 2015 968,041 964,653 0.351



Research Article Vol. 27, No. 22 / 28 October 2019 / Optics Express 31685

Fig. 6. RGBVNREDSat-1 composite images over Danang-Vietnam (a), Tonlesap-Cambodia
(c), and Lucinda-Australia (e). Results of the WiPE algorithm over the different selected
images showing water pixels in blue, and other pixels in white (b, d, f). RGB VNREDSat-1
composite images over Puoltikasvaara-Sweden (a-b), and the Tien river- Vietnam (c-d).
Results of the WiPE algorithm over the different selected images showing water pixels in
blue, and other pixels in white (b, d).
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Fig. 7. RGB VNREDSat-1 composite images over Puoltikasvaara-Sweden (a-b), and the
Tien river- Vietnam (c-d). Results of the WiPE algorithm over the different selected images
showing water pixels in blue, and other pixels in white (b, d).
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6. Atmospheric correction procedure based on Red-NIR band combination

6.1. Basics of atmospheric correction

The TOA reflectance can be written as shown in Eq. (10) [47–49]:

ρTOA(λ) = ρR(λ) + ρa(λ) + ρRa(λ) + T(λ)ρg(λ) + t(λ)ρwc(λ) + t(λ)ρw(λ) (10)

with ρR(λ), the reflectance due to multiple scattering of a purely air molecules atmosphere;
ρa(λ), the reflectance of multiple scattering by aerosols in a pure aerosol atmosphere; and ρRa(λ),
the interaction term in a real atmosphere containing both molecules and aerosols. T(λ) and
t(λ) are the direct and diffuse transmittance of the atmosphere, respectively. ρg(λ), ρwc(λ),
and ρw(λ) are the reflectances due to sun glint, whitecaps, and in-water optically significant
components, respectively. In the present study, the reflectance of whitecaps is estimated using the
wind speed and the geometry [47,50,51]. The reflectance due to Rayleigh scattering in a purely
molecular atmosphere is removed using the air pressure and the geometry [47]. Only glint-free
images, identified from the geometry of observation and wind speed, are considered in this study.
Correction of glitter images can however be performed following the different available methods
using NIR and summarized in [52]. Finally, the atmospheric correction algorithm developed for
NAOMI is based on the Rayleigh-corrected reflectance ρrc(λ) defined as follows:

ρrc(λ) = ρa(λ) + ρRa(λ) + t(λ)ρw(λ) (11)

The goal of the atmospheric correction is to determine ρa and ρRa so the water-leaving reflectance,
ρw, can be estimated as:

ρw(λ) =
ρrc(λ) − ρa(λ) − ρRa(λ)

t(λ)
(12)

with
t(λ) = t0(λ)tv(λ) = exp

[
−

( τr

2
+ τoz

)
/cos(θ0)

]
exp

[
−

( τr

2
+ τoz

)
/cos(θv)

]
(13)

t(λ) is computed knowing the diffuse transmittance for the sun-sea (t0) and sea-sensor (tv)
directions. τr and τoz are the band average Rayleigh and Ozone optical thickness and are
estimated for a standard atmosphere and using the air pressure. θ0, θv are sun and sensor zenith
angles, respectively. At first approximation, the aerosol transmittance is set to 1.0 in the present
study. Over open ocean waters, the black pixel assumption in the NIR (i.e., the ocean being
totally absorbent) is used to estimate the aerosol models and optical properties that are then used
to estimate ρa and ρRa [48]. Over optically-complex waters, this assumption is not valid anymore
and it is necessary to deal with a non-zero ρw [21,53–58]. This is the purpose of the following
section, where an atmospheric correction algorithm over coastal waters is developed taking into
account the limited number of NAOMI spectral bands.

6.2. Description of the atmospheric correction scheme

The atmospheric correction scheme presented here is decomposed into several steps (Fig. 8). The
first step is to use the WiPE algorithm to identify the water pixels (section 5). Then the clearest
water pixel is extracted over the region of interest. If blue pixels, defined as pixels for which
ρrc(482)>ρrc(561)>ρrc(655), exist, then the pixel with the combined maximum value of the
ρrc(482)/ρrc(655) Rayleigh corrected reflectance ratio, and minimum ρrc(865) value is selected.
If no pixel fulfills the first conditions, the one with the minimum ρrc(865) value is considered
as the clearest pixel. Once the clearest pixel is extracted, we consider that ρa(865) is equal to
ρrc(865) for this pixel, as ρRa(865) can be ignored in first approximation. Knowing ρa(865) at
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the clearest pixel, led to the determination of ρa(λL) at shorter wavelengths using the epsilon
parameter [48]:

ρa(λL) = (ε655,865)
nρa(865) (14)

with n = 865−λL
865−655 and

ε655,865 =
ρa(655)
ρa(865)

(15)

Fig. 8. The logical flow of the Red-NIR model. Note that the iterative procedure is
performed by the use of Eqs. (21) and (22).

Combining Eqs. (14) and (15), a first guess of the water leaving reflectance in the green band
(561 nm) can then be estimated as follows:

ρw(561) =
ρrc(561) −

(
ρrc(655)
ρrc(865)

) 865−561
865−655

ρrc(865)

t(561)
(16)

As mentioned previously, we considered at the first step that ρa(865) and ρa(655) were equal
to ρrc(865) and ρrc(665) at the clearest pixel, respectively. At the second step, these values are
re-calculated as we considered that the water leaving signal was negligible in the first step of
the algorithm. The new values of ρa(655) and ρa(865) at the clearest pixel can be estimated as
follows:

ρa(655) = ρrc(655) − t(655).ρw(655) (17)
ρa(865) = ρrc(865) − t(865).ρw(865) (18)

At this point, we only have a first guess of ρw(561), that will be used to estimate ρw(665) using
an empirical relationship developed from the in situ data set presented in section 2.2 (Fig. 9(a)):

ρw(655) = 7.91ρw
2(561) − 0.111ρw(561) + 0.00367 (19)
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Fig. 9. In situ (a) ρw(665) versus ρw(561) and (b) ρw(865) versus ρw(655). The black
curve represents the best fit to the data.

Similarly, ρw(865) is estimated from ρw(655) using the following empirical relationship
(Fig. 9(b)):

ρw(865) = 25.1ρw
3(655) − 1.09ρw

2(655) + 0.107ρw(655) − 0.0000237 (20)

The new values of ρa(655) and ρa(865), considered equal to ρrc(655) and ρrc(865), respectively,
at the first step of the algorithm, can therefore be calculated knowing ρw(655) and ρw(865) as
follows:

ρa(655) = ρrc(655) − t(655)(7.91ρw
2(561) − 0.111ρw(561) + 0.00367) (21)

ρa(865) = ρrc(865) − t(865)(25.1ρw
3(655) − 1.09ρw

2(655) + 0.107ρw(655) − 0.0000237)
(22)

These two new values of ρa in the red and NIR are then used to update the atmospheric correction
parameters εi,j for a given scene, implying that the aerosols optical thickness and types are even
over the whole scene, which is similar to the approach developed by [54]. The ρa reflectances
at the shorter bands λL are then calculated by using Eq. (14), as explained previously (Eq. (16)
has been written to compute ρw(561), however the same equation is used for ρw(482) where
561 should be replaced by 482). Finally, the water-leaving reflectances at the NAOMI spectral
bands are estimated using Eq. (16), and the whole process is repeated one time when ρa(655)
and ρa(865) are re-calculated from Eq. (17) and Eq. (18) using the new values of ρw(655) and
ρw(865), respectively. We verified, using the match-up data set, that this iterative procedure
allows us to improve the Rrs(λ) retrieval.

7. Validation of the new atmospheric correction algorithm

7.1. Match-up exercise for OLI based on the NAOMI configuration

The performance of the Red-NIR algorithm is evaluated from the 67 match-up data points (Fig. 9
and Table 5). On average, considering the whole spectrum (Fig. 9(a)), the Red-NIR algorithm
is able to assess Rrs(λ) with a RMSD of 0.0017 sr−1, a MPD of 13.3%, and a MB of 5.3 10−4

sr−1. However, this average good pattern (r2=0.75) masks some important spectral differences.
Among the three available visible bands, the green band presents the best Rrs retrieval accuracy
(RMSD= 0.0015 sr−1; MPD=-3.21%; MB=-3.7 10−4 sr−1), whereas Rrs in the red is estimated
with the lowest accuracy (RMSD= 0.0012 sr−1; MPD= 54%; MB= 5.5 10−4 sr−1). This latter
pattern is likely linked to uncertainties of Eq. (20) for low level of turbidity, and to the low level
of signal at this band (lower than 0.003 sr−1) making the inversion more challenging. As a matter
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Fig. 10. (a) Comparison of the Red-NIR-derived and measured Rrs(λ) values from the
Landsat-8/OLI match-up data set (N= 67) at (a) all bands, (b) 655 nm, (c) 561 nm, and (d)
482 nm. The solid line represents the best linear regression type-II fit to data and the dashed
line represents the 1:1 line.

of fact, almost all data points have a Rrs(655) value lower than 0.003 sr−1, which corresponds to
suspended particulate matter concentration lower than about 3.5 g. m−3 [59].
The performance of the Red-NIR algorithm is now compared to the ones achieved using the

three different NIR and SWIR band combinations available in SeaDAS, which performances
have been already tested for OLI in [25] (Table 5, Fig. 11). While the Red-NIR algorithm
(Fig. 11(a)) provides better results when all bands are pulled together (Table 5), it is also clearly
visible that the use of NIR-SWIR bands (Figs. 11(b), 11(c)) allows Rrs to be estimated with a
much better accuracy in the red part of the spectrum. For instance, the RMSD value is 54%
by the Red-NIR model, and -19% and -22% for the NIR-SWIR1 and NIR-SWIR2 SeaDAS
combinations, respectively. For the blue and green bands, the Red-NIR algorithm and the
NIR-SWIR1 combination provides about the same results, while the NIR-SWIR2 combination
is slightly lower in terms of performance. Note however, that the scatter around the 1:1 line is
always lower for the NIR-SWIR combinations (Figs. 11(b), 11(c)) than with the Red-NIR model
(Fig. 11(a)). At last, the combination of two SWIR bands (Fig. 11(d)) always provides lower
performances compared to the NIR-SWIR combinations, in agreement with the results of [25],
but also when compared to the Red-NIR model.
The match-up data set allowed the performance of the Red-NIR model to be evaluated and

compared with the SeaDAS algorithms only over slightly turbid waters. The performance of the
WiPE+Red-NIR process for turbid to very turbid waters is illustrated by a scene sampled by
OLI over the Hangzhou Bay in China on February 8, 2015 (Fig. 12). This scene clearly stresses
the interest of WiPE (Fig. 12(b)) for the identification of water pixels over very turbid waters
characterized by a maximum of Rrs(λ) in the NIR (not shown). This is consistent with recent
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Table 5. Statistical indicators of the performance of the Red-NIR model and the three SeaDAS
atmospheric correction configurations in retrieving based on the 67 match-up data points.

Models Band [nm] RMSD [sr−1] MPD [%] MB [sr−1] Slope Intercept R2

Red-NIR
(655-865 nm)

RGB 1.721E-03 13.309 5.311E-04 8.62E-01 8.20E-05 0.748

482 2.225E-03 28.246 1.411E-03 7.62E-01 5.54E-05 0.720

561 1.483E-03 -3.214 -3.715E-04 1.04E+00 1.53E-04 0.794

655 1.251E-03 54.100 5.532E-04 2.27E-01 8.84E-04 0.161

NIR-SWIR1
(865-1609 nm)

RGB 1.849E-03 -24.301 -1.104E-03 1.34E+00 4.38E-05 0.817

482 1.975E-03 -22.961 -1.156E-03 1.27E+00 1.91E-04 0.729

561 2.472E-03 -26.433 -1.707E-03 1.36E+00 2.57E-04 0.731

655 4.968E-04 -19.014 -2.501E-04 8.10E-01 4.51E-04 0.687

NIR-SWIR2
(865-2201 nm)

RGB 1.930E-03 -26.037 -1.126E-03 1.33E+00 1.94E-04 0.802

482 2.093E-03 -25.838 -1.277E-03 1.23E+00 4.64E-04 0.700

561 2.548E-03 -27.277 -1.792E-03 1.34E+00 4.52E-04 0.718

655 5.491E-04 -21.877 -3.094E-04 7.79E-01 5.29E-04 0.661

SWIR1-SWIR2
(1609-2201 nm)

RGB 3.263E-03 -42.272 2.003E-03 1.01E+00 1.70E-03 0.500

482 3.843E-03 -40.271 -2.370E-03 4.58E-01 3.66E-03 0.207

561 3.731E-03 -38.721 -2.631E-03 7.12E-01 3.52E-03 0.356

655 1.802E-03 -50.437 -1.008E-03 1.94E-01 1.25E-03 0.199

Fig. 11. (a) Performance of the (a) Red-NIR, (b) NIR-SWIR1, (c) NIR-SWIR2, and (d)
SWIR1-SWIR2 atmospheric correction algorithms for the estimation of Rrs(λ) at the blue,
green and red Landsat-8/OLI nominal wavelengths for the 67 match-up data points. The
solid line represents the best linear regression type-II fit to data and the dashed line represents
the 1:1 line.
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results showing that WiPE is able to assess water pixels over very turbid water surfaces [20],
in contrast to other approaches such as the approach used in SeaDAS (Fig. 12(c)). A restricted
inland area, characterized by a relatively high turbidity level with maximum Rrs(λ) values of
about 0.02 sr−1 in the green or red channels (depending on the considered pixel), allows the
Red-NIR Rrs(λ) and NIR1-SWIR Rrs(λ) estimations to be compared (Figs. 12(d), 12(e), 12(f)).
For this level of turbidity, an excellent agreement between the two processings is found in the red
(Fig. 12(g)) and green (Fig. 12(h)) bands, and systematic differences are observed in the blue,
with higher Rrs values estimated by NIR1-SWIR than by Red-NIR (Fig. 12(i)).

Fig. 12. (a) RGB OLI composite images over the Hangzhou Bay (China). Results of the (b)
WiPE and (c) SeaDAS algorithms for the identification of the water pixels. (d), (e), and (f)
same as (a), (b), and (c), respectively but over the area identified by the red square in (a).
Scatter plots of the Rrs(λ)-Red-NIR vs. Rrs(λ) NIR-SWR1 in the (g) red, (h) green, and (i)
blue bands. The solid line represents the 1:1 line.

7.2. Match-up exercise for VNREDSat-1

The present algorithm is now validated based on the restricted match-up VNREDSat-1 data set
presented in section 2.1. For that purpose, the in situ remote sensing reflectance values measured
at the Venice (4 scenes) and Lucinda (2 scenes) are compared to the NAOMI-Rrs(λ) at the center
wavelength of NAOMI, using the spectral response function provided in Fig. 2. These latter
bands are 488 nm, 565 nm, and 655 nm. Due to the restricted number of match-up data, the
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statistical results have to be interpreted with caution. However, the similar patterns (about the
same RMSD and MPD values) as the one previously described for OLI can be observed, with
the best retrieval achieved at 565 nm (Table 6 and Fig. 13(a)). Accounting for the new TOA
calibration factors, estimated from the exercise performed in section 4, slightly improves the Rrs
retrieval, especially in the blue part of the spectrum (Fig. 13(b) and Table 6), This later result
should however be interpreted with caution as more match-up data points are needed to confirm
these TOA calibration factors.

Fig. 13. (a) Comparison of the Red-NIR derived and measured Rrs(λ) values from the
VNREDSat-1 match-up data set (N= 6). The solid line represents the best linear regression
type-II fit to data and the dashed line represents the 1:1 line. (b) Same as (a) but after the
application of the TOA calibration factors estimated in Section 4.

Table 6. Statistic table performs accuracy of Rrs[sr−1] by applying RED-NIR processing on 06
VNREDSat-1 scenes based on match-up analysis.

Band RMSD [sr−1] MPD [%] MB [sr−1] Slope Intercept

1 – Blue (488nm) 0.0032 27.415 4.264E-03 0.263 0.0102

[0.0032] [-20.131] [-0.0017] [0.434] [0.01]

2 – Green (565nm) 0.0016 -2.687 -1.07E-03 0.879 0.00284

[0.0027] [3.741] [-8.7E-06] [0.631] [0.006]

3 – Red (656 nm) 0.0008 76.631 2.399E-03 0.602 -0.000146

[0.0022] [-62.246] [-0.00185] [1.007] [0.002]

7.3. Intercomparison of NAOMI and OLI Rrs products over one turbid area

One area over the Camau province in South Vietnam has been sampled nearly simultaneously
(about 20 minutes of time interval) by OLI and NAOMI on January 8, 2015 (Fig. 14) allowing the
inter-comparison of their respective estimated Rrs(λ). Due to the failure of the previously tested
SeaDAS algorithms, which would have required a specific action such as manually fixing the
aerosols optical thickness, the OLI image was processed using ACOLITE [27]. Comparison over
water pixels collected in this relatively turbid waters, characterized by Rrs(655) values around
0.05 sr−1, shows a good agreement at the three considered bands between the OLI-Rrs(λ) values
estimated by the dark spectrum fitting (DSF) atmospheric correction method in ACOLITE [27]
and the NAOMI-Rrs values estimated by the Red-NIR algorithm (Fig. 14(d), 14(e), 14(f)). The
negatives and low MB (-0.0038 sr−1 in the blue, 0.0001 sr−1 in the green, and 0.002 sr−1 in the
red) and MPD (-8,6% in the blue, -0.05% in the green, and -9.4% in the red) values stress that
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the Red-NIR slightly under-estimate Rrs(λ) in the visible compared to ACOLITE-DSF. If this
pattern is confirmed from other images, it may be explained by the NAOMI TOA calibration
factors, the adopted spectral relationships (Eq. (19) and Eq. (20)) which do not properly account
for such high level of turbidity, and the aerosol transmittance which is fixed to 1.0 in the model.
These three aspects should be addressed in the next version of the algorithm. The relatively
narrow range of variability of the Rrs(λ) spectral values in the Fig. 14 density plots reflects the
homogeneous distribution of SPM, mainly due to the calm conditions encountered during the
acquisition day of the image (low wind speed, and low river outflow characteristics of the dry
season). For this reason, the two algorithms provide very similar Rrs(λ) spatial distribution at
the three considered wavelengths (not shown). The scatter points around the 1:1 lines are likely
explained by the different spatial resolutions of the sensor and the presence of white-caps partly
identified by WiPE (Fig. 14(c)).

Fig. 14. RGB (a) OLI and (b) NAOMI composite images over the Camau province (Vietnam).
(c) Zoom on the red area of (a). (d) Results of the WiPE algorithm showing the detection of
white-caps. Scatter plots of the Rrs(λ)-OLI-ACOLITE vs. Rrs(λ)-NAOMI-RED-NIR in the
(d) red, (e) green, and (f) blue bands. The solid line represents the 1:1 line.

8. Concluding remarks

Due to the unavailability of SWIR bands on NAOMI, we developed a new atmospheric correction
algorithm (Red-NIR) dedicated to the estimation of Rrs(λ) over coastal and inland waters. This
iterative algorithm is based on the assumption of spatial homogeneity in the aerosol signal over
the whole scene, and on the use of spectral relationships, similarly to the atmospheric correction
algorithms of POLDER2 [60] and GOCI [61] between Rrs(λ) in the NIR and visible parts of the
spectrum. The different results, based on match-up analysis (Figs. 10 and 12), emphasize that the
WiPE-Red-NIR algorithm applied to NAOMI is well adapted for the monitoring of Rrs from clear
to moderately turbid waters. Despite the absence of SWIR band on NAOMI, preliminary results
based on the respective application of NIR-SWIR and ACOLITE/DSF [27] on simultaneous
images collected by NAOMI and OLI over a more turbid water area, showed that these two
algorithms performed similarly. Match-up exercise performed over very turbid waters should
however be conducted in a near future to confirm this result, and to verify the performance of
Red-NIR over such water areas. Specifically, we should test how the algorithm behaves for waters
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presenting very different spectral behavior as the one described by Eq. (19) and (20). This study
also stresses the need of additional match-up data points for a robust vicarious calibration of
NAOMI.
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