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Abstract We present an inverse model (referred to as LS2) for estimating the inherent optical properties
(IOPs) of seawater, specifically the spectral absorption, a(k), and backscattering, bb(k), coefficients within the
ocean surface layer, from measurements of ocean remote-sensing reflectance, Rrs(k). The nonwater
absorption, anw(k), and particulate backscattering, bbp(k), coefficients can be derived after subtracting pure
seawater contributions. The LS2 requires no spectral assumptions about IOPs and provides solutions at
arbitrary light wavelengths in the visible spectrum independently of one another. As the LS2 can operate
with the inputs of Rrs(k) and solar zenith angle it is applicable to satellite ocean color remote sensing. The
model can also operate with additional input of the diffuse attenuation coefficient of downward irradiance,
which provides somewhat improved model performance for applications using in situ radiometric
measurements as inputs. The evaluation of LS2 with a synthetic data set that is free of measurement errors
indicates good performance for IOPs in the visible spectrum, except for anw(k) in the long-wavelength
portion of the spectrum where anw(k) contributes only a few percent to a(k) under typical open ocean
conditions. The good performance is characterized by a median absolute percent difference between the
model-derived and true values of IOPs, which is generally <20%, and the median ratio of model-derived to
true values <10%. The satisfactory model performance is also demonstrated through validation analysis
based on extensive data sets comprising coincident in situ measurements of Rrs(k) and IOPs as well as a
match-up data set comprising satellite-derived Rrs(k) and in situ IOP measurements.

1. Introduction

The last two decades have been characterized by an increased interest in inverse methods dedicated to the
estimation of inherent optical properties (IOPs) of natural surface waters from ocean color remote-sensing
observations (e.g., IOCCG, 2006; Werdell et al., 2013). The IOPs are determined by constituents of seawater,
including water molecules, planktonic organisms, nonalgal particulate matter (organic detritus and mineral
particles), gas bubbles, and colored dissolved organic matter (CDOM, also known as yellow substance).
Whereas the pure seawater IOPs are quite stable, depending somewhat on water temperature and salinity,
large variability in bulk IOPs observable in the ocean is tightly linked to variations in the concentration of
these different constituents, the size distribution and chemical composition of particulate matter, and the
chemical composition of dissolved organic matter. These linkages make the IOPs an attractive carrier of
information about various biogeochemically important constituents of seawater, for example, the particu-
late and dissolved stocks of carbon and phytoplankton community structure. The ability to retrieve IOPs
within the surface ocean from space observations of ocean color is particularly beneficial to improving the
investigations of biogeochemical status of the surface oceanic layer at large basin and global scales over
long periods of time beyond the application of the standard satellite data product of chlorophyll-a concen-
tration, Chl (in units of mg m23). For this reason, the IOPs are now included in the suite of Essential Climate
Variables within the framework of the Climate Change Initiative international program (Lavender et al.,
2015).
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In general, two IOPs are commonly estimated from the ocean spectral remote-sensing reflectance, Rrs(k) (in
units of sr21), which is derivable from satellite ocean color measurements; the spectral backscattering coef-
ficient, bb(k), and the spectral absorption coefficient, a(k) (both in units of m21), of seawater (k represents
the wavelength of light in vacuum in units of nm). Many extant models or algorithms for IOP retrieval yield
the component absorption coefficients associated with phytoplankton, aph(k), and colored detrital matter
(CDM) that includes combined contributions of nonalgal particles (NAP) and CDOM,
acdm kð Þ5aNAP kð Þ1aCDOM kð Þ, as well as the particulate backscattering coefficient, bbp(k), which is the differ-
ence between bb(k) and the pure seawater backscattering coefficient, bbw(k). Note that the sum of aph(k),
aNAP(k), and aCDOM(k) can be referred to as the nonwater absorption coefficient, anw(k), which can also be
derived as a difference between a(k) and pure seawater absorption coefficient, aw(k). Satellite-derived IOP
data products have been used in many studies addressing various characteristics of seawater constituents
of biogeochemical significance (e.g., Balch et al., 2005; Behrenfeld et al., 2013; Kostadinov et al., 2009, 2010;
Loisel et al., 2001a, 2002; Mannino et al., 2008; Siegel et al., 2002; Stramski et al., 1999; Vantrepotte et al.,
2011), oceanic primary production (e.g., Behrenfeld et al., 2005; Lee et al., 2011), and characterization of
water masses and other physical processes (e.g., Arnone et al., 2004; Traykovski & Sosik, 2003; Yang et al.,
2015).

Different approaches have been proposed to derive IOPs within the surface ocean layer from satellite ocean
color data (e.g., IOCCG, 2006; Werdell et al., 2013). Empirical models are among the most straightforward
approaches as they are simply based on statistical relationships between IOPs and Rrs(k), or an equivalent
quantity characterizing ocean color. Example empirical relationships for estimating total and component
absorption coefficients from spectral band ratios of remote-sensing reflectance are described in Lee et al.
(1998), Stramska et al. (2003), and Pan et al. (2008). Empirical algorithms for estimating the backscattering
coefficient from remote-sensing reflectance have been also proposed (e.g., Stramski et al., 1999, 2008). Neu-
ral network approaches also fall into the category of empirical approaches (e.g., Chen et al., 2014; Doerffer &
Schiller, 2007). The empirical algorithms can perform reasonably well, especially when applied on a
regional/seasonal basis consistent with the data set used in the algorithm development. In general, how-
ever, the formulation and performance of empirical algorithms can depend significantly on several factors
such as the size and accuracy of field measurements required for the algorithm development, seasonal and
spatial coverage of field measurements used in the algorithm development, effects of variables unac-
counted for in the algorithm, and environmental changes that require modifications to statistical relation-
ships. Therefore, recent research efforts to derive IOPs in the context of ocean color remote sensing have
focused on the use of semianalytical (or semiempirical) inverse reflectance models.

Semianalytical models are essentially based on the analytical link between Rrs(k) and IOPs established from
radiative transfer theory (Gordon et al., 1975, 1988; Morel & Prieur, 1977). Most extant semianalytical models
aim at simultaneously estimating the backscattering and absorption components of total IOPs (such as bbp,
aph, acdm) using reflectance data as input to the inversion algorithms (e.g., Brando et al., 2012; Bukata et al.,
1995; Devred et al., 2006; Garver & Siegel, 1997; Hoge & Lyon, 1996; Maritorena et al., 2002; Roesler & Perry,
1995; Wang et al., 2005). In this type of model, the linear or nonlinear optimization schemes are usually
applied to an approximate functional relationship that links ocean reflectance and component IOPs. In
essence, the simultaneous solutions for the component IOPs are searched by minimizing differences
between the measured and modeled reflectance values. There also exist inverse models in which the total
IOPs of seawater are derived or the derivation of total IOPs is followed by the estimation of component
IOPs (Lee et al., 2002; Loisel & Stramski, 2000; Pinkerton et al., 2006; Smyth et al., 2006). This type of inverse
model is usually based on algebraic algorithms operating in a stepwise fashion, possibly also involving
some iterative schemes. An important characteristic of algorithms yielding total IOPs is that they make it
possible to apply the stand-alone independently developed models for partitioning the total IOPs into com-
ponent IOPs, which do not require reflectance data as input to the partitioning algorithms, for example, the
absorption partitioning models (e.g., Ciotti & Bricaud, 2006; Zhang et al., 2015; Zheng et al., 2015; Zheng &
Stramski, 2013).

An important limitation affecting the performance of most extant semianalytical models is a requirement
for a priori assumptions about the spectral shape of model output of component absorption and backscat-
tering coefficients. Typically, such assumptions do not adequately represent the whole range of natural vari-
ability in these properties, resulting in potentially large uncertainties in model-derived IOPs, especially in
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applications for arbitrary time and location within the global ocean. Moreover, the assumed spectral shapes
are often constrained to the visible part of the spectrum and their extension to other spectral bands in the
ultraviolet (UV) or near-infrared (NIR) may not be warranted. To better account for naturally occurring vari-
ability in IOPs, the implementation of variable model parameters encompassing variations in spectral shape
of component IOPs has been explored (Brando et al., 2012; Wang et al., 2005) or a priori assumptions of IOP
spectral shapes have been completely relaxed (Loisel & Stramski, 2000).

The model of Loisel and Stramski (2000), hereafter referred to as LS1, is of particular interest as it requires no
assumptions regarding the spectral behavior of derived IOPs. Our primary objective in this study is to develop
modifications and improvements to LS1, which lead to better estimation of a(k) and bb(k) from ocean color
remote sensing within a broad range of open ocean and marine coastal environments. First, we provide an
overview of the original version of the LS1 model and the reasons for its modifications and improvements.
Next, we describe the development and formulation of a new model, i.e., a modified version of LS1 that is
hereafter referred to as LS2. Radiative transfer simulations supporting this task are included in this description.
The next section is devoted to the evaluation of the LS2 model and its validation in the context of both in situ
and remote-sensing applications. A synthetic data set is first used for model evaluation. Because this data set
is not subject to measurement errors, it allows evaluating the model and providing uncertainties for each
derived parameter, which depend solely on the algorithmic formulation of the model. Field data sets of coinci-
dent in situ Rrs(k) and IOP measurements are used to validate the model for a broad range of environments
from ultraoligotrophic open ocean waters to very turbid coastal waters. This validation exercise includes the
effects associated with uncertainties in both the model itself and in situ measurements. Finally, the model is
validated in the context of remote-sensing application. For this purpose we use a match-up data set, in which
the model input of remote-sensing reflectance, Rrs(k), derived from satellite observations is accompanied by
coincident in situ IOP measurements. This analysis allows assessment of the performance of the model when
subject to various sources of uncertainty including uncertainties in satellite-derived Rrs(k).

2. Overview of the LS1 Model and Required Improvements

The LS1 model was developed on the basis of radiative transfer simulations to enable the estimation of
three IOPs, the total spectral absorption, a(k), spectral scattering, b(k), and spectral backscattering, bb(k),
coefficients within the surface ocean, from the irradiance reflectance just below the sea surface, R(z 5 02, k)
(dimensionless), and the average attenuation coefficient for downwelling irradiance, <Kd(k)>1 (in units of
m21), between the surface and the first attenuation depth, z1 (z 5 02 represents depth just below the sur-
face). The simulations are described in detail in Morel and Loisel (1998) and Loisel and Stramski (2000). The
input variables R(02, k) and <Kd(k)>1 to the LS1 model belong to the class of the apparent optical proper-
ties (AOPs) of the ocean (e.g., Mobley, 1994). The depth z1, at which the downwelling irradiance is reduced
by 37% of its surface value, is of particular importance in ocean color remote sensing because 90% of the
water-leaving upwelling photons that can be detected by a satellite sensor originate within the oceanic
layer between the surface and z1 (Gordon & McCluney, 1975).

The key feature of LS1 is that it solves for IOPs at any arbitrary light wavelength, k, independently of other
wavelengths without any assumptions about the spectral shape of the derived IOPs. The LS1 model is based
on the following set of basic equations linking a(k), bb(k), <Kd(k)>1, and R(02, k), which are applicable to
any arbitrary light wavelength (in the equations we omit k for the sake of brevity):

a5lw <Kd>1
1

11hðlwÞ Rð02Þ
12Rð02Þ

h i0:5 (1)

bb5 <Kd>110a ½Rð02Þ�d (2)

The h, a, and d functions are given by:

h52:5426:54lw119:89 lw
2 (3)

a5 20:8315:34g212:26g2
� �

1lw 1:01324:124g18:088g2
� �

(4)
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d5 0:87110:4g21:83g2
� �

(5)

where g(k) (dimensionless) is the ratio of the water molecular scattering coefficient, bw(k), to the total scat-
tering coefficient, b(k) (both coefficients in units of m21), and lw (dimensionless) is the cosine of the angle
of refraction of the solar beam just beneath the sea surface. The parameter lw is calculated as lw5cos
sin21 sin hs=nwð Þ
� �

where nw is the refractive index of water and hs is the solar zenith angle. A typical
assumption is nw51:34. The g(k) parameter is obtained through the computation of b(k) as a function of
<Kd(k)>1 and R(02, k) (see equations (13) and (14) in Loisel and Stramski, 2000). These basic equations of
LS1 were developed under the assumption of no inelastic radiative processes in the ocean, such as Raman
scattering by water molecules. Therefore, the input AOPs to these equations represent a hypothetical sce-
nario with no inelastic processes, which may lead to significant uncertainties, especially in the green and
red portions of the spectrum where Raman scattering may have an important influence on the underwater
light field and AOPs (e.g., Marshall & Smith, 1990; Stavn, 1993; Sugihara et al., 1984). The LS1 model includes,
however, an additional component that corrects for the presence of Raman scattering, thus improving the
realism of modeled marine optical environment and the retrieval of IOPs. Another important point is that in
the context of remote-sensing applications, the required input data of R(02, k) and <Kd(k)>1 to LS1 are not
measured by ocean color sensors, but must be derived from the primary ocean color data product, such as
remote-sensing reflectance, Rrs(k) (see Loisel et al., 2001b). A slightly modified version of LS1 was developed
and tested as part of the International Ocean Colour Coordinating Group (IOCCG) Working Group dedicated
to inverse bio-optical algorithms (IOCCG, 2006). The main improvement involved a new empirical formula-
tion to compute <Kd(k)>1 at 410, 440, 510, and 550 nm from Rrs 490ð Þ=Rrs 550ð Þ (Loisel & Poteau, 2006).

Although LS1 has already been used in a number of studies utilizing satellite observations of ocean color
(e.g., Bricaud et al., 2012; Ciotti & Bricaud, 2006; Duforêt-Gaurier et al., 2010; Dupouy et al., 2003; Kostadinov
et al., 2009, 2010; Loisel et al., 2001a, 2002; Vantrepotte et al., 2011), there are several compelling reasons to
conduct new radiative transfer simulations with a purpose to modify and improve the model for such appli-
cations. First, while R(02, k) can be determined directly from in situ measurements, it is Rrs(k) and not R(02,
k) which is derived as the primary ocean data product from ocean color remote-sensing observations.
Therefore, in this study we use Rrs(k) instead of R(02, k) as input to the new model LS2. Second, we use a
neural network approach (Jamet et al., 2012) to estimate <Kd(k)>1 from Rrs(k), instead of the empirical rela-
tionships used previously in the original LS1 and its version from the IOCCG project in 2006. An improve-
ment of the neural network algorithm of Jamet et al. (2012) is also included in the LS2 model. Third, the
derivation of g(k) in LS1 is directly linked to the retrieval accuracy of b(k) which is strongly dependent on
the scattering phase function of particles (Loisel & Stramski, 2000). An accurate retrieval of b(k) can there-
fore be achieved only when the phase function for the observed water body is similar to that used for the
model parameterization based on specific set of radiative transfer calculations. In the LS2 model, a new pro-
cedure is used to estimate g(k). The next motivation factor for model improvements is associated with a
need for the use of realistic combinations of values for the b/a and g parameters in the radiative transfer
simulations and subsequent parameterization of the model. Finally, compared with the development of
LS1, the range of IOPs included in radiative transfer simulations for developing the LS2 model in this study
is significantly extended, especially to extend coverage into highly turbid waters.

3. Model Development and Formulation

3.1. Radiative Transfer Simulations
Similar to the LS1 model, in this study the modifications of LS1 and the resultant LS2 model are developed
on the basis of two sets of simulations of radiative transfer within the ocean. The first set of simulations (S1)
is used for the development of model equations and parameterizations in the absence of Raman scattering
by water molecules. The second set (S2) is used for developing a correction for the presence of Raman scat-
tering. Fluorescence processes associated with CDOM and phytoplankton were not included in the simula-
tions. Both sets of simulations were performed with the Hydrolight v5.0 radiative transfer code (Mobley &
Sundman, 2008) for a homogeneous and infinitely deep ocean with the modeled roughness of the sea sur-
face corresponding to wind speed of 5 m s21. All simulations were made assuming clear skies and standard
atmosphere, where the normalized sky radiances were computed using the sky model ‘‘HCNRAD,’’ and dif-
fuse and direct sky irradiances were computed using the ‘‘RADTRANX’’ model, as implemented in the
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Hydrolight code. The required atmospheric parameters (air mass type, pressure, visibility, ozone, precipita-
ble water, relative humidity, 24 h wind speed) were set to their default values. In addition, for a given set of
input variables, the Hydrolight runs were made for different sun zenith angles, hs, ranging from 08 to 708

with a step of 108. The use of clear sky conditions has been motivated by our primary interest in the devel-
opment of the model for ocean color remote-sensing applications that require clear skies.

The IOPs of seawater used as input in S1 are represented by two dimensionless quantities, the ratio of total
scattering coefficient to absorption coefficient of seawater, b/a, and the ratio of molecular scattering coeffi-
cient to total scattering coefficient of seawater, g. The use of these two dimensionless quantities irrespective
of light wavelength allows the model to be developed without any assumptions about the spectral shape of
IOPs. The absorption coefficient is fixed at 1 m21, and the b/a ratio varies from 0.05 to 30 (0.05, 0.10, 0.15, 0.2,
0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 7.0, 8.0, 9.0, 10.0, 12.0, 14.0, 16.0, 18.0,
20.0, 22.0, 24.0, 26.0, 28.0, 30.0). The variation of the total scattering phase function of seawater (in units of
sr21) is driven through the g parameter that provides the respective contributions of molecular and particu-
late scattering to the total phase function (see equation (2) in Loisel and Stramski, 2000). We assumed the
same phase functions for molecular and particulate scattering as Loisel and Stramski (2000). Specifically, the
molecular phase function was calculated from an appropriate formulation for scattering by water molecules
(Mobley, 1994). For particles, we used the phase function proposed in Mobley (1994), which was derived by
averaging three particle phase functions measured in oceanic waters by Petzold (1972). Because the estima-
tion of the total absorption and backscattering coefficients from this type of model has been shown to be
weakly sensitive to variations in the particle phase function (Gordon, 1993; Loisel & Stramski, 2000), the use of
a single particle phase function in the model development is warranted. The simulations were run with the
following g values: 0.000, 0.005, 0.015, 0.020, 0.025, 0.030, 0.035, 0.040, 0.045, 0.050, 0.055, 0.060, 0.065, 0.070,
0.075, 0.080, 0.085, 0.090, 0.100, 0.150, and 0.200. We emphasize that the development of the LS2 model is
based on the use of realistic combinations of b/a and g values. The criteria for the selection of the (b/a, g) data
pairs used in Hydrolight simulations were based on standard bio-optical models for oceanic Case 1 waters
and available in situ data sets for coastal waters. For instance, a combination of high b/a and g values is not
realistic in Case 1 waters (see Figure 2 in Morel and Loisel, 1998), and thus is not included in the simulations.

Raman scattering can contribute significantly to the remote-sensing reflectance in the green and red parts
of the spectrum (15% or more) in oligotrophic waters (e.g., Gordon, 1999; Stavn, 1993; Westberry et al.,
2013). To account for Raman scattering in the model development, radiative transfer simulations (S2) have
been performed with and without Raman scattering. In S2, the IOPs of seawater were modeled as a function
of light wavelength and Chl by means of standard bio-optical models for oceanic Case 1 waters provided in
the library of subroutines of Hydrolight. Simulations with and without Raman scattering were made within
the wavelength range from 350 to 700 nm for the following Chl values: 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07,
0.08, 0.09, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 2.0, 3.0, 4.0, and 5.0 mg m23. Because the shortest wave-
length in the simulations is 350 nm, the effect of Raman scattering is examined in the visible part of the
spectrum for wavelengths longer than 400 nm.

3.2. Model Parameterization
The LS2 model is formulated to enable the estimation of two IOPs of seawater within the surface ocean
layer, the spectral backscattering, bb(k), and spectral absorption, a(k), coefficients, from input data of Rrs(k)
and <Kd(k)>1, where <Kd(k)>1 can be derived from Rrs(k). This formulation thus ensures the applicability of
the model in the context of ocean color remote sensing with one primary input of satellite-derived Rrs(k).
The logical flow of the model, including each major step of the computations, is listed in Table 1. The key
aspects of model formulation and parameterization are described below.

In general, the estimation of IOPs in the LS2 model is based on relationships between IOPs and AOPs, which
are similar to those proposed in LS1 but Rrs is here used instead of R(02):

bb=hKdi15f Rrsð Þ (6)

hKdi1=a5g Rrsð Þ (7)

where the functions f and g depend on the ratio of molecular scattering to total scattering, g, and sun
zenith angle, hs, or equivalently lw. These relationships are formulated irrespective of light wavelength so k
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is omitted for brevity. Loisel and Stramski (2000) found that log-transformed data of bb/<Kd>1 are approxi-
mately linearly related to log-transformed data of R(02), and an empirical relationship between these two
quantities was established as a function of g and lw (equation (2)). Further analysis conducted in this study
resulted in the formulation of a polynomial relationship between bb, <Kd>1, and Rrs:

bb5hKdi1 bb1 g; lwð ÞRrs1bb2 g; lwð ÞR2
rs1bb3 g; lwð ÞR3

rs

� �
(8)

This type of relationship is similar to that used in Gordon et al. (1975), except that the bb1, bb2, and bb3 coef-
ficients in our model are not constant but vary as a function of g and lw. A look-up table provides the values
for bb1, bb2, and bb3 for different values of g and lw. An interpolation procedure is applied to calculate these
coefficients for intermediate values of g and lw that are not included in the look-up table.

A comparison between the polynomial function (equation (8)) and the previously established relationship
(equation (2)), in which R(02) has been converted to Rrs according to Loisel et al. (2001b), is shown in Figure 1
where bb/<Kd>1 is plotted as a function of Rrs for different values of g and hs. For relatively low Rrs values (i.e.,
Rrs< 0.01 sr21) that encompass a broad range of marine environments with the exception of very oligotrophic
waters for the blue and very turbid waters for the green and red parts of the spectrum, the agreement
between the two approaches is good regardless of hs and g, i.e., also regardless of the shape of total scattering
phase function. The agreement between these two fitting approaches tends, however, to deteriorate with an
increase in Rrs. The polynomial fit (equation (8)) is clearly superior to the power function fit (equation (2)) for
relatively large values of Rrs, as indicated by much closer agreement between the data points and the polyno-
mial fit compared with the power function fit.

The absorption coefficient is estimated through a different formulation than in LS1. In LS1 the dependence
of h on g was neglected (see the denominator of equation (1), and equation (3)). However, as noted in Loisel
and Stramski (2000, see their Figure 2), h exhibits a slight dependency on g, especially for low values of g
that are observed in turbid waters and also in clear waters for the green and red parts of the spectrum. In
this study, we carried out further analysis to account for this dependence. As a result, a polynomial relation-
ship has been established between a, <Kd>1, and Rrs:

Table 1
The Logical Flow of the LS2 Inverse Reflectance Model

Steps Description of each step of the model

Step 1 Rrs(k) and the sun zenith angle, hs, are the input parameters of the model. lw is calculated from hs as
lw 5 cos[asin(sinhs/nw)] where nw is the refractive index of water with nw 5 1.34

Step 2 <Kd(k)>1 is obtained from in situ measurements when available, or from the neural network algorithm,
which requires Rrs(k) as input parameter (in this case the inversion of <Kd(k)>1 at one given wave-
length, requires Rrs(k) at several visible bands). Regional or other specific <Kd(k)>1 algorithms can also
be used if deemed appropriate

Step 3 Chl is estimated from OC4v4 algorithm (O’Reilly et al., 2000) to obtain a rough proxy of bp(k) using calcu-
lations based on Loisel and Morel (1998) and Morel and Maritorena (2001). The total scattering coeffi-
cient is then calculated as bp(k) 1 bw(k), where the user can use the most appropriate spectral values
for bw(k). Other Chl algorithms can also be used if deemed appropriate

Step 4 g(k) is calculated as bw(k)/b(k)
Step 5 a(k) is calculated from Rrs(k), <Kd(k)>1, g(k), and lw from equation (9) where the different coefficients

are provided in a look-up table
Step 6 anw(k) is obtained by subtracting aw(k) from a(k). As the model is free of spectral assumptions, the user

can use the most appropriate spectral values for aw(k)
Step 7 bb(k) is calculated from Rrs(k), <Kd(k)>1, g(k), and lw from equation (8) where the different coefficients

are provided in a look-up table
Step 8 bbp(k) is obtained by subtracting bbw(k) from bb(k), where bbw(k) equals to half of the bw(k) value used in

Steps 3 and 4
Step 9 The remote-sensing reflectance corrected for Raman scattering contribution is obtained as a product of

j(k) and Rrs(k), where j(k) is provided in a look-up table as a function of bb(k)/a(k). This new
reflectance value is then used in Step 1, and the whole process is repeated until a convergence for
successive estimates of IOPs is achieved

Note. The computer code of the inverse reflectance model is available on the IOCCG website htpp:www.ioccg.org/
software/.
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a5hKdi1= a1 g; lwð Þ1a2 g; lwð ÞRrs1a3 g; lwð ÞR2
rs1a4 g; lwð ÞR3

rs

� �
(9)

where the coefficients a1, a2, a3, and a4 depend on both g and lw and are provided in a look-up table.
When Rrs tends toward 0, the ratio a/<Kd>1 approaches its limiting value given by lw that approximates
the average cosine of near-surface light field under the conditions of radiative transfer simulations. A com-
parison of this new polynomial parameterization described by equation (9) with an earlier parameterization
used in LS1 is provided in Figure 2. A polynomial parameterization results in improvement for low g and
high Rrs values regardless of the sun angle, as indicated by closer agreement between the data points and
the polynomial fit compared with the power function fit. The content of look-up tables with the values for
the coefficients bb1, bb2, and bb3 involved in equation (8) and the coefficients a1, a2, a3, and a4 involved in
equation (9) are provided in the supporting information.

In the LS1 model, the accuracy of the estimation of g is dependent on the accuracy of the estimation of total
scattering coefficient b, which in turn depends largely on the nature and properties of particulate assemb-
lages (Loisel & Stramski, 2000). The natural variability of particle properties will thus limit these accuracies.
In this study, several approaches to improve the estimation of g were tested. Based on these analyses, we
found that the use of a simple empirical formula between the particulate scattering coefficient, bp, and Chl
(Loisel & Morel, 1998) offers the best approach for estimating g. The spectral dependency of bp is calculated
according to Morel & Maritorena (2001), and Chl is estimated from Rrs using the standard OC4v4 algorithm
(O’Reilly et al., 1998, 2000). No significant changes have been observed in the IOP retrieval accuracy when
LS2 uses the OC4v6 algorithm instead of OC4v4 algorithm to calculate g. We also note that, in general, the
use of Chl algorithm as part of the LS2 model is not limited to any specific Chl algorithm, as the users of LS2
can choose any version of Chl algorithm that is deemed most suitable. Although the bp versus Chl

Figure 1. Relationship between bb/<Kd>1 and Rrs for two different sun zenith angles, hs, and two different g values, as
indicated. The crosses represent results from radiative transfer simulations, solid curves the polynomial relationship from
the LS2 model (equation (8)), and dotted curves the relationship from the LS1 model (equation (2)) after converting R(02)
into Rrs as described in Loisel et al. (2001b).
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relationship is known to underestimate bp in coastal waters and the OC4v4 algorithm is generally not ade-
quate for such waters, this simple approach provides relatively good estimates of g even in coastal waters.
This can be explained by the fact that the underestimation of bp is partly compensated by the overestima-
tion of Chl in relatively turbid waters (Loisel et al., 2010).

Because g is involved in different formulas of the LS2 model as a second-order parameter, this simple
approach for its estimation is deemed adequate for this model. Based on the analysis of synthetic data set
DS1 (see section 4.1), from which the true g values can be calculated, we found that the present methodol-
ogy can assess g from Chl with a root-mean-square-deviation (RMSD) value of 0.007 over a broad range of
optical water types. This relatively good retrieval accuracy of g, as well as the fact that g is only a second-
order parameter in LS2, explain why the performance of the model, as characterized by different statistical
indicators (see section 4.2), is similar regardless of whether the true or modeled g values are used in LS2
(the statistical indicators vary less than 1% between these two versions).

The formulation of the LS2 model also involves the dependence of the relationships linking the AOPs with
IOPs on the geometry of illumination of the ocean surface. This dependence is parameterized in terms of
sun zenith angle, hs, or equivalently lw, and is meant to be representative primarily of clear sky conditions
in the context of remote-sensing applications. It is important to note, however, that in clear waters the
underwater light field in the near-surface ocean is dominated by single scattering events. In addition, the
surface illumination conditions, as well as the viewing geometry in the case of remote-sensing observations
when upwelling radiance is not necessarily measured along the vertical direction, may have potentially sig-
nificant effect on the relationships linking Rrs(k) (or <Kd(k)>1) with IOPs, including clear sky conditions.
These factors may result in a nonnegligible source of model uncertainty in clear waters. Note also that
whereas the sun zenith angle involved as an input parameter to the model is meant to account for the

Figure 2. Relationship between <Kd>1/a and Rrs for two different sun zenith angles, hs, and two different g values as
indicated. The crosses represent results from radiative transfer simulations, solid curves the polynomial relationship from
the LS2 model (equation (9)), and dotted curves the relationship from the LS1 model (equation (1)) after converting R(02)
into Rrs as described in Loisel et al. (2001b).
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effect of different illumination conditions under clear skies, it can be inadequate to parameterize the com-
plex illumination conditions at the ocean surface in the presence of clouds. This aspect must be recognized
when the model is validated with in situ data that were collected under various sky conditions.

The equations of the LS2 model described above were developed for the hypothetical ocean scenario in
the absence of Raman scattering. Therefore, the contribution of Raman scattering must be removed from
the input data of Rrs (e.g., the satellite-derived Rrs) in order to ensure the best possible estimates of IOPs
from the model. For this purpose, we use a similar iterative approach as in Loisel and Stramski (2000). Spe-
cifically, the Raman contribution to the measured data of spectral Rrs(k) that are used as input to the model
is estimated in terms of the ratio of the hypothetical reflectance that would be measured in the absence of
Raman scattering to the measured reflectance in the presence of both elastic scattering and Raman scatter-
ing. The values for this ratio, denoted as j(k), were predetermined as a function of bb/a within a wavelength
range from 400 to 700 nm with a step of 4 nm, using radiative transfer calculations as described in Loisel
and Stramski (2000). The j(k) values are stored in a look-up table (see supporting information). The use of
this look-up table as part of the iterative scheme to correct for Raman scattering is the last computational
step that yields the final model-derived estimates of IOPs (see Table 1).

3.3. Estimation of Irradiance Attenuation Coefficient
In addition to Rrs(k), the diffuse attenuation coefficient for downwelling irradiance, <Kd(k)>1, is another
AOP required to run the inverse LS2 model. The algorithm of Jamet et al. (2012) based on a neural network
approach allows estimations of <Kd(k)>1 at any light wavelength between 412 and 670 nm from Rrs(k). This
algorithm, which has been developed for ocean color remote-sensing applications, requires the input of
Rrs(k) values at all standard bands in the visible spectral range of satellite ocean color sensors. While this
approach provides better performance than previous methods (see Jamet et al., 2012), including the
method used in LS1, the estimates of <Kd(k)>1 in optically very clear and very turbid waters are still not
quite satisfactory.

A modified version of the Jamet et al. (2012) algorithm is used in this study to address this issue. This
improved version is based on the same training data set and the use of the same training protocol as in
Jamet et al. (2012). Similar to studies by Zhang and Fell (2007) and Wang et al. (2009), we utilize switch crite-
ria to better address the transition between oligotrophic and turbid waters. The architecture of this new
neural network has been also slightly modified compared to the original version of Jamet et al. (2012). Spe-
cifically, if the reflectance band ratio Rrs 490ð Þ=Rrs 555ð Þ is lower or equal to 0.85, the neural network algo-
rithm utilizes all Rrs(k) values between 443 and 670 nm as input parameters. In this case, the neural network
has two hidden layers with five neurons for each layer. In contrast, if the reflectance ratio is higher than
0.85, the neural network algorithm does not take into account the red spectral band of Rrs(k) as input
parameter. The choice to ignore the red band for clear waters is motivated by its generally low signal and
low signal-to-noise ratio compared to other visible bands (e.g., Hu et al., 2012). In the case of
Rrs 490ð Þ=Rrs 555ð Þ > 0:85, the neural network has two hidden layers with four neurons for each layer. For
both cases of neural network inversion, the output of <Kd(k)>1 is generated for any wavelength between
412 and 670 nm, and in each case the algorithm architecture combines a minimal error with a minimal
number of neurons. We also note that this neural network algorithm does not use Rrs(412) as input because
satellite-derived estimates of this reflectance are potentially subject to significant uncertainty, especially in
coastal areas (Goyens et al., 2013; Jamet et al., 2011; Melin et al., 2007; Zibordi et al., 2006).

4. Model Evaluation and Validation

4.1. Synthetic, In Situ, and Match-up Data Sets
Four data sets consisting of relevant AOPs and IOPs are used to evaluate and validate the LS2 model. The
first data set, referred to as DS1, consists of synthetic data of AOPs that were generated through radiative
transfer simulations with input of synthetic IOP data. DS1 was created as part of the IOCCG Working Group
project on inverse bio-optical algorithms (IOCCG, 2006). As the synthetic data set is free of measurement
errors, it allows evaluating the uncertainties of the LS2 model, which are associated solely with the algorith-
mic formulation of the model. The data set DS1 covers a large range of bio-optical properties of the water
column. For example, the nonwater absorption coefficient at 440 nm, anw(440), which represents a sum of
phytoplankton, nonalgal particulate and CDOM contributions, ranges between 0.0095 and 3.17 m21 with a
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median value of 0.216 m21. The particulate backscattering coefficient bbp(550) ranges between 0.0005 and
0.132 m21 with a median value of 0.011 m21. Overall 500 IOP scenarios were used as input to generate
DS1. For each set of input IOPs the simulations were made for three sun zenith angles of 08, 308, and 608.

The second (DS2) and the third (DS3) data sets comprise in situ measurements collected in different oceanic
and coastal environments (Figure 3), and span a broad range of trophic and environmental conditions (Figure
4). These data sets are used to validate the model for the scenario in which in situ measurements of Rrs provide
input to the model. In this validation exercise, the model-derived IOPs are compared with in situ measurements
of IOPs. Thus, this validation is subject to uncertainties in both the algorithmic formulation of the model and
measurements of Rrs and IOPs. For a few reasons, we use DS2 and DS3 as two separate data sets, rather than
one combined data set, in our model validation analysis. First, data contained in these data sets were collected

Figure 3. Location of oceanographic stations where in situ measurements were collected for creating data sets DS2, DS3,
and DS4. Each data set is displayed with a different color as indicated.

Figure 4. Histograms of in situ measurements of anw(443) and bbp(532) or bbp(555) comprising the data sets DS2, DS3,
and DS4. The minimum-to-maximum range and median values for the optical coefficients are indicated (in m21). N is the
number of observations.
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by different teams of investigators using different experimental approaches and instrumentation for measuring
some optical quantities. Specifically, DS2 has been collected by the team of the Laboratory of Oceanography
and Geoscience (LOG) in France and DS3 has been collected by the team of the Scripps Institution of Oceanog-
raphy (SIO) in USA. Whereas each data set was collected with an internally consistent set of experimental
approaches and protocols, there are some differences in that regard between the data sets. For instance, in DS2
the spectral nonwater absorption coefficient, anw(k), was obtained from in situ measurements with an ac-s
instrument (WET Labs) as described in Neukermans et al. (2012). The absorption data in DS3 were obtained
from spectrophotometric measurements made on discrete water samples, which provided the component
absorption coefficients, aCDOM(k) and ap kð Þ5aph kð Þ1aNAP kð Þ, and hence; anw kð Þ5aCDOM kð Þ1ap kð Þ (e.g.,
Mitchell et al., 2003; Stramski et al., 2015). With regard to the backscattering coefficient, the ECO BB-9 and ECO-
VSF sensors (WET Labs) have been used to measure bb(k) in DS2, and Hydroscat-6 sensors (HOBI Labs) have
been used in DS3. In both data sets, the determination of bbp(k) was made by subtraction of pure water scatter-
ing contributions calculated using in situ measurements of water temperature and salinity. Another important
reason for the use of separate data sets DS2 and DS3 in our model validation analysis is related to significant
contrast between most data contained in DS2 and DS3 in terms of the coverage of diverse marine bio-optical
environments. Specifically, DS2 is mainly dominated by Case 2 waters (Gordon & Morel, 1983; Morel & Prieur,
1977) in which the IOP variability is driven largely by dissolved and particulate matter of terrestrial origin, which
is uncoupled with phytoplankton and associated material in the water column. DS2 comprises data collected in
the English Channel and southern North Sea (Loisel et al., 2007; Lubac et al., 2008, Neukermans et al., 2012),
French Guyana coastal waters (Loisel et al., 2009; Neukermans et al., 2012), Vietnam coastal waters (Loisel et al.,
2017), and the Mediterranean Sea (Loisel et al., 2011). Only a small percentage of data (e.g., 9 out of 261 meas-
urements of bbp(532)) were collected in open ocean areas (Figure 3). Whereas the median values of anw 443ð Þ5
0:66 m21 and bbp 532ð Þ50:032 m21 are relatively high, this data set covers a broad range of variability (Figure
4). The protocols for the determinations of IOPs and Rrs(k) in DS2 are described elsewhere (Loisel et al., 2007;
Lubac et al., 2008, Neukermans et al., 2012).

DS3 comprises globally distributed data including polar and lower latitude regions and encompassing con-
trasting bio-optical environments that range from the clearest waters in ocean subtropical gyres to extremely
turbid coastal waters (Figure 3). Data were collected during the Southern Ocean JGOFS program (Reynolds
et al., 2001), the BIOSOPE project in the eastern South Pacific (Claustre et al., 2008; Stramski et al., 2008), two
Atlantic cruises (ANT23 and ANT26) spanning low to midlatitudes (Stramski et al., 2008; Uitz et al., 2015), and
the MALINA and ICESCAPE programs in Arctic waters (Neukermans et al., 2016; Reynolds et al., 2016). Addi-
tional data were collected at nine stations in Pacific waters off Hawaii. A description of measurement protocols
for most of these cruises is provided in Stramski et al. (2008) and Zheng et al. (2014). For this study, most data
in DS3 were reprocessed in the same manner to ensure consistency between the various field campaigns. In
some cases, for example, the absorption data from the BIOSOPE cruise, the original data provided by investi-
gators who made the relevant measurements are included in the DS3 data set without further reprocessing.
Although DS3 includes some coastal stations, it is mainly representative of open ocean waters. The median
values of anw 443ð Þ50:064 m21 and bbp 532ð Þ50:0011 m21 are lower by one order of magnitude compared
with DS2 (Figure 4). Also, both the lower and upper limits of the range in the IOPs are much smaller for DS3
compared with DS2. This comparison reflects significant contrast and complementarity of these two data sets.

The fourth data set (DS4) is derived from version 1.3.sv of the NASA bio-Optical Marine Algorithm Dataset
(NOMAD, see Werdell & Bailey, 2005) which includes match-up data of Rrs(k) from satellite observations with
Sea-viewing Wide Field-of-View Sensor (SeaWiFS) and coincident and colocated in situ measurements of IOPs.
The nominal temporal and spatial thresholds used for specifying match-up criteria are 63 h and 0.18, respec-
tively. These criteria are met for 25 bbp(k) data points out of 28, and for 72 anw(k) data points out of 107 in the
data set. The remaining data points exhibit slightly higher spatial variability than the threshold value. The DS4
data set is used to validate the model for the scenario of remote-sensing application, in which satellite-
derived Rrs provides input to the model. In this validation analysis, the model-derived IOPs are compared with
in situ measurements of IOPs that are coincident and colocated with satellite-derived Rrs. Thus, this validation
is subject to various uncertainties including the algorithmic formulation of the model, satellite derivation of
Rrs, in situ measurements of IOPs, as well as spatial and temporal mismatch between the satellite and in situ
observations. DS4 covers a broad range of open ocean and coastal environments (Figure 3). In this data set,
the median values of anw 443ð Þ50:059 m21 and bbp 532ð Þ50:0031 m21 are similar to those in DS3.
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We also assembled an additional data set (DS5) of in situ radiometric measurements to validate the modi-
fied neural network algorithm for estimating <Kd(k)>1 from Rrs(k). This data set was not used in the devel-
opment and training of the algorithm. DS5 includes data from the European coastal waters sampled as part
of the Coastal Surveillance Through Observation of Ocean Color (COASTlOOC) project (Doron et al., 2007) as
well as data collected in the Arabian Sea (Lee et al., 2005). Whereas the COASTlOOC data set is characterized
by relatively high attenuation of light within the upper water column (<Kd(490)>1 5 0:464 6 0:640 m21),
the Arabian Sea data set represents relatively clear waters (<Kd(490)>1 50:0445 6 0:0866 m21), which
makes these two data sets complementary.

4.2. Statistical Indicators of Model Performance
To assess model performance, we use the graphical comparison of model predictions and observations as
well as quantitative statistical metrics of differences between the corresponding model predictions and
observations. We calculated several statistical indicators that are typically utilized in the assessment of
model accuracy or skill in ocean sciences, including ocean color-related models (e.g., Brewin et al., 2015;
Friedrichs et al., 2009; IOCCG, 2006; Stow et al., 2009). These indicators include the root-mean-square devia-
tion, RMSDlog and RMSD, calculated in the logarithmic and linear space, respectively:
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where N is the number of data points, IOPmod is the model-derived value of IOP, and IOPobs is the known
IOP value that was either measured in situ (data sets DS2, DS3, DS4) or assumed a priori as input to radiative
transfer simulations (data set DS1).

We also report on the mean bias, MB, representing the difference between the means of the two data sets,
i.e., untransformed model-derived data and corresponding untransformed measured data. MB is a compo-
nent of total RMSD. Other indicators reported for untransformed data sets include the Pearson correlation
coefficient, r, the median ratio of model-derived to measured values, MR, which provides a nondimensional
measure of bias including its sign, and the median absolute percent difference, MAPD, calculated as the
median of the individual absolute percent differences between the modeled and measured data.

We note that the calculation of statistical metrics for log-transformed data is generally recommended for
data sets that are approximately log-normally distributed, which is often expected for bio-optical data
(Campbell, 1995). We examined the probability distribution of IOPs in our data sets and found that the dis-
tribution of IOPs is variable, in some cases showing a bimodal distribution shape (see Figure 4), so a log-
normal distribution does not necessarily provide an adequate approximation. Therefore, we report on statis-
tical metrics calculated in both the logarithmic and linear space. In addition to calculating RMSDlog, type-II
linear regression analysis for model-derived versus observed data was also performed on log-transformed
data (Laws, 1997; Legendre & Legendre, 1998). We provide examples from this regression analysis including
the values of the Pearson correlation coefficient, rlog, for the log-transformed data.

The results of model performance analysis involving the use of synthetic, in situ, and match-up data sets are
presented below. These results were obtained for the light wavelengths of 412, 443, 490, 510, 555, and
670 nm (if available), which correspond to the center or near-center wavelengths of typical visible bands on
satellite ocean color sensors.

4.3. Evaluation of <Kd(k)>1 Derived From Neural Network Algorithm
To evaluate the estimation of <Kd(k)>1 from the modified neural network algorithm, in situ measurements
of Rrs(k) are used as input to the algorithm and the algorithm-derived <Kd(k)>1 is compared with in situ
measurements of <Kd(k)>1 (Figure 5). This analysis utilizes the field data set DS5. As shown for an example
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Figure 5. (a) Comparison of the model-derived and measured <Kd(490)>1 values. The modified neural network algo-
rithm, which has been implemented into the LS2 model, was used to derive <Kd(490)>1. The solid line represents the
best fit linear regression type-II fit to log-transformed data and the dashed line represents the 1:1 line. The regression
equation (where x is the abscissa and y the ordinate), values of the Pearson correlation coefficient for log-transformed
data rlog, and the number of data points N are displayed. (b) Spectra of statistical indicators calculated for the data of
model-derived versus measured <Kd(490)>1 values (see text for details).

Figure 6. (a) Comparison of model-derived and reference (true) absorption coefficient, a(440), for the synthetic data set
DS1. The LS2 model was run with inputs of <Kd(k)>1 and Rrs(k). The solid line represents the best fit linear regression
type-II fit to log-transformed data and the dashed line represents the 1:1 line. The regression equation (where x is the
abscissa and y the ordinate), values of the Pearson correlation coefficient for log-transformed data rlog, and the number of
data points N are displayed. (b) Same as (a) but for the backscattering coefficient bb(k). (c) Spectra of statistical indicators
calculated for the data of model-derived versus measured a(k) values (see text for details). (d) Same as (c) but for bb(k).
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wavelength of 490 nm, a very good performance of the algorithm is achieved over the whole range of
<Kd(490)>1 values that span two orders of magnitude (Figure 5a). For example, at this wavelength the
slope, S, of the best fit regression line between the log-transformed data is 0.982, which is very close to 1,
and the values for the statistical indicators of RMSDlog and RMSD are 0.15 and 0.19 m21, respectively. This
good retrieval accuracy is maintained over the most part of the visible spectrum (Figure 5b).

The performance of the present algorithm for estimating <Kd(k)>1 also compares favorably with the results
obtained from the original algorithm of Jamet et al. (2012). The latter has shown better performance than pre-
viously published algorithms (see Figure 4 and Table 4 in Jamet et al., 2012). Compared to the Jamet et al.
(2012) algorithm, the retrieval accuracy of <Kd(k)>1 using our new algorithm is considerably improved in the
blue part of the spectrum and slightly improved in the green and red spectral regions (not shown). This
improvement is more pronounced within the range of relatively high values of <Kd(k)>1. For example, at
410 nm where this range is characterized approximately by <Kd(410)>1 exceeding 0.54 m21, the RMSD in the
present algorithm is reduced to about 0.3 m21 compared with 0.57 m21 in the Jamet et al. (2012) algorithm.

4.4. Model Evaluation With Synthetic Data Set
The synthetic data set DS1 is free of measurement errors, allowing evaluation of the uncertainties of the
inverse LS2 model, which are associated solely with the formulation of modeled relationships for calculating
the IOPs given the input data of Rrs(k). In this analysis, the model-derived IOPs are compared with the syn-
thetic data of IOPs that were used as input to radiative transfer simulations to create DS1. The IOPs tested
include the coefficients of total backscattering, bb(k), particulate backscattering, bbp(k), total absorption,
a(k), and nonwater absorption, anw(k). In terms of input data to the LS2 model, we evaluate two cases. First,
the synthetic data of both Rrs(k) and <Kd(k)>1 generated by radiative transfer simulations are used as input
to the model, so that in this case the neural network algorithm for estimating <Kd(k)>1 from Rrs(k) is

Figure 7. Same as Figure 6 but for the nonwater absorption coefficient, anw (plots (a) and (c)) and the particulate back-
scattering coefficient bbp (plots (b) and (d)).
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bypassed. Second, the synthetic data of Rrs(k) generated by radiative transfer simulations are the sole input
to the model and <Kd(k)>1 is obtained from Rrs(k) using the neural network algorithm.

The first case of the evaluation analysis characterizes the performance of model formulation irrespective of
the neural network algorithm for estimating <Kd(k)>1. Both a(k) (Figures 6a and 6c) and bb(k) (Figures 6b
and 6d) coefficients are derived with a very good accuracy for the entire range of examined light wave-
lengths and sun angles. The best fit regression lines of modeled versus observed data are very close to the
1:1 line with the values for the slope and the correlation coefficient very close to 1, as shown for the exam-
ple wavelength of 440 nm (Figures 6a and 6b). The MR values of a(k) calculated for the whole data set DS1
are also very close to 1 (within 5%) regardless of wavelength, which indicates a very small bias. The mean
bias, MB, for a(k) ranges between 0.01 m21 at 670 nm and 0.05 m21 at 412 nm (Figure 6c). The lower values
of MB in the red can be attributed to the dominance of predictable and nearly constant contribution of
pure water to total absorption in this spectral region. Similar good performance is observed for the retrieval
of bb(k), for which the MR and MB vary within the ranges 1.04–0.91 and 0.0001–0.003 m21, respectively (Fig-
ure 6d). The spectrally averaged values of RMSD and MAPD for a(k) are 0.078 6 0.054 m21 and 7.1%, respec-
tively. For bb(k) these values are 0.005 6 0.002 m21 and 8.3%.

At the wavelength of 440 nm, the best fit regression lines of modeled versus observed data for nonwater
absorption coefficient, anw(k) and particulate backscattering, bbp(k), coefficients are very close to the 1:1
line (Figures 7a and 7b). However, the retrieval accuracy of anw(k) is very good only for wavelengths from
the blue and blue-green regions up to about 510 nm (Figure 7c). This good retrieval of anw(k) in this spectral
region is comparable to that for a(k). The model performance for anw(k) deteriorates significantly for wave-
lengths of 555 and 670 nm as indicated by significant increase in RMSDlog, MR, and MAPD (Figure 7c and
Table 2). This result is associated primarily with relatively poor performance of the model in clear ocean
waters where molecular water is the dominant absorbing component and anw(k) has small contribution to
a(k) within the long-wavelength portion of the spectrum. For example, within the data set DS1 pure seawa-
ter contributes about 99% to a(670) and 95% to a(550) in oligotrophic waters with Chl < 0:1 mg m23.

Table 2
Statistical Indicators of the Performance of the LS2 Model in Retrieving Nonwater IOPs at Selected Light Wavelengths, anw(k)
and bbp(k), for the DS1 Data Set

N r RMSDlog

RMSD
(m21)

MB
(m21) MR MAPD (%)

DS1
Both Rrs(k) and <Kd(k)>1 are
used as input parameters

anw(410) 1500 0.99 0.044 0.155 0.052 1.055 8.59
anw(440) 1500 0.99 0.046 0.124 0.049 1.048 8.65
anw(490) 1500 0.99 0.052 0.081 0.037 1.052 9.66
anw(510) 1500 0.99 0.063 0.069 0.032 1.107 13.07
anw(555) 1500 0.99 0.126 0.018 0.011 1.127 25.18
anw(670) 1500 0.99 0.190 0.024 0.017 1.300 47.40
bbp(410) 1500 0.99 0.060 0.006 0.0003 1.074 11.20
bbp(440) 1500 0.99 0.052 0.006 0.0011 1.063 9.96
bbp(490) 1500 0.99 0.052 0.008 0.0031 1.070 10.16
bbp(510) 1500 0.99 0.055 0.008 0.0036 1.075 10.71
bbp(555) 1500 0.99 0.033 0.004 0.0018 1.052 6.57
bbp(670) 1500 0.99 0.057 0.003 0.0001 0.901 10.40

DS1
Only Rrs(k) is used as
input parameter

anw(410) 1500 0.99 0.085 0.239 0.0481 1.056 16.73
anw(440) 1500 0.99 0.076 0.159 0.0515 1.065 15.01
anw(490) 1500 0.99 0.108 0.095 0.0407 1.183 23.36
anw(510) 1500 0.97 0.213 0.076 0.0273 1.083 24.67
anw(555) 1500 0.95 0.251 0.053 0.0199 1.227 55.55
anw(670) 1500 0.74 0.644 0.094 0.0504 1.839 426.80
bbp(410) 1500 0.97 0.137 0.009 0.0006 1.027 22.73
bbp(440) 1500 0.98 0.100 0.008 0.0011 1.048 18.19
bbp(490) 1500 0.99 0.104 0.008 0.0034 1.165 21.99
bbp(510) 1500 0.99 0.104 0.008 0.0029 1.041 17.61
bbp(555) 1500 0.99 0.087 0.009 0.0033 1.080 16.98
bbp(670) 1500 0.99 0.104 0.007 0.0008 0.942 15.66

Note. All statistics were calculated in linear space except for RMSDlog that was calculated for log-transformed data.
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This makes it practically impossible to achieve consistently good estimation of anw(k) from an inverse reflectance
model under such circumstances. The results for bbp(k) indicate similar retrieval accuracy to that for bb(k) (Fig-
ures 7b and 7d; Table 2), and the model performance is consistent over the entire dynamic range and spectral
range of backscattering values. For example, the MR and MB values for bbp(k) are within the range of 0.9–1.075
and 0.0001–0.0036 m21, respectively. The MAPD value averaged over the entire spectral region is 9.8%.

The second case of the model evaluation analysis with synthetic data set DS1 is focused on the influences
of the neural network algorithm for estimating <Kd(k)>1 on the overall performance of the model. In this
analysis, the Rrs(k) data are the sole input to the model and <Kd(k)>1 is obtained from Rrs(k) using the neu-
ral network algorithm. For a(440) and bb(440) the regression line of modeled versus observed data are very
close to the 1:1 line (Figures 8a and 8b) but the scatter of data around this line is larger compared with the
results shown in Figure 6. This increase in data scatter is caused by uncertainties in the estimates of
<Kd(k)>1. For instance, the RMSDlog value for both a(440) and bb(440) is about 0.07, which represents a 1.5-
fold increase compared with the modeling case with the input of exact <Kd(k)>1. However, the values for
the slope of the regression (not shown) and MR remain close to 1 for all wavelengths (Figures 8c and 8d).
The RMSD values also remain relatively low, 0.16 m21 for a(440) and 0.007 m21 for bb(440). The model esti-
mation of bb(k) is consistent across the whole spectrum with spectrally averaged RMSD and MB values of
0.008 6 0.001 m21 and 0.002 6 0.001 m21, respectively. A similarly consistent spectral pattern holds for a(k)
that is estimated with a mean RMSD and MB of 0.11 6 0.07 m21 and 0.035 6 0.014 m21, respectively. For
both a(k) and bb(k), the MAPD value is around 15% regardless of wavelength (Figures 8c and 8d).

Figure 8. (a) Comparison of model-derived and reference (true) absorption coefficient, a(440), for the synthetic data set
DS1. The LS2 model was run with input of Rrs(k). The <Kd(k)>1 values were derived from the neural network algorithm
that has been implemented into the LS2 model using Rrs(k) as input. The solid line represents the best fit linear regression
type-II fit to log-transformed data and the dashed line represents the 1:1 line. The regression equation (where x is the
abscissa and y the ordinate), values of the Pearson correlation coefficient for log-transformed data rlog, and the number of
data points N are displayed. (b) Same as (a) but for the backscattering coefficient bb(k). (c) Spectra of statistical indicators
calculated for the data of model-derived versus measured a(k) values (see text for details). (d) Same as (c) but for bb(k).
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The retrieval of both anw(440) and bbp(440) from the sole input of Rrs(440) is also characterized by good sta-
tistical indicators of best fit regression and correlation between the modeled and observed data (Figures 9a
and 9b; Table 2). However, the data scatter around the regression line is larger in Figures 9a and 9b com-
pared with Figures 7a and 7b, which is attributable to uncertainties in the estimation of <Kd(k)>1. The
retrieval of anw(k) deteriorates significantly for wavelengths longer than about 510 nm (Figure 9c and Table
2). This deterioration is more pronounced compared with the case shown in Figure 7c when both the exact
(i.e., synthetic) Rrs(k) and <Kd(k)>1 were used as model inputs (see also Table 2). In contrast, the uncertain-
ties in the estimation of <Kd(k)>1 have relatively weak effect on the performance of the model in terms of
estimating bbp(k) over the entire spectrum (Figure 9d and Table 2). This performance remains good
although the statistical indicators deteriorated to some extent compared with the scenario when the exact
<Kd(k)>1 serves as input to the model.

Using the synthetic data set DS1, we have also compared the performance of the LS2 model with the origi-
nal LS1 model, as well as with the version of LS1 model that was used in the IOCCG (2006) study (Loisel &
Poteau, 2006). In this comparison only the data for a sun zenith angle of 308 are taken into account. We
found that the LS2 model provides the best retrievals of IOPs as evidenced by better statistical indicators
for this model compared with earlier versions of LS1 (Figure 10).

4.5. Model Validation With In Situ Data Sets
The validation of model-derived results with in situ data sets is performed using Rrs(k) as the sole input
parameter to the LS2 model. The two in situ data sets (DS2 and DS3) containing coincident measurements
of Rrs(k) and IOPs are used for this validation. Whereas the radiative transfer simulations for the model
development were conducted for clear skies with a main purpose of model applicability in remote-sensing
context, the in situ data used in our analysis of model validation were often collected under cloudy skies.

Figure 9. Same as Figure 8 but for the nonwater absorption coefficient, anw (plots (a) and (c)) and the particulate back-
scattering coefficient bbp (plots (b) and (d)).
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For a totally overcast sky, we found it reasonable to assume the sun zenith angle of 458 as input to the
model. For partial cloud cover we used the actual sun angle during the in situ measurement as input to
the model (which is the same approach as for clear skies). This assumption was based largely on the fact
that comprehensive information on cloud cover and cloud types has not been consistently available dur-
ing the field experiments to allow a development of more rigorous approach to account for the presence
of clouds.

The comparative analysis of model-derived and measured values is performed for both the total and non-
water IOPs. The statistical indicators calculated on the basis of these comparisons at selected light wave-
lengths are presented for the total a(k) and bb(k) in Table 3 and for anw(k) and bbp(k) in Table 4. Graphical
illustrations of this comparative analysis are shown for the nonwater IOPs, anw(k), and bbp(k) (Figures
11–15).

Figure 10. Spectra of statistical indicators calculated for the comparison of model-derived versus measured anw(k) values
(plots (a), (c), and (e)) and model-derived versus measured bbp(k) values (plots (b), (d), and (f)). The results are shown for:
(a) and (b) the original LS1 model; (c) and (d) the modified version of LS1 from the 2006 IOCCG project, and (e) and (f) the
LS2 model. Only data for the sun zenith angle of 308 have been considered in these results.
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4.5.1. Comparisons for Predominantly Coastal Waters (DS2)
The data set DS2 is characterized by large variation in light absorption
of seawater. For example, anw(443) values vary over nearly two orders
of magnitude from 0.088 to 5.26 m21 with a median value of
0.663 m21. We note that for the considered light wavelengths
between 412 and 555 nm the anw(k) values in DS2 are almost always
much higher than aw(k). The statistical indicators provided for a(k)
and anw(k) in Tables 3 and 4, respectively, show that these absorption
coefficients can be derived with good accuracy in coastal environ-
ments within the blue and green parts of the spectrum. The statistical
indicators of model performance are similar for a(k) and anw(k). The
model performance for anw(k) is also illustrated graphically in Figure
11. For example, the RMSDlog values for a(k) range from 0.147 at
443 nm to 0.286 at 555 nm (Table 3). For anw(k) this error is similar,
ranging from 0.150 at 443 nm to 0.248 at 555 nm (Table 4 and Figure
11d). Regardless of wavelength, the median ratio of modeled to mea-
sured values, MR, for a(k) and anw(k) are close to 1 (within �10%). The
mean bias, MB, assumes small positive values in the blue and small
negative values in the green. For both a(k) and anw(k), the median
absolute percent difference, MAPD, is as low as 22–23% in the blue
and increases to values slightly above 30% at 555 nm.

For the comparisons of model with data set DS2, the backscattering
measurements are available at 490, 510, 532, and 670 nm. This data
set is characterized by a large range of backscattering coefficient with
bbp(490) values spanning almost three orders of magnitude from
0.002 to 0.86 m21 with a median value of 0.073 m21. The bb(k) and
bbp(k) coefficients are derived from the model with good accuracy.
Owing to consistent dominance of particle backscattering within this
data set, the statistical indicators assume similar values for bb(k) and
bbp(k) although RMSDlog values are consistently somewhat higher for
bbp(k) than bb(k) (Tables 3 and 4). The MB for both bb(k) and bbp(k)
varies between 0.0035 m21 at 532 nm and 0.015 m21 at 670 nm. The
MR values remain within 20% of the value of 1. The MAPD values for
both bb(k) and bbp(k) are about 28–30% in the blue-green spectral
region (490 and 555 nm), but increase to 44% at 670 nm. This can be
attributed mainly to a slight overestimation of modeled bbp(670) in
very turbid waters (i.e., when bbp(670)> 0.1 m21). Because such spec-
tral pattern has not been observed in the analysis with the synthetic
data set DS1, this result is likely attributable, at least partly, to larger
uncertainties in the in situ measurements of Rrs(670) and/or bbp(670)
compared with shorter wavelengths for turbid waters. Figure 12
depicts the model-derived versus observed values of bbp(k) for the

four wavelengths. The slope of the regression line is close to 1 and the offset parameter is small, which indi-
cates good agreement between the model and measurements over the entire range of observed variability
in light backscattering. The regression parameters at 670 nm are, however, noticeably inferior to those at
shorter wavelengths, which is consistent with the patterns for the MAPD and RMSDlog values in Table 4
(note that similar results apply to bb(670) in Table 3).
4.5.2. Comparisons for Open Ocean and High Latitude Waters (DS3)
In the data set DS3, anw(443) ranges from 0.002 to 2.9 m21 and bbp(550) from 0.00029 to 0.053 m21. The
median values of 0.06 m21 for anw(443) and 0.0013 m21 for bbp(550) are one order of magnitude lower
compared with those obtained for DS2, allowing the model to be evaluated over a very different range of
bio-optical environments. As no significant differences between different subsets of data within DS3 (e.g.,
Southern Ocean, Arctic waters, and lower latitude open ocean waters) were observed in terms of model per-
formance, the results are presented for the entire data set DS3.

Table 3
Statistical Indicators for the Performance of the LS2 Model in Retrieving Total
IOPs at Selected Light Wavelengths, a(k) and bb(k), Based on the Analysis of the
DS2, DS3, and DS4 Data Sets

Na r RMSDlog

RMSD
(m21)

MB
(m21) MR

MAPD
(%)

DS2 a (412) 170 (0) 0.80 0.156 0.433 0.114 1.117 25.77
a (443) 170 (0) 0.81 0.147 0.322 0.059 1.029 22.76
a (490) 170 (0) 0.78 0.158 0.221 0.003 0.996 22.25
a (510) 170 (0) 0.74 0.171 0.197 20.007 1.038 24.37
a (555) 169 (0) 0.60 0.286 0.155 20.008 1.107 31.33
a (670)
bb (412)
bb (443)
bb (490) 188 (0) 0.79 0.173 0.093 0.0136 1.202 30.34
bb (510) 183 (0) 0.83 0.165 0.077 0.0151 1.102 25.54
bb (532) 262 (0) 0.82 0.186 0.053 0.0035 0.996 27.03
bb (670) 258 (0) 0.70 0.259 0.049 0.0153 1.175 43.47

DS3 a (412) 153 (0) 0.92 0.113 0.251 0.0378 0.973 12.01
a (443) 153 (0) 0.91 0.102 0.233 0.0417 0.978 14.27
a (490) 150 (0) 0.85 0.098 0.174 0.0320 1.069 12.97
a (510) 150 (0) 0.82 0.085 0.155 0.0209 0.966 12.01
a (555) 147 (0) 0.77 0.069 0.102 0.0170 1.078 9.34
a (670) 147 (0) 0.54 0.052 0.073 20.0225 0.935 6.99
bb (412)
bb (443) 165 (0) 0.90 0.108 0.002 0.0005 1.202 20.61
bb (490)
bb (510) 161 (0) 0.94 0.103 0.002 0.0002 1.200 21.36
bb (555) 147 (0) 0.94 0.100 0.002 0.0001 1.166 18.44
bb (670) 96 (0) 0.96 0.186 0.001 20.0001 0.943 25.80

DS4 a (412) 105 (0) 0.89 0.155 0.119 20.0207 0.931 18.25
a (443) 107 (0) 0.89 0.138 0.089 20.0170 0.939 16.25
a (490) 107 (0) 0.87 0.117 0.053 20.0028 1.034 16.79
a (510) 107 (0) 0.86 0.104 0.042 20.0042 0.938 11.68
a (555) 106 (0) 0.84 0.074 0.026 0.0053 1.045 8.56
a (670) 99 (0) 0.39 0.064 0.072 20.0026 0.964 7.93
bb (412) 28 (0) 0.35 0.179 0.002 20.0004 0.919 19.51
bb (443) 28 (0) 0.53 0.101 0.001 0.0001 0.993 14.91
bb (490) 28 (0) 0.70 0.087 0.001 0.0003 1.101 15.85
bb (510) 28 (0) 0.73 0.081 0.001 0.0001 1.023 12.98
bb (555) 28 (0) 0.78 0.096 0.001 0.0006 1.172 17.64
bb (670) 28 (0) 0.66 0.249 0.001 20.0002 0.900 32.91

Note. The statistics were calculated in linear space except for RMSDlog that
was calculated for log-transformed data. aThe N value indicates the
number of stations with both positive in situ and model-derived values,
while the value in the parentheses indicates the number of stations with
positive in situ measurements but negative model-derived values.
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The analysis of DS3 indicates that the total absorption coefficient, a(k),
is retrieved with a very good accuracy at all considered wavelengths
from 412 to 670 nm (Table 3). For example, the MR values remain
within 7% around 1 and MB varies between about 20.02 m21 at
670 nm and 0.04 m21 at 443 nm. The MAPD values range from about
7% in the red to 14% in the blue spectral region.

The comparative analysis of the model and measurements for DS3
supports the notion that the performance of the model for the
retrieval of anw(k) is not as good as for a(k) (Tables 3 and 4). In addi-
tion, similar to the results obtained with DS1, the validation of the
model with DS3 confirms the finding that anw(k) can be retrieved
with consistently good accuracy only within the short-wavelength
(blue) portion of the spectrum (Table 4 and Figure 13). Some deteri-
oration of model performance compared to blue wavelengths is
observed at wavelengths as short as 510 nm. In contrast to
anw(412) and anw(443) where absorption is estimated with good
accuracy over the whole range of absorption values, a larger scatter
in data around the 1:1 line is observed for anw(510) values lower
than about 0.008 m21 (Figures 13a–13c). This value is about 4 times
lower than the absorption coefficient by pure seawater aw(510).
This domain of low absorption values corresponds to very clear
waters where absorption by nonwater constituents are much lower
than aw(k). As already discussed in the previous sections, achieving
consistently accurate model retrievals of anw(k) under such condi-
tions is particularly challenging, and this challenge increases as the
dominant role of aw(k) increases with wavelength. This is clearly
seen in the analysis conducted with the data set DS3. For example,
whereas the RMSDlog values for anw(k) remain below 0.15 in the
blue, they increase to 0.28 at 510 nm, 0.32 at 555 nm, and 0.55 at
670 nm (Table 4 and Figure 13d). The MAPD values at 555 and
670 nm are significantly higher (about twofold to threefold) than at
shorter wavelengths. However, in contrast to RMSDlog and MAPD,
values of RMSD, MB, and MR do not exhibit an increase in the red
albeit a significant number of anw(670) retrievals are negative
(Table 4). The MR value at 555 nm is 1.39, which is the worst case
across the spectrum for this statistical indicator. The spectrally aver-
aged RMSD and MB values for anw(k) calculated across the whole
spectrum are 0.175 6 0.06 m21 and 0.027 6 0.01 m21, respectively.
It is also important to emphasize that in addition to small contribu-
tion of anw to total a in the red spectral region, the challenges for
using the LS2 model as well as other inverse reflectance models in
this region with input data of Rrs(k) determined from in situ meas-

urements are associated with potentially significant uncertainties in the determinations of Rrs(k) (e.g., Li
et al., 2016).

The model validation with DS3 shows that the total backscattering coefficient, bb(k), can be retrieved with
reasonably good accuracy, although not as good as the retrieval of a(k) (Table 3). For example, for bb(k) the
MR values can reach 1.2 and MAPD 20%, as opposed to the respective values of 1.08 and 14% for a(k).
Although the mean bias MB for both bb(k) and bbp(k) is consistently low, on the order of 1024 m21 regard-
less of wavelength, other statistical indicators indicate that the model performance is clearly inferior for
bbp(k) compared with bb(k) (Tables 3 and 4). For example, for bbp(k) the range of MR is 0.88 – 1.53 and
MAPD varies between about 28% and 53% (Table 4). The model tends to overestimate bbp(k) in clear waters
when bbp(k) values are low, which is particularly well pronounced in the blue-green spectral region for
bbp(k) less than about 0.002 m21 (Figure 14). This overestimation corresponds roughly to conditions when

Table 4
Statistical Indicators for the Performance of the LS2 Model in Retrieving Non-
water IOPs at Selected Light Wavelengths, anw(k) and bbp(k), Based on the
Analysis of the DS2, DS3, and DS4 Data Sets

Na r RMSDlog

RMSD
(m21)

MB
(m21) MR

MAPD
(%)

DS2 anw (412) 170 (0) 0.80 0.158 0.433 0.114 1.118 26.18
anw (443) 170 (0) 0.81 0.150 0.322 0.060 1.029 23.09
anw (490) 170 (0) 0.78 0.171 0.221 0.003 0.996 23.60
anw (510) 166 (0) 0.74 0.190 0.199 20.008 1.045 27.34
anw (555) 146 (0) 0.60 0.248 0.166 20.015 1.044 33.65
anw (670)
bbp (412)
bbp (443)
bbp (490) 188 (0) 0.79 0.183 0.0926 0.0136 1.21 30.84
bbp (510) 183 (0) 0.83 0.173 0.0767 0.0151 1.11 27.3
bbp (532) 261 (0) 0.82 0.208 0.0536 0.00354 0.996 28.44
bbp (670) 252 (6) 0.69 0.294 0.0493 0.0157 1.2 44.03

DS3 anw (412) 153 (0) 0.93 0.147 0.251 0.0377 0.972 13.33
anw (443) 153 (0) 0.92 0.138 0.233 0.0415 0.959 18.51
anw (490) 150 (0) 0.86 0.149 0.174 0.032 1.13 20.15
anw (510) 128 (22) 0.82 0.28 0.168 0.0258 0.996 23.26
anw (555) 145 (2) 0.77 0.317 0.103 0.0177 1.39 45.64
anw (670) 46 (111) 0.40 0.553 0.119 0.005 1.03 64.54
bbp (412)
bbp (443) 149 (0) 0.94 0.226 0.0021 0.0004 1.53 52.69
bbp (490)
bbp (510) 145 (0) 0.97 0.178 0.00159 0.0002 1.3 30.47
bbp (555) 137 (0) 0.96 0.163 0.00164 0.0001 1.26 28.08
bbp (670) 79 (4) 0.96 0.349 0.001 20.0002 0.878 29.18

DS4 anw (412) 105 (0) 0.89 0.164 0.119 20.0207 0.929 19.33
anw (443) 107 (0) 0.89 0.152 0.0888 20.017 0.925 18.96
anw (490) 107 (0) 0.87 0.157 0.0528 20.00279 1.05 25.57
anw (510) 107 (0) 0.86 0.271 0.0423 20.00424 0.822 33.26
anw (555) 102 (4) 0.84 0.379 0.026 0.00585 1.36 64.47
anw (670) 51 (48) 0.43 0.694 0.0796 0.0434 3.83 283.2
bbp (412) 28 (0) 0.35 0.504 0.00226 20.0004 0.889 32.38
bbp (443) 28 (0) 0.53 0.166 0.00149 0.00008 0.991 21.89
bbp (490) 28 (0) 0.70 0.125 0.0011 0.00035 1.13 21.53
bbp (510) 28 (0) 0.73 0.113 0.000925 0.000128 1.03 18.79
bbp (555) 28 (0) 0.78 0.125 0.00105 0.000639 1.22 23.2
bbp (670) 28 (0) 0.66 0.353 0.0014 20.00019 0.883 36.02

Note. The statistics were calculated in linear space except for RMSDlog that
was calculated for log-transformed data. aThe N value indicates the
number of stations with both positive in situ and model-derived values,
while the value in the parentheses indicates the number of stations with
positive in situ measurements but negative model-derived values.
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bbp(k) is similar to or lower than the backscattering coefficient of pure seawater, bbw(k). Other inverse reflec-
tance models such as QAA (Lee et al., 2002) and GSM (Maritorena et al., 2002) also exhibit similar challenges
in the retrieval of bbp(k) in the oligotrophic waters (Brewin et al., 2012; Huot et al., 2008; Stramski et al.,
2008). It is unlikely that this overestimation is related to the formulation of the model because no similar
pattern is observed in the model evaluation with the synthetic data set DS1 when the exact values of both
Rrs(k) and <Kd(k)>1 are used as input parameters (Figure 7b). However, when Rrs(k) is used as the sole input
parameter to the model, the accuracy of bbp(k) retrieval as examined with DS1 has been shown to slightly
decrease in very clear waters (Figure 9b). For such clear waters, a small error in <Kd(k)>1 retrieval has only
slight impact on the derivation of bb(k), but may have a greater effect on bbp(k) depending on the relative
proportions of bbw(k) and bbp(k). For example, a comparison of the model-derived and in situ values of
<Kd(k)>1 for ultraoligotrophic waters of the South Pacific Gyre sampled during the BIOSOPE cruise shows
that <Kd(k)>1 can be estimated with the MR of 1.09 and MAPD of 10% for <Kd(k)>1 values lower than
0.1 m21 within the blue and green parts of the spectrum. Simple calculations demonstrate that if <Kd(k)>1

is overestimated by 10% in very clear waters, i.e., when bbp(443)< 0.001 m21, the model will overestimate
bbp(443) and bbp(555) by 30% and 12%, respectively. Thus, a portion of the discrepancies between the
model-derived and in situ measurements of bbp(k), which have been revealed with the model validation for
the data set DS3 and presented in Table 4 and Figure 14, appear to be explainable by the uncertainty in
<Kd(k)>1 retrieval.

Figure 11. Comparison of model-derived and measured values of nonwater absorption coefficient, anw, for the data set
DS2 for the selected light wavelengths: (a) 412 nm, (b) 443 nm, and (c) 510 nm. The LS2 model was run with input of
Rrs(k). The <Kd(k)>1 values were derived from the neural network algorithm that has been implemented into the LS2
model using Rrs(k) as input. The solid line represents the best fit linear regression type-II fit to log-transformed data and
the dashed line represents the 1:1 line. The regression equation (where x is the abscissa and y the ordinate), values of the
Pearson correlation coefficient for log-transformed data rlog, and the number of data points N are displayed. The vertical
line represents the value of pure water absorption coefficient aw (if not shown, aw is smaller than the minimum value for
the x axis scale). (d) Spectra of statistical indicators calculated for the data of model-derived versus measured anw(k) val-
ues (see text for details).
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Other factors can also have an important effect on the accuracy of IOP retrievals, including the retrieval of
bbp(k). First, as discussed in section 3.2 the model is sensitive to illumination conditions at the ocean sur-
face, and this sensitivity is more pronounced in very clear waters compared with more turbid waters.
Another factor that could partly explain the disagreement between the model-derived and measured
bbp(k) in clear waters is related to uncertainties of the in situ measurements. This potential issue has been
also addressed by Lee and Huot (2014) to explain the overestimation of bbp(k) by the QAA model in very
clear waters, which was observed after the application of correction for Raman scattering to the QAA
model (recall that such correction is also applied in our model). Assuming that the bbp(555) measure-
ments can be corrected with an offset value of 0.0002 m21, Lee and Huot (2014) found a much improved
agreement between the QAA-derived and measured bbp(555). By applying a similar correction to our in
situ backscattering data from the DS3 data set, we also observe a much improved agreement for bbp(555)
(Figure 15). For example, the MR decreased from 1.26 (Table 4) to 1.09 (Figure 15) and MAPD from 28%
(Table 4) to 15.5% (Figure 15). To justify the application of such offset correction, Lee and Huot (2014)
indicated that the bbp(k) sensors interrogate a much smaller volume of water than radiometers, and
therefore are less sensitive to (or underestimate) the presence of large particles that are relatively scarce.
This explanation is, however, difficult to verify quantitatively in our data set, especially as the final values
of bbp(k) derived from in situ measurements and representing the near-surface oceanic layer have been
typically based on averaging multiple measurements taken at a near-surface depth during a certain

Figure 12. Comparison of model-derived and measured values of the particulate backscattering coefficient, bbp, for the
data set DS2 at selected light wavelengths: (a) 490 nm, (b) 510 nm, (c) 532 nm, and (d) 670 nm. The LS2 model was run
with input of Rrs(k). The <Kd(k)>1 values were derived from the neural network algorithm that has been implemented
into the LS2 model using Rrs(k) as input. The solid line represents the best fit linear regression type-II fit to log-
transformed data and the dashed line represents the 1:1 line. The regression equation (where x is the abscissa and y the
ordinate), values of the Pearson correlation coefficient for log-transformed data rlog, and the number of data points N are
displayed. The vertical line represents the value of pure seawater backscattering coefficient bbw (if not shown, bbw is
smaller than the minimum value for the x axis scale).
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period of time on the order of minutes and/or binning and averaging multiple measurements taken
within a certain range of near-surface depths.

4.6. Model Validation With Satellite and In Situ Match-up Data Set
In the validation analysis based on the satellite and in situ match-up data set (DS4), the satellite-derived
Rrs(k) is used as the sole input parameter to the LS2 model. The model-derived IOPs are compared with in
situ measurements of IOPs that were temporally and spatially matched with the satellite determinations of
Rrs(k). Similar to the results of the previous section, the statistical indicators calculated on the basis of these
match-up comparisons at selected light wavelengths are presented for the total a(k) and bb(k) in Table 3
and for anw(k) and bbp(k) in Table 4. Graphical results are shown for anw(k) and bbp(k) (Figures 16 and 17).
This validation analysis accounts for uncertainties related to the estimation of Rrs(k) from space observations
and other uncertainties inherent to match-up analysis including, for example, in situ measurement uncer-
tainties (including multiple investigators and methodologies) and various issues associated with temporal
and/or spatial mismatch between the satellite observations and in situ measurements.

The range of variability of in situ measurements of anw(k) and bbp(k) in DS4 is similar to that reported in
DS3, although DS4 contains less data representative of oligotrophic conditions. The median values of
anw(443) and bbp(555) for DS4 are 0.059 m21 (0.06 m21 for DS3) and 0.0031 m21 (0.0013 m21 for DS3),
respectively. The statistical indicators calculated from the match-up data analysis indicate a very good

Figure 13. Comparison of model-derived and measured values of nonwater absorption coefficient, anw, for the data set
DS3 at selected light wavelengths: (a) 412 nm, (b) 443 nm, and (c) 510 nm. Field data collected in different regions are
indicated by different colors. The LS2 model was run with input of Rrs(k). The <Kd(k)>1 values were derived from the
neural network algorithm that has been implemented into the LS2 model using Rrs(k) as input. The dashed line represents
the 1:1 line. The solid line represents the best fit linear regression type-II fit to log-transformed data and the dashed line
represents the 1:1 line. The regression equation (where x is the abscissa and y the ordinate), values of the Pearson
correlation coefficient for log-transformed data rlog, and the number of data points N are displayed. The vertical line repre-
sents the value of pure water absorption coefficient aw. (d) Spectra of statistical indicators calculated for the data of
model-derived versus measured anw(k) values (see text for details).
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agreement between the model-derived and measured total absorption coefficient, a(k), for all wavelengths
considered across the visible spectrum (Table 3). These statistical indicators are comparable to those
obtained from the analysis of the data set DS3, and better than those based on the analysis of DS2. These
results provide further support of good model performance in terms of retrieving a(k). With regard to the
retrieval of nonwater absorption coefficient, anw(k), the match-up data comparisons demonstrate again that
this coefficient can be derived from the model with reasonably good accuracy only within the short-
wavelength portion of the spectrum, up to about 510 nm (Table 4 and Figure 16). For example, the MB, MR,
and MAPD values for anw(443) are 20.017 m21, 0.925, and 19%, respectively. Although these indicators are
somewhat inferior to those for a(443), the model performance for anw(k) in the blue spectral region is good.
However, the retrieval accuracy of anw(555) and anw(670) deteriorates greatly for the match-up data set
DS4. For example, the MR values for anw(555) and anw(670) are 1.36 and 3.83. In addition, the challenge of
retrieving anw in the red spectral region from satellite-derived Rrs(k) is reflected in a significant fraction of
model-derived anw(670) having a negative value (Table 4).

The number of available match-up data points for backscattering is significantly smaller (N 5 28) compared
with the number of data for absorption (N 5�100). Nevertheless, the analysis of a relatively small match-up
data set indicates that the model can assess bb(k) and bbp(k) with a relatively good accuracy (Tables 3 and
4; Figure 17). The statistical indicators calculated for bb(k) and bbp(k) based on the data set DS4 are generally

Figure 14. Comparison of model-derived and measured values of the particulate backscattering coefficient, bbp, for the
data set DS3 for the selected light wavelengths: (a) 443 nm (442 nm for measured data), (b) 510 nm, (c) 555 nm (550 nm
for measured data), and (d) 670 nm (671 nm for measured data). Field data collected in different regions are indicated by
different colors. The LS2 model was run with input of Rrs(k). The <Kd(k)>1 values were derived from the neural network
algorithm that has been implemented into the LS2 model using Rrs(k) as input. The solid line represents the best fit linear
regression type-II fit to log-transformed data and the dashed line represents the 1:1 line. The regression equation (where
x is the abscissa and y the ordinate), values of the Pearson correlation coefficient for log-transformed data rlog, and
the number of data points N are displayed. The vertical line represents the value of pure seawater backscattering
coefficient bbw.
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similar or better than those calculated for the data sets DS2 and DS3.
In addition, although the DS4-based statistical indicators are slightly
better for bb(k) than bbp(k), the latter is still characterized by reason-
ably good metrics of model performance. For example, the MB, MR,
and MAPD values for bbp(443) are 0.00008 m21, 0.99, and 22%, respec-
tively (Table 4 and Figure 17d). The retrieval accuracy of bbp(k) does,
however, decrease noticeably at both ends of the spectrum (412 and
670 nm), where MR drops to about 0.89 and MAPD is above 30%. This
result is similar to the spectral pattern of the relative differences
between the satellite-derived Rrs(k) and in situ measurements of Rrs(k)
(Goyens et al., 2013; Jamet et al., 2011).

4.7. Prospects for Model Application to Hyperspectral Data
Whereas the model validation analysis presented above is focused on
several discrete spectral bands within the visible part of the spectrum
that are consistent with those on heritage and present satellite ocean
color sensors (e.g., SeaWiFS, MODIS, MERIS, VIIRS), in recent years sig-
nificant efforts have been undertaken to develop enhanced capabili-
ties of ocean color remote sensing based on high-spectral resolution
measurements. For example, NASA’s Plankton, Aerosol, Cloud, ocean
Ecosystem (PACE) satellite mission, which is currently in the design
phase of development, is intended to provide hyperspectral ocean
color observations over a broad spectrum from the ultraviolet (350–
400 nm) through visible (400–700 nm) to near-infrared (700–885 nm)
at 5 nm intervals, as well as several shortwave infrared bands. This
mission will provide an unprecedented capability for observations of
the atmosphere and ocean and their roles in Earth’s changing climate,

including a variety of factors related to marine ecosystems such as the diversity and distribution of phyto-
plankton communities. As our LS2 model is designed to estimate IOPs from Rrs(k) at arbitrary wavelengths,
it is of interest to illustrate its prospect for applications in the hyperspectral context.

Figure 18 serves as a preliminary demonstration of model retrievals of anw(k) and bbp(k) with hyperspectral
resolution. For this demonstration three cases of high-spectral resolution in situ measurements of Rrs(k) and
IOPs were selected from the data set DS3. These cases represent contrasting bio-optical environments. In
Figure 18, the model-derived hyperspectral IOPs are compared with the in situ counterparts. Note that in
actuality the in situ values of Rrs(k) and anw(k) were obtained from high-spectral resolution measurements
(at about 1 nm to a few nanometers intervals), and the bbp(k) values were obtained from measurements at
nine spectral bands. For all three cases, the hyperspectral retrievals of anw(k) compare very well with the
measurements over most of the spectral region examined (Figure 18a). The accuracy of model estimates is,
however, reduced in the long-wavelength portion of the spectrum including the red spectral region (not
shown in Figure 18a), as expected on the basis of our earlier validation analysis (e.g., Figure 13d). For the
two environmental cases corresponding to the highest and intermediate values of backscattering, the
model-derived magnitude of bbp(k) also compares favorably with the measurements for most wavelengths
included in the measurements (Figure 18b). However, for the case with the lowest values of backscattering
that corresponds to very clear water, the model retrievals generally overestimate the measurements with
the exception of the red spectral region. This result is also consistent with our earlier validation analysis
(e.g., Figure 14).

The results in Figure 18 indicate that the model is generally suitable for hyperspectral applications. Impor-
tantly, it is expected that this suitability extends to the UV spectral region although the current version of
the LS2 model has not been optimized for the UV. In particular, the current <Kd(k)>1 algorithm based on
neural network approach has been developed over the limited spectral region from 410 to 670 nm, and it
has not been optimized or specifically adapted for accurately estimating <Kd(k)>1 outside this spectral
range. In this regard, additional work is required to account for the UV and NIR parts of the spectrum in the
learning phase of the neural network. This, in turn, will require collection of in situ measurements of
<Kd(k)>1, Rrs(k), and IOPs in both UV and NIR. In addition, the current scheme of correction for Raman

Figure 15. Comparison of model-derived values of the particulate backscatter-
ing coefficient, bbp(555), and measured values of bbp(550) for the data set DS3
in which the measured values have been increased by 0.0002 m21 following
Lee and Huot (2014). The LS2 model was run with input of Rrs(k). The <Kd(k)>1

values were derived from the neural network algorithm that has been imple-
mented into the LS2 model using Rrs(k) as input. The solid line represents the
best fit linear regression type-II fit to log-transformed data and the dashed line
represents the 1:1 line. The regression equation (where x is the abscissa and y
the ordinate), values of the Pearson correlation coefficient for log-transformed
data rlog, and the number of data points N are displayed. The vertical line
represents the value of pure seawater backscattering coefficient bbw(550).
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scattering has been developed on the basis of radiative transfer simulations in which the shortest wave-
length was 350 nm. Because of the Raman shift in wavelength, this correction is essentially applicable to
wavelengths longer than about 400 nm. Although the Raman scattering effect in the UV is not expected to
be significant, more rigorous correction within the 350–400 nm spectral region would have to be based on
simulations that extend to much shorter UV wavelengths.

5. Conclusions

We modified and improved the original model LS1 (Loisel & Stramski, 2000) for estimating seawater IOPs,
specifically the spectral absorption, a(k), and backscattering, bb(k), coefficients within the ocean surface
layer from measurements of ocean reflectance. After subtracting pure seawater contributions, the nonwater
absorption, anw(k), and particulate backscattering, bbp(k), coefficients can also be derived. Similar to the LS1,
the modified model, LS2, makes no spectral assumptions about the output IOPs and provides solutions at
arbitrary light wavelengths in the visible spectral region independently of one another. This important fea-
ture of LS2 alleviates limitations associated with the assumptions about the spectral shape of output IOPs,
which are used in most semianalytical inverse reflectance models (e.g., Bukata et al., 1995; Devred et al.,
2006; Hoge & Lyon, 1996; Lee et al., 2002; Maritorena et al., 2002; Roesler & Perry, 1995). The LS2 model esti-
mates a(k) and bb(k) independently of one another, which also avoids drawbacks present in the

Figure 16. Comparison of model-derived and measured values of the nonwater absorption coefficient, anw, for the data
set DS4 at selected light wavelengths: (a) 412 nm, (b) 443 nm, and (c) 510 nm. The LS2 model was run with input of Rrs(k).
The <Kd(k)>1 values were derived from the neural network algorithm that has been implemented into the LS2 model
using Rrs(k) as input. The solid line represents the best fit linear regression type-II fit to log-transformed data and the
dashed line represents the 1:1 line. The regression equation (where x is the abscissa and y the ordinate), values of the
Pearson correlation coefficient for log-transformed data rlog, and the number of data points N are displayed. The vertical
line represents the value of pure water absorption coefficient aw (if not shown, aw is smaller than the minimum value for
the x axis scale). (d) Spectra of statistical indicators calculated for the data of model-derived versus measured anw(k) val-
ues (see text for details).
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semianalytical models that use the optimization techniques for simultaneously retrieving IOPs by minimiz-
ing differences between the modeled and measured reflectance values. In such optimization schemes the
error in one of the retrieved IOPs must be compensated for by errors in other retrieved IOPs. Because the
LS2 yields the total IOPs, a(k) and bb(k), or nonwater IOPs, anw(k) and bbp(k), it can be applied in combina-
tion with stand-alone independently developed models for partitioning the total IOPs into component IOPs

Figure 17. Same as Figure 16 but for the particulate backscattering coefficient, bbp(k). Note, however, the differences in
selected light wavelengths in plots (a), (b), and (c) compared with Figure 16.

Figure 18. Comparison of high-spectral resolution values derived from the LS2 model with in situ measurements for: (a)
nonwater absorption coefficient, anw(k), and (b) particulate backscattering coefficient, bbp(k). The different colors repre-
sent three contrasting cases of measurements extracted from the data set DS3. The spectra of pure water absorption
coefficient, aw(k), and pure seawater backscattering coefficient, bbw(k), are also illustrated. The low, intermediate and high
value data for anw(k) were collected on the BIOSOPE (338S 81.28W), ANT26 (41.18S 53.98W), and ICESCAPE 2011 (69.98N
166.28W) cruises. For bbw(k) all three cases were collected on the ICESCAPE 2011 at the following locations, (73.08N
160.88W), (70.98N 161.78W), and (69.98N 166.28W), respectively.
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such as phytoplankton, nonalgal particulate, and CDOM components. For example, the LS2 output of
anw(k) can be used as input to models for partitioning anw(k) into component absorption coefficients,
which do not require reflectance data as input (e.g., Zheng et al., 2015; Zheng & Stramski, 2013). Such
combination of LS2 and partitioning models can be useful in applications of remote-sensing observa-
tions of ocean color.

When the LS2 is applied in the remote-sensing context, the spectral remote-sensing reflectance, Rrs(k),
derived, for example, from satellite ocean color measurements, and the solar zenith angle are the required
inputs to the model. Note, however, that the LS2 model can be also applied in the context of in situ radio-
metric measurements providing Rrs(k) and the diffuse attenuation coefficient for downwelling irradiance,
<Kd(k)>1, as inputs to the model. The latter application scenario generally results in somewhat better per-
formance of the model because of no requirement for estimating <Kd(k)>1 from Rrs(k). The structure of LS2
model and its parameterization require the computation of several intermediate parameters. In the context
of remote-sensing application, this includes the estimation of <Kd(k)>1 and chlorophyll-a concentration,
Chl, from remotely sensed Rrs(k). The <Kd(k)>1 coefficient is obtained from the neural network algorithm
using Rrs(k) as input. The uncertainty in Chl has weak effect on the retrieval of IOPs from LS2 and Chl can be
derived, for example, from a standard band-ratio reflectance algorithm.

By analyzing a synthetic data set, we determined that when the input of Rrs(k) is free of error the perfor-
mance of the model in retrieving a(k) and bb(k) is very good across the visible spectral region over a broad
range of optical water types. For example, the MR values remain generally within 10% around 1 and MAPD
is about 15% (Figures 8c and 8d). The statistical indicators of model performance for retrieving anw(k) and
bbp(k) deteriorate somewhat but the performance remains satisfactory except for anw(k) in the long-
wavelength (green and red) portion of the spectrum (Figures 9c and 9d). For this spectral region in most
oceanic waters that are relatively clear, the total a(k) is dominated greatly by pure water absorption, which
makes accurate estimation of anw(k) extremely difficult and leads to unacceptable performance of the
model in a sense that the statistical measures of relative uncertainty become unacceptably large. This diffi-
culty is common in various types of inverse reflectance models.

We also validated the model performance with input of Rrs(k) using in situ data sets of radiometric and
IOP measurements and comparing the model-derived IOPs with measured IOPs. These data sets cover a
broad range of oceanic and coastal environments including many contrasting water bodies such as polar
regions, mid-latitude and low-latitude ocean regions, ultraoligotrophic subtropical gyres, and tropical
coastal areas affected by large river discharge. Whereas this analysis generally supported good perfor-
mance of the model in a variety of water bodies, it also clearly demonstrated the limitations of the
retrievals of anw(k) in the long-wavelength part of the spectrum as well as increased uncertainties in the
retrievals of bbp(k) in clear ocean waters when bbp(k) is lower than the pure seawater backscattering coef-
ficient bbw(k) (Figures 11–14).

Although the retrievals of nonwater IOPs from inverse reflectance models have rarely been tested in very
clear ocean waters, large relative errors in model performance in such waters is naturally expected owing to
the very small magnitudes of nonwater IOPs, and their limited contribution to total IOPs renders the inver-
sion scheme highly sensitive to model approximations. Other sources of uncertainties of the LS2 model,
which can be more pronounced in very clear waters, include the retrieval of <Kd(k)>1 and the effects of
varying illumination conditions at the sea surface associated, for example, with partial cloud cover. Our
results also point to the importance of considering potential uncertainties in the IOP measurements when
the model is evaluated by comparing model-derived with measured values. In particular, this issue is illus-
trated for backscattering in very clear waters, where the correction of measured bbp(555) with an offset of
0.0002 m21, as recommended by Lee and Huot (2014), brings the comparison of model with observations
to much better agreement (Figure 15).

Further work is required with special attention devoted to improvements in both the semianalytical inver-
sion schemes and measurement accuracies, especially under circumstances when the models or measure-
ments are subject to significant challenges such as in very clear waters, extremely turbid waters, as well as
in the UV, red, and NIR parts of the spectrum. Although the LS2 model shows promise for hyperspectral
applications extending beyond the visible spectral range, there is particular need for further testing and
extending the spectral range of semianalytical reflectance models to the UV and NIR in view of current
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efforts toward future satellite ocean color missions that will cover a broader spectral range with higher
spectral resolution compared with the heritage and present missions.
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