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Fast Multispectral and Hyperspectral Image Fusion
via Hessian Inversion
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Abstract—Multispectral and hyperspectral data fusion allows
data restoration with increased spatial and spectral resolutions.
A common approach, in particular with the presence of variant
blur, is to solve an ill-posed inverse problem by minimizing a
mixed criterion. This minimization usually requires an iterative
gradient-based method. Still, this paper demonstrates the exis-
tence of a reachable explicit solution without the need to solve a
Sylvester equation, allowing for a three order of magnitude time-
saving factor wrt. iterative algorithms. We exploit this explicit
resolution to accelerate the minimization by a Majorize-Minimize
algorithm of a semi-quadratic convex edge-preserving criterion.
We conduct experiments on realistic synthetic measurements for
the James Webb Space Telescope and show that our proposed
solution outperforms the state-of-the-art in computation time and
quality of reconstruction.

Index Terms—Inverse problems, data fusion, MM algorithm,
pansharpening, multispectral, hyperspectral, variant blur, decon-
volution, close form, infrared, JWST.

I. INTRODUCTION

MANY fields, such as remote sensing, astrophysics, or
Earth observation, use hyperspectral data for spectra

observation. Several applications allow the use of integral field
spectrographs to acquire spectra in a given field of view, but
the images produced are generally poorly sampled. Parallel
acquisition of high spatial resolution and well-sampled data,
such as multispectral data, opens the field of data fusion to
reconstruct highly spatially and spectrally resolved data [1].

Usually, multispectral (MS) and hyperspectral (HS) datasets
are represented as datacubes, with two spatial dimensions and
one spectral dimension, that have been spatially or spectrally
degraded by the instruments’ effects like transmission of
optics, filters, sampling of the detector, etc. Therefore, the
MS/HS fusion problem consists of exploiting the information
provided by these two degraded datasets to reconstruct a
hyperspectral datacube corrected from instrumental effects.

Different approaches were explored in the literature to
solve the MS/HS fusion problem like matrix factorization
and tensor-based approaches [2]–[6], deep neural networks
approaches [7]–[10], or bayesian based approaches [11], [12].

Nonetheless, some cases of MS/HS fusion problems can re-
quire using computationally burdening algorithms, especially
when fusing high-dimensional datasets. The development of
computationally efficient solutions to this fusion problem was
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attempted in the literature. In Wei et al. [13], the MS/HS data
fusion problem is formulated through a Sylvester equation,
and an explicit solution is obtained, allowing a significant re-
duction of the computational cost, unlike iterative approaches.
Methods based on Tucker decompositions proposed by Prévost
et. al. [5] and Borsoi et. al. [6] also provide explicit solutions
to the MS/HS fusion problem.

However, the problem tackled in this paper involves the fu-
sion of datasets where instrumental effects include significant
and spectrally varying spatial blurs, acquired on a relatively
wide mid-infrared waveband for instance. The previously
presented methods [13] or [6] did not take into account such
spectrally dependent effects, making them inadequate for the
problem of this paper.

In contrast, Guilloteau et. al. [14] proposes the solution of
an inverse problem with a spectrally non-stationary spatial
blur by minimizing a least squares criterion including data
adequacy terms and a quadratic regularization. However, the
minimization of this criterion required using an iterative algo-
rithm instead of an explicit solution.

This paper approaches the MS/HS fusion problem with
variational approaches, as done in [14]. The first contribution
is the demonstration that a close form and explicit solution of
a regularized least square is reachable for the same inverse
problem [14], instead of the previously proposed iterative
approach, and without involving the resolution of a Sylvester
equation like in [13]. This proposed procedure allows for
a significant time-saving factor of up to 7 000 compared to
commonly used iterative approaches. A second contribution is
the development of a fast convex edge-preserving solution for
the MS/HS fusion problem. This method uses a semi-quadratic
regularization [15] and a Majorize-Minimize algorithm [16] to
improve the quality of the reconstruction of objects featuring
high spatial gradients in comparison to [14] (NRMSE from
27 × 10−3 to 22 × 10−3). These advances exploit a new
efficient way to calculate, store, and apply the inverse of a
Hessian matrix by exploiting its structure of diagonal blocks,
later described in section III.

Section II describes the model used to represent the object
observed by the instruments and the data formation pro-
cesses or forward models: one for an imaging instrument,
and another for an integral field spectrograph. Section III
formulates the problem and details solutions for two different
regularizations: quadratic and convex differentiable. Finally,
section IV presents an application of our method on simulated
astronomical data acquired by instruments similar to MIRI, the
mid-infrared instrument of the James Webb Space Telescope
(JWST). The results are presented in terms of reconstruction
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quality and time savings against iterative approaches and deep
neural network methods from the literature.

II. MODELS DESCRIPTION

A. Observed object model

The observed sky region is described as a discrete hyper-
spectral cube x with two spatial coordinates i ∈ [1, I] and
j ∈ [1, J ], and a spectral coordinate l ∈ [1, L]. As proposed
in [14], [15], [17], spectral correlations are introduced within
the observed object x, such that the spectral content of any
location (i, j) is a linear combination of T known spectra st.
The observed object x thus writes as

x[i, j, l] =

T∑
t=1

at[i, j] st[l] (1)

where at[i, j] gives the abundance of the spectrum st at (i,
j). This assumption of a Linear Mixing Model offers several
advantages. As the spectra st can be defined for all common
wavelengths covered by the instruments, they enable efficient
joint processing of all available data. Therefore, the number
of unknowns describing the object becomes P × T instead of
P ×L, where P = I×J is the number of pixels in an image.
Thus, choosing T ≪ L significantly reduces the number of
unknowns. Eq. 1 can be rewritten in a matrix form as

x = Ta (2)

where x ∈ RLP×P is the object with stacked monochromatic
images, T ∈ RLP×TP and a ∈ RTP×P the stacked abun-
dance images. The linear mixing matrix T is written as

T =


s1[1]IP . . . sT [1]IP

...
...

s1[L]IP . . . sT [L]IP

 (3)

with IP the identity matrix.

B. Imager model

Imagers contain several components, such as mirrors to
focus light, filters to select the waveband to observe, and a
detector to sample the light spatially. Due to the diffraction
on the finite aperture of the instrument, the spectrally varying
response blurs the images. Moreover, fields of view are consid-
ered relatively small, so the blurring effect can be modeled as a
spatial convolution with spectrally varying impulse responses.

It is assumed that each wideband image used for the
multispectral dataset can be produced from different imagers
with different blurring responses. Let C be the total number
of imagers. The blurred object xc

hm
writes

xc
hm

[i, j, l] = (x ∗
i,j

hc
m)[i, j, l]

where ∗
i,j

is the 2D spatial convolution operator on the axes

of i and j with hc
m the spectrally varying impulse response of

imager c ∈ [1, C].

Then, the spectral filter profiles and the detector’s quantum
efficiency of the imager must be taken into account. These
effects write as a spectral weighting wc

m with

xc
w[i, j, l] = xc

hm
[i, j, l] wc

m[l]. (4)

Finally, wideband images result from the integration of the
incoming light on a given waveband

xc
m[i, j] =

∑
l

xc
w[i, j, l].

Thus, transformations of the observed object x to obtain
the collection of C wideband images xm can be written in a
matrix form as

xm = WmCmx (5)

where Cm ∈ RCLP×LP writes as

Cm =




C1

m,1

. . .

C1
m,L


...

CC
m,1

. . .

CC
m,L




(6)

and where Cc
m,l ∈ RP×P is a convolution matrix with the

impulse response hc
m at the wavelength l.

The matrix Wm ∈ RCP×CLP operates the spectral response
and spectral integration for each of the C imagers, and is
written as

Wm =
(
W 1

m . . . WC
m
)

(7)

where W c
m ∈ RCP×LP writes

W c
m =



0P . . . 0P

...
...

wc
m[1]IP . . . wc

m[L]IP
...

...
0P . . . 0P


(8)

and where the row of non-zero matrices is the row c.
Using the Linear Mixing Model for Eq. 5 yields

xm = WmCmTa (9a)
= Ma (9b)

where M ∈ RCP×TP is the matrix form of the imager
forward model, with each block calculated as weighted sums
of convolution matrices

M =


∑

l w
1
m[l]s1[l]C

1
m,l . . .

∑
l w

1
m[l]sT [l]C

1
m,l

...
...∑

l w
C
m [l]s1[l]C

C
m,l . . .

∑
l w

C
m [l]sT [l]C

C
m,l

 .

(10)
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C. Spectrometer model
Common design choices exist between an integral field

spectrograph and an imager, such as mirrors to focus light and
detectors to sample the flux. Hypotheses do not differ from the
imager’s blur, as it varies spectrally but is spatially invariant.
Therefore, the blurred observed object xhh is a convolution
between the optical impulse response hh of the instrument
and x as

xhh [i, j, l] = (x ∗
i,j

hh)[i, j, l].

Then, the diffraction grating does not transmit flux for all
wavelengths equally. This effect, combined with the quantum
efficiency of the detector, leads to the spectral weighting of
the spectrometer wh, which must be taken into account as

xw[i, j, l] = xhh [i, j, l]wh[l].

The last effect is the detector spatial sampling of the
incoming light with a spatial sampling step greater than the
one used for the imager. It is computed as a spatial integration
of every region of di×dj pixels of the object xw, di, dj ∈ N∗.
Consequently, the resulting images are spatially decimated
from P to P ′ = P/(didj) pixels per image, and each pixel
value is calculated as

xh [̄i, j̄, l] =

(̄i+1)di∑
i=īdi

(j̄+1)dj∑
j=j̄dj

xw[i, j, l] (11)

where ī and j̄ are the new pixels coordinates in the spectrom-
eter images.

Like the imager’s model, the formation of images from the
spectrometer model can be written in a matrix form as

xh = SΣWhChx (12)

where the matrix Ch ∈ RLP×LP contains L convolution
matrices Ch,l ∈ RP×P on its diagonal, applying the spectrally
variant blur hh for each wavelength.

The matrix Wh ∈ RLP×LP operates the spectral response
of the spectrometer, written as

Wh =


wh[1]IP

. . .

wh[L]IP

 . (13)

The spatial integration of the spectrometer’s detector, de-
scribed in Eq. 11, is modeled by combining two matrix oper-
ators: a summing operator Σ ∈ RLP×LP and a subsampling
operator S ∈ RLP ′×LP . The first operator replaces the value
of each pixel of every image with the sum of the region of
di × dj pixels surrounding them and is written as

Σ = IL ⊗Σ (14)

where ⊗ stands for the Kronecker product, and Σ ∈ RP×P

is a convolution matrix with a 2D kernel of size di × dj and
full of ones.

The second operator then selects one pixel for every region
of di× dj pixels, hence a reduction of the image size from P
to P ′ pixels, and writes as

S = IL ⊗ S (15)

where each matrix S ∈ RP ′×P subsamples one image of the
input cube.

Using Eq. 3 of the Linear Mixing Model allows to write
Eq. 12 as

xh = SΣWhChTa (16a)
= Ha (16b)

where H ∈ RLP ′×TP is the matrix form of the spectrometer
forward model and is written as

H = SΣWhChT

=


wh[1]s1[1]SCΣ,1 . . . wh[1]sT [1]SCΣ,1

...
...

wh[L]s1[L]SCΣ,l . . . wh[L]sT [L]SCΣ,l

 (17)

with CΣ,l = ΣCh,l the joint convolution operator for the
wavelength l.

III. METHODOLOGY

This section formulates the inverse problem for the recon-
struction of the observed object described with abundance
maps a. Then, fast approaches are detailed to solve the
problem for two regularization cases.

A. Formulation of the problem

The abundance maps describing the observed object are
defined as the minimizer of a criterion

â = argmin
a

J (a) (18)

composed of two data adequacy terms and a regularization
term as

J (a) = µm∥ym −Ma∥22 + µh∥yh −Ha∥22 +R(a) (19)

where µm = 1/2σ2
m, µh = 1/2σ2

h , and σm and σh are the
standard deviations of additive white Gaussian noises. Because
of the spatial convolution, a regularization R(a), detailed later,
is used to stabilize the solution. An explicit minimizer of
this criteria with a quadratic regularization identical to [14]
is given in section III-B, and a fast minimization procedure
for a convex semi-quadratic regularization is described in
section III-E.

B. Quadratic regularization

A formulation of Eq. 19 with a quadratic regularization (ℓ2-
norm), as proposed in Guilloteau et al. [14], writes as

Jℓ2(a) = µm∥ym −Ma∥22 + µh∥yh −Ha∥22
+ µr

(
∥Dra∥22 + ∥Dca∥22

)
(20)

where

Dr = IT ⊗Dr, (21a)

Dc = IT ⊗Dc, (21b)

and Dr, Dc ∈ RTP×TP are first order 2D difference matrices
along the rows and columns respectively.
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Minimizing Jℓ2 is equivalent to solving ∇Jℓ2 = 0, which
yields

â = Q−1
ℓ2

qℓ2 (22)

with

Qℓ2 = µmQM + µhQH + µr(QDr
+QDc

), (23)

qℓ2 = µmM
Hym + µhH

Hyh, (24)

where ·H is the conjugate transpose operator, Qℓ2
∈ RTP×TP ,

qℓ2 ∈ RTP×P , and

QM = MHM (25)

QH = HHH (26)

QDr
= D

H

r Dr (27)

QDc
= D

H

c Dc (28)

In [14], authors propose a gradient based descent algorithm
to compute â (Eq. 22). However, the minimizer â of Jℓ2 can
be calculated explicitly if the inversion of Qℓ2

is accessible.
Section III-D demonstrates that the structure of Qℓ2

, detailed
in III-C, can be exploited for its fast inversion, that Q−1

ℓ2
is

easily storable and its application to qℓ2 is also fast.

C. Structure of Qℓ2

Lemma 1: If convolution matrices C∗ and D∗ are circulant,
then the matrices QM , QH , and QD∗

are square with
circulant blocks of equal size. Consequently, Qℓ2 is also made
of circulant blocks.

1) Structure of QM : As shown in Eq. 10, the matrix M
contains C×T blocks Mc,t that are sums of circulant matrices

Mc,t =
∑
l

wc
m[l]st[l]Cm,l. (29)

As a result, the blocks Mc,t are circulant themselves. Then,
the matrix QM is a square matrix of T ×T blocks that writes

(QM )t,t′ =
∑
c

MH
c,tMc,t′ (30)

that are also circulant [18].
2) Structure of QH : From Eq. 17, the L×T blocks of H

writes

Hl,t = wh[l]st[l]SCΣ,l (31)

Therefore, QH is a square matrix of T ×T blocks that writes
as

(QH)t,t′ =
∑
l

wh[l]
2st[l]st′ [l]C

H
Σ,lS

HSCΣ,l. (32)

However, the structure of these blocks in the Fourier space
leads to exploitable matrix structures. Indeed, writing CΣ,l =

FHΛlF gives

CH
Σ,lS

HSCΣ,l = FHΛH
l FSHSFHΛlF . (33)

As S carries a subsampling while SH fills images with
zeros, the resulting operation of SHS is a spatial weighing.
More precisely, the matrix SHS is diagonal with 1 every
didj coefficients and zeros elsewhere, i.e. the diagonal is a

Dirac comb of step didj . Therefore, FSHSFH is a circulant
convolution matrix with a Dirac comb as kernel, and as
presented in Wei et al. [13], writes

FSHSFH =
1

didj
Jdidj

⊗ IP ′ (34)

where Jdidj ∈ Rdidj×didj is full of “1”.
Multiplying Eq. 34 by Λl on the right gives

FSHSFHΛl

=
1

didj


IP ′ . . . IP ′

...
...

IP ′ . . . IP ′



Λl,1

. . .

Λl,didj



=
1

didj


Λl,1 . . . Λl,didj

...
...

Λl,1 . . . Λl,didj

 (35)

where Λl,d′ , d′ ∈ [1, didj ], are subdivisions of the diagonal of
the initial matrix Λl.

Multiplying Eq. 35 by ΛH
l on the left gives

ΛH
l FSHSFHΛl =

1

didj


ΛH

l,1Λl,1 . . . ΛH
l,1Λl,didj

...
...

ΛH
l,didj

Λl,1 . . . ΛH
l,didj

Λl,didj

 . (36)

As each block of ΛH
l FSHSFHΛl is diagonal, the matrices

CH
Σ,lS

HSCΣ,l defined at Eq. 33 are thus made circulant
blocks, which turns also true for the blocks of QH (Eq. 32).

3) Structures of QD∗
: Using Eqs. 21a and 21b gives

expressions for QDr
and QDc

as

QDr
= IT ⊗DH

r Dr and (37)

QDc
= IT ⊗DH

c Dc. (38)

Since D∗ are circulant, DH
∗ D∗ are circulant and QD∗

are
block matrices with circulant blocks.

D. Inversion of Qℓ2

Proposition 1: If

kerQM ∩ kerQH ∩ kerQDr
∩ kerQDc

= ∅

then Q−1
ℓ2

exists and is a block matrix with circulant blocks.
Moreover, thanks to Fourier transform, Q−1

ℓ2
is tractable,

storable in Fourier space and applicable. The proof is described
Appendix A.

E. Semi-quadratic regularization

The quadratic penalization of the previous regularization
may turn inadequate when restoring high spatial gradients in
images and can induce ringing artifacts. To solve this issue,
non-quadratic regularizations can be convenient alternatives
[19], [20]. A common choice is to use a strictly differentiable
convex function φ within the regularization function R, such
that φ is [16]
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1) φ is C1, even, coercive,
2) ∀u ∈ R+, φ(

√
u) is concave,

3) ∀u ∈ R, 0 < φ̇(u)/u < +∞.
Therefore, the new convex criterion to minimize writes as

Jℓ2,1(a) = µm∥ym −Ma∥22 + µh∥yh −Ha∥22
+ µr

∑
t,i,j

(
φ(Drat)[i, j] + φ(Dcat)[i, j]

)
(39)

As proposed by Geman and Yang (GY) [20] and used in
[17], the half-quadratic strategy aims to minimize Jℓ2,1(a)
by defining an augmented criterion K(a, br, bc) such that

min
br,bc
K(a, br, bc) = Jℓ2,1(a) (40)

where br and bc are auxiliary variables. Therefore, under light
hypothesis [19] K is convex and a relaxed version of J with
common minimizer, i.e.

â, b̂r, b̂c = argmin
a,br,bc

K and â = argmin
a

Jℓ2,1 . (41)

This convex [19] surrogate criterion writes as

K(a, br, bc) = µm∥ym −Ma∥22 + µh∥yh −Ha∥22

+ µr

(
∥Dra− br∥22 + ζ(br) + ∥Dca− bc∥22+ζ(bc)

)
(42)

where ζ(u) =
∑

i ζ(ui), with ζ linked to φ through convex
duality [19].

The benefit of this strategy is to transform a high-
dimensional convex minimization with correlation problem
into two separate minimization problems: a quadratic one
with correlation (minimizing K with br and bc fixed), and
a separable one wrt. to the auxiliary variables (minimizing K
with a fixed), as

â(k) = argmin
a

K
(
a, b̂(k)r , b̂(k)c

)
,

b̂(k+1)
r , b̂(k+1)

c = argmin
br,bc

K
(
â(k), br, bc

)
.

(43)

(44)

The alternative resolution of these minimization problems
leads to finding the triplet (â, b̂r, b̂c) that minimizes K, and
according to Eq. 41, â will minimize the original criterion
Jℓ2,1 .

Solving the first problem (Eq. 43) yields

â = Q−1
ℓ2,1

qℓ2,1 (45)

where

Qℓ2,1 = µmQM + µhQH + µr

(
QDr

+QDc

)
(46)

qℓ2,1 = µmM
Hym + µhH

Hyh + µr

(
D

H

r br +D
H

c bc

)
(47)

and where expressions of QM , QH , QDr
and QDc

are found
from Eq. 25 to 28.

Noticing that Qℓ2,1
= Qℓ2

, where the latter matrix was
defined in section III-B for the resolution of the quadratic
criterion Jℓ2 , leads to invert Qℓ2,1

as it was done for Qℓ2
in

section III-D. As Q−1
ℓ2,1

does not depend on a, br or bc, it can
only be calculated once for a given problem, at the start of
the alternative minimization procedure. As a consequence, the
solution to Eq. 43 is explicit and fast.

The second minimization problem Eq. 44, used to update
the auxiliary variables br and bc, can be reformulated in two
distinct problems with

b̂r = argmin
br

1

2
∥Dra− br∥22 + ζ(br),

b̂c = argmin
bc

1

2
∥Dca− bc∥22 + ζ(bc).

(48)

(49)

Cancelling the gradients of both of these criteria gives
formulations for the minimizers [17] as

b̂r = Dra−
1

2
φ′ (Dra

)
, (50)

b̂c = Dca−
1

2
φ′ (Dca

)
(51)

where φ′ independently applies φ′, the first derivative of φ,
to every element of the input vector.

As illustrated, both minimization problems of Eqs. 43
and 44 are solved explicitly. Consequently, this procedure
is expected to converge quickly in many test cases. This
algorithm is described in Alg. 1, where the stopping criterion
can be chosen to exploit the least square distance between
two iterates, the value of the criterion Jℓ2,1 of Eq. 39, or the
number of iterations.

Algorithm 1: Convex ℓ2,1 HS-MS fusion

Input : µm, ym, M , µh, yh, H , µr, Dr, Dc, φ′

P ← Q−1
ℓ2,1

; # See Eq. (46) and Appendix A

ȳ ← µmM
Hym + µhH

Hyh ;
while Stopping criterion is not met do

br ←Dra− 1
2φ

′ (Dra
)

bc ←Dca− 1
2φ

′ (Dca
)

a← P
(
ȳ + µr

(
D

H

r br +D
H

c bc

))
end
Output: a

IV. EXPERIMENTAL RESULTS

The proposed method for the fusion of multispectral and
hyperspectral data can be applied to a relatively wide variety
of cases. Indeed, the impulse response can differ between the
imager and the spectrometer model. Moreover, the wideband
images obtained in the multispectral dataset can originate
from different imagers (with different impulse responses and
spectral responses) as long as their fields of view and spatial
sampling steps are the same. Note that the fusion with imagery
data with different sampling spatial steps or the fusion with
more than one hyperspectral datacubes is possible by adding
more data attachment terms in the originally formulated crite-
rion of Eq. 19, but this was not explored in this paper.

In this section, the proposed algorithms’ performances were
evaluated by simulating the fusion of MS and HS data from
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the mid-infrared instrument MIRI of the James Webb Space
Telescope [21]. Instrument models described in sections II-B
and II-C have been adapted for the imager MIRIM [22] and the
Mid Resolution Spectrometer (MRS) [23] belonging to MIRI.

The instrument models chosen for this study are described
in section IV-A and the synthetic observation datasets in
section IV-B. The performances of data fusion approaches
are compared with reconstruction quality metrics, explained
in section IV-C. Results obtained with the quadratic and semi-
quadratic regularizations, introduced in sections III-B and
III-E, are presented in terms of time benefits and quality
of reconstruction in sections IV-D and IV-E. Finally, inverse
problem approaches are compared with a neural network
method of the literature in section IV-F.

A. Study case instrument models

The PSF of the JWST, obtained with webbpsf [24], was
used to simulate the impulse response used in the imager and
spectrometer models of sections II-B and II-C. The FWHM
of this PSF is proportionally linear to the wavelength, as
illustrated in Fig. 1.
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Fig. 1: PSF of MIRI/JWST.

The spectral response of the imager uses the real Photon
Conversion Efficiency (PCE) curves of MIRIM [21], where
C = 9 different spectral channels are considered [22]. The
spectral response induced by the MRS is composed of 4
channels with 3 sub-channels each [23]. However, a simplified
spectrometer model is considered with one unique channel
and no sub-channel, with a spectral response taken to be the
maximum of the concatenated PCE curves of the MRS [21].

This model applies a spatial decimation with di = dj = 4,
i.e. integrates square region of 4 × 4 pixels into one, which
induces a spatial subsampling for wavelength shorter than 20
µm [21].

B. Synthetic data

Typical MS and HS data that MIRI/JWST could acquire
were created from a set of T = 5 abundance maps a derived
from real observations [25], [26], shown Fig. 3. These maps
are associated with 5 spectra s [27] of length L = 300
covering the MIRI spectral range (from 4.6 to 28.6 µm), shown
Fig. 2. The maps a and spectra s have been used as first
inputs for the imager and spectrometer model to simulate
multispectral and hyperspectral data.
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Fig. 2: Spectra for the Linear Mixing Model.

Fig. 3: Original abundance maps a

The readout and shot noise present for real observations
were also simulated by corrupting images with an additive
white Gaussian noise so that the signal-to-noise ratio SNRdB
in both the MS and HS datasets would be the same, where

SNRdB(y) = 10 log10

(
∥y∥22
Nσ2

)
(52)

with σ the standard deviation of the Gaussian noise, and N
the number of values in y, i.e. N = P × C for the MS data,
and N = P ′ × L for HS data.

C. Reconstruction quality metrics

The quality of the reconstructed cubes was evaluated using
four different criteria : the Normalized Root Mean Squared
Error (NRMSE), the Structural Dissimilarity (aDSSIM), the
Spectral Angle Mapper (aSAM), and the Peak Signal-to-Noise
Ratio (PSNR). For all criteria except the PSNR, the lower the
value, the better.

The Normalized Root Mean Squared Error (NRMSE) [28]
measures the cumulative squared error between each pixel of
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the reconstructed cube x̂ and the true cube x, and writes as

NRMSE(x, x̂) =
∥x− x̂∥2
∥x∥2

(53)

with a value between 0 and 1, the lower the better the
reconstruction.

The Structural SIMilarity (SSIM) [29] evaluates the quality
of the perceived spatial quality of a reconstructed image w.r.t.
the original one. To evaluate the spatial quality of the full
reconstructed cube, the average SSIM between all images of
both cubes x and x̂ is calculated and rescaled between 0
to 1, where 0 means perfect spatial similarity and 1 perfect
anti-correlation. This value is called the average Structural
Dissimilarity (aDSSIM) and is written as

aDSSIM(x, x̂) =
1

2

(
1− 1

L

L∑
l=1

SSIM(xl, x̂l)

)
. (54)

The average Spectral Angle Mapper (aSAM) [30] measures
the spectral distorsion between x and x̂. It calculates the
average angular distance between the spectra of both cubes
at all pixels. It is formulated as

aSAM(x, x̂) =
1

P

P∑
p=1

arccos

(
⟨xp, x̂p⟩
||xp||2||x̂p||2

)
(55)

and returns a value between 0 and π. The lower this value
is, the better the spectral content of the original cube x was
recovered in x̂.

The Peak Signal-to-Noise Ratio [31] evaluates the quality
of the reconstruction by calculating the maximum ratio of a
pixel value to the noise value. It is calculated as

PSNR(x, x̂) = 20 log10

(
max(x)√
MSE(x, x̂)

)
(56)

and the higher it is, the higher the quality of reconstruction is.

D. Reconstruction with ℓ2 approach

The explicit procedure for the minimization of the quadrat-
ically regularized criterion Jℓ2 proposed in section III-B, now
called the ℓ2 approach, was used to reconstruct abundance
maps aℓ2

from both MS and HS datasets.
Its performance was compared with a gradient-based it-

erative approach, as proposed in [14], regarding the quality
of reconstruction and computational load. Although the exact
algorithm used in [14] is not mentioned, the Linear Conjugate
Gradient (LCG) [32] optimization algorithm was specifically
used for the comparison with the proposed ℓ2 explicit approach
of this paper. The value for the only hyperparameter µr was
chosen for both methods to maximize the quality of the
reconstructed cube x̂ℓ2

wrt. the original cube x, according
to the NRMSE, defined at Eq. 53.

Inverse problem approaches were also compared with more
”naive” reconstruction methods, such as the coaddition, which
consists of manually inverting the spectral response for both
MS and HS datasets and reformating them to allow the
calculation of the average cube. To do so, images of the
MS dataset were duplicated for each wavelength on their

corresponding spectral band, and images of the HS dataset
were upsampled to match the dimensions of MS images.

Fig. 4 compares the reconstructions of the coaddition
method, the iterative inverse problem approach (LCG) [14],
and the exact solution found with the proposed procedure at a
relatively long wavelength (25.5 µm) where instruments data
are blurry. Two images are shown for the iterative approach:
one after 0.05 seconds of calculations (the computation time
of the explicit approach, which corresponds to one iteration),
and one after convergence of the algorithm (approximately
6 minutes, 7 000 iterations), with a convergence defined as
reaching 0.1% of min(Jℓ2)

1. Note that precalculations, such
as the calculation of Q (Eq. 23), Q−1 (section III-D) and
qℓ2 (Eq. 24) in the Fourier space were not included in these
time measurements. For information, in that case, precalcu-
lations required 15 seconds for LCG and 17 seconds for the
proposed method (longer time due to the inversion of Q, not
required for LCG). Tab. I compares the reconstruction quality
measurements between the different reconstruction methods.

As expected, results for the coaddition method are relatively
poor as the method does not deconvolve images. The intensi-
ties of pixels are slightly closer to the original than those given
in the instrument’s data, but much more precisely recovered
with inverse problem approaches. Efficient deconvolution re-
sults of the latter approaches are explained by their ability to
take into account instrument models (sections II-B and II-C)
and exploit the high spatial resolution of short wavelengths to
recover high-frequency features at long wavelengths through
the spectral correlations introduced with the Linear Mixing
Model (section II-A).

At equal computation time, the proposed method performs
a significantly finer restoration of the signal than the iterative
approach. When allowed to converge, the iterative approach
performs visually equivalently to the proposed method, as ex-
pected. However, the reconstruction with the explicit approach
is 7 000 times faster while demonstrating slightly superior
reconstruction quality, as shown in Tab. I. Indeed, for the
reconstruction of T = 5 abundance maps of size 124×248
from an MS dataset of size 124×248×9 and an HS dataset of
size 31×62×300, the proposed explicit ℓ2 approach required
only 0.05 seconds for âℓ2

= Q−1
ℓ2

qℓ2 on a processor i9-
10885H, 2.40 GHz (x 16), 64 Go RAM. In contrast, the
iterative approach requires a computational time exponentially
proportional to the signal-to-noise ratio SNRdB, as shown
in Fig. 5. Therefore, for a low noise case (SNRdB = 100
dB), approximately 6 minutes were necessary with the LCG
algorithm to reach 0.1% of the minimum of the criteria
min(Jℓ2). Indeed, the less noisy the observation data, i.e.
the higher the SNRdB, the more high frequencies need to be
restored, thus requiring a more significant number of iterations.
This issue is avoided with the proposed explicit ℓ2 approach.

It is worth noting that the time-saving factor relative to
the LCG algorithm could be higher by setting a convergence
threshold stricter than 0.1% of min(Jℓ2). In any case, such a
time-saving factor could save hours of computational time for
the joint processing of heavier MS and HS datasets, e.g. real

1The value of min(Jℓ2
) comes from the proposed explicit approach.
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Fig. 4: Imagery data ym and spectrometry data yh with SNRdB = 100 dB on top, and reconstruction with the coaddition method
Fig. 4c. The next figures show results of the minimization of Jℓ2 with the LCG algorithm in 0.05 second and 6 minutes (value
of criterion at 0.1% of min(Jℓ2)), and with the demonstrated explicit method (section III-B) in 0.05 seconds. The last figure
is the original image. Central wavelength for all images is 25.5 µm. Unit is mJy arcsec−2. The dynamical scales for the three
last figures are identical.
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Fig. 5: Time required for the Linear Conjugate Gradient (LCG)
algorithm [14] to reach 10%, 1% and 0.1% of min(Jℓ2)
(Eq. 20), compared to the time required for the proposed
explicit solution as a function of the signal-to-noise ratio
SNRdB of the MS and HS datasets. Required time for the
proposed explicit approach: 0.05 seconds. Precalculations are
not taken into account.

observation datasets.
Nonetheless, our explicit ℓ2 approach was tested for the

fusion of datasets with dimensions equal to the ones used
in [14], i.e. 11 images of size 90 × 900 pixels for the
MS dataset, and 4974 images of 30 × 300 pixels for the
HS dataset, with only T = 4 spectra templates s used for
the Linear Mixing Model. In that case, the fastest approach

proposed by [14], the ”vectorized approach”, allowed a recon-
struction after approximately 36 minutes of preprocessing and
20 seconds of processing. The number of iterations or time
per iteration was not mentioned in the paper. In comparison,
our proposed explicit approach provided the exact minimizer
of Jℓ2 with 4 minutes of preprocessing and again only 0.05
seconds for the calculation of â = Q−1qℓ2,1 . Indeed, the
application of the Hessian Q−1 is not influenced by the
number of wavelengths of the input data thanks to the subspace
approximation.

E. Reconstruction with ℓ2,1 approach

The second proposed algorithm aiming to minimize the
semi-quadratically regularized criterion Jℓ2,1 of Eq.39, now
called the ℓ2,1 approach, has also been tested for the recon-
struction of abundance maps and its performance compared
with the ℓ2 approach.

The chosen convex non quadratic function φ for the penal-
ization term in Jℓ2,1 is the Huber function, defined as

φ(δ) =

{
δ2 if |δ| < θ,

2θ|δ| − θ2 otherwise,
(57)

where θ ∈ R+ is the threshold at which the Huber function
switches from quadratic to linear. Thus, higher gradients
are less penalized than with a quadratic regularization (ℓ2
approach), which allows for a finer reconstruction of edges.

The ℓ2,1 approach requires setting two hyperparameters : the
regularization parameter µr, and the Huber threshold θ. Again,
hyperparameters were chosen to minimize NRMSE(x, x̂ℓ2,1

),
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Methods NRMSE ×10−3 dSSIM ×10−5 SAM ×10−3 PSNR [dB] Time [s]

Coaddition 130 1158 113 37 0.6

LCG [14] (equal time) 43 270 30 47 0.05

LCG [14] (after convergence) 3.2 5.1 1.1 69 367 (6 min)

Proposed explicit solution 3.1 5.1 1.1 69 0.05

TABLE I: Comparison of reconstruction quality measurements between the coaddition, LCG at an equal time with the proposed
method and when it converged, and the proposed explicit method for the minimization of the quadratic criterion Jℓ2 defined
at Eq. 20.

(a) Original abundance maps a (b) Exact minimum of Jℓ2
[14] (c) Minimum of Jℓ2,1

Fig. 6: Comparison between original abundance maps a, on the left, and the ones reconstructed with the explicit minimization
of Jℓ2 and with the fast minimization of Jℓ2,1 , where SNRdB = 30 dB for both MS and HS input datasets. Each of these
abundance maps is associated in order with the spectra of Fig. 2. All maps share the same dynamic range.

where x̂ℓ2,1
is the hyperspectral cube reconstructed from the

abundance maps âℓ2,1
.

Ideally, the reconstructed abundance maps should perfectly
separate (”unmix”) features with different spectra originally
superposed in the instrument data. To verify the unmixing
for both proposed approaches, the reconstructed maps from
both ℓ2 and ℓ2,1 approaches are shown in figure 6 for
MS and HS datasets with a signal-to-noise ratio of 30 dB.
Even though low-frequency features are well recovered with
both approaches, the unmixing of high-frequency features (or
edges) with the ℓ2 approach is limited. In fact, a higher
noise forces a higher quadratic regularization to stabilize the
solution, with the side effect of strongly penalizing any high-
frequency feature. Thus, the solution minimizing Jℓ2 in a high
noise case are maps sharing these higher frequencies to avoid
the presence of sharp edges. In contrast, the ℓ2,1 approach
performs a visibly superior unmixing, and the recovery of
high-frequency features is also enhanced.

Images from the cubes reconstructed from the abundance
maps of figure 6 are shown on top of Fig. 8. Even if the
ℓ2 approach shows clear deblurring and denoising capabilities
despite its inaccurate spectral unmixing, the ℓ2,1 approach
performs a superior edge reconstruction, as expected. On
top of an improved spatial reconstruction, the ℓ2,1 approach
performed a significantly finer reconstruction of spectra at
longer wavelengths than the ℓ2 approach, especially in high
gradient regions as shown figure 7. Errors on the reconstructed
spectra with the coaddition method also tend to be inaccurate
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Fig. 7: Example of spectra reconstructed with the coaddition,
the ℓ2 [14] and the ℓ2,1 approaches for the same spatial
position, taken in a high gradient region. SNR of input dataset:
30 dB.

at longer wavelengths, firstly due to the missing deconvolution,
and secondly to the inversion of the low spectral response at
long wavelengths, causing a noticeable noise effect.

Further experiments were conducted to compare the edge
reconstruction capabilities of both ℓ2 and ℓ2,1 approaches
with the same imager and spectrometer model. Simulated
noised MS and HS datasets made of crosses with sharp
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Fig. 8: Imagery data ym and spectrometry data yh with SNRdB = 30 dB, images from cubes reconstructed with the explicit
minimization of argminJℓ2 and fast minimization of argminJℓ2,1 , and the original image, for simulated astronomical images
(top) and images made of crosses and gradients (bottom). The central wavelength for all images is 25.5 µm. Unit is mJy arcsec−2.
Same dynamical scales for figures (d), (e), and (f), and for (j), (k), and (l).

Methods NRMSE ×10−3 dSSIM ×10−5 SAM ×10−3 PSNR [dB] Time [s]

Coaddition 133 1476 119 37 0.6

Exact solution of ℓ2 [14] 27 241 5.8 50 0.05

Proposed ℓ2,1 approach 22 179 4.0 52 19 (300 iter.)

TABLE II: Comparison of reconstruction quality measurements between the coaddition, the ℓ2 and the ℓ2,1 approaches for
input MS and HS datasets with SNRdB = 30 dB.

edges and smooth gradients were created, and the resulting
reconstructions are shown at the bottom of Fig. 8. The optimal
reconstruction with the ℓ2 approach is noisy, and the edges
are poorly reconstructed. Conversely, the ℓ2,1 approach still
demonstrates high denoising and edge-preserving capabilities
(see Tab. II for a comparison of reconstruction quality mea-
surements).

Compared to the iterative gradient-based ℓ2 approach from
the literature [14], the proposed ℓ2,1 approach is superior in
both quality of reconstruction and computational time. Indeed,
for every case tested in this work, the output of the proposed
approach at any given computational time had a lower NRMSE
to the true object than the output obtained with the literature.

However, the ℓ2,1 approach can present some limitations
compared to the ℓ2 approach. Indeed, it is iterative, thus nec-
essarily slower, and requires setting convergence thresholds.
Moreover, it involves setting 2 hyperparameters (µr and θ)
instead of 1 for the ℓ2 approach (µr), which complicates the
search for an optimal solution.

As demonstrated in this study, the ℓ2 approach could be
suited for the fusion of low-noise datasets or datasets mainly
composed of low-frequency features. Other situations would
require using the ℓ2,1 approach for an improved reconstruction
of high-frequency features, superior spectral unmixing, and

resilience to noise.

F. Comparison with neural network approaches
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Fig. 9: Example of spectra reconstructed with the coaddition,
the ℓ2 [14] and the ℓ2,1 approaches, and Fusformer [10] for
the same spatial position, taken in a high gradient region. SNR
of input datasets: 40 dB.
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Fig. 10: Imagery data ym and spectrometry data yh with SNRdB = 40 dB on top, and below are reconstructions with the
coaddition method, the ℓ2 and ℓ2,1 approaches, Fusformer, and the original image. All results were produced from the detailed
reduced MS and HS datasets. The central wavelength for all images is 25.5 µm. Unit is mJy arcsec−2. Same dynamical scale
for figures (d), (e), and (g).

The study was extended with a comparison with neural
network approaches as they have been increasingly used for
MS/HS fusion. As demonstrated in [10], the self-attention
feature of a transformer embedded in a greater neural network
architecture allowed it to outperform other known methods of
the literature in terms of quality of reconstruction. Indeed, the
transformer enabled to inspect the global relationships between
features, whereas convolution kernels, for example in CNN-
based methods, could only account for local relationships
of features [10]. This architecture, called Fusformer, was
compared with the proposed inverse problem approaches for
the fusion of astronomical data.

A trained model of Fusformer provided by its authors was
used for this purpose. New astronomical datasets were created
to satisfy the model requirements on the input dimensions : 3
× 48 × 48 pixels for the MS dataset, and 31 × 12 × 12 for the
HS dataset. These reduced datasets were noised so their SNR
is 40 dB, and were the ones used as inputs for all compared
methods. Moreover, a normalization of these input datasets
was required to set their values between 0 and 1. Then, the
output cube of the network was denormalized such that its
boundary values were the same as for the input datasets.

Images of the reconstructed cubes with the coaddition, ℓ2
and ℓ2,1 approaches and Fusformer are shown Fig. 10. It can
be seen that Fusformer successfully recovered some high-
frequency features, which is assumed related to the training
of the network in the high-pass domain [10]. However, low
frequencies were not well recovered, i.e. background values
are too intense relative to high-frequency features compared
to the original image. Furthermore, a substantial drawback
of this network (and most deep neural networks) is that
output values are intrinsically bounded between 0 and 1 before

denormalization, yet such inverse or deconvolution problems
usually lead to restoring unknown values of flux potentially
falling outside of a predefined interval. Consequently, naive
denormalization cannot restore correct values of flux, as seen
in Fig. 10f. Therefore, even though spatial information can
be well recovered with this method, it turns inadequate for
spectra reconstruction, as shown with reconstructed spectra of
Fig. 9.

V. CONCLUSION

Typical imager and spectrometer models have been de-
scribed considering a wavelength-dependent spatial blur, dif-
ferent spectral responses, spectral integrations for the imager,
and spatial integrations and subsampling for the spectrometer.
Efforts were made to extend the applicability of these models
such that the impulse response can be different between the
imager and spectrometer model, and such that the wideband
images themselves originate from different imager models.

The data fusion problem was first posed through the for-
mulation of a regularized least squares criterion, for which
a calculable explicit solution has been demonstrated by ex-
ploiting an efficient way to calculate the Hessian matrix.
Then, the problem was formulated with an edge-preserving
semi-quadratic regularization. This latter problem involved an
alternating minimization problem, which has been accelerated
with the same Hessian inversion procedure.

These data fusion methods have been applied to simulated
astronomical images from the James Webb Space Telescope.
The benefits of the explicit solution for the exact minimization
of the quadratic criterion against an iterative approach have
been proven with a time-saving factor of 7 000 for the fusion
of low noise data (SNRdB = 100 dB).
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A comparison of the approaches with quadratic ℓ2 and
semi-quadratic ℓ2,1 regularizations has also been carried out
and highlighted the improved ability of the latter approach
to unmix spectral information, to better reconstruct spatial
information (especially in high gradient areas) and spectra,
which also led to superior denoising capabilities.

Finally, a performance comparison with a deep neural
network architecture with an embedded transformer trained
for the fusion of MS and HS datasets has been conducted
and led to the conclusion that the proposed inverse problem
approaches outperformed such a method in this context of data
fusion.

Further work could include estimations of optimal values
of hyperparameters to develop a non-supervised reconstruction
procedure. This would result in drastic time savings as iterative
searches for optimal hyperparameter values would be avoided.
Other works could be conducted to improve the quality
of the reconstruction, for example by imposing a positivity
constraint, or by using wavelet or deep neural network-based
regularizations.
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APPENDIX A
PROOF OF Qℓ2 INVERSION

We consider a square matrix made of diagonal blocks ∆t,t′


∆1,1 . . . ∆1,T

...
...

∆T,1 . . . ∆T,T

 . (58)

Let P be a permutation matrix such that


∆1,1 . . . ∆1,T

...
...

∆T,1 . . . ∆T,T

 = P


∆′

1

. . .

∆′
P

P (59)

where the blocks ∆t,t′ are diagonal, and the blocks ∆′
p, p ∈

[1, P ], are matrices of size T ×T , built so that the coefficient
of the row t and column t′ is the pth coefficient of the diagonal
of ∆t,t′ (

∆′
p

)
t,t′

= (∆t,t′)p,p .

Such permutations allow for the creation of a new block
diagonal matrix where all Fourier coefficients have been sorted
by frequency (one block per frequency). As done in [33],
this matrix is directly invertible. Using the orthogonality of
permutations matrices, i.e. P−1 = P T , the inversion of Eq. 59
writes as


∆1,1 . . . ∆1,T

...
...

∆T,1 . . . ∆T,T


−1

(60a)

= P−1


∆′

1

. . .

∆′
P


−1

P−1 (60b)

= P−1


(∆′

1)
−1

. . .

(∆′
P )

−1

P−1 (60c)

= P T


δ′1

. . .

δ′P

P T (60d)

=


δ1,1 . . . δ1,T

...
...

δT,1 . . . δT,T

 (60e)

where δt,t′ have the same size and structure than ∆t,t′ , i.e.
diagonal matrices of size P × P .

The inversion of Qℓ2
is then calculated as

Q−1
ℓ2

=

F
H


∆1,1 . . . ∆1,T

...
...

∆T,1 . . . ∆T,T

F


−1

(61a)

= F
H


δ1,1 . . . δ1,T

...
...

δT,1 . . . δT,T

F (61b)

which proves that blocks of Q−1
ℓ2

indeed follow a diagonal
structure in the Fourier space, as for Qℓ2

. This property allows
for fast computation and application of Q−1

ℓ2
on qℓ2 in the

Fourier space to explicitly obtain the minimizer of Jℓ2 with
Eq. 22.

Therefore, the inversion of the initial matrix Qℓ2 require T 2

fft to diagonalize the blocks, and P inversion of matrix of
size T×T . In the case of this paper, P is the number of pixels,
and T is the number of spectral templates. Such configuration
can be solved efficiently by an actual personal computer and
linear algebra libraries.


	Introduction
	Models description
	Observed object model
	Imager model
	Spectrometer model

	Methodology
	Formulation of the problem
	Quadratic regularization
	Structure of 2
	Structure of 
	Structure of 
	Structures of *

	Inversion of 2
	Semi-quadratic regularization

	Experimental Results
	Study case instrument models
	Synthetic data
	Reconstruction quality metrics
	Reconstruction with 2 approach
	Reconstruction with 2, 1 approach
	Comparison with neural network approaches

	Conclusion
	References
	Appendix A: Proof of 2 inversion

